1
|
Zhao Y, Chen L, Jiang S, Wu Z, Xiang Q, Lin J, Tian S, Sun Z, Sun C, Li W. Exosomes derived from MSCs exposed to hypoxic and inflammatory environments slow intervertebral disc degeneration by alleviating the senescence of nucleus pulposus cells through epigenetic modifications. Bioact Mater 2025; 49:515-530. [PMID: 40206196 PMCID: PMC11979484 DOI: 10.1016/j.bioactmat.2025.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which places heavy burdens on society and individuals. Surgical intervention is the conventional therapy for IDD, but patients who undergo surgery face relatively high risks of recurrence and complications. Therefore, a relatively less invasive and efficient treatment for IDD is urgently needed. In this study, we constructed a novel nanobiomaterial, named Hi-Exos, to slow IDD. Hi-Exos are exosomes derived from mesenchymal stem cells exposed to hypoxic and inflammatory environments. Hi-Exos could relieve the senescence of nucleus pulposus cells and slow IDD through an epigenetic modification mechanism by introducing the epigenetic factor miR-221-3p into senescent nucleus pulposus cells to reduce DDIT4 expression and inhibit the activation of NF-κB signalling pathway. This study provided a novel strategy for IDD treatment involving the use of Hi-Exos to deliver miR-221-3p to reduce the senescence of nucleus pulposus cells and repair IDD via epigenetic modifications.
Collapse
Affiliation(s)
- Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Longting Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Yang G, Dong C, Wu Z, Wu P, Yang C, Li L, Zhang J, Wu X. Single-cell RNA sequencing-guided engineering of mitochondrial therapies for intervertebral disc degeneration by regulating mtDNA/SPARC-STING signaling. Bioact Mater 2025; 48:564-582. [PMID: 40104024 PMCID: PMC11914924 DOI: 10.1016/j.bioactmat.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of discogenic low back pain, contributing significantly to global disability and economic burden. Current treatments provide only short-term pain relief without addressing the underlying pathogenesis. Herein we report engineering of biomimetic therapies for IVDD guided by single-cell RNA-sequencing data from human nucleus pulposus tissues, along with validation using animal models. In-depth analyses revealed the critical role of mitochondrial dysfunction in fibrotic phenotype polarization of nucleus pulposus cells (NPCs) during IVDD progression. Consequently, mitochondrial transplantation was proposed as a novel therapeutic strategy. Transplanted exogeneous mitochondria improved mitochondrial quality control in NPCs under pathological conditions, following endocytosis, separate distribution or fusion with endogenous mitochondria, and transfer to neighboring cells by tunneling nanotubes. Correspondingly, intradiscal mitochondrial transplantation significantly delayed puncture-induced IVDD progression in rats, demonstrating efficacy in maintaining mitochondrial homeostasis and alleviating pathological abnormalities. Furthermore, exogenous mitochondria were engineered with a bioactive, mitochondrial-targeting macromolecule to impart anti-oxidative and anti-inflammatory activities. The obtained multi-bioactive biotherapy exhibited significantly enhanced benefits in IVDD treatment, in terms of reversing IVDD progression and restoring structural integrity through the mtDNA/SPARC-STING signaling pathways. Overall, our engineered mitochondrial therapies hold great promise for treating IVDD and other musculoskeletal diseases linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Guoyu Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenpeng Dong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaoxi Wu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Wu
- College of Pharmacy and Medical Technology, Vocational and Technical College, Hanzhong, Shaanxi, 723000, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Yu-Yue Pathology Scientific Research Center, 313 Gaoteng Avenue, Jiulongpo District, Chongqing, 400039, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Samanta A, Yoo MJ, Koh J, Lufkin SC, Lufkin T, Kraus P. Proteomic profiling of small extracellular vesicles from bovine nucleus pulposus cells. PLoS One 2025; 20:e0324179. [PMID: 40440285 PMCID: PMC12121814 DOI: 10.1371/journal.pone.0324179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Small extracellular vesicles (small EV) are a conserved means of communication across the domains of life and lately gained more interest in mammalian non-cancerous work as non-cellular, biological therapeutic with encouraging results in recent studies of chronic degenerative diseases. The nucleus pulposus (NP) is the avascular and aneural center of an intervertebral disc (IVD), home to unique niche conditions and affected in IVD degeneration. We investigated autologous and mesenchymal stem cell (MSC) small EVs for their potential to contribute to cell and tissue homeostasis in the NP niche via mass spectrometric proteome and functional enrichment analysis using adult and fetal donors. We compared these findings to published small EV databases and MSC small EV data. We propose several mechanisms associated with NP small EVs: Membrane receptor trafficking to modify signal responses promoting niche homeostasis; Redox and energy homeostasis via metabolic enzymes delivery; Cell homeostasis via proteasome delivery and immunomodulation beyond an association with a serum protein corona. The proteome signature of small EVs generated by NP parent cells is similar to previously published small EV data, yet with a focus on supplementing anaerobic metabolism and redox balance while contributing to the maintenance of an aneural and avascular microniche.
Collapse
Affiliation(s)
- Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Sina Charlotte Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| |
Collapse
|
4
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral Citrate Supplementation Mitigates Age-Associated Pathologic Intervertebral Disc Calcification in LG/J Mice. Aging Cell 2025; 24:e14504. [PMID: 39930949 PMCID: PMC12073913 DOI: 10.1111/acel.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025] Open
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. We investigated the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate reduced the incidence of disc calcification without affecting the vertebral bone structure, knee calcification, plasma chemistry, or locomotion in LG/J mice. Notably, a positive effect on grip strength was evident in treated mice. FTIR spectroscopy of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition. Mechanistically, activation of an endochondral differentiation in the cartilaginous endplates and nucleus pulposus (NP) compartment contributed to LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence by Ca2+ chelation throughout the disc while exhibiting a differential effect on NP and endplate cell differentiation. In the NP compartment, K3Citrate reduced the NP cell acquisition of a hypertrophic chondrocytic fate, but the pathologic endochondral program was unimpacted in the endplates. Overall, this study for the first time shows the therapeutic potential of oral K3Citrate as a systemic intervention strategy to ameliorate disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life SciencesThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- PXE International Center of Excellence for Research and Clinical CareThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- PXE International Center of Excellence for Research and Clinical CareThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life SciencesThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Zhang H, Zhang D, Wang H, Liu Y, Ding W, Fan G, Meng X. Heme oxygenase 1‑overexpressing bone marrow mesenchymal stem cell‑derived exosomes suppress interleukin‑1 beta‑induced apoptosis and aging of nucleus pulposus cells. Mol Med Rep 2025; 31:116. [PMID: 40052562 PMCID: PMC11905203 DOI: 10.3892/mmr.2025.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) and heme oxygenase 1 (HO‑1) attenuate intervertebral disc degeneration (IVDD). However, whether BMSC‑derived exosomes attenuate IVDD by delivering HO‑1 to nucleus pulposus (NP) cells remains to be elucidated. Mouse BMSCs were characterized by multilineage differentiation and surface marker molecule detection. Exosomes Exo and Exo‑HO‑1 were isolated from BMSCs and HO‑1‑overexpressing BMSCs by ultracentrifugation and characterized by observing their morphology, detecting the exosome marker proteins, tumor susceptibility gene 101 (TSG101) and CD63 and analyzing their particle size. Interleukin‑1 β (IL‑1β)‑stimulated NP cells were used as the IVDD cell model. The influence of Exo or Exo‑HO‑1 on IL‑1β‑urged apoptosis and senescence in NP cells was determined by flow cytometry, western blotting and senescence‑associated β‑galactosidase (SA‑β‑gal) staining. Exo and Exo‑HO‑1 did not vary in size or morphology. Exo‑HO‑1 markedly repressed IL‑1β‑prompted apoptosis in NP cells, accompanied with a prominent increase in Cleaved caspase 3 and Bax protein levels and a marked decrease in Bcl‑2 protein levels. Exo and Exo‑HO‑1 both decreased the number of SA‑β‑gal‑positive NP cells and arrested NP cells in the G1 phase. Exo‑HO‑1 had stronger effects than Exo, suggesting that Exo‑HO‑1 can weaken IL‑1β‑induced NP cell senescence. In addition, Exo and Exo‑HO‑1 repressed IL‑1β mediating the phosphorylation of p65 and nuclear translocation of p65. In conclusion, HO‑1‑overexpressing BMSC‑derived exosomes blocked the nuclear factor‑kappa B signaling in IL‑1β‑stimulated NP cells, thus impairing cell apoptosis and senescence.
Collapse
Affiliation(s)
- Hao Zhang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Di Zhang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Hui Wang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yilei Liu
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Wenyuan Ding
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Guangpu Fan
- Department of Cardiac Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xianzhong Meng
- Spinal Surgery Department 1, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
6
|
Chen C, Wang X, Zhao Y, Duan X, Hu Y, Lv Z, He Q, Yangyang Z, Wu G, Luo H, Zuo Q, Hao X, Zhao Y, Ding X, Zhang F. Exosomes inhibit ferroptosis to alleviate intervertebral disc degeneration via the p62-KEAP1-NRF2 pathway. Free Radic Biol Med 2025; 232:171-184. [PMID: 39986487 DOI: 10.1016/j.freeradbiomed.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has been reported to affect the activity of nucleus pulposus (NP) cells in the intervertebral disc (IVD), thereby contributing to intervertebral disc degeneration (IVDD). Exosomes (EXOs), extracellular nanovesicles that participate in intercellular communication, are potential therapeutic options for IVDD. Interestingly, while EXOs play an important role in inhibiting ferroptosis, whether EXOs from mesenchymal stem cells (MSCs) modulate the progression of IVDD through regulating ferroptosis is unclear. To reveal the role of ferroptosis in IVDD, IVD tissues with varying degrees of degeneration were collected and abnormal expression of ferroptosis markers was detected. Ferroptotic death was observed in TBHP-induced NP cell death in vitro, which can be specifically inhibited by the ferroptosis inhibitors DFO and Fer-1. Interestingly, MSC-derived EXOs alleviated TBHP-induced or RSL3-induced ferroptosis and rescued NP cell degeneration. Mechanistically, either an NRF2 inhibitor or p62 knockdown dampened the inhibitory effects of EXOs on ferroptosis, suggesting that EXOs attenuated oxidative stress-induced ferroptosis in NP cells by regulating the p62/KEAP1/NRF2 axis. Moreover, EXOs effectively alleviated IVDD in an in vivo rat model. The current study revealed that ferroptosis is associated with the development of IVDD. MSC-derived EXOs slowed IVDD progression by inhibiting NP cell ferroptosis through the p62/KEAP1/NRF2 signaling pathway, suggesting that EXOs are a potential therapeutic option for IVDD.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Xuenan Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Yueqin Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xianle Duan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yaoquan Hu
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Zhengpin Lv
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Qicong He
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Zijiu Yangyang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China
| | - Guishuai Wu
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Haoyan Luo
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Qianlin Zuo
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China.
