1
|
Wang P, Guo W, Liu S, Li S, Li J, Ding B, Yin F, Yang Y, Li X, Cao P, Ma C, Zhang W, Song Y, Geng Y, Liu L, Hu J, Hao J, Feng Y. Novel Pt@PCN-Cu-induced cuproptosis amplifies αPD-L1 immunotherapy in pancreatic ductal adenocarcinoma through mitochondrial HK2-mediated PD-L1 upregulation. J Exp Clin Cancer Res 2025; 44:149. [PMID: 40382627 DOI: 10.1186/s13046-025-03409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Copper accumulation triggers mitochondrial-driven cell death, known as cuproptosis, offering a promising mechanism for targeted cancer therapy. Recent studies have highlighted the critical role of intratumoral copper levels in regulating the expression of programmed cell death ligand-1 (PD-L1), suggesting that copper-induced cuproptosis not only enhances cancer cell death but may also amplify the effects of anti-PD-L1 antibodies (αPD-L1). However, in tumors where monotherapy with αPD-L1 shows limited efficacy, particularly in pancreatic ductal adenocarcinoma (PDAC), the role of copper-induced cuproptosis in enhancing αPD-L1 treatment efficacy and its underlying mechanisms remain unclear. Meanwhile, inadequate tumor drug accumulation and glycolysis significantly restrict the efficacy of cuproptosis. To address these challenges, we have synthesized a novel nanozyme, Pt@PCN-Cu, designed to stabilize intracellular copper accumulation and effectively induce cuproptosis. Additionally, we aim to determine whether this strong induction of cuproptosis can synergize with αPD-L1 to enhance cancer therapy, ultimately paving the way for novel strategies to improve PDAC treatment. METHODS Pt@PCN-Cu was synthesized via a one-pot method, and its therapeutic potential was assessed in combination with αPD-L1 for the treatment of PDAC. Initially, the material's properties were characterized, and its efficient cellular uptake was confirmed. Anti-tumor efficacy was evaluated by inducing cuproptosis in PDAC cell lines and xenograft models. RNA sequencing (RNA-seq) was utilized to identify key regulators involved in the modulation of PD-L1 expression by cuproptosis. Lastly, the therapeutic efficacy of Pt@PCN-Cu combined with αPD-L1 was evaluated in vivo, focusing on tumor growth inhibition and immune modulation within the tumor microenvironment (TME). RESULTS Pt@PCN-Cu demonstrates excellent physicochemical properties and remarkable cascade catalytic activity, providing a solid foundation for further in vitro and in vivo studies. In vitro, Pt@PCN-Cu efficiently transports copper and induces cuproptosis primarily through mitochondrial dysfunction. Mechanistic studies show that Pt@PCN-Cu triggers the dissociation of hexokinase 2 (HK2) from mitochondria, leading to a reduction in HK2 activity. This decline in HK2 activity impairs glycolysis, a metabolic pathway essential for tumor energy metabolism, which in turn results in elevated PD-L1 levels. In vivo, Pt@PCN-Cu demonstrates excellent safety and accumulates at the tumor site in a subcutaneous PDAC mouse model, inducing cuproptosis. Moreover, the combination of Pt@PCN-Cu with αPD-L1 further enhanced its therapeutic efficacy and effectively reprogrammed the immunosuppressive TME. CONCLUSION This study presents strong evidence confirming the safety and therapeutic potential of Pt@PCN-Cu in PDAC treatment. Importantly, Pt@PCN-Cu not only induces cuproptosis but also significantly enhances antitumor efficacy in combination with αPD-L1 by regulating PD-L1 expression through HK2 modulation. These findings underscore a more effective and innovative approach for treating PDAC.
Collapse
Affiliation(s)
- Pengyu Wang
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weihua Guo
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shuyue Liu
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shouyi Li
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiaqi Li
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Bowen Ding
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fengyi Yin
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yang Yang
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xingjiang Li
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Pei Cao
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chaozhe Ma
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wanying Zhang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yidan Song
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yating Geng
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Jing Hu
- School of Basic Medicine, Tianjin Medical University, Tianjin, 300070, China.
