1
|
Ren L, Wang B, Miao D, Xiang P, Zeng Z, Li Z, Chen X, Xu C, Gong Q, Luo K, Jing J. Topology-Oriented Lymph Node Drainage of Dendritic Polymer-TLR Agonist Conjugates to Enhance Vaccine Immunogenicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417704. [PMID: 39962825 DOI: 10.1002/adma.202417704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Indexed: 03/17/2025]
Abstract
Strategically targeting lymph nodes (LNs) to orchestrate the initiation and regulation of adaptive immune responses is one of the most pressing challenges in the context of vaccination. Herein, a series of polymer-TLR agonist conjugates (PTACs) is developed to investigate the impact of dendritic-topological characteristics on their LN targeting activity in vivo, and their molecular weight (MW) on their pharmacokinetics in support of their LN homing. Notably, the dendritic 6-arm PTAC with a MW of 60 kDa (6A-PTAC-60k) rapidly delivered cargo to draining LNs after administration to peripheral tissues. Specifically, this topologic structure ameliorated the targeting behavior within lymphatic vessels and LNs, including an elevated amount of TLR7/8 agonist delivered to the LNs, an improved distribution pattern among barrier cells and immune cells, increased permeability, and prolonged retention. Furthermore, the 6A-PTAC-60k formulation induced broad antibody and T cell responses, enhancing vaccine immunogenicity and suppressing tumor growth. The results revealed that both the topology and MW of polymers are crucial factors for immunoadjuvant distribution and their functional activity in the draining LNs, which, in turn, enhanced the immunogenicity of the vaccine formulation. This study may provide a chemical and structural basis for optimizing the design of immunoadjuvant delivery systems.
Collapse
Affiliation(s)
- Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Di Miao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Xiang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Zeng
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jing Jing
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, Sichuan Engineering Research Center for Intelligent Diagnosis and Treatment of Breast Diseases, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
3
|
Kota N, Gonzalez DD, Liu HC, Viswanath D, Vander Pol R, Wood A, Di Trani N, Chua CYX, Grattoni A. Prophylactic and therapeutic cancer vaccine with continuous localized immunomodulation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102776. [PMID: 39102973 DOI: 10.1016/j.nano.2024.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Selective in vivo immune cell manipulation offers a promising strategy for cancer vaccines. In this context, spatiotemporal control over recruitment of specific cells, and their direct exposure to appropriate immunoadjuvants and antigens are key to effective cancer vaccines. We present an implantable 3D-printed cancer vaccine platform called the 'NanoLymph' that enables spatiotemporally-controlled recruitment and manipulation of immune cells in a subcutaneous site. Leveraging two reservoirs each for continuous immunoadjuvant release or antigen presentation, the NanoLymph attracts dendritic cells (DCs) on site and exposes them to tumor-associated antigens. Upon local antigen-specific activation, DCs are mobilized to initiate a systemic immune response. NanoLymph releasing granulocyte-macrophage colony-stimulating factor and CpG-oligodeoxynucleotides with irradiated whole cell tumor lysate inhibited tumor growth of B16F10 murine melanoma in a prophylactic and therapeutic vaccine setting. Overall, this study presents the NanoLymph as a versatile cancer vaccine development platform with replenishable and controlled local release of antigens and immunoadjuvants.
Collapse
Affiliation(s)
- Nikitha Kota
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Dixita Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Robin Vander Pol
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Anthony Wood
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Han J, Sheng T, Zhang Y, Cheng H, Gao J, Yu J, Gu Z. Bioresponsive Immunotherapeutic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209778. [PMID: 36639983 DOI: 10.1002/adma.202209778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The human immune system is an interaction network of biological processes, and its dysfunction is closely associated with a wide array of diseases, such as cancer, infectious diseases, tissue damage, and autoimmune diseases. Manipulation of the immune response network in a desired and controlled fashion has been regarded as a promising strategy for maximizing immunotherapeutic efficacy and minimizing side effects. Integration of "smart" bioresponsive materials with immunoactive agents including small molecules, biomacromolecules, and cells can achieve on-demand release of agents at targeted sites to reduce overdose-related toxicity and alleviate off-target effects. This review highlights the design principles of bioresponsive immunotherapeutic materials and discusses the critical roles of controlled release of immunoactive agents from bioresponsive materials in recruiting, housing, and manipulating immune cells for evoking desired immune responses. Challenges and future directions from the perspective of clinical translation are also discussed.