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, PR China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, PR China.
| |
Collapse
|
7
|
van Maanen JC, Bach FC, Snuggs JW, Ito K, Wauben MHM, Le Maitre CL, Tryfonidou MA. Explorative Study of Modulatory Effects of Notochordal Cell-Derived Extracellular Vesicles on the IL-1β-Induced Catabolic Cascade in Nucleus Pulposus Cell Pellets and Explants. JOR Spine 2025; 8:e70043. [PMID: 39881783 PMCID: PMC11775941 DOI: 10.1002/jsp2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/27/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Background Cell-free regenerative strategies, such as notochordal cell (NC)-derived extracellular vesicles (EVs), are an attractive alternative in developing new therapies for intervertebral disc (IVD) degeneration. NC-EVs have been reported to elicit matrix anabolic effects on nucleus pulposus cells from degenerated IVDs cultured under basal conditions. However, the degenerative process is exacerbated by pro-inflammatory cytokines contributing to the vicious degenerative cycle. Therefore, this study explores whether NC-EVs modulate interleukin (IL)-1β-mediated pro-inflammatory responses in the degenerating disc. Methods This study utilized two IL-1β induced pro-catabolic culture models; a dog 3D nucleus pulposus (NP) cell pellet culture and a human patient-derived, ex vivo NP tissue culture system. Porcine NC-EVs were generated from NC-conditioned medium by differential centrifugation followed by size exclusion chromatography. Donor matched EV-depleted media were generated by overnight ultracentrifugation, whereafter the EV-depleted NCCM supernatant was subjected to size exclusion chromatography. To investigate whether observed effects were EV-associated, NC-EVs conditions were compared to EV-depleted controls in the absence and presence of IL-1β. Results The size and concentration of NC-EVs were quantified by nanoparticle tracking analysis, which showed minimal donor variation and confirmed depletion of EVs in the EV-depleted media. In the IL-1β-induced catabolic cascade, the NC-EVs did not elicit anabolic effects at the matrix level nor did they rescue the pro-catabolic phenotype within dog pellets. Modification of the CCL2 secretion seemed to be context dependent in the human explants: where EVs treatment stimulated CCL2 secretion but in the presence of IL-1β this effect was counteracted. Secretion of IL-6 and C-X-C motif chemokine ligand 1 was significantly decreased in NC-EV + IL-1β vs. control+IL-1β but not compared to EV-depleted human explant controls. Altogether, this data provides evidence for a protective modulatory role of NC-EVs. Considering the homeostatic function EVs exert, inherently encompassing subtle biologic modifications, the current study may have lacked sufficient power to demonstrate statistical significance in a sample set with evident donor variation. Conclusions NC-EVs may modulate the production of specific cytokines and chemokines in human degenerate explants when the key pro-inflammatory cytokine IL-1β is present. Implementation of the technical EV-depleted controls in further studies is essential to robustly demonstrate that these effects are EV-mediated and not associated with other secreted factors co-isolated during EV-isolation.
Collapse
Affiliation(s)
- J. C. van Maanen
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - F. C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - J. W. Snuggs
- Division of Clinical Medicine, Faculty of HealthUniversity of SheffieldSheffieldUK
| | - K. Ito
- Orthopedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
- Department of OrthopedicsUniversity Medical Centre UtrechtUtrechtNetherlands
| | - M. H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - C. L. Le Maitre
- Division of Clinical Medicine, Faculty of HealthUniversity of SheffieldSheffieldUK
| | - M. A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| |
Collapse
|
8
|
Sepehri M, Rabbani S, Ai J, Bahrami N, Ghanbari H, Namini MS, Sharifi M, Kouchakzadeh F, Esfahlani MA, Ebrahimi-Barough S. Therapeutic potential of exosomes derived from human endometrial mesenchymal stem cells for heart tissue regeneration after myocardial infarction. Regen Ther 2025; 28:451-461. [PMID: 39974600 PMCID: PMC11836543 DOI: 10.1016/j.reth.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
Myocardial infarction (MI) is the most common cardiovascular disease (CVD) and the leading cause of mortality worldwide. Recent advancements have identified human endometrial mesenchymal stem cells (hEnMSCs) as a promising candidate for heart regeneration, however, challenges associated with cell-based therapies have shifted focus toward cell-free treatments (CFTs), such as exosome therapy, which show considerable promise for myocardial tissue regeneration. MI was induced in male Wistar rats by occluding the left anterior descending (LAD) coronary artery. The hEnMSCs-derived exosomes (hEnMSCs-EXOs) were encapsulated in injectable fibrin gel inside the cardiac tissue. The encapsulated hEnMSC-EXOs were administered, and their effects on myocardial regeneration, angiogenesis, and heart function were monitored for 30 days post-MI. The treatments were evaluated through histological analysis, echocardiographic parameters of left ventricular internal dimension at end-diastole (LVIDD) and end-systole (LVID), left ventricular end-diastole volume (LVEDV), left ventricular end-systole volume (LVESV), and left ventricular ejection fraction (LVEF) and molecular studies. Histological findings demonstrated significant fibrosis and left ventricular remodeling following MI. Treatment with fibrin gel-encapsulated hEnMSCs-EXOs substantially reduced fibrosis, enhanced angiogenesis, and prevented heart remodeling, leading to improved cardiac function. Notably, 30 days after encapsulated hEnMSCs-EXOs were delivered corresponded with a less inflammatory microenvironment, supporting cardiomyocyte retention in ischemic tissue. This study highlights the potential of encapsulated hEnMSCs-EXOs in fibrin gel as a novel therapeutic strategy for ischemic myocardium repair post-MI. The findings underscore the importance of biomaterials in advancing stem cell-based therapies and lay a foundation for clinical applications to mitigate heart injury following MI.
Collapse
Affiliation(s)
- Masoumeh Sepehri
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Sharifi
- Department of Tissue Engineering, School of Medicine, Shahrood University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Kouchakzadeh
- Department of Histology, School of Paramedical, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Abedini Esfahlani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Li S, Jiang W, Chen F, Qian J, Yang J. The critical role of TRIM protein family in intervertebral disc degeneration: mechanistic insights and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1525073. [PMID: 39981097 PMCID: PMC11839679 DOI: 10.3389/fcell.2025.1525073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of chronic back pain, contributing significantly to reduced quality of life and global public health burdens. The TRIM (Tripartite Motif-containing) protein family, with its diverse regulatory roles, has emerged as a key player in critical cellular processes such as inflammation, cell death, and extracellular matrix (ECM) metabolism. Recent findings underscore the involvement of TRIM proteins in IVDD pathogenesis, where they regulate stress responses, maintain cellular homeostasis, and influence the functional integrity of nucleus pulposus (NP) and annulus fibrosus (AF) cells. This review explores the multifaceted roles of TRIM proteins in IVDD, highlighting their contributions to pathological pathways and their potential as therapeutic targets. Advancing our understanding of TRIM protein-mediated mechanisms may pave the way for innovative and precise therapeutic strategies to combat IVDD.
Collapse
Affiliation(s)
- Shangze Li
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Fei Chen
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| | - Jiao Qian
- Department of Pharmacy, The First Affiliated Hospital (Shanghai Changhai Hospital), Naval Medical University, Shanghai, China
| | - Jun Yang
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Li S, Yang Y, Yu B, Gao X, Gao X, Nie S, Qin T, Hao Y, Guo L, Wu H, Ma T, Zheng Y, Geng D, Gao J, Xue B, Zhang Y, Yang S, Wei Y, Xia B, Luo Z, Qiu Q, Huang J. A Novel Deer Antler-Inspired Bone Graft Triggers Rapid Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411571. [PMID: 39707695 PMCID: PMC11817900 DOI: 10.1002/adma.202411571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Indexed: 12/23/2024]
Abstract
Adult mammals are unable to regenerate bulky bone tissues, making large bone defects clinically challenging. Deer antler represents an exception to this rule, exhibiting the fastest bony growth in mammals, offering a unique opportunity to explore novel strategies for rapid bone regeneration. Here, a bone graft exploiting the biochemical, biophysical, and structural characteristics of antlers is constructed. It is decellularized antler cancellous bone (antler-DCB) to obtain a bone scaffold. Then, an antler-based bone graft is constructed by integrating antler-DCB with antler-derived biological signals, delivered by extracellular vesicles (EVs) from antler blastema progenitor cells (ABPCs), a novel stem cells responsible for antlerogenesis is discovered. The antler-based bone graft transformed bone marrow stromal cells into cells with an ABPC-like phenotype and transcriptomic signature. In vivo, the antler-based graft triggered rapid bone formation in a rat model, with doubled volume of newly formed bones than commercial DCBs. In addition, the antler-based graft orchestrated a coordinated process of vascularization, neurogenesis, and immunomodulation during osteogenesis, partially imitating early antlerogenesis. These findings provide practical insights to develop a therapeutic intervention for treating severe bone defects.
