1
|
Gong Z, Chen L, Zhou X, Zhang C, Matičić D, Vnuk D, You Z, Li L, Li H. MXene-Based Photothermal-Responsive Injectable Hydrogel Microsphere Modulates Physicochemical Microenvironment to Alleviate Osteoarthritis. SMART MEDICINE 2025; 4:e70006. [PMID: 40303871 PMCID: PMC11994158 DOI: 10.1002/smmd.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025]
Abstract
Osteoarthritis (OA) is a physical lubrication microenvironment-inadequate disease accompanied by a sustained chronic chemical inflammation microenvironment and the progression of articular cartilage destruction. Despite the promising OA treatment outcomes observed in the enhancement of lubrication inspired by ball bearings to reduce friction and support loads, the therapeutic effect of near-infrared (NIR) irradiation-based photothermal-responsive controlled release "smart hydrogel microspheres" on OA remains unclear. Here, we prepared MXene/NIPIAM-based photothermal-responsive injectable hydrogel microspheres encapsulating diclofenac sodium using a microfluidic system. Consequently, NIR irradiation-based photothermal-responsive controlled release "smart hydrogel microspheres" demonstrate beneficial therapeutic effects in the treatment of OA by modulating the physical lubrication and chemical chronic inflammation microenvironment, laying the foundation for the application of smart hydrogel microsphere delivery systems loaded with bioactive factors (including agents, cells, and factors) to regulate multiple pathological microenvironments in regenerative medicine.
Collapse
Affiliation(s)
- Zehua Gong
- Joint Research Centre on MedicineXiangshan Hospital of Wenzhou Medical UniversityNingboChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
- The Fifth Hospital of JinhuaJinhuaChina
| | - Linjie Chen
- Department of OrthopaedicsKey Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaolei Zhou
- Jiangxi Provincial Key Laboratory of Tissue EngineeringSchool of Rehabilitation MedicineGannan Medical UniversityGanzhouChina
| | - Chunwu Zhang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dražen Matičić
- Clinic for Surgery, Orthopaedics and OphthalmologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Dražen Vnuk
- Clinic for Surgery, Orthopaedics and OphthalmologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Zhifeng You
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Linjin Li
- Department of UrologyThe Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai UniversityWenzhou People's HospitalWenzhouChina
| | - Huaqiong Li
- Joint Research Centre on MedicineXiangshan Hospital of Wenzhou Medical UniversityNingboChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
2
|
Pouso MR, Melo BL, Gonçalves JJ, Louro RO, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable and implantable hydrogels for localized delivery of drugs and nanomaterials for cancer chemotherapy: A review. Int J Pharm 2025; 677:125640. [PMID: 40287071 DOI: 10.1016/j.ijpharm.2025.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Multiple chemotherapeutic strategies have been developed to tackle the complexity of cancer. Still, the outcome of chemotherapeutic regimens remains impaired by the drugs' weak solubility, unspecific biodistribution and poor tumor accumulation after systemic administration. Such constraints triggered the development of nanomaterials to encapsulate and deliver anticancer drugs. In fact, the loading of drugs into nanoparticles can overcome most of the solubility concerns. However, the ability of systemically administered drug-loaded nanomaterials to reach the tumor site has been vastly overestimated, limiting their clinical translation. The drugs' and drug-loaded nanomaterials' systemic administration issues have propelled the development of hydrogels capable of performing their direct/local delivery into the tumor site. The use of these macroscale systems to mediate a tumor-confined delivery of the drugs/drugs-loaded nanomaterials grants an improved therapeutic efficacy and, simultaneously, a reduction of the side effects. The manufacture of these hydrogels requires the careful selection and tailoring of specific polymers/materials as well as the choice of appropriate physical and/or chemical crosslinking interactions. Depending on their administration route and assembling process, these matrices can be classified as injectable in situ forming hydrogels, injectable shear-thinning/self-healing hydrogels, and implantable hydrogels, each type bringing a plethora of advantages for the intended biomedical application. This review provides the reader with an insight into the application of injectable and implantable hydrogels for performing the tumor-confined delivery of drugs and drug-loaded nanomaterials.
Collapse
Affiliation(s)
- Manuel R Pouso
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Joaquim J Gonçalves
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - António G Mendonça
- RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal; University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
3
|
Du B, Feng S, Wang J, Cao K, Shi Z, Men C, Yu T, Wang S, Huang Y. Collagen-based micro/nanogel delivery systems: Manufacturing, release mechanisms, and biomedical applications. Chin Med J (Engl) 2025; 138:1135-1152. [PMID: 40264376 PMCID: PMC12091658 DOI: 10.1097/cm9.0000000000003611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 04/24/2025] Open
Abstract
ABSTRACT Collagen-based materials, renowned for their biocompatibility and minimal immunogenicity, serve as exemplary substrates in a myriad of biomedical applications. Collagen-based micro/nanogels, in particular, are valued for their increased surface area, tunable degradation rates, and ability to facilitate targeted drug delivery, making them instrumental in advanced therapeutics and tissue engineering endeavors. Although extensive reviews on micro/nanogels exist, they tend to cover a wide range of biomaterials and lack a specific focus on collagen-based materials. The current review offers an in-depth look into the manufacturing technologies, drug release mechanisms, and biomedical applications of collagen-based micro/nanogels to address this gap. First, we provide an overview of the synthetic strategies that allow the precise control of the size, shape, and mechanical strength of these collagen-based micro/nanogels by controlling the degree of cross-linking of the materials. These properties are crucial for their performance in biomedical applications. We then highlight the environmental responsiveness of these collagen-based micro/nanogels, particularly their sensitivity to enzymes and pH, which enables controlled drug release under various pathological conditions. The discussion then expands to include their applications in cancer therapy, antimicrobial treatments, bone tissue repair, and imaging diagnosis, emphasizing their versatility and potential in these critical areas. The challenges and future perspectives of collagen-based micro/nanogels in the field are discussed at the end of the review, with an emphasis on the translation to clinical practice. This comprehensive review serves as a valuable resource for researchers, clinicians, and scientists alike, providing insights into the current state and future directions of collagen-based micro/nanogel research and development.