Collapse
Affiliation(s)
- Jinpeng Han
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianqing Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
6
|
Sunoqrot S, Abdel Gaber SA, Abujaber R, Al-Majawleh M, Talhouni S. Lipid- and Polymer-Based Nanocarrier Platforms for Cancer Vaccine Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4998-5019. [PMID: 38236081 DOI: 10.1021/acsabm.3c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cancer immunotherapy has gained popularity in recent years in the search for effective treatment modalities for various malignancies, particularly those that are resistant to conventional chemo- and radiation therapy. Cancer vaccines target the cancer-immunity cycle by boosting the patient's own immune system to recognize and kill cancer cells, thus serving as both preventative and curative therapeutic tools. Among the different types of cancer vaccines, those based on nanotechnology have shown great promise in advancing the field of cancer immunotherapy. Lipid-based nanoparticles (NPs) have become the most advanced platforms for cancer vaccine delivery, but polymer-based NPs have also received considerable interest. This Review aims to provide an overview of the nanotechnology-enabled cancer vaccine landscape, focusing on recent advances in lipid- and polymer-based nanovaccines and their hybrid structures and discussing the challenges against the clinical translation of these important nanomedicines.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Razan Abujaber
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - May Al-Majawleh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Shahd Talhouni
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
7
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
8
|
Ilieş BD, Yildiz I, Abbas M. Peptide-conjugated Nanoparticle Platforms for Targeted Delivery, Imaging, and Biosensing Applications. Chembiochem 2024; 25:e202300867. [PMID: 38551557 DOI: 10.1002/cbic.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Indexed: 04/24/2024]
Abstract
Peptides have become an indispensable tool in engineering of multifunctional nanostructure platforms for biomedical applications such as targeted drug and gene delivery, imaging and biosensing. They can be covalently incorporated into a variety of nanoparticles (NPs) including polymers, metallic nanoparticles, and others. Using different bioconjugation techniques, multifunctional peptide-modified NPs can be formulated to produce therapeutical and diagnostic platforms offering high specificity, lower toxicity, biocompatibility, and stimuli responsive behavior. Targeting peptides can direct the nanoparticles into specific tissues for targeted drug and gene delivery and imaging applications due to their specificity towards certain receptors. Furthermore, due to their stimuli-responsive features, they can offer controlled release of therapeutics into desired sites of disease. In addition, peptide-based biosensors and imaging agents can provide non-invasive detection and monitoring of diseases including cancer, infectious diseases, and neurological disorders. In this review, we covered the design and formulation of recent peptide-based NP platforms, as well as their utilization in in vitro and in vivo applications such as targeted drug and gene delivery, targeting, sensing, and imaging applications. In the end, we provided the future outlook to design new peptide conjugated nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Bogdan Dragoş Ilieş
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
9
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Nguyen DC, Song K, Jokonya S, Yazdani O, Sellers DL, Wang Y, Zakaria ABM, Pun SH, Stayton PS. Mannosylated STING Agonist Drugamers for Dendritic Cell-Mediated Cancer Immunotherapy. ACS CENTRAL SCIENCE 2024; 10:666-675. [PMID: 38559305 PMCID: PMC10979423 DOI: 10.1021/acscentsci.3c01310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