Collapse
Affiliation(s)
- Shengyou Li
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yujie Yang
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Beibei Yu
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Xueli Gao
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xue Gao
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'an710032P. R. China
| | - Shihao Nie
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Tao Qin
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yiming Hao
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Lingli Guo
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Haining Wu
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Teng Ma
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yi Zheng
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Dan Geng
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Jianbo Gao
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Borui Xue
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yongfeng Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Shijie Yang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Yitao Wei
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Bing Xia
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Zhuojing Luo
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Qiang Qiu
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jinghui Huang
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
11
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Rahman E, Webb WR, Rao P, Abu-Farsakh HN, Upton AE, Yu N, Garcia PE, Ioannidis S, Sayed K, Philipp-Dormston WG, Najlah M, Carruthers JDA, Mosahebi A. Exosomes Exposed: Overview Systematic Review on Evidence Versus Expectation in Aesthetic and Regenerative Medicine. Aesthetic Plast Surg 2025; 49:557-568. [PMID: 39078426 DOI: 10.1007/s00266-024-04276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Exosomes, diminutive extracellular vesicles, are integral to intercellular communication, harbouring potential for applications in regenerative medicine and aesthetic interventions. The field, however, grapples with the complexities of harmonising exosome characterisation protocols and safeguarding therapeutic integrity. METHODOLOGY In this scholarly overview, systematic adherence to the Cochrane Collaboration and Preferred Reporting Items for Overviews of Reviews guidelines was observed, scrutinising the congruence of exosome-related therapies with the Minimal Information for Studies of Extracellular Vesicles standards delineated by the International Society for Extracellular Vesicles, alongside criteria set forth by the International Society for Cell Therapy and the International Society for Stem Cell Research. A meticulous search strategy spanning databases such as PubMed, Scopus, Web of Science, EMBASE, and Cochrane database was employed to encapsulate studies pertinent to the isolation, characterisation, and functional assessment of exosomes. RESULTS The initial search yielded 225 articles, of which 17 systematic reviews were selected based on predefined criteria, encompassing 556 primary studies. Notwithstanding the acknowledged therapeutic promise of exosome modalities, the synthesis illuminated a prevalent deficiency in adherence to established reporting and experimental benchmarks, notably in exosome source characterisation and bioactive constituent delineation. A critical appraisal employing the AMSTAR-2 tool underscored a pervasive shortfall in methodological rigour. CONCLUSION This review accentuates the imperative for stringent methodological standardisation within exosome research to fortify the validity and reproducibility of empirical findings. Amidst the burgeoning therapeutic optimism, the discipline must rectify methodological disparities and comply with regulatory mandates, ensuring the ethically sound and scientifically robust advancement of exosome-based therapeutic modalities. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Eqram Rahman
- Research and Innovation Hub, Innovation Aesthetics, London, WC2H 9JQ, UK.
| | | | - Parinitha Rao
- The Skin Address, Aesthetic Dermatology Practice, Bangalore, India
| | | | - Alice E Upton
- Research and Innovation Hub, Innovation Aesthetics, London, WC2H 9JQ, UK
| | - Nanze Yu
- Peking Union Medical College Hospital, Beijing, China
| | | | | | - Karim Sayed
- Nomi Oslo, Oslo, Norway
- University of South-Eastern Norway, Drammen, Norway
| | | | - Mohammad Najlah
- Pharmaceutical Research Group, Anglia Ruskin University, Chelmsford, UK
| | - Jean D A Carruthers
- Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
13
|
Li L, Al‐Jallad H, Sun A, Georgiopoulos M, Bokhari R, Ouellet J, Jarzem P, Cherif H, Haglund L. The proteomic landscape of extracellular vesicles derived from human intervertebral disc cells. JOR Spine 2024; 7:e70007. [PMID: 39507593 PMCID: PMC11538033 DOI: 10.1002/jsp2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background Extracellular vesicles (EVs) function as biomarkers and are crucial in cell communication and regulation, with therapeutic potential for intervertebral disc (IVD)-related low back pain (LBP). EV cargo is often affected by tissue health, which may affect the therapeutic potential. There is currently limited knowledge of how the cargo of IVD cell-derived EVs varies with tissue health and how differences in proteomic profile affect the predicted biological functions. Methods Our study purified EVs from human IVD cell conditioned media by size-exclusion chromatography. Nanoparticle tracking analysis was conducted to measure EV size and concentration. Transmission electron microscopy and Western blot were performed to examine EV structure and markers. Tandem mass tag-mass spectrometry was conducted to determine protein cargo. Results Most EVs were exosomes and intermediate microvesicles with an increasing amount linked to disease progression. Of the proteins detected, 88.6% were shared across the non-degenerate, mildly-degenerate, and degenerate samples. GO and KEGG analyses revealed that cargo from the mildly-degenerate samples was the most distinct, with the proteins in high abundance strongly associated with extracellular matrix (ECM) organization and structure. Shared proteins, highly expressed in the non-degenerate and degenerate samples, showed strong associations with cell adhesion, ECM-receptor interaction, and vesicle-mediated transport, respectively. Conclusions Our findings indicate that EVs from IVD cells from tissue with different degrees of degeneration share a majority of the cargo proteins. However, the level of expression differs with degeneration grade. Cargo from the mildly-degenerate samples exhibits the most differences. A better understanding of changes in EV cargo in the degenerative process may provide novel information related to molecular mechanisms underlying IVD degeneration and suggest new potential treatment modalities for IVD-related LBP.
Collapse
Affiliation(s)
- Li Li
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | | | - Aiwei Sun
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealQuebecCanada
| | - Miltiadis Georgiopoulos
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Rakan Bokhari
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- Department of Surgery, Division of NeurosurgeryFaculty of Medicine, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Jean Ouellet
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Peter Jarzem
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Hosni Cherif
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Lisbet Haglund
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| |
Collapse
|
14
|
Pal P, Sharma M, Gupta SK, Potdar MB, Belgamwar AV. miRNA-124 loaded extracellular vesicles encapsulated within hydrogel matrices for combating chemotherapy-induced neurodegeneration. Biochem Biophys Res Commun 2024; 734:150778. [PMID: 39368371 DOI: 10.1016/j.bbrc.2024.150778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Chemotherapy-induced neurodegeneration represents a significant challenge in cancer survivorship, manifesting in cognitive impairments that severely affect patients' quality of life. Emerging neuroregenerative therapies offer promise in mitigating these adverse effects, with miRNA-124 playing a pivotal role due to its critical functions in neural differentiation, neurogenesis, and neuroprotection. This review article delves into the innovative approach of using miRNA-124-loaded extracellular vesicles (EVs) encapsulated within hydrogel matrices as a targeted strategy for combating chemotherapy-induced neurodegeneration. We explore the biological underpinnings of miR-124 in neuroregeneration, detailing its mechanisms of action and therapeutic potential. The article further examines the roles and advantages of EVs as natural delivery systems for miRNAs and the application of hydrogel matrices in creating a sustained release environment conducive to neural tissue regeneration. By integrating these advanced materials and biological agents, we highlight a synergistic therapeutic strategy that leverages the bioactive properties of miR-124, the targeting capabilities of EVs, and the supportive framework of hydrogels. Preclinical studies and potential pathways to clinical translation are discussed, alongside the challenges, ethical considerations, and future directions in the field. This comprehensive review underscores the transformative potential of miR-124-loaded EVs in hydrogel matrices, offering insights into their development as a novel and integrative approach for addressing the complexities of chemotherapy-induced neurodegeneration.
Collapse
Affiliation(s)
- Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA; KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Mrugendra B Potdar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Aarti V Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| |
Collapse
|
15
|
Peng S, Liu X, Chang L, Liu B, Zhang M, Mao Y, Shen X. Exosomes Derived from Rejuvenated Stem Cells Inactivate NLRP3 Inflammasome and Pyroptosis of Nucleus Pulposus Cells via the Transfer of Antioxidants. Tissue Eng Regen Med 2024; 21:1061-1077. [PMID: 39060654 PMCID: PMC11416441 DOI: 10.1007/s13770-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Accumulating evidence supports the potential of exosomes as a promising therapeutic approach for intervertebral disc degeneration (IDD). Nevertheless, enhancing the efficiency of exosome treatment remains an urgent concern. This study investigated the impact of quercetin on the characteristics of mesenchymal stem cells (MSCs) and their released exosomes. METHODS Exosomes were obtained from quercetin pre-treated MSCs and quantified for the production based on nanoparticle tracking and western blot analysis. The molecules involved in the secretion and cargo sorting of exosomes were investigated using western blot and immunofluorescence analysis. Based on the in vitro biological analysis and in vivo histological analysis, the effects of exosomes derived from conventional or quercetin-treated MSCs on nucleus pulposus (NP) cells were compared. RESULTS A significant enhancement in the production and transportation efficiency of exosomes was observed in quercetin-treated MSCs. Moreover, the exosomes derived from quercetin-treated MSCs exhibited a greater abundance of antioxidant proteins, specifically superoxide dismutase 1 (SOD1), which inhibit the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome in NP cells. Through in vitro and in vivo experiments, it was elucidated that exosomes derived from quercetin-treated MSCs possessed enhanced anti-inflammatory and antioxidant properties. CONCLUSION Collectively, our research underscores an optimized therapeutic strategy for IDD utilizing MSC-derived exosomes, thereby augmenting the efficacy of exosomes in intervertebral disc regeneration.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Xiangyang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Bin Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Mingyan Zhang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Yan Mao
- Department of Ophthalmology, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, China
| | - Xiongjie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China.