Collapse
Affiliation(s)
- Bowei Du
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Shuhan Feng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Jiajun Wang
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Keyi Cao
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiheng Shi
- Shandong Provincial Key Laboratory of Gelatine Medicines Research and Development, Dong’e Ejiao Co., Ltd., Liaocheng, Shandong 252200, China
| | - Cuicui Men
- Shandong Provincial Key Laboratory of Gelatine Medicines Research and Development, Dong’e Ejiao Co., Ltd., Liaocheng, Shandong 252200, China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing 100160, China
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Li Y, Huang D, Zhang Y, Xiao Y, Zhang X. Microfluidic-assisted engineering of hydrogels with microscale complexity. Acta Biomater 2025:S1742-7061(25)00350-2. [PMID: 40349902 DOI: 10.1016/j.actbio.2025.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Hydrogels have emerged as a promising 3D cell culture scaffold owing to their structural similarity to the extracellular matrix (ECM) and their tunable physicochemical properties. Recent advances in microfluidic technology have enabled the fabrication of hydrogels into precisely controlled microspheres and microfibers, which serve as modular units for scalable 3D tissue assembly. Furthermore, advances in 3D bioprinting have allowed facile and precise spatial engineering of these hydrogel-based structures into complex architectures. When integrated with microfluidics, these systems facilitate microscale heterogeneity, dynamic shear flow, and gradient generation-critical features for advancing organoids and organ-on-a-chip systems. In this review, we will discuss (1) microfluidic strategies for the preparation of hydrogel microspheres and microfibers, (2) the integration of microfluidics with 3D bioprinting technologies, and (3) their transformative applications in organoids and organ-on-a-chip systems. STATEMENT OF SIGNIFICANCE: Microfluidic-assisted preparation and assembly of hydrogel microspheres and microfibers have enabled unprecedented precision in size, morphology and compositional control. The diverse configurations of these hydrogel modules offer the opportunities to generate 3D constructs with microscale complexity-recapitulating critical features of native tissues such as compartmentalized microenvironments, cellular gradients, and vascular networks. In this review, we discuss the fundamental microfluidic principles governing the generation of hydrogel microspheres (0D) and microfibers (1D), their hierarchical assembly into 3D constructs, and their integration with 3D bioprinting platforms to generate and culture organoids and organ-on-a-chip systems. The synergistic integration of microfluidics and bioprinting overcomes longstanding limitations of conventional 3D culture, such as static microenvironments and poor spatial resolution. Advances in microfluidic design offer tunable hydrogel biophysical and biochemical properties that regulate cell behaviors dynamically. Looking forward, the growing mastery of these principles paves the way for next-generation organoids and organ-on-a-chip systems with improved cellular heterogeneity, integrated vasculature, and multicellular crosstalk, closing the gap between in vitro models and human pathophysiology.
Collapse
Affiliation(s)
- Yuehong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Danyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuting Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Hou Y, Xuan L, Mo W, Xie T, Lara JAR, Wu J, Cai J, Nazir F, Chen L, Yi X, Bo S, Wang H, Dang Y, Xie M, Tang G. Anisotropic Microcarriers: Fabrication Strategies and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416862. [PMID: 40116541 DOI: 10.1002/adma.202416862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Anisotropic microcarriers (AMs) have attracted increasing attention. Although significant efforts have been made to explore AMs with various morphologies, their full potential is yet to be realized, as most studies have primarily focused on materials or fabrication methods. A thorough analysis of the interactional and interdependent relationships between these factors is required, along with proposed countermeasures tailored for researchers from various backgrounds. These countermeasures include specific fabrication strategies for various morphologies and guidelines for selecting the most suitable AM for certain biomedical applications. In this review, a comprehensive summary of AMs, ranging from their fabrication methods to biomedical applications, based on the past two decades of research, is provided. The fabrication of various morphologies is investigated using different strategies and their corresponding biomedical applications. By systematically examining these morphology-dependent effects, a better utilization of AMs with diverse morphologies can be achieved and clear strategies for breakthroughs in the biomedical field are established. Additionally, certain challenges are identified, new frontiers are opened, and promising and exciting opportunities are provided for fabricating functional AMs with broad implications across various fields that must be addressed in biomaterials and biotechnology.