| | - Jihui Hao
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yukuan Feng
- Pancreas Center, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
2
|
Xu Z, Zhang S, Zhang X, He Y, Zhang J, Yuan M, Liu C, Liu H, Gao D, Wang D. Cyclized polyacrylonitrile Nanoparticles: Enhanced intratumoral delivery by photocatalysis and collagen denaturation. J Colloid Interface Sci 2025; 696:137829. [PMID: 40381319 DOI: 10.1016/j.jcis.2025.137829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Currently, cancer treatment remains a significant challenge, primarily due to the intrinsically complex biological characteristics of solid tumors and the elevated tumor interstitial pressure (TIP), which impedes the effective delivery of nanomedicines into the tumor. This interstitial pressure arises from the malignant proliferation of tumor cells, leading to compromised vascular and lymphatic systems, as well as a dense extracellular matrix (ECM). These factors result in the accumulation of interstitial fluid and the deposition of collagen within the tumor. To address this issue, we designed and synthesized cyclized polyacrylonitrile nanoparticles (CPAN NPs) that, upon near-infrared (NIR) light irradiation, facilitate the effective separation of electron (e-) and hole (h+) pairs. This process catalyzes the decomposition of water within the tumor interstitium, generating oxygen, hydrogen, and reactive oxygen species (ROS), thereby reducing interstitial fluid volume and lowering tumor interstitial fluid pressure. Additionally, CPAN NPs exhibit excellent photothermal conversion properties, enabling the denaturation of collagen in the tumor region, which reduces its viscosity and consequently decreases the solid stress within the tumor. Through this "catalysis-protein denaturation" strategy, the TIP level in tumor-bearing mice was reduced by 34.5 %, alleviating the barrier to nanodrug delivery within the tumor interstitium. This led to a 1.64-fold increase in intratumoral drug accumulation. Furthermore, the generated ROS triggered tumor cell apoptosis, effectively inhibiting tumor growth. Thus, this study provides an innovative approach to enhance the deep accumulation of nanodrugs within tumors and improve the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China
| | - Shurui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China; Yanshan University Shenzhen Industrial Technology Research Institute, Hebei, Qinhuangdao 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China; Yanshan University Shenzhen Industrial Technology Research Institute, Hebei, Qinhuangdao 066004, China
| | - Jinhui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China
| | - Meng Yuan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China
| | - Chang Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China
| | - Hengrui Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China; Yanshan University Shenzhen Industrial Technology Research Institute, Hebei, Qinhuangdao 066004, China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University Hebei, Qinhuangdao 066004, China; Yanshan University Shenzhen Industrial Technology Research Institute, Hebei, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
Sun R, Liu R, Tian Y, Li Y, Fan B, Li S. Removing Barriers to Tumor 'Oxygenation': Depleting Glutathione Nanozymes in Cancer Therapy. Int J Nanomedicine 2025; 20:5613-5643. [PMID: 40331231 PMCID: PMC12051984 DOI: 10.2147/ijn.s515734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
Nanozymes are nanomaterials capable of mimicking natural enzyme catalysis in the complex biological environment of the human body. Due to their good stability and strong catalytic properties, nanozymes are widely used in various fields of biomedicine. Among them, nanozymes that trigger intracellular reactive oxygen species (ROS) levels for cancer therapy have gained significant attention. However, the 'explosion' of ROS in tumor cells was prevented by the high levels of glutathione (GSH) in the tumor microenvironment (TME). GSH, a prominent endogenous antioxidant, increases the resistance of tumor cells to oxidative stress by scavenging ROS. Certain nanozymes can deplete intracellular GSH levels by mimicking GSH oxidase (GSHOx), GSH peroxidase (GPx) or by interfering with the reduction of oxidized glutathione (GSSG). On the one hand, elevated the level of intracellular ROS and induced lipid peroxidation reaction leading to ferroptosis. On the other hand, it creates favorable conditions for the treatment of tumors with photodynamic therapy (PDT), sonodynamic therapy (SDT), chemodynamical therapy (CDT) and targeted therapy. In this paper, we present a comprehensive analysis of GSH-depleting nanozymes reported in recent years, including classification, mechanism, responsiveness to TME and their roles in cancer therapy, and look forward to future applications and developments.
Collapse
Affiliation(s)
- Ruilong Sun
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
- Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, People’s Republic of China
| | - Ruitang Liu
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongzheng Tian
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Yunfei Li
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Bo Fan
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Songkai Li
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Quan L, Wang M, Wang Z, Du Z. LIFU (Low-Intensity Focused Ultrasound) Activated Tumor-Starvation/Oxidative-Stress Combined Therapy for Treating Retinoblastoma. Int J Nanomedicine 2025; 20:4085-4103. [PMID: 40196026 PMCID: PMC11975011 DOI: 10.2147/ijn.s506179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose To overcome the limitations of traditional therapies in treating retinoblastoma, like low efficiency, systematic toxicity and poor biocompatibility. Materials and Methods PPFG (PLGA-PFH-Fe3O4-GOx) nanoparticles were synthesized by ultrasound double emulsification method and characterized by dynamic laser scattering, ultraviolet spectrometry, confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Phase transition by low-intensity focused ultrasound (LIFU) was observed by microscope and ultrasound imaging. Cellular uptake was compared between Y79 and HUVEC cells. ROS production was detected by 2',7'-dichlorofluorescin diacetate (DCFH-DA). Cell apoptosis was detected by flow cytometry. In vivo therapeutic effects were verified by tumor volume, HE staining, TUNEL and PCNA staining. The in vivo bio-safety was detected by serum biochemistry. Results PPFG NPs possesses good stability, biocompatibility and tumor-preferred uptake, with a core-shell spherical structure and an average size of 255.6nm which increases to over 100μm under LIFU irradiation. LIFU was utilized as a stimuli, by