| |
Collapse
|
16
|
Wang J, Zhang Y, Huang Y, Hao Z, Shi G, Guo L, Chang C, Li J. Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review. Mater Today Bio 2024; 28:101251. [PMID: 39318370 PMCID: PMC11421353 DOI: 10.1016/j.mtbio.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the "four core factors", hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanhong Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
17
|
Wang Y, Zhang W, Yang Y, Qin J, Wang R, Wang S, Fu W, Niu Q, Wang Y, Li C, Li H, Zhou Y, Liu M. Osteopontin deficiency promotes cartilaginous endplate degeneration by enhancing the NF-κB signaling to recruit macrophages and activate the NLRP3 inflammasome. Bone Res 2024; 12:53. [PMID: 39242551 PMCID: PMC11379908 DOI: 10.1038/s41413-024-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 09/09/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of discogenic pain, and is attributed to the dysfunction of nucleus pulposus, annulus fibrosus, and cartilaginous endplate (CEP). Osteopontin (OPN), a glycoprotein, is highly expressed in the CEP. However, little is known on how OPN regulates CEP homeostasis and degeneration, contributing to the pathogenesis of IDD. Here, we investigate the roles of OPN in CEP degeneration in a mouse IDD model induced by lumbar spine instability and its impact on the degeneration of endplate chondrocytes (EPCs) under pathological conditions. OPN is mainly expressed in the CEP and decreases with degeneration in mice and human patients with severe IDD. Conditional Spp1 knockout in EPCs of adult mice enhances age-related CEP degeneration and accelerates CEP remodeling during IDD. Mechanistically, OPN deficiency increases CCL2 and CCL5 production in EPCs to recruit macrophages and enhances the activation of NLRP3 inflammasome and NF-κB signaling by facilitating assembly of IRAK1-TRAF6 complex, deteriorating CEP degeneration in a spatiotemporal pattern. More importantly, pharmacological inhibition of the NF-κB/NLRP3 axis attenuates CEP degeneration in OPN-deficient IDD mice. Overall, this study highlights the importance of OPN in maintaining CEP and disc homeostasis, and proposes a promising therapeutic strategy for IDD by targeting the NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wanqian Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Jinghao Qin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ruoyu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanxia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongli Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
18
|
Yang S, Zhu Y, Shi Y, Su S, Liang H, Li S, Wu Z, Miao J, Chen Y, Zhang X, Wang X. Screening of NSAIDs library identifies Tinoridine as a novel ferroptosis inhibitor for potential intervertebral disc degeneration therapy. Free Radic Biol Med 2024; 221:245-256. [PMID: 38806104 DOI: 10.1016/j.freeradbiomed.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Low back pain (LBP) may profoundly impact the quality of life across the globe, and intervertebral disc degeneration (IVDD) is the major cause of LBP; however, targeted pharmaceutical interventions for IVDD are still lacking. Ferroptosis is a novel form of iron-dependent programmed cell death. Studies have showed that ferroptosis may closely associate with IVDD; thus, targeting ferroptosis may have great potential for IVDD therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are the first-line medications for LBP, while nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key inhibitory protein for ferroptosis. In the current study, we conducted a molecular docking screening between NSAIDs library and Nrf2 protein. Tinoridine was shown to have a high binding affinity to Nrf2. The in vitro study in nucleus pulposus (NP) cells showed that Tinoridine may promote the expression and activity of Nrf2, it may also rescue RSL3-induced ferroptosis in NP cells. Knockdown of Nrf2 reverses the protective effect of Tinoridine on RSL3-induced ferroptosis in NP cells, suggesting that the inhibitory effect of Tinoridine on ferroptosis is through Nrf2. In vivo study demonstrated that Tinoridine may attenuate the progression of IVDD in rats. As NSAIDs are already clinically used for LBP therapy, the current study supports Tinoridine's application from the view of ferroptosis inhibition.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuxuan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shenkai Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haibo Liang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhouwei Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuli Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Shi P, Gao H, Cheng Z, Zhao K, Chen Y, Chen X, Gan W, Zhang A, Yang C, Zhang Y. Static magnetic field-modulated mesenchymal stem cell-derived mitochondria-containing microvesicles for enhanced intervertebral disc degeneration therapy. J Nanobiotechnology 2024; 22:457. [PMID: 39085827 PMCID: PMC11290117 DOI: 10.1186/s12951-024-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is characterized by the senescence and declining vitality of nucleus pulposus cells (NPCs), often driven by mitochondrial dysfunction. This study elucidates that mesenchymal stem cells (MSCs) play a crucial role in attenuating NPC senescence by secreting mitochondria-containing microvesicles (mitoMVs). Moreover, it demonstrates that static magnetic fields (SMF) enhance the secretion of mitoMVs by MSCs. By distinguishing mitoMV generation from exosomes, this study shifts focus to understanding the molecular mechanisms of SMF intervention, emphasizing cargo transport and plasma membrane budding processes, with RNA sequencing indicating the potential involvement of the microtubule-based transport protein Kif5b. The study further confirms the interaction between Rab22a and Kif5b, revealing Rab22a's role in sorting mitoMVs into microvesicles (MVs) and potentially mediating subsequent plasma membrane budding. Subsequent construction of a gelatin methacrylate (GelMA) hydrogel delivery system further addresses the challenges of in vivo application and verifies the substantial potential of mitoMVs in delaying IVDD. This research not only sheds light on the molecular intricacies of SMF-enhanced mitoMV secretion but also provides innovative perspectives for future IVDD therapeutic strategies.
Collapse
Affiliation(s)
- Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Otani Y, Schol J, Sakai D, Nakamura Y, Sako K, Warita T, Tamagawa S, Ambrosio L, Munesada D, Ogasawara S, Matsushita E, Kawachi A, Naiki M, Sato M, Watanabe M. Assessment of Tie2-Rejuvenated Nucleus Pulposus Cell Transplants from Young and Old Patient Sources Demonstrates That Age Still Matters. Int J Mol Sci 2024; 25:8335. [PMID: 39125917 PMCID: PMC11312270 DOI: 10.3390/ijms25158335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability.
Collapse
Affiliation(s)
- Yuto Otani
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Luca Ambrosio
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy
| | - Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Asami Kawachi
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
21
|
Wang Y, Zhang C, Cheng J, Yan T, He Q, Huang D, Liu J, Wang Z. Cutting-Edge Biomaterials in Intervertebral Disc Degeneration Tissue Engineering. Pharmaceutics 2024; 16:979. [PMID: 39204324 PMCID: PMC11359550 DOI: 10.3390/pharmaceutics16080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) stands as the foremost contributor to low back pain (LBP), imposing a substantial weight on the world economy. Traditional treatment modalities encompass both conservative approaches and surgical interventions; however, the former falls short in halting IVDD progression, while the latter carries inherent risks. Hence, the quest for an efficacious method to reverse IVDD onset is paramount. Biomaterial delivery systems, exemplified by hydrogels, microspheres, and microneedles, renowned for their exceptional biocompatibility, biodegradability, biological efficacy, and mechanical attributes, have found widespread application in bone, cartilage, and various tissue engineering endeavors. Consequently, IVD tissue engineering has emerged as a burgeoning field of interest. This paper succinctly introduces the intervertebral disc (IVD) structure and the pathophysiology of IVDD, meticulously classifies biomaterials for IVD repair, and reviews recent advances in the field. Particularly, the strengths and weaknesses of biomaterials in IVD tissue engineering are emphasized, and potential avenues for future research are suggested.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Qing He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| |
Collapse
|
22
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604008. [PMID: 39071393 PMCID: PMC11275755 DOI: 10.1101/2024.07.17.604008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. Here, we investigate the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate successfully reduced the incidence of disc calcification in LG/J mice without deleterious effects on vertebral bone structure, plasma chemistry, and locomotion. Notably, a positive effect on grip strength was evident in treated mice. Spectroscopic investigation of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition and revealed that reactivation of an endochondral differentiation program in endplates may drive LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence without altering the pathological endplate chondrocyte hypertrophy, suggesting mitigation of disc calcification primarily occurred through Ca2+ chelation, a conclusion supported by chondrogenic differentiation and Seahorse metabolic assays. Overall, this study underscores the therapeutic potential of K3Citrate as a systemic intervention strategy for disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
24
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
25
|
Cui P, Sheng Y, Wu C, He D. Puerarin modulates proliferation, inflammation and ECM metabolism in human nucleus pulposus mesenchymal stem cells via the lncRNA LINC01535. Heliyon 2024; 10:e33083. [PMID: 39021929 PMCID: PMC11253265 DOI: 10.1016/j.heliyon.2024.e33083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by progressive destruction of the intervertebral disc, leading to chronic low back pain and disability. Emerging evidence suggests that dysregulation of ferroptosis, a recently discovered form of regulated cell death, participates in IVDD pathogenesis. Puerarin, a natural flavonoid compound from Pueraria lobata, has shown promise in modulating ferroptosis in various diseases. Methods Human nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated and identified by flow cytometry. We investigated the effects of puerarin on human NPMSCs and examined the underlying molecular mechanisms. Results Puerarin significantly promoted human NPMSC proliferation, as evidenced by the increased cell viability and colony formation ability. Furthermore, puerarin suppressed the expression of cyclooxygenase-2 and the proinflammatory cytokine interleukin-6 in NPMSCs, demonstrating the anti-inflammatory properties of the compound. Notably, puerarin attenuated ECM breakdown by downregulating the ECM-degrading enzymes MMP3, MMP13 and ADAMTS5, and it increased ECM component synthesis, including collagen type II and aggrecan, by NPMSCs. Moreover, puerarin inhibited ferroptosis in NPMSCs by modulating the expression of key ferroptosis-related genes, including ACSL4, PTGS2 and GPX4. Depletion of LINC01535 abolished the effects of puerarin on proliferation, inflammation and ECM metabolism, suggesting a key role of this lncRNA in mediating the effects of puerarin. Conclusion Our findings show that puerarin promotes the proliferation of human NPMSCs and ECM synthesis by these cells. Furthermore, puerarin inhibits inflammation and ECM degradation by suppressing ferroptosis via LINC01535. These results provide insights into the molecular mechanisms underlying the therapeutic effects of puerarin in IVDD. Targeting ferroptosis and its regulatory factors, such as LINC01535, may have therapeutic potential for the treatment of IDD and other degenerative disorders of the intervertebral disc. Further studies are needed to uncover the translational potential of puerarin and its downstream targets in preclinical and clinical applications.