Collapse
Affiliation(s)
- Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- The Fourth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Weihong Mo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting Xie
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Juan Antonio Robledo Lara
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Junjie Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Farzana Nazir
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Long Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- The Fourth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xin Yi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin, 300071, P. R. China
| | - Sifan Bo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Huaibin Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yuanye Dang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Maobin Xie
- The Fourth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
6
|
Yang M, Ni C, Wu D, Feng Q, Zhu Z, Fang Y, Xiang N. Efficient Extraction of White Blood Cells Using Modular Inertial Microfluidics. Anal Chem 2025; 97:8900-8907. [PMID: 40238670 DOI: 10.1021/acs.analchem.5c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The existence of massive amounts of red blood cells (RBCs) and other blood cell components poses a challenge for the efficient extraction of white blood cells (WBCs) from blood. Herein, we proposed modular inertial microfluidics for efficient extraction of WBCs from lysed blood samples. The different WBC extraction needs could be met by flexibly combining the washing module and the concentration module in modular inertial microfluidics. First, the respective optimal flow rates for washing and concentration modules with different channel sizes were explored. Then, based on the modular combination of washing and concentration modules, three modes were proposed to meet the processing needs of large-volume sample, low volume expansion, and easy operation. The replacement efficiency and recovery rate of target particles in the three modes were all greater than 93%. Finally, efficient extraction of WBCs from lysed blood samples was tested. The combined use of Modes 1 and 2 achieved a replacement efficiency of 93.1% and a recovery rate of 93.6%, while the single use of Mode 3 achieved a replacement efficiency of 97.1% and a recovery rate of 95.9%. Compared with traditional centrifuges, our modular inertial microfluidics showed a better washing performance with reduced residual RBC fragments. More importantly, it provided an excellent free combination capability to meet different WBC extraction needs.
Collapse
Affiliation(s)
- Mingqi Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Chen Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Dan Wu
- Department of Oncology, Jiangyin People's Hospital, Jiangyin 214400, China
| | - Qiang Feng
- Department of General Surgery, Jiangyin People's Hospital, Nantong University, Jiangyin 214400, China
| | - Zhixian Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yaohui Fang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Hinojosa-Ventura G, Acosta-Cuevas JM, Velázquez-Carriles CA, Navarro-López DE, López-Alvarez MÁ, Ortega-de la Rosa ND, Silva-Jara JM. From Basic to Breakthroughs: The Journey of Microfluidic Devices in Hydrogel Droplet Generation. Gels 2025; 11:309. [PMID: 40422329 DOI: 10.3390/gels11050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Hydrogel particles are essential in biological applications because of their distinctive capacity to retain water and encapsulate active molecules within their three-dimensional structure. Typical particle sizes range from nanometers (10-500 nm) to micrometers (1-500 µm), depending on the specific application and method of preparation. These characteristics render them optimal carriers for the administration of active compounds, facilitating the regulated and prolonged release of pharmaceuticals, including anticancer agents, antibiotics, and therapeutic proteins. Hydrogel particles can exhibit various morphologies, including spherical, rod-shaped, disk-shaped, and core-shell structures. Each shape offers distinct advantages, such as improved circulation time, targeted drug delivery, or enhanced cellular uptake. Additionally, hydrogel particles can be engineered to respond to various stimuli, such as temperature, pH, light, magnetic fields, and biochemical signals. Furthermore, their biocompatibility and capacity to acclimate to many biological conditions make them appropriate for sophisticated applications, including gene treatments, tissue regeneration, and cell therapies. Microfluidics has transformed the creation of hydrogel particles, providing precise control over their dimensions, morphology, and stability. This technique facilitates reproducible and highly efficient production, reducing reagent waste and optimizing drug encapsulation. The integration of microfluidics with hydrogels provides opportunities for the advancement of creative and effective solutions in contemporary medicine.
Collapse
Affiliation(s)
- Gabriela Hinojosa-Ventura
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
- Departamento de Innovación Tecnológica, Centro Universitario de Tlajomulco, Universidad de Guadalajara, Tlajomulco de Zúñiga 45641, Mexico
| | - José Manuel Acosta-Cuevas
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| | - Carlos Arnulfo Velázquez-Carriles
- Departamento de Ingeniería Biológica, Sintética y de Materiales, Centro Universitairo de Tlajomulco, Universidad de Guadalajara, Tlajomulco de Zúñiga 45641, Mexico
| | | | | | - Néstor D Ortega-de la Rosa
- Departamento de Ingeniería Biológica, Sintética y de Materiales, Centro Universitairo de Tlajomulco, Universidad de Guadalajara, Tlajomulco de Zúñiga 45641, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
8
|
Ulusu F, Bilgic A, Kursunlu AN. A half-natural origin approach for anticancer and antioxidant activities using sporopollenin and pillar[5]arene macroring. Int J Biol Macromol 2025; 303:140546. [PMID: 39894122 DOI: 10.1016/j.ijbiomac.2025.140546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Sporopollenin is a natural biomacromolecule which can be found in the outer wall (exine) of spores or pollens that it can be performed with clever designing in a lot of innovative and scientific areas. In this paper, a novel sporopollenin reformed with a recently synthesized pillar[5]arene molecule were elucidated by FT-IR spectroscopy, TGA and SEM techniques. This study is the first report leading to a comprehensive investigation of the biological applications of a functionalized bio-microcapsule including antioxidant and anticancer properties. Two in vitro assays (DPPH and FRAP) were used to determine the antioxidant activities of sporopollenin and functionalized microcapsules. Furthermore, the anticancer activities of these microcapsules were tested on 2 different cancer cell lines (HT-29 and MCF-7), and a fibroblast cell line (L929) by the Alamar blue assay. Among the samples tested in the antioxidant capacity results, especially Sp-P[5] exhibited higher antioxidant capacity and stood out with IC50: 101.98 ± 4.32 μg/mL in DPPH assay and IC50: 87.97 ± 3.14 μg/mL in FRAP assay. Similar to the antioxidant result, Sp-P[5] bio-microcapsule had greater cell inhibition on HT-29 (IC50: 132.31 ± 5.38 μg/mL), MCF-7 (IC50: 107.30 ± 8.28 μg/mL), and L929 (IC50: 255.80 ± 4.91 μg/mL) cell lines than Sp and Sp-APTMS. The analysis results in the study show promise for the development of sporopollenin-based microcapsules to deliver and enhance the biological activity of compounds with therapeutic potential.