The Stimulator of Interferon Genes (STING) pathway is a promising target for cancer immunotherapy. Despite recent advances, therapies targeting the STING pathway are often limited by routes of administration, suboptimal STING activation, or off-target toxicity. Here, we report a dendritic cell (DC)-targeted polymeric prodrug platform (polySTING) that is designed to optimize intracellular delivery of a diamidobenzimidazole (diABZI) small-molecule STING agonist while minimizing off-target toxicity after parenteral administration. PolySTING incorporates mannose targeting ligands as a comonomer, which facilitates its uptake in CD206+/mannose receptor+ professional antigen-presenting cells (APCs) in the tumor microenvironment (TME). The STING agonist is conjugated through a cathepsin B-cleavable valine-alanine (VA) linker for selective intracellular drug release after receptor-mediated endocytosis. When administered intravenously in tumor-bearing mice, polySTING selectively targeted CD206+/mannose receptor+ APCs in the TME, resulting in increased cross-presenting CD8+ DCs, infiltrating CD8+ T cells in the TME as well as maturation across multiple DC subtypes in the tumor-draining lymph node (TDLN). Systemic administration of polySTING slowed tumor growth in a B16-F10 murine melanoma model as well as a 4T1 murine breast cancer model with an acceptable safety profile. Thus, we demonstrate that polySTING delivers STING agonists to professional APCs after systemic administration, generating efficacious DC-driven antitumor immunity with minimal side effects. This new polymeric prodrug platform may offer new opportunities for combining efficient targeted STING agonist delivery with other selective tumor therapeutic strategies.
Collapse
Affiliation(s)
- Dinh Chuong Nguyen
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Kefan Song
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Simbarashe Jokonya
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Omeed Yazdani
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Drew L. Sellers
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Yonghui Wang
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - ABM Zakaria
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Patrick S. Stayton
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Song K, Pun SH. Design and Evaluation of Synthetic Delivery Formulations for Peptide-Based Cancer Vaccines. BME FRONTIERS 2024; 5:0038. [PMID: 38515636 PMCID: PMC10956738 DOI: 10.34133/bmef.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
With the recent advances in neoantigen identification, peptide-based cancer vaccines offer substantial potential in the field of immunotherapy. However, rapid clearance, low immunogenicity, and insufficient antigen-presenting cell (APC) uptake limit the efficacy of peptide-based cancer vaccines. This review explores the barriers hindering vaccine efficiency, highlights recent advancements in synthetic delivery systems, and features strategies for the key delivery steps of lymph node (LN) drainage, APC delivery, cross-presentation strategies, and adjuvant incorporation. This paper also discusses the design of preclinical studies evaluating vaccine efficiency, including vaccine administration routes and murine tumor models.
Collapse
Affiliation(s)
- Kefan Song
- Department of Bioengineering, University of Washington, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, USA
- Molecular Engineering & Sciences Institute, University of Washington, USA
| |
Collapse
|
12
|
Steffens RC, Folda P, Fendler NL, Höhn M, Bücher-Schossau K, Kempter S, Snyder NL, Hartmann L, Wagner E, Berger S. GalNAc- or Mannose-PEG-Functionalized Polyplexes Enable Effective Lectin-Mediated DNA Delivery. Bioconjug Chem 2024; 35:351-370. [PMID: 38440876 DOI: 10.1021/acs.bioconjchem.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A cationic, dendrimer-like oligo(aminoamide) carrier with four-arm topology based on succinoyl tetraethylene pentamine and histidines, cysteines, and N-terminal azido-lysines was screened for plasmid DNA delivery on various cell lines. The incorporated azides allow modification with various shielding agents of different polyethylene glycol (PEG) lengths and/or different ligands by copper-free click reaction, either before or after polyplex formation. Prefunctionalization was found to be advantageous over postfunctionalization in terms of nanoparticle formation, stability, and efficacy. A length of 24 ethylene oxide repetition units and prefunctionalization of ≥50% of azides per carrier promoted optimal polyplex shielding. PEG shielding resulted in drastically reduced DNA transfer, which could be successfully restored by active lectin targeting via novel GalNAc or mannose ligands, enabling enhanced receptor-mediated endocytosis of the carrier system. The involvement of the asialoglycoprotein receptor (ASGPR) in the uptake of GalNAc-functionalized polyplexes was confirmed in the ASGPR-positive hepatocarcinoma cell lines HepG2 and Huh7. Mannose-modified polyplexes showed superior cellular uptake and transfection efficacy compared to unmodified and shielded polyplexes in mannose-receptor-expressing dendritic cell-like DC2.4 cells.