Collapse
Affiliation(s)
- Penglei Cui
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| |
Collapse
|
26
|
Yang X, Zhang S, Lu J, Chen X, Zheng T, He R, Ye C, Xu J. Therapeutic potential of mesenchymal stem cell-derived exosomes in skeletal diseases. Front Mol Biosci 2024; 11:1268019. [PMID: 38903180 PMCID: PMC11187108 DOI: 10.3389/fmolb.2024.1268019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Skeletal diseases impose a considerable burden on society. The clinical and tissue-engineering therapies applied to alleviate such diseases frequently result in complications and are inadequately effective. Research has shifted from conventional therapies based on mesenchymal stem cells (MSCs) to exosomes derived from MSCs. Exosomes are natural nanocarriers of endogenous DNA, RNA, proteins, and lipids and have a low immune clearance rate and good barrier penetration and allow targeted delivery of therapeutics. MSC-derived exosomes (MSC-exosomes) have the characteristics of both MSCs and exosomes, and so they can have both immunosuppressive and tissue-regenerative effects. Despite advances in our knowledge of MSC-exosomes, their regulatory mechanisms and functionalities are unclear. Here we review the therapeutic potential of MSC-exosomes for skeletal diseases.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Shaodian Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Xiaoling Chen
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Tian Zheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Schol J, Tamagawa S, Volleman TNE, Ishijima M, Sakai D. A comprehensive review of cell transplantation and platelet-rich plasma therapy for the treatment of disc degeneration-related back and neck pain: A systematic evidence-based analysis. JOR Spine 2024; 7:e1348. [PMID: 38919468 PMCID: PMC11196836 DOI: 10.1002/jsp2.1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Low back pain (LBP) and neck pain predominate as the primary causes of disability. Cell- and platelet-rich plasma (PRP) products are potential therapies with clinical trials and reviews promoting their efficacy. Nonetheless, they frequently disregard the clinical significance of reported improvements. In this systematic review, the effectuated improvements in pain, disability, quality of life (QoL), and radiographic images are comprehensively described and scored on their clinical significance. An electronic database literature search was conducted on July 2023 for in-human assessment of cell or PRP products to alleviate discogenic pain. Papers were screened on quantitative pain, disability, QoL, radiographic improvements, and safety outcomes. Risk of bias was assessed through MINORS and Cochrane Source of Bias tools. Reported outcomes were obtained, calculated, and assessed to meet minimal clinically important difference (MCID) standards. From 7623 screened papers, a total of 80 articles met the eligibility criteria, presenting 68 specific studies. These presented at least 1974 treated patients. Overall, cell/PRP injections could alleviate pain and disability, resulting in MCID for pain and disability in up to a 2-year follow-up, similar to those observed in patients undergoing spinal fusion. Included trials predominantly presented high levels of bias, involved heterogeneous study designs, and only a minimal number of randomized controlled trials. Nonetheless, a clear clinically significant impact was observed for cell- and PRP-treated cohorts with overall good safety profiles. These results highlight a strong therapeutic potential but also underline the need for future cost-effectiveness assessments to determine the benefits of cell/PRP treatments.
Collapse
Affiliation(s)
- Jordy Schol
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Tokai University Center of Regenerative MedicineIseharaJapan
| | - Shota Tamagawa
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Daisuke Sakai
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Tokai University Center of Regenerative MedicineIseharaJapan
| |
Collapse
|
28
|
Jiang H, Qin H, Yang Q, Huang L, Liang X, Wang C, Moro A, Xu S, Wei Q. Effective delivery of miR-150-5p with nucleus pulposus cell-specific nanoparticles attenuates intervertebral disc degeneration. J Nanobiotechnology 2024; 22:292. [PMID: 38802882 PMCID: PMC11129471 DOI: 10.1186/s12951-024-02561-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The use of gene therapy to deliver microRNAs (miRNAs) has gradually translated to preclinical application for the treatment of intervertebral disc degeneration (IDD). However, the effects of miRNAs are hindered by the short half-life time and the poor cellular uptake, owing to the lack of efficient delivery systems. Here, we investigated nucleus pulposus cell (NPC) specific aptamer-decorated polymeric nanoparticles that can load miR-150-5p for IDD treatment. METHODS The role of miR-150-5p during disc development and degeneration was examined by miR-150-5p knockout (KO) mice. Histological analysis was undertaken in disc specimens. The functional mechanism of miR-150-5p in IDD development was investigated by qRT-PCR assay, Western blot, coimmunoprecipitation and immunofluorescence. NPC specific aptamer-decorated nanoparticles was designed, and its penetration, stability and safety were evaluated. IDD progression was assessed by radiological analysis including X-ray and MRI, after the annulus fibrosus needle puncture surgery with miR-150-5p manipulation by intradiscal injection of nanoparticles. The investigations into the interaction between aptamer and receptor were conducted using mass spectrometry, molecular docking and molecular dynamics simulations. RESULTS We investigated NPC-specific aptamer-decorated polymeric nanoparticles that can bind to miR-150-5p for IDD treatment. Furthermore, we detected that nanoparticle-loaded miR-150-5p inhibitors alleviated NPC senescence in vitro, and the effects of the nanoparticles were sustained for more than 3 months in vivo. The microenvironment of NPCs improves the endo/lysosomal escape of miRNAs, greatly inhibiting the secretion of senescence-associated factors and the subsequent degeneration of NPCs. Importantly, nanoparticles delivering miR-150-5p inhibitors attenuated needle puncture-induced IDD in mouse models by targeting FBXW11 and inhibiting TAK1 ubiquitination, resulting in the downregulation of NF-kB signaling pathway activity. CONCLUSIONS NPC-targeting nanoparticles delivering miR-150-5p show favorable therapeutic efficacy and safety and may constitute a promising treatment for IDD.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Hongyu Qin
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qinghua Yang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Longao Huang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao Liang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Congyang Wang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Abu Moro
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng Xu
- Research Centre for Regenerative Medicine, Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qingjun Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
29
|
Li Z, Xie HY, Nie W. Nano-Engineering Strategies for Tumor-Specific Therapy. ChemMedChem 2024; 19:e202300647. [PMID: 38356248 DOI: 10.1002/cmdc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Nanodelivery systems (NDSs) provide promising prospects for decreasing drug doses, reducing side effects, and improving therapeutic effects. However, the bioapplications of NDSs are still compromised by their fast clearance, indiscriminate biodistribution, and limited tumor accumulation. Hence, engineering modification of NDSs aiming at promoting tumor-specific therapy and avoiding systemic toxicity is usually needed. An NDS integrating various functionalities, including flexible camouflage, specific biorecognition, and sensitive stimuli-responsiveness, into one sequence would be "smart" and highly effective. Herein, we systematically summarize the related principles, methods, and progress. At the end of the review, we predict the obstacles to precise nanoengineering and prospects for the future application of NDSs.
Collapse
Affiliation(s)
- Zijin Li
- School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
30
|
Ma S, Xue R, Zhu H, Han Y, Ji X, Zhang C, Wei N, Xu J, Li F. Selenomethionine preconditioned mesenchymal stem cells derived extracellular vesicles exert enhanced therapeutic efficacy in intervertebral disc degeneration. Int Immunopharmacol 2024; 132:112028. [PMID: 38593507 DOI: 10.1016/j.intimp.2024.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Extracellular vesicles (EVs) derived from Mesenchymal Stromal Cells (MSCs) have shown promising therapeutic potential for multiple diseases, including intervertebral disc degeneration (IDD). Nevertheless, the limited production and unstable quality of EVs hindered the clinical application of EVs in IDD. Selenomethionine (Se-Met), the major form of organic selenium present in the cereal diet, showed various beneficial effects, including antioxidant, immunomodulatory and anti-apoptotic effects. In the current study, Se-Met was employed to treat MSCs to investigate whether Se-Met can facilitate the secretion of EVs by MSCs and optimize their therapeutic effects on IDD. On the one hand, Se-Met promoted the production of EVs by enhancing the autophagy activity of MSCs. On the other hand, Se-Met pretreated MSC-derived EVs (Se-EVs) exhibited an enhanced protective effects on alleviating nucleus pulposus cells (NPCs) senescence and attenuating IDD compared with EVs isolated from control MSCs (C-EVs) in vitro and in vivo. Moreover, we performed a miRNA microarray sequencing analysis on EVs to explore the potential mechanism of the protective effects of EVs. The result indicated that miR-125a-5p is markedly enriched in Se-EVs compared to C-EVs. Further in vitro and in vivo experiments revealed that knockdown of miR-125a-5p in Se-EVs (miRKD-Se-EVs) impeded the protective effects of Se-EVs, while overexpression of miR-125a-5p (miROE-Se-EVs) boosted the protective effects. In conclusion, Se-Met facilitated the MSC-derived EVs production and increased miR-125a-5p delivery in Se-EVs, thereby improving the protective effects of MSC-derived EVs on alleviating NPCs senescence and attenuating IDD.