Collapse
Affiliation(s)
- Funda Ulusu
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
| | - Ali Bilgic
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
| | | |
Collapse
|
9
|
Yue J, Liu Z, Wang L, Wang M, Pan G. Recent advances in bioactive hydrogel microspheres: Material engineering strategies and biomedical prospects. Mater Today Bio 2025; 31:101614. [PMID: 40104647 PMCID: PMC11919335 DOI: 10.1016/j.mtbio.2025.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Hydrogel microspheres are a class of hydrophilic polymeric particles in microscale, which has been developed as a new type of functional biomaterials for wide-range biomedical applications in recent years. This review provides a comprehensive overview of the preparation methods for hydrogel microspheres, including droplet microfluidics, electrospray and emulsion was first summarized. At the same time, we analyze the impacts of these methods on the properties of hydrogel microspheres and explore various functionalization strategies for enhancing their bioactivity and expanding their biomedical applications. In addition, we discuss the recent advances and the further prospect of hydrogel microspheres in life science applications, particularly in cell biology research, bioanalysis and detection, as well as tissue repair and regeneration. By synthesizing the latest developments, this review aims to offer valuable insights and strategies for optimizing hydrogel microspheres in diverse application scenarios and inspire future research and practical innovations.
Collapse
Affiliation(s)
- Junjiang Yue
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhengbiao Liu
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Lu Wang
- Department of Orthopedics, Suzhou Industrial Park Xinghu Hospital, No. 1 Tingsheng Street, Suzhou, Jiangsu 215000, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
10
|
Wei Z, Zhu M, Morin N, Wollsten D, Hirvonen J, Yang X, Santos HA, Li W. Polymeric Microspheres with High Mass Fraction of Therapeutics Enabled by the Manipulation of Kinetics Factor During Emulsion Droplet Solidification. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202417307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Indexed: 03/01/2025]
Abstract
AbstractHigh drug‐loaded polymeric microspheres hold promise in biomedical fields due to reduced excipient administration, minimized side effects, and enhanced therapeutical efficacy. Although thermodynamic factors like drug‐carrier material compatibility are well‐known to influence the drug loading capacity of microspheres, they fail to explain the huge difference in drug loading degree observed for polymers and drugs with similar interactions. Here, based on the droplet microfluidic platform, the single droplet solidification process is investigated. The results indicated that amorphous polymers can hinder drug diffusion during droplet solidification compared to crystalline polymers, resulting in a higher drug loading degree. Next, this principle is applied to improve the drug loading capability of crystalline polymers (polycaprolactone (PCL) and poly(L‐lactide) (PLLA)) by random co‐polymerization (poly(caprolactone‐co‐L‐lactide) (PCL‐PLLA)), achieving 6.2–22.2 times increased drug loading degree. Moreover, PCL‐PLLA microspheres with a high content of indomethacin exhibited superior therapeutical efficacy in the treatment of gout arthritis. Overall, these results offer insights into the impact of polymer crystallization on droplet solidification kinetics, which consequently affects the drug loading capacity. These findings provide guidelines for the development of polymers for efficient drug encapsulation.