Collapse
Affiliation(s)
- Ricarda C Steffens
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Paul Folda
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Nikole L Fendler
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Katharina Bücher-Schossau
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Susanne Kempter
- Faculty of Physics, LMU Munich, 80539 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg im Breisgau, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| |
Collapse
|
13
|
Zeyn Y, Hobernik D, Wilk U, Pöhmerer J, Hieber C, Medina-Montano C, Röhrig N, Strähle CF, Thoma-Kress AK, Wagner E, Bros M, Berger S. Transcriptional Targeting of Dendritic Cells Using an Optimized Human Fascin1 Gene Promoter. Int J Mol Sci 2023; 24:16938. [PMID: 38069260 PMCID: PMC10706967 DOI: 10.3390/ijms242316938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.
Collapse
Affiliation(s)
- Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Dominika Hobernik
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Caroline F. Strähle
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| |
Collapse
|
14
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
15
|
Jin H, Liu X, Liu HX. Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188970. [PMID: 37657682 DOI: 10.1016/j.bbcan.2023.188970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China; Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
16
|
Trimaille T, Verrier B. Copolymer Micelles: A Focus on Recent Advances for Stimulus-Responsive Delivery of Proteins and Peptides. Pharmaceutics 2023; 15:2481. [PMID: 37896241 PMCID: PMC10609739 DOI: 10.3390/pharmaceutics15102481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Historically used for the delivery of hydrophobic drugs through core encapsulation, amphiphilic copolymer micelles have also more recently appeared as potent nano-systems to deliver protein and peptide therapeutics. In addition to ease and reproducibility of preparation, micelles are chemically versatile as hydrophobic/hydrophilic segments can be tuned to afford protein immobilization through different approaches, including non-covalent interactions (e.g., electrostatic, hydrophobic) and covalent conjugation, while generally maintaining protein biological activity. Similar to many other drugs, protein/peptide delivery is increasingly focused on stimuli-responsive nano-systems able to afford triggered and controlled release in time and space, thereby improving therapeutic efficacy and limiting side effects. This short review discusses advances in the design of such micelles over the past decade, with an emphasis on stimuli-responsive properties for optimized protein/peptide delivery.
Collapse
Affiliation(s)
- Thomas Trimaille
- Ingénierie des Matériaux Polymères, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5305, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France;
| |
Collapse
|
17
|
Mao J, Jin Z, Rui X, Li L, Hou C, Leng X, Bi X, Chen Z, Chen Y, Wang J. A Universal Cyclodextrin-Based Nanovaccine Platform Delivers Epitope Peptides for Enhanced Antitumor Immunity. Adv Healthc Mater 2023; 12:e2301099. [PMID: 37602523 DOI: 10.1002/adhm.202301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Currently, there is still an intense demand for a simple and scalable delivery platform for peptide-based cancer vaccines. Herein, a cyclodextrin-based polymer nanovaccine platform (CDNP) is designed for the codelivery of peptides with two immune adjuvants [the Toll-like receptor (TLR)7/8 agonist R848 and the TLR9 agonist CpG] that is broadly applicable to epitope peptides with diverse sequences. Specifically, the cyclodextrin-based polymers are covalently linked to epitope peptides via a bioreactive bond-containing cross-linker (PNC-DTDE-PNC) and then physically load with R848 and CpG to obtain CDNP. The CDNP efficiently accumulats in the lymph nodes (LNs), greatly facilitating antigen capture and cross-presentation by antigen-presenting cells. The immunogenicity of the epitope peptides is significantly enhanced by the codelivery and synergy of the adjuvants, and the CDNP shows the ability to inhibit tumor progression in diverse tumor-bearing mouse models. It is concluded that CDNP holds promise as an optimized peptide-based cancer vaccine platform.