Collapse
Affiliation(s)
- Shengli Ma
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Haiyang Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xiang Ji
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Chaoyang Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Jingjing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Feng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
31
|
Tao X, Xue F, Xu J, Wang W. Platelet-rich plasma-derived extracellular vesicles inhibit NF-κB/NLRP3 pathway-mediated pyroptosis in intervertebral disc degeneration via the MALAT1/microRNA-217/SIRT1 axis. Cell Signal 2024; 117:111106. [PMID: 38373669 DOI: 10.1016/j.cellsig.2024.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a main contributor to lower back pain, and compression stress-induced apoptosis of nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation has been implicated in the IDD progression. The functions of platelet-rich plasma (PRP)-derived extracellular vesicles (PRP-EVs) in regulating these biological processes remain unclear in IDD. Here, we aimed to investigate the key role of long noncoding RNA (lncRNA) MALAT1 incorporated in PRP-EVs in IDD. METHODS Tert-butyl hydroperoxide (TBHP)-induced damage in NP cells was treated with PRP-EVs extracted from healthy volunteers, followed by MTT, EdU, TUNEL, and Western blot assays. IDD mice were also treated with PRP-EVs. Histomorphological and pathological changes were evaluated. The pyroptosis of cells and the degradation of ECM were detected by ELISA and immunohistochemistry. We screened the differentially expressed lncRNAs in NP cells after PRP-EVs treatment by microarray analysis. The downstream targets of MALAT1 in NP cells were predicted and validated by rescue experiments. FINDINGS TBHP induction reduced cell proliferation and exacerbated pyroptosis and ECM degradation, and PRP-EVs inhibited TBHP-induced cell damage. PRP-EVs-treated mice with IDD had reduced Thompson scores, increased NP tissue content, and restored ECM. PRP-EVs upregulated MALAT1 expression in vivo and in vitro, whereas MALAT1 downregulation exacerbated NP cell pyroptosis and ECM degradation. MALAT1 upregulated SIRT1 expression by downregulating microRNA (miR)-217 in NP cells. SIRT1 blocked the NF-κB/NLRP3 pathway-mediated pyroptosis, thereby alleviating IDD. INTERPRETATION PRP-EVs deliver MALAT1 to regulate miR-217/SIRT1, thereby controlling NP cell pyroptosis in IDD.
Collapse
Affiliation(s)
- Xueqiang Tao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China; Department of Orthopaedics, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Fen Xue
- Department of Obstetrics and Gynecology, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Jiayuan Xu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Wenbo Wang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China.
| |
Collapse
|
32
|
Ambrosio L, Schol J, Ruiz-Fernandez C, Tamagawa S, Soma H, Tilotta V, Di Giacomo G, Cicione C, Nakayama S, Kamiya K, Papalia R, Sato M, Vadalà G, Watanabe M, Denaro V, Sakai D. ISSLS PRIZE in Basic Science 2024: superiority of nucleus pulposus cell- versus mesenchymal stromal cell-derived extracellular vesicles in attenuating disc degeneration and alleviating pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1713-1727. [PMID: 38416190 DOI: 10.1007/s00586-024-08163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE To investigate the therapeutic potential of extracellular vesicles (EVs) derived from human nucleus pulposus cells (NPCs), with a specific emphasis on Tie2-enhanced NPCs, compared to EVs derived from human bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a coccygeal intervertebral disc degeneration (IDD) rat model. METHODS EVs were isolated from healthy human NPCs cultured under standard (NPCSTD-EVs) and Tie2-enhancing (NPCTie2+-EVs) conditions. EVs were characterized, and their potential was assessed in vitro on degenerative NPCs in terms of cell proliferation and senescence, with or without 10 ng/mL interleukin (IL)-1β. Thereafter, 16 Sprague-Dawley rats underwent annular puncture of three contiguous coccygeal discs to develop IDD. Phosphate-buffered saline, NPCSTD-EVs, NPCTie2+-EVs, or BM-MSC-derived EVs were injected into injured discs, and animals were followed for 12 weeks until sacrifice. Behavioral tests, radiographic disc height index (DHI) measurements, evaluation of pain biomarkers, and histological analyses were performed to assess the outcomes of injected EVs. RESULTS NPC-derived EVs exhibited the typical exosomal morphology and were efficiently internalized by degenerative NPCs, enhancing cell proliferation, and reducing senescence. In vivo, a single injection of NPC-derived EVs preserved DHI, attenuated degenerative changes, and notably reduced mechanical hypersensitivity. MSC-derived EVs showed marginal improvements over sham controls across all measured outcomes. CONCLUSION Our results underscore the regenerative potential of young NPC-derived EVs, particularly NPCTie2+-EVs, surpassing MSC-derived counterparts. These findings raise questions about the validity of MSCs as both EV sources and cellular therapeutics against IDD. The study emphasizes the critical influence of cell type, source, and culture conditions in EV-based therapeutics.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Clara Ruiz-Fernandez
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
- NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Shota Tamagawa
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hazuki Soma
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Veronica Tilotta
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giuseppina Di Giacomo
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Claudia Cicione
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Shunya Nakayama
- Department of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Kosuke Kamiya
- Department of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Masato Sato
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan.
| |
Collapse
|
33
|
Wang N, Rong W, Xie Y, Chen S, Xi Z, Deng R. Visualizing the bibliometrics of the inflammatory mechanisms in intervertebral disc degeneration. Exp Gerontol 2024; 188:112380. [PMID: 38382680 DOI: 10.1016/j.exger.2024.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Intervertebral disc degeneration (IVDD) constitutes a crucial pathological foundation for spinal degenerative diseases (SDD) and stands as a primary contributor to both low back pain (LBP) and disability. The progression of IVDD is linked to structural and functional alterations in tissues, where an imbalance in the inflammatory microenvironment can induce extracellular matrix (ECM) degradation, senescence, and apoptosis. This imbalance is a key pathomechanism in the disease's development, gaining considerable attention in recent years. This study aims to conduct a bibliometric analysis of publications pertaining to the inflammatory mechanisms of IVDD to quantitatively assess current research hotspots and directions. METHODS In this study, we queried the Web of Science Core Collection (WOSCC) database covering the period from January 1, 2001, to November 7, 2023. Content in this area was analyzed and visualized using software such as Citespace, Vosviewer, and the bibliometrix package. RESULTS Findings indicate a consistent annual increase in the number of publications, highlighting the widespread attention garnered by research on the inflammatory mechanisms of IVDD. In terms of journal research, Spine emerged with the highest number of publications, along with significantly elevated total citations and average citations compared to other journals. Regarding country analysis, China led in the number of publications, while the USA claimed the highest number of citations and total link strength. Institutional analysis revealed Sun Yat-sen University as having the highest number of publications and total link strength, with Thomas Jefferson University securing the highest total citations. Author analysis identified Ohtori, S. with the highest number of publications, Risbud, M.V. with the highest number of citations, and Inoue, G. with the highest total link strength, all of whom have made significant contributions to the field's development. Citation and co-citation analyses indicated that highly cited documents primarily focused on classical studies exploring inflammatory mechanisms in IVDD pathogenesis. Keyword analysis showcased the ongoing research hotspot as the further investigation of mechanisms and treatment studies. Recent years have seen a shift towards exploring pyroptosis, necrotic apoptosis, autophagy, ferroptosis, oxidative stress, and bacterial infection, among other mechanisms. In terms of treatment, alongside traditional monomer, drug, and compound therapies for IVDD, research is increasingly concentrating on stem cell therapy, exosomes, hydrogels, and scaffolds. CONCLUSION This bibliometric analysis of research on inflammatory mechanisms in IVDD provides insights into the current status, hotspots, and potential future trends. These findings can serve as a valuable reference and guide for researchers in the field.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Weihao Rong
- Department of Orthopedics, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, PR China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China.
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, PR China.
| |
Collapse
|
34
|
周 豪, 陈 涛, 吴 爱. [Effects of Oxidative Stress on Mitochondrial Functions and Intervertebral Disc Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:249-255. [PMID: 38645848 PMCID: PMC11026887 DOI: 10.12182/20240360201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 04/23/2024]
Abstract
Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.
Collapse
Affiliation(s)
- 豪 周
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 涛 陈
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - 爱悯 吴
- 温州医科大学附属第二医院 浙江省骨科学重点实验室 (温州 325000)Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
35
|
Zhou H, Qian Q, Chen Q, Chen T, Wu C, Chen L, Zhang Z, Wu O, Jin Y, Wang X, Guo Z, Sun J, Zhang J, Shen S, Wang X, Jones M, Khan MA, Makvandi P, Zhou Y, Wu A. Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis with Multifunctional Metallopolyphenol Nanoparticles in Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308167. [PMID: 37953455 DOI: 10.1002/smll.202308167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Chenyu Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551700, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, United Kingdom
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
36
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
37
|
Li S, Du J, Huang Y, Gao S, Zhao Z, Chang Z, Zhang X, He B. From hyperglycemia to intervertebral disc damage: exploring diabetic-induced disc degeneration. Front Immunol 2024; 15:1355503. [PMID: 38444852 PMCID: PMC10912372 DOI: 10.3389/fimmu.2024.1355503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of lumbar disc herniation has gradually increased in recent years, and most patients have symptoms of low back pain and nerve compression, which brings a heavy burden to patients and society alike. Although the causes of disc herniation are complex, intervertebral disc degeneration (IDD) is considered to be the most common factor. The intervertebral disc (IVD) is composed of the upper and lower cartilage endplates, nucleus pulposus, and annulus fibrosus. Aging, abnormal mechanical stress load, and metabolic disorders can exacerbate the progression of IDD. Among them, high glucose and high-fat diets (HFD) can lead to fat accumulation, abnormal glucose metabolism, and inflammation, which are considered important factors affecting the homeostasis of IDD. Diabetes and advanced glycation end products (AGEs) accumulation- can lead to various adverse effects on the IVD, including cell senescence, apoptosis, pyroptosis, proliferation, and Extracellular matrix (ECM) degradation. While current research provides a fundamental basis for the treatment of high glucose-induced IDD patients. further exploration into the mechanisms of abnormal glucose metabolism affecting IDD and in the development of targeted drugs will provide the foundation for the effective treatment of these patients. We aimed to systematically review studies regarding the effects of hyperglycemia on the progress of IDD.