Collapse
Affiliation(s)
- Zhenyang Wei
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Mingyu Zhu
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Nicolas Morin
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Daniela Wollsten
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Jouni Hirvonen
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
- Department of Biomaterials and Biomedical Technology The Personalized Medicine Research Institute (PRECISION) University Medical Center Groningen (UMCG) University of Groningen Ant. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Wei Li
- National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki 00014 Finland
| |
Collapse
|
11
|
Wang L, Ding X, Hu Y, Li Q, Bian Y, Duan Y, Lu S, Han H, Gu N, Sun J. Electrical Dissipation Factor Measurements of Droplet Impact-Derived Microgels with Different Topological Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413457. [PMID: 39617991 DOI: 10.1002/adma.202413457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/25/2024] [Indexed: 01/30/2025]
Abstract
Topology, the study of properties that are invariant under continuous transformations, in which the number of pores (genus) is a profound concept that determines a number of properties that have been verified in many microscopic systems, but have not been studied in macroscopic materials. Microgels are widely used materials, and based on microfluidics, regular, stable, and reproducible microgels can be prepared, but studies from the perspective of topological principles have not been reported. In this paper, a system based on a boric acid ester rapid cross-linking strategy that can rapidly capture topological changes during the transient process of droplet-to-ring transition is proposed. The electrical dissipation properties associated with different transient topologies during the process are also investigated, demonstrating that the change of topological structures in macroscopic materials also affected their electrical properties, laying the foundation for the design of modulated macroscopic micro structured materials based on topology theory.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Xuerong Ding
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yiheng Hu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Qiurui Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yibing Bian
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yefan Duan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Shujie Lu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, 100191, China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
12
|
Hao S, Shi L, Li J, Shi J, Kuang G, Liang G, Gao S. Biomacromolecular hydrogel scaffolds from microfluidics for cancer therapy: A review. Int J Biol Macromol 2024; 282:136738. [PMID: 39437954 DOI: 10.1016/j.ijbiomac.2024.136738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Traditional cancer treatment is confronted with the problem of limited therapeutic effect, tissue defects, and lack of drug screening. Hydrogel scaffolds from biological macromolecules based on microfluidic technology are a promising candidate, which can mimic tumor microenvironments to screen personalized drugs, promote the regeneration of healthy tissues, and deliver drugs for enhanced localized antitumor treatment. This review summarizes the latest research on the composition of biomacromolecular hydrogel scaffolds, the architecture of hydrogel scaffolds from microfluidic technology, and their application in cancer therapy, including anti-tumor drug screening, anti-tumor treatment, and anti-tumor treatment and tissue repair. In addition, the potential breakthroughs of this innovative platform in the clinical transformation of cancer therapy are further discussed. The insights revealed in this review are intended to guide the utilization of microfluidic technology-based biomacromolecular hydrogel scaffolds in cancer therapy.
Collapse
Affiliation(s)
- Siyu Hao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| | - Jiayi Li
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Jiaming Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Gaizhen Kuang
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Gaofeng Liang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
13
|
Daly AC. Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives. Adv Healthc Mater 2024; 13:e2301388. [PMID: 37317658 DOI: 10.1002/adhm.202301388] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Granular hydrogels, which are formed by densely packing microgels, are promising materials for bioprinting due to their extrudability, porosity, and modularity. However, the multidimensional parameter space involved in granular hydrogel design makes material optimization challenging. For example, design inputs such as microgel morphology, packing density, or stiffness can influence multiple rheological properties that govern printability and the behavior of encapsulated cells. This review provides an overview of fabrication methods for granular hydrogels, and then examines how important design inputs can influence material properties associated with printability and cellular responses across multiple scales. Recent applications of granular design principles in bioink engineering are described, including the development of granular support hydrogels for embedded printing. Further, the paper provides an overview of how key physical properties of granular hydrogels can influence cellular responses, highlighting the advantages of granular materials for promoting cell and tissue maturation after the printing process. Finally, potential future directions for advancing the design of granular hydrogels for bioprinting are discussed.
Collapse
Affiliation(s)
- Andrew C Daly
- Biomedical Engineering, University of Galway, Galway, H91 TK33, Ireland
- CÚRAM the Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
14
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
15
|
Tomioka D, Jung SA, Pich A, Matsusaki M. Fabrication of oxygen-releasing dextran microgels by droplet-based microfluidic method. RSC Adv 2024; 14:26544-26555. [PMID: 39175690 PMCID: PMC11339778 DOI: 10.1039/d4ra04356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
In the tissue engineering field, the supply of oxygen to three-dimensional (3D) tissues is an important aspect to avoid necrosis due to hypoxia. Although oxygen-releasing bulk materials containing calcium peroxide (CaO2, CP) have attracted much attention, micrometer-sized oxygen-releasing soft materials would be advantageous because of their highly controllable structures, which can be applied for cell scaffolds, injectable materials, and bioink components in 3D bioprinting. In this study, oxygen-releasing microgels were fabricated via a droplet-based microfluidic system. Homogeneous, monodisperse and stable oxygen-releasing microgels were obtained by photo-crosslinking of droplets composed of biocompatible dextran modified with methacrylate groups and CP nanoparticles as an oxygen source. We also used our microfluidic system for the in situ amorphous calcium carbonate (CaCO3, ACC) formation on the surface of CP nanoparticles to achieve the controlled release of oxygen from the microgel. Oxygen release from an ACC-CP microgel in a neutral cell culture medium was suppressed because incorporation of CP in the ACC suppressed the reaction with water. Strikingly, stimuli to dissolve ACC such as a weak acidic conditions triggered the oxygen release from microgels loaded with ACC-CP, as the dissolution of CaCO3 allows CP to react. Taken together, applications of this new class of biomaterials for tissue engineering are greatly anticipated. In addition, the developed microfluidic system can be used for a variety of oxygen-releasing microgels by changing the substrates of the hydrogel network.