Collapse
Affiliation(s)
- Jiarong Mao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Zhetong Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xue Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Lu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Chengchen Hou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xuejiao Leng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Xiaolin Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| | - Jingjing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210000, P. R. China
| |
Collapse
|
18
|
Ji P, Deng XC, Jin XK, Zhang SM, Wang JW, Feng J, Chen WH, Zhang XZ. Fused Cytomembrane-Camouflaged Nanoparticles for Tumor-Specific Immunotherapy. Adv Healthc Mater 2023; 12:e2300323. [PMID: 37212324 DOI: 10.1002/adhm.202300323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Tumor immunotherapy is commonly hindered by inefficient delivery and presentation of tumor antigens as well as immunosuppressive tumor microenvironment. To overcome these barriers, a tumor-specific nanovaccine capable of delivering tumor antigens and adjuvants to antigen-presenting cells and modulating the immune microenvironment to elicit strong antitumor immunity is reported. This nanovaccine, named FCM@4RM, is designed by coating the nanocore (FCM) with a bioreconstituted cytomembrane (4RM). The 4RM, which is derived from fused cells of tumorous 4T1 cells and RAW264.7 macrophages, enables effective antigen presentation and stimulation of effector T cells. FCM is self-assembled from Fe(II), unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG), and metformin (MET). CpG, as the stimulator of toll-like receptor 9, induces the production of pro-inflammatory cytokine and the maturation of cytotoxic T lymphocytes (CTLs), thereby enhancing antitumor immunity. Meanwhile, MET functions as the programmed cell death ligand 1 inhibitor and can restore the immune responses of T cells against tumor cells. Therefore, FCM@4RM exhibits high targeting capabilities toward homologous tumors that develop from 4T1 cells. This work offers a paradigm for developing a nanovaccine that systematically regulates multiple immune-related processes to achieve optimal antitumor immunotherapy.
Collapse
Affiliation(s)
- Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
19
|
Diao L, Liu M. Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300121. [PMID: 37254712 PMCID: PMC10401146 DOI: 10.1002/advs.202300121] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Cancer immunotherapies have improved human health, and one among the important technologies for cancer immunotherapy is cancer vaccine. Antigens are the most important components in cancer vaccines. Generally, antigens in cancer vaccines can be divided into two categories: pre-defined antigens and unidentified antigens. Although, cancer vaccines loaded with predefined antigens are commonly used, cancer vaccine loaded with mixed unidentified antigens, especially whole cancer cells or cancer cell lysates, is a very promising approach, and such vaccine can obviate some limitations in cancer vaccines. Their advantages include, but are not limited to, the inclusion of pan-spectra (all or most kinds of) antigens, inducing pan-clones specific T cells, and overcoming the heterogeneity of cancer cells. In this review, the recent advances in cancer vaccines based on whole-tumor antigens, either based on whole cancer cells or whole cancer cell lysates, are summarized. In terms of whole cancer cell lysates, the focus is on applying whole water-soluble cell lysates as antigens. Recently, utilizing the whole cancer cell lysates as antigens in cancer vaccines has become feasible. Considering that pre-determined antigen-based cancer vaccines (mainly peptide-based or mRNA-based) have various limitations, developing cancer vaccines based on whole-tumor antigens is a promising alternative.
Collapse
Affiliation(s)
- Lu Diao
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| | - Mi Liu
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| |
Collapse
|
20
|
Song K, Nguyen DC, Luu T, Yazdani O, Roy D, Stayton PS, Pun SH. A mannosylated polymer with endosomal release properties for peptide antigen delivery. J Control Release 2023; 356:232-241. [PMID: 36878319 PMCID: PMC10693254 DOI: 10.1016/j.jconrel.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Peptide cancer vaccines have had limited clinical success despite their safety, characterization and production advantages. We hypothesize that the poor immunogenicity of peptides can be surmounted by delivery vehicles that overcome the systemic, cellular and intracellular drug delivery barriers faced by peptides. Here, we introduce Man-VIPER, a self-assembling (40-50 nm micelles), pH-sensitive, mannosylated polymeric peptide delivery platform that targets dendritic cells in the lymph nodes, encapsulates peptide antigens at physiological pH, and facilitates endosomal release of antigens at acidic endosomal pH through a conjugated membranolytic peptide melittin. We used d-melittin to improve the safety profile of the formulation without compromising the lytic properties. We evaluated polymers with both releasable (Man-VIPER-R) or non-releasable (Man-VIPER-NR) d-melittin. Both Man-VIPER polymers exhibited superior endosomolysis and antigen cross-presentation compared to non-membranolytic d-melittin-free analogues (Man-AP) in vitro. In vivo, Man-VIPER polymers demonstrated an adjuvanting effect, induced the proliferation of antigen-specific cytotoxic T cells and helper T cells compared to free peptides and Man-AP. Remarkably, antigen delivery with Man-VIPER-NR generated significantly more antigen-specific cytotoxic T cells than Man-VIPER-R in vivo. As our candidate for a therapeutic vaccine, Man-VIPER-NR exerted superior efficacy in a B16F10-OVA tumor model. These results highlight Man-VIPER-NR as a safe and powerful peptide cancer vaccine platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Kefan Song
- Department of Bioengineering, University of Washington, USA
| | - Dinh Chuong Nguyen
- Molecular Engineering & Sciences Institute, University of Washington, USA
| | - Tran Luu
- Department of Bioengineering, University of Washington, USA
| | - Omeed Yazdani
- Department of Bioengineering, University of Washington, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, USA
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, USA; Molecular Engineering & Sciences Institute, University of Washington, USA.
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, USA; Molecular Engineering & Sciences Institute, University of Washington, USA.
| |
Collapse
|
21
|
Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. MATERIALS HORIZONS 2023; 10:361-392. [PMID: 36541078 DOI: 10.1039/d2mh01358d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Therapeutic cancer vaccines, which are designed to amplify tumor-specific T cell responses, have been envisioned as one of the most powerful tools for effective cancer immunotherapy. However, increasing the potency, quality and durability of the vaccine response remains a big challenge. In recent years, materials-based delivery systems focusing on the co-delivery of antigens and adjuvants to enhance cancer vaccination therapy have attracted increasing interest. Among various materials, polymeric nanoparticles (NPs) with different physicochemical properties which can incorporate multiple immunological cues are of great interest. In this review, the recent progress in the design and construction of both ex vivo subunit and in situ cancer vaccines using polymeric NPs is summarized. Especially, we will focus on how these NPs improve the adjuvanticity of vaccines. The design principles of polymeric NPs for ex vivo subunit cancer vaccines and in situ cancer vaccination are also discussed. Finally, we want to briefly discuss molecular chaperones in cancer immunity and the applications of our unique self-assembly mixed shell polymeric micelle-based nanochaperones for cancer vaccines.