Collapse
Affiliation(s)
- Shuai Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Jinpeng Du
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Yunfei Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Shenglong Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhigang Zhao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - BaoRong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| |
Collapse
|
38
|
Song Y, Hu J, Ma C, Liu H, Li Z, Yang Y. Macrophage-Derived Exosomes as Advanced Therapeutics for Inflammation: Current Progress and Future Perspectives. Int J Nanomedicine 2024; 19:1597-1627. [PMID: 38406601 PMCID: PMC10888065 DOI: 10.2147/ijn.s449388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The development of numerous diseases is significantly influenced by inflammation. Macrophage-derived exosomes (M-Exos) play a role in controlling inflammatory reactions in various conditions, including chronic inflammatory pain, hypertension, and diabetes. However, the specific targets and roles of M-Exos in regulating inflammation in diseases remain largely unknown. This review summarizes current knowledge on M-Exos biogenesis and provides updated information on M-Exos' biological function in inflammation modulation. Furthermore, this review highlights the functionalization and engineering strategies of M-Exos, while providing an overview of cutting-edge approaches to engineering M-Exos and advancements in their application as therapeutics for inflammation modulation. Finally, multiple engineering strategies and mechanisms are presented in this review along with their perspectives and challenges, and the potential contribution that M-Exos may have in diseases through the modulation of inflammation is discussed.
Collapse
Affiliation(s)
- Yanjuan Song
- Graduate School, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Jing Hu
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Chunlian Ma
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Hua Liu
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhanghua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Yi Yang
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
39
|
Jiang Z, Cao C, Zhang Y, Yan M, Song Z, Shang G, Kou H, Liu H, Li Y, Chen S. Cell Reprogramming Strategies for Treating Osteoarthritis and Intervertebral Disc Degeneration. Aging Dis 2024; 16:AD.2023.1224. [PMID: 38377023 PMCID: PMC11745438 DOI: 10.14336/ad.2023.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/24/2023] [Indexed: 02/22/2024] Open
Abstract
Osteoarthritis (OA) and intervertebral disc degeneration (IVDD) are the most common degenerative bone and joint diseases, posing a major threat to patients' physical and mental health due to the occurrence of chronic pain and disability. Within this context, the absence of efficacious therapies has led to a growing interest in regenerative medicine. In particular, as a method that can erase the memory of differentiation and re-endow cells with pluripotency, cell reprogramming technologies have ushered in a new era of personalized therapy, which not only show great potential for the treatment of degenerative osteoarthropathies but also promise to achieve tissue regenerative and repair. However, compared to other areas of research, reprogramming technologies to treat OA and IVDD are still in the preliminary stages and require further investigation. This paper briefly introduces the characteristics of cell reprogramming; summarizes the pathological mechanisms of reprogramming to improves energy metabolism, aging, inflammation, oxidative stress, and immune imbalance in OA and IVDD under the background of microenvironment and immunity; highlights the significant advantages of reprogramming-derived cells compared to embryonic stem cells and mesenchymal stem cells, based on these advances, providing important strategies for its development and clinical application in OA and IVDD.
Collapse
Affiliation(s)
- Zhengfa Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chen Cao
- Department of Orthopedics, Zhengzhou University People’s Hospital, Zhengzhou, China.
- Department of Orthopedics, Henan Provincial People’s Hospital, China.
| | - Yuhao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
40
|
Zhang H, Yang X, Huang Y, Li Y, Hu Q, Wei Q, Xu W, Ding W, Guo Y, Shen JW. Reviving Intervertebral Discs: Treating Degeneration Using Advanced Delivery Systems. Mol Pharm 2024; 21:373-392. [PMID: 38252032 DOI: 10.1021/acs.molpharmaceut.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Intervertebral disc degeneration (IVDD) is commonly associated with many spinal problems, such as low back pain, and significantly impacts a patient's quality of life. However, current treatments for IVDD, which include conservative and surgical methods, are limited in their ability to fully address degeneration. To combat IVDD, delivery-system-based therapy has received extensive attention from researchers. These delivery systems can effectively deliver therapeutic agents for IVDD, overcoming the limitations of these agents, reducing leakage and increasing local concentration to inhibit IVDD or promote intervertebral disc (IVD) regeneration. This review first briefly introduces the structure and function of the IVD, and the related pathophysiology of IVDD. Subsequently, the roles of drug-based and bioactive-substance-based delivery systems in IVDD are highlighted. The former includes natural source drugs, nonsteroidal anti-inflammatory drugs, steroid medications, and other small molecular drugs. The latter includes chemokines, growth factors, interleukin, and platelet-rich plasma. Additionally, gene-based and cell-based delivery systems are briefly involved. Finally, the limitations and future development of the combination of therapeutic agents and delivery systems in the treatment of IVDD are discussed, providing insights for future research.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yiheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yue Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Weixing Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province 310012, China
| | - Weiguo Ding
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province 310012, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
41
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
42
|
Yang S, Jing S, Wang S, Jia F. From drugs to biomaterials: a review of emerging therapeutic strategies for intervertebral disc inflammation. Front Cell Infect Microbiol 2024; 14:1303645. [PMID: 38352058 PMCID: PMC10861683 DOI: 10.3389/fcimb.2024.1303645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shanxi Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fajing Jia
- Department of General Practice, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
43
|
Peng YW, Tang R, Xu QY, Mei SY, Zhou Y, Feng JH, Zhang SY, He ZY. Worldwide productivity and research trend of publications concerning extracellular vesicles role in fibrosis: A bibliometric study from 2013 to 2022. Heliyon 2024; 10:e24357. [PMID: 38293443 PMCID: PMC10826165 DOI: 10.1016/j.heliyon.2024.e24357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Background Fibrosis is a heavy burden on the global healthcare system. Recently, an increasing number of studies have demonstrated that Extracellular vesicles play an important role in intercellular communication under both physiological and pathological conditions. This study aimed to explore the role of extracellular vesicles' in fibrosis using bibliometric methods. Methods Original articles and reviews related to extracellular vesicles and fibrosis were obtained from the Web of Science Core Collection database on November 9, 2022. VOSviewer was used to obtain general information, including co-institution, co-authorship, and co-occurrence visualization maps. The CiteSpace software was used to analyze citation bursts of keywords and references, a timeline view of the top clusters of keywords and cited articles, and the dual map. R package "bibliometrix" was used to analyze annual production, citation per year, collaboration network between countries/regions, thematic evolution map, and historiography network. Results In total, 3376 articles related to extracellular vesicles and fibrosis published from 2013 to 2022 were included in this study, with China and the United States being the top contributors. Shanghai Jiao Tong University has the highest number of publications. The main collaborators were Giovanni Camussi, Stefania Bruno, Marta Tepparo, and Cristina Grange. Journals related to molecular, biology, genetics, health, immunology, and medicine tended to publish literature on extracellular vesicles and fibrosis. "Recovery," "heterogeneity," "degradation," "inflammation," and "mesenchymal stem cells" are the keywords in this research field. Literature on extracellular vesicles and fibrosis associated with several diseases, including "kidney disease," "rheumatoid arthritis," and "skin regeneration" may be the latest hot research field. Conclusions This study provides a comprehensive perspective on extracellular vesicles and fibrosis through a bibliometric analysis of articles published between 2013 and 2022. We identified the most influential countries, institutions, authors, and journals. We provide information on recent research frontiers and trends for scholars interested in the field of extracellular vesicles and fibrosis. Their role in biological processes has great potential to initiate a new upsurge in future research.
Collapse
Affiliation(s)
| | | | - Qiao-Yi Xu
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shu-Ya Mei
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yang Zhou
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jin-Hua Feng
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shu-Yi Zhang
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zheng-Yu He
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
44
|
Zhu YC, Zhang Y, Gao X, Li LX, Tang YR, Wang YH. Protectin D1 ameliorates non-compressive lumbar disc herniation through SIRT1-mediated CGRP signaling. Mol Pain 2024; 20:17448069241232349. [PMID: 38288478 PMCID: PMC10901055 DOI: 10.1177/17448069241232349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Background. Neuro-inflammatory response promotes the initiation and sustenance of lumbar disc herniation (LDH). Protectin D1 (PD1), as a new type of specialized pro-resolving mediator (SPM), can improve the prognosis of various inflammatory diseases. Recent studies have shown that over representation of calcitonin gene-related peptides (CGRP) may activate nociceptive signaling following nerve injury. Silent information regulator 1 (SIRT1) is ubiquitously expressed in the dorsal horn of the spinal cord and plays a role in the pathogenesis of LDH. In this study, we investigated the analgesic effects of PD1 and elucidated the impact of neurogenic inflammation in the pathogenesis of neuropathic pain induced by non-compressive lumbar disc herniation (NCLDH) in a rat model. Methods. NCLDH models were established by applying protruding autologous nucleus pulposus to the L5 Dorsal root ganglion (DRG). PD1, SIRT1 antagonist or agonist, CGRP or antagonist were administered as daily intrathecal injections for three consecutive days postoperatively. Behavioral tests were conducted to assess mechanical and thermal hyperalgesia. The ipsilateral lumbar (L4-6) segment of the spinal dorsal horn was isolated for further analysis. Alterations in the release of SIRT1 and CGRP were explored using western blot and immunofluorescence. Results. Application of protruded nucleus (NP) materials to the DRG induced mechanical and thermal allodynia symptoms, and deregulated the expression of pro-inflammatory and anti-inflammatory cytokines in rats. Intrathecal delivery of PD1 significantly reversed the NCLDH-induced imbalance in neuro-inflammatory response and alleviated the symptoms of mechanical and thermal hyperalgesia. In addition, NP application to the DGRs resulted the spinal upregulation of CGRP and SIRT1 expression, which was almost restored by intrathecal injection of PD1 in a dose-dependent manner. SIRT1 antagonist or agonist and CGRP or antagonist treatment further confirmed the result. Conclusion. Our findings indicate PD1 has a potent analgesic effect, and can modulate neuro-inflammation by regulating SIRT1-mediated CGRP signaling in NCLDH.