Collapse
Affiliation(s)
- Daisuke Tomioka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shannon Anna Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
16
|
Tian L, Shi J, Li W, Zhang Y, Gao X. Hollow Microfiber Assembly-Based Endocrine Pancreas-on-a-Chip for Sugar Substitute Evaluation. Adv Healthc Mater 2024; 13:e2302104. [PMID: 37751946 DOI: 10.1002/adhm.202302104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Indexed: 10/03/2023]
Abstract
With the increasing demand for low-sugar, low-calorie healthy diets, artificial sweeteners are widely used as substitutes for sugar in the food industry. Therefore, developing models that can better predict the effects of sugar substitutes on the human body is necessary. Here, a new type of endocrine pancreas-on-a-chip is developed based on a microfiber assembly and its stimulation of pancreatic secretion by glucose or sugar substitutes is evaluated. This new endocrine pancreas-on-a-chip is assembled using two components: (1) a cell-loaded hollow methacrylate gelatin (GelMA)/calcium alginate (CaA) composite microfiber prepared by microfluidic spinning to achieve vascular simulation and material transport, and (2) a 3D pancreatic islet culture layer, which also serves as a fiber assembly microchip. Using this established organ chip, the effects of five sweeteners (glucose, erythritol, xylitol, sodium cyclamate, and sucralose) were investigated on pancreatic islet cell viability and insulin and glucagon secretion. The constructed endocrine pancreas-on-a-chip has potential for the safety evaluation of sugar-substituted food additives, which can expand the application of organ chips in the field of food safety and provide a new platform for evaluating various food additives.
Collapse
Affiliation(s)
- Lingling Tian
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Jingyan Shi
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Wei Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Hertle L, Sevim S, Zhu J, Pustovalov V, Veciana A, Llacer-Wintle J, Landers FC, Ye H, Chen XZ, Vogler H, Grossniklaus U, Puigmartí-Luis J, Nelson BJ, Pané S. A Naturally Inspired Extrusion-Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402309. [PMID: 38780003 DOI: 10.1002/adma.202402309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Soft materials play a crucial role in small-scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small-scale soft devices. In this study, microfluidics is leveraged to precisely control reaction-diffusion (RD) processes to generate multifunctional and compartmentalized calcium-cross-linkable alginate-based microfibers. Under RD conditions, sophisticated alginate-based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross-linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll-up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small-scale devices.
Collapse
Affiliation(s)
- Lukas Hertle
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Semih Sevim
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jiawei Zhu
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Vitaly Pustovalov
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Andrea Veciana
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Joaquin Llacer-Wintle
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Fabian C Landers
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Hao Ye
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
- Institute of Optoelectronics State Key Laboratory of Photovoltaic Science and Technology Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
| | - Hannes Vogler
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i Computacional, University of Barcelona, Martí i Franquès, 1, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
18
|
Xu M, Vidler C, Wang J, Chen X, Pan Z, Harley WS, Lee PVS, Collins DJ. Micro-Acoustic Holograms for Detachable Microfluidic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307529. [PMID: 38174594 DOI: 10.1002/smll.202307529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Acoustic microfluidic devices have advantages for diagnostic applications, therapeutic solutions, and fundamental research due to their contactless operation, simple design, and biocompatibility. However, most acoustofluidic approaches are limited to forming simple and fixed acoustic patterns, or have limited resolution. In this study,a detachable microfluidic device is demonstrated employing miniature acoustic holograms to create reconfigurable, flexible, and high-resolution acoustic fields in microfluidic channels, where the introduction of a solid coupling layer makes these holograms easy to fabricate and integrate. The application of this method to generate flexible acoustic fields, including shapes, characters, and arbitrarily rotated patterns, within microfluidic channels, is demonstrated.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Callum Vidler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jizhen Wang
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Xi Chen
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zijian Pan
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - William S Harley
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Graeme Clarke Institute, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Graeme Clarke Institute, University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
19
|
Żuchowska A, Baranowska P, Flont M, Brzózka Z, Jastrzębska E. Review: 3D cell models for organ-on-a-chip applications. Anal Chim Acta 2024; 1301:342413. [PMID: 38553129 DOI: 10.1016/j.aca.2024.342413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.
Collapse
Affiliation(s)
- Agnieszka Żuchowska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Patrycja Baranowska
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Magdalena Flont
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Zbigniew Brzózka
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
20
|
Alavi SE, Alharthi S, Alavi SF, Alavi SZ, Zahra GE, Raza A, Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov Today 2024; 29:103936. [PMID: 38428803 DOI: 10.1016/j.drudis.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting. The integration of microfluidics with sensor technologies and artificial intelligence facilitates real-time feedback and autonomous adaptation in drug delivery systems. Key challenges, such as droplet polydispersity and fluidic handling, along with future directions focusing on scalability and reliability, are essential considerations in advancing microfluidics for personalized drug delivery.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyedeh Fatemeh Alavi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, PR China
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Gull E Zahra
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
21
|
Hajam MI, Khan MM. Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomater Sci 2024; 12:218-251. [PMID: 38108438 DOI: 10.1039/d3bm01463k] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microfluidic technologies have garnered significant attention due to their ability to rapidly process samples and precisely manipulate fluids in assays, making them an attractive alternative to conventional experimental methods. With the potential for revolutionary capabilities in the future, this concise review provides readers with insights into the fascinating world of microfluidics. It begins by introducing the subject's historical background, allowing readers to familiarize themselves with the basics. The review then delves into the fundamental principles, discussing the underlying phenomena at play. Additionally, it highlights the different aspects of microfluidic device design, classification, and fabrication. Furthermore, the paper explores various applications, the global market, recent advancements, and challenges in the field. Finally, the review presents a positive outlook on trends and draws lessons to support the future flourishing of microfluidic technologies.
Collapse
Affiliation(s)
- Mohammad Irfan Hajam
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| | - Mohammad Mohsin Khan
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| |
Collapse
|
22
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
23
|
Orbay S, Sanyal R, Sanyal A. Porous Microgels for Delivery of Curcumin: Microfluidics-Based Fabrication and Cytotoxicity Evaluation. MICROMACHINES 2023; 14:1969. [PMID: 37893406 PMCID: PMC10609253 DOI: 10.3390/mi14101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Polymeric microgels, fabricated via microfluidic techniques, have garnered significant interest as versatile drug delivery carriers. Despite the advances, the loading and release of hydrophobic drugs such as curcumin from polymeric microgels is not trivial. Herein, we report that effective drug loading can be achieved by the design of porous particles and the use of supramolecular cyclodextrin-based curcumin complexes. The fabrication of porous microgels through the judicious choice of chemical precursors under flow conditions was established. The evaluation of the curcumin loading dependence on the porosity of the microgels was performed. Microgels with higher porosity exhibited better curcumin loading compared to those with lower porosity. Curcumin-loaded microgels released the drug, which, upon internalization by U87 MG human glioma cancer cells, induced cytotoxicity. The findings reported here provide valuable insights for the development of tailored drug delivery systems using a microfluidics-based platform and outline a strategy for the effective delivery of hydrophobic therapeutic agents such as curcumin through supramolecular complexation.
Collapse
Affiliation(s)
- Sinem Orbay
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Türkiye;
- Biomedical Engineering Department, Erzincan Binali Yildirim University, Erzincan 24002, Türkiye
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Türkiye
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Türkiye
| |
Collapse
|
24
|
Harder P, İyisan N, Wang C, Kohler F, Neb I, Lahm H, Dreßen M, Krane M, Dietz H, Özkale B. A Laser-Driven Microrobot for Thermal Stimulation of Single Cells. Adv Healthc Mater 2023; 12:e2300904. [PMID: 37229536 PMCID: PMC11468149 DOI: 10.1002/adhm.202300904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Here, the study presents a thermally activated cell-signal imaging (TACSI) microrobot, capable of photothermal actuation, sensing, and light-driven locomotion. The plasmonic soft microrobot is specifically designed for thermal stimulation of mammalian cells to investigate cell behavior under heat active conditions. Due to the integrated thermosensitive fluorescence probe, Rhodamine B, the system allows dynamic measurement of induced temperature changes. TACSI microrobots show excellent biocompatibility over 72 h in vitro, and they are capable of thermally activating single cells to cell clusters. Locomotion in a 3D workspace is achieved by relying on thermophoretic convection, and the microrobot speed is controlled within a range of 5-65 µm s-1 . In addition, light-driven actuation enables spatiotemporal control of the microrobot temperature up to a maximum of 60 °C. Using TACSI microrobots, this study targets single cells within a large population, and demonstrates thermal cell stimulation using calcium signaling as a biological output. Initial studies with human embryonic kidney 293 cells indicate a dose dependent change in intracellular calcium content within the photothermally controlled temperature range of 37-57 °C.
Collapse
Affiliation(s)
- Philipp Harder
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Fabian Kohler
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Irina Neb
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Harald Lahm
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Martina Dreßen
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Markus Krane
- Division of Cardiac Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Hendrik Dietz
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
25
|
Mi B, Xiong Y, Zha K, Cao F, Zhou W, Abbaszadeh S, Ouyang L, Liao Y, Hu W, Dai G, Zhao Z, Feng Q, Shahbazi MA, Liu G. Immune homeostasis modulation by hydrogel-guided delivery systems: a tool for accelerated bone regeneration. Biomater Sci 2023; 11:6035-6059. [PMID: 37522328 DOI: 10.1039/d3bm00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Immune homeostasis is delicately mediated by the dynamic balance between effector immune cells and regulatory immune cells. Local deviations from immune homeostasis in the microenvironment of bone fractures, caused by an increased ratio of effector to regulatory cues, can lead to excessive inflammatory conditions and hinder bone regeneration. Therefore, achieving effective and localized immunomodulation of bone fractures is crucial for successful bone regeneration. Recent research has focused on developing localized and specific immunomodulatory strategies using local hydrogel-based delivery systems. In this review, we aim to emphasize the significant role of immune homeostasis in bone regeneration, explore local hydrogel-based delivery systems, discuss emerging trends in immunomodulation for enhancing bone regeneration, and address the limitations of current delivery strategies along with the challenges of clinical translation.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Weixian Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guandong Dai
- Department of Orthopedic Surgery, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
26
|
Wen B, Huang D, Song C, Shan J, Zhao Y. Ultrasound-Responsive Oxygen-Carrying Pollen for Enhancing Chemo-Sonodynamic Therapy of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300456. [PMID: 37193644 PMCID: PMC10375146 DOI: 10.1002/advs.202300456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/01/2023] [Indexed: 05/18/2023]
Abstract
The tumor-suppressing efficacy of either chemotherapeutics or gaseous drugs has been confirmed in treating the triple negative breast cancer (TNBC), while the efficacy of single treatment is usually dissatisfactory. Herein, a novel ultrasound responsive natural pollen delivery system is presented to simultaneously load chemotherapeutics and gaseous drugs for synergistic treatment of TNBC. The hollow structure of pollen grains carries oxygen-enriched perfluorocarbon (PFC), and the porous spinous process structure adsorbs the chemotherapeutic drug doxorubicin (DOX) (PO/D-PGs). Ultrasound can trigger the oxygen release from PFC and excite DOX, which is not only a chemotherapeutic but also a sonosensitizer, to realize chemo-sonodynamic therapy. The PO/D-PGs are demonstrated to effectively enhance oxygen concentration and increase the production of reactive oxygen species in the presence of low-intensity ultrasound, synergistically enhancing the tumor killing ability. Thus, the synergistic therapy based on ultrasound-facilitated PO/D-PGs significantly enhances the antitumor effect in the mouse TNBC model. It is believed that the proposed natural pollen cross-state microcarrier can be used as an effective strategy to enhance chemo-sonodynamic therapy for TNBC.
Collapse
Affiliation(s)
- Baojie Wen
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
| | - Danqing Huang
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
| | - Chuanhui Song
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
| | - Jingyang Shan
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
| | - Yuanjin Zhao
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
27
|
Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals (Basel) 2023; 16:937. [PMID: 37513850 PMCID: PMC10385691 DOI: 10.3390/ph16070937] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Droplet-based microfluidics offer great opportunities for applications in various fields, such as diagnostics, food sciences, and drug discovery. A droplet provides an isolated environment for performing a single reaction within a microscale-volume sample, allowing for a fast reaction with a high sensitivity, high throughput, and low risk of cross-contamination. Owing to several remarkable features, droplet-based microfluidic techniques have been intensively studied. In this review, we discuss the impact of droplet microfluidics, particularly focusing on drug screening and development. In addition, we surveyed various methods of device fabrication and droplet generation/manipulation. We further highlight some promising studies covering drug synthesis and delivery that were updated within the last 5 years. This review provides researchers with a quick guide that includes the most up-to-date and relevant information on the latest scientific findings on the development of droplet-based microfluidics in the pharmaceutical field.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thach Thi Dan
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
28
|
Pareja Tello R, Wang S, Fontana F, Correia A, Molinaro G, López Cerdà S, Hietala S, Hirvonen J, Barreto G, Santos HA. Fabrication of hydrogel microspheres via microfluidics using inverse electron demand Diels-Alder click chemistry-based tetrazine-norbornene for drug delivery and cell encapsulation applications. Biomater Sci 2023. [PMID: 37334482 DOI: 10.1039/d3bm00292f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Microfluidic on-chip production of polymeric hydrogel microspheres (MPs) can be designed for the loading of different biologically active cargos and living cells. Among different gelation strategies, ionically crosslinked microspheres generally show limited mechanical properties, meanwhile covalently crosslinked microspheres often require the use of crosslinking agents or initiators with limited biocompatibility. Inverse electron demand Diels Alder (iEDDA) click chemistry is a promising covalent crosslinking method with fast kinetics, high chemoselectivity, high efficiency and no cross-reactivity. Herein, in situ gellable iEDDA-crosslinked polymeric hydrogel microspheres are developed via water-in-oil emulsification (W/O) glass microfluidics. The microspheres are composed of two polyethylene glycol precursors modified with either tetrazine or norbornene as functional moieties. Using a single co-flow glass microfluidic platform, homogenous MPs of sizes 200-600 μm are developed and crosslinked within 2 minutes. The rheological properties of iEDDA crosslinked bulk hydrogels are maintained with a low swelling degree and a slow degradation behaviour under physiological conditions. Moreover, a high-protein loading capacity can be achieved, and the encapsulation of mammalian cells is possible. Overall, this work provides the possibility of developing microfluidics-produced iEDDA-crosslinked MPs as a potential drug vehicle and cell encapsulation system in the biomedical field.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sandra López Cerdà
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00014, Helsinki, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280, Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
29
|
Muir VG, Weintraub S, Dhand AP, Fallahi H, Han L, Burdick JA. Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206117. [PMID: 36717272 PMCID: PMC10074081 DOI: 10.1002/advs.202206117] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Granular hydrogels are an emerging class of biomaterials formed by jamming hydrogel microparticles (i.e., microgels). These materials have many advantageous properties that can be tailored through microgel design and extent of packing. To enhance the range of properties, granular composites can be formed with a hydrogel interstitial matrix between the packed microgels, allowing for material flow and then stabilization after crosslinking. This approach allows for distinct compartments (i.e., microgels and interstitial space) with varied properties to engineer complex material behaviors. However, a thorough investigation of how the compositions and ratios of microgels and interstitial matrices influence material properties has not been performed. Herein, granular hydrogel composites are fabricated by combining fragmented hyaluronic acid (HA) microgels with interstitial matrices consisting of photocrosslinkable HA. Microgels of varying compressive moduli (10-70 kPa) are combined with interstitial matrices (0-30 vol.%) with compressive moduli varying from 2-120 kPa. Granular composite structure (confocal imaging), mechanics (local and bulk), flow behavior (rheology), and printability are thoroughly assessed. Lastly, variations in the interstitial matrix chemistry (covalent vs guest-host) and microgel degradability are investigated. Overall, this study describes the influence of granular composite composition on structure and mechanical properties of granular hydrogels towards informed designs for future applications.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Shoshana Weintraub
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Abhishek P. Dhand
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Hooman Fallahi
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Lin Han
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Jason A. Burdick
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
- BioFrontiers InstituteUniversity of Colorado BoulderBoulderCO80303USA
- Department of Chemical and Biological EngineeringCollege of Engineering and Applied ScienceUniversity of Colorado BoulderBoulderCO80303USA
| |
Collapse
|