Collapse
Affiliation(s)
- Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Jiajing Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
| |
Collapse
|
22
|
Bio-Inspired Drug Delivery Systems: From Synthetic Polypeptide Vesicles to Outer Membrane Vesicles. Pharmaceutics 2023; 15:pharmaceutics15020368. [PMID: 36839691 PMCID: PMC9965272 DOI: 10.3390/pharmaceutics15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomedicine is a broad field that focuses on the development of nanocarriers to deliver specific drugs to targeted sites. A synthetic polypeptide is a kind of biomaterial composed of repeating amino acid units that are linked by peptide bonds. The multiplied amphiphilicity segment of the polypeptide could assemble to form polypeptide vesicles (PVs) under suitable conditions. Different from polypeptide vesicles, outer membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content, which commonly originate from Gram-negative bacteria. Owing to their biodegradability and excellent biocompatibility, both PVs and OMVs have been utilized as carriers in delivering drugs. In this review, we discuss the recent drug delivery research based on PVs and OMVs. These related topics are presented: (1) a brief introduction to the production methods for PVs and OMVs; (2) a thorough explanation of PV- and OMV-related applications in drug delivery including the vesicle design and biological assessment; (3) finally, we conclude with a discussion on perspectives and future challenges related to the drug delivery systems of PVs and OMVs.
Collapse
|
23
|
Shi T, Sun M, Lu C, Meng F. Self-assembled nanoparticles: A new platform for revolutionizing therapeutic cancer vaccines. Front Immunol 2023; 14:1125253. [PMID: 36895553 PMCID: PMC9988954 DOI: 10.3389/fimmu.2023.1125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer vaccines have had some success in the past decade. Based on in-depth analysis of tumor antigen genomics, many therapeutic vaccines have already entered clinical trials for multiple cancers, including melanoma, lung cancer, and head and neck squamous cell carcinoma, which have demonstrated impressive tumor immunogenicity and antitumor activity. Recently, vaccines based on self-assembled nanoparticles are being actively developed as cancer treatment, and their feasibility has been confirmed in both mice and humans. In this review, we summarize recent therapeutic cancer vaccines based on self-assembled nanoparticles. We describe the basic ingredients for self-assembled nanoparticles, and how they enhance vaccine immunogenicity. We also discuss the novel design method for self-assembled nanoparticles that pose as a promising delivery platform for cancer vaccines, and the potential in combination with multiple therapeutic approaches.
Collapse
Affiliation(s)
- Tianyu Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengna Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
24
|
Cho KJ, Cho YE, Kim J. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics 2022; 14:2752. [PMID: 36559246 PMCID: PMC9788085 DOI: 10.3390/pharmaceutics14122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has gained significant interest as a target tissue to control cancer progress, which highlights its central role in adaptive immune response. Numerous mechanistic studies have revealed the benefits of nano-sized materials in the transport of various cargos to lymph nodes, overcoming barriers associated with lymphatic physiology. The potential of sustained drug delivery systems in improving the therapeutic index of various immune modulating agents is also being actively discussed. Herein, we aim to discuss design rationales and principles of locoregional lymphatic drug delivery systems for invigorating adaptive immune response for efficient antitumor immunotherapy and provide examples of various advanced nanoparticle- and hydrogel-based formulations.
Collapse
Affiliation(s)
- Kyeong Jin Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
25
|
Nahar UJ, Toth I, Skwarczynski M. Mannose in vaccine delivery. J Control Release 2022; 351:284-300. [PMID: 36150579 DOI: 10.1016/j.jconrel.2022.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Adjuvants and vaccine delivery systems are used widely to improve the efficacy of vaccines. Their primary roles are to protect antigen from degradation and allow its delivery and uptake by antigen presenting cells (APCs). Carbohydrates, including various structures/forms of mannose, have been broadly utilized to target carbohydrate binding receptors on APCs. This review summarizes basic functions of the immune system, focusing on the role of mannose receptors in antigen recognition by APCs. The most popular strategies to produce mannosylated vaccines via conjugation and formulation are presented. The efficacy of mannosylated vaccines is discussed in detail, taking into consideration factors, such as valency and number of mannose in mannose ligands, mannose density, length of spacers, special arrangement of mannose ligands, and routes of administration of mannosylated vaccines. The advantages and disadvantages of mannosylation strategy and future directions in the development of mannosylated vaccines are also debated.
Collapse
Affiliation(s)
- Ummey Jannatun Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
26
|
Guo X, Zhou S, Yang Z, Li ZA, Hu W, Dai L, Liang W, Wang X. Comprehensive Analysis of Sterol O-Acyltransferase 1 as a Prognostic Biomarker and Its Association With Immune Infiltration in Glioma. Front Oncol 2022; 12:896433. [PMID: 35646697 PMCID: PMC9133349 DOI: 10.3389/fonc.2022.896433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is a hallmark of glioma, and sterol O-acyltransferase 1 (SOAT1) is an essential target for metabolic therapy. However, the prognostic value of SOAT1 and its association with immune infiltration has not been fully elucidated. Using RNA-seq and clinical data of glioma patients from The Cancer Genome Atlas (TCGA), SOAT1 was found to be correlated with poor prognosis in glioma and the advanced malignancy of clinicopathological characteristics. Next, the correlation between SOAT1 expression and tumor-infiltrating immune cells was performed using the single-sample GSEA algorithm, gene expression profiling interactive analysis (GEPIA), and tumor immune estimation resource version 2 (TIMER2.0); it was found that SOAT1 expression was positively correlated with multiple tumor-infiltrating immune cells. To further verify these results, immunofluorescence was conducted on paraffin-embedded glioma specimens, and a positive trend of the correlation between SOAT1 expression and Treg infiltration was observed in this cohort. Finally, differentially expressed gene analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to explore the biological processes and signaling pathways that SOAT1 may be involved in during glioma pathogenesis. A protein-protein interaction network was established, and co-expression analysis was conducted to investigate the regulatory mechanism of SOAT1 in glioma. To the best of our knowledge, this is the first comprehensive study reporting that SOAT1 may serve as a novel prognostic biomarker associated with immune infiltrates, providing a novel perspective for glioma metabolic therapy.
Collapse
Affiliation(s)
- Xuyang Guo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Zi-An Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Weihua Hu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Lirui Dai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Wulong Liang
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, China
| |
Collapse
|
27
|
Neef T, Ifergan I, Beddow S, Penaloza-MacMaster P, Haskins K, Shea LD, Podojil JR, Miller SD. Tolerance Induced by Antigen-Loaded PLG Nanoparticles Affects the Phenotype and Trafficking of Transgenic CD4 + and CD8 + T Cells. Cells 2021; 10:3445. [PMID: 34943952 PMCID: PMC8699785 DOI: 10.3390/cells10123445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
We have shown that PLG nanoparticles loaded with peptide antigen can reduce disease in animal models of autoimmunity and in a phase 1/2a clinical trial in celiac patients. Clarifying the mechanisms by which antigen-loaded nanoparticles establish tolerance is key to further adapting them to clinical use. The mechanisms underlying tolerance induction include the expansion of antigen-specific CD4+ regulatory T cells and sequestration of autoreactive cells in the spleen. In this study, we employed nanoparticles loaded with two model peptides, GP33-41 (a CD8 T cell epitope derived from lymphocytic choriomeningitis virus) and OVA323-339 (a CD4 T cell epitope derived from ovalbumin), to modulate the CD8+ and CD4+ T cells from two transgenic mouse strains, P14 and DO11.10, respectively. Firstly, it was found that the injection of P14 mice with particles bearing the MHC I-restricted GP33-41 peptide resulted in the expansion of CD8+ T cells with a regulatory cell phenotype. This correlated with reduced CD4+ T cell viability in ex vivo co-cultures. Secondly, both nanoparticle types were able to sequester transgenic T cells in secondary lymphoid tissue. Flow cytometric analyses showed a reduction in the surface expression of chemokine receptors. Such an effect was more prominently observed in the CD4+ cells rather than the CD8+ cells.
Collapse
Affiliation(s)
- Tobias Neef
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Igal Ifergan
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Sara Beddow
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Joseph R. Podojil
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL 60062, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| |
Collapse
|