Collapse
Affiliation(s)
- Yu-Chang Zhu
- The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, China
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yi Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xiao Gao
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Ling-Xing Li
- The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, China
| | - Yu-Ru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi-Hao Wang
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Duan Y, Yu C, Kuang W, Li J, Qiu S, Ni S, Chen Z. Mesenchymal stem cell exosomes inhibit nucleus pulposus cell apoptosis via the miR-125b-5p/TRAF6/NF-κB pathway axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1938-1949. [PMID: 37964606 PMCID: PMC10753375 DOI: 10.3724/abbs.2023241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/07/2023] [Indexed: 11/16/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is the pathological basis of a range of degenerative spinal diseases and is the primary cause of lower back pain. Mesenchymal stem cell (MSC) transplantation inhibits IVDD progression. However, the specific mechanisms that underlie these effects remain unclear. In this study, candidate microRNAs (miRNAs) are screened using bioinformatics and high-throughput sequencing. TNF-α is used to induce nucleus pulposus cell (NPC) degeneration. MSC-derived exosomes (MSC-exosomes) are obtained using high-speed centrifugation and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot analysis. Cell viability is determined by CCK-8 assay. Flow cytometry and TUNEL assays are used to detect cell apoptosis. The expression levels of miR-125b-5p are detected by RT-qPCR, and a dual-luciferase gene reporter assay confirms the downstream target genes of miR-125b-5p. Protein expression is determined by western blot analysis. Rat models are used to validate the function of miR-125b-5p in MSC-exosomes. The results show that miR-125b-5p is expressed at low levels in degenerated disc tissues compared with that in normal disc tissues; however, it is highly expressed in MSC-exosomes. Furthermore, MSC-exosomes are efficiently taken up by NPCs while miR-125b-5p is delivered into NPCs; thus, MSC-exosomes act as inhibitors of apoptosis in NPCs. Overexpression of miR-125b-5p downregulates TRAF6 expression and inhibits NF-κB activation. However, TRAF6 overexpression reverses these effects of miR-125b-5p. We demonstrate that MSC-exosomes attenuate IVDD in vivo by delivering miR-125b-5p. MSC-exosomes can deliver miR-125b-5p to target TRAF6, inhibit NF-κB activation, and attenuate the progression of IVDD.
Collapse
Affiliation(s)
- Yang Duan
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Cheng Yu
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Wenhao Kuang
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Jianjun Li
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Sujun Qiu
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Songjia Ni
- Department of Orthopedics and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Zhong Chen
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| |
Collapse
|
46
|
Xie G, Wu T, Ji G, Wu H, Lai Y, Wei B, Huang W. Circular RNA and intervertebral disc degeneration: unravelling mechanisms and implications. Front Mol Biosci 2023; 10:1302017. [PMID: 38192334 PMCID: PMC10773835 DOI: 10.3389/fmolb.2023.1302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Low back pain (LBP) is a major public health problem worldwide and a significant health and economic burden. Intervertebral disc degeneration (IDD) is the reason for LBP. However, we have not identified effective therapeutic strategies to address this challenge. With accumulating knowledge on the role of circular RNAs in the pathogenesis of IDD, we realised that circular RNAs (circRNAs) may have tremendous therapeutic potential and clinical application prospects in this field. This review presents an overview of the current understanding of characteristics, classification, biogenesis, and function of circRNAs and summarises the protective and detrimental circRNAs involved in the intervertebral disc that have been studied thus far. This review is aimed to help researchers better understand the regulatory role of circRNAs in the progression of IDD, reveal their clinical therapeutic potential, and provide a theoretical basis for the prevention and targeted treatment of IDD.
Collapse
Affiliation(s)
- Guohao Xie
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangju Ji
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Lai
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenhua Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Schmitz TC, van Genabeek B, Pouderoijen MJ, Janssen HM, van Doeselaar M, Crispim JF, Tryfonidou MA, Ito K. Semi-synthetic degradable notochordal cell-derived matrix hydrogel for use in degenerated intervertebral discs: Initial in vitro characterization. J Biomed Mater Res A 2023; 111:1903-1915. [PMID: 37539663 DOI: 10.1002/jbm.a.37594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Low back pain is the leading cause of disability worldwide, but current therapeutic interventions are palliative or surgical in nature. Loss of notochordal cells (NCs) and degradation of the healthy matrix in the nucleus pulposus (NP), the central tissue of intervertebral discs (IVDs), has been associated with onset of degenerative disc changes. Recently, we established a protocol for decellularization of notochordal cell derived matrix (NCM) and found that it can provide regenerative cues to nucleus pulposus cells of the IVD. Here, we combined the biologically regenerative properties of decellularized NCM with the mechanical tunability of a poly(ethylene glycol) hydrogel to additionally address biomechanics in the degenerate IVD. We further introduced a hydrolysable PEG-diurethane crosslinker for slow degradation of the gels in vivo. The resulting hydrogels were tunable over a broad range of stiffness's (0.2 to 4.5 kPa), matching that of NC-rich and -poor NP tissues, respectively. Gels formed within 30 min, giving ample time for handling, and remained shear-thinning post-polymerization. Gels also slowly released dNCM over 28 days as measured by GAG effusion. Viability of encapsulated bone marrow stromal cells after extrusion through a needle remained high. Although encapsulated NCs stayed viable over two weeks, their metabolic activity decreased, and their phenotype was lost in physiological medium conditions in vitro. Overall, the obtained gels hold promise for application in degenerated IVDs but require further tuning for combined use with NCs.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
48
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
49
|
Bertolino GM, Maumus M, Jorgensen C, Noël D. Therapeutic potential in rheumatic diseases of extracellular vesicles derived from mesenchymal stromal cells. Nat Rev Rheumatol 2023; 19:682-694. [PMID: 37666995 DOI: 10.1038/s41584-023-01010-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
The incidence of rheumatic diseases such as rheumatoid arthritis and osteoarthritis and injuries to articular cartilage that lead to osteochondral defects is predicted to rise as a result of population ageing and the increase in high-intensity physical activities among young and middle-aged people. Current treatments focus on the management of pain and joint functionality to improve the patient's quality of life, but curative strategies are greatly desired. In the past two decades, the therapeutic value of mesenchymal stromal cells (MSCs) has been evaluated because of their regenerative potential, which is mainly attributed to the secretion of paracrine factors. Many of these factors are enclosed in extracellular vesicles (EVs) that reproduce the main functions of parental cells. MSC-derived EVs have anti-inflammatory, anti-apoptotic as well as pro-regenerative activities. Research on EVs has gained considerable attention as they are a potential cell-free therapy with lower immunogenicity and easier management than whole cells. MSC-derived EVs can rescue the pathogenetic phenotypes of chondrocytes and exert a protective effect in animal models of rheumatic disease. To facilitate the therapeutic use of EVs, appropriate cell sources for the production of EVs with the desired biological effects in each disease should be identified. Production and isolation of EVs should be optimized, and pre-isolation and post-isolation modifications should be considered to maximize the disease-modifying potential of the EVs.
Collapse
Affiliation(s)
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France.
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France.
| |
Collapse
|
50
|
Peng Y, Chen X, Liu S, Wu W, Shu H, Tian S, Xiao Y, Li K, Wang B, Lin H, Qing X, Shao Z. Extracellular Vesicle-Conjugated Functional Matrix Hydrogels Prevent Senescence by Exosomal miR-3594-5p-Targeted HIPK2/p53 Pathway for Disc Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206888. [PMID: 37165721 DOI: 10.1002/smll.202206888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/24/2023] [Indexed: 05/12/2023]
Abstract
Nucleus pulposus stem cells (NPSCs) senescence plays a critical role in the progression of intervertebral disc degeneration (IDD). Stem cell-derived extracellular vesicles (EV) alleviate cellular senescence. Whereas, the underlying mechanism remains unclear. Low stability largely limited the administration of EV in vivo. RGD, an arginine-glycine-aspartic acid tripeptide, strongly binds integrins expressed on the EV membranes, allowing RGD to anchor EV and prolong their bioavailability. An RGD-complexed nucleus pulposus matrix hydrogel (RGD-DNP) is developed to enhance the therapeutic effects of small EV (sEV). RGD-DNP prolonged sEV retention in vitro and ex vivo. sEV-RGD-DNP promoted NPSCs migration, decreased the number of SA-β-gal-positive cells, alleviated cell cycle arrest, and reduced p16, p21, and p53 activation. Small RNA-seq showed that miR-3594-5p is enriched in sEV, and targets the homeodomain-interacting protein kinase 2 (HIPK2)/p53 pathway. The HIPK2 knockdown rescues the impaired therapeutic effects of sEV with downregulated miR-3594-5p. RGD-DNP conjugate with lower amounts of sEV achieved similar disc regeneration with free sEV of higher concentrations in DNP. In conclusion, sEV-RGD-DNP increases sEV bioavailability and relieves NPSCs senescence by targeting the HIPK2/p53 pathway, thereby alleviating IDD. This work achieves better regenerative effects with fewer sEV and consolidates the theoretical basis for sEV application for IDD treatment.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Departments of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yan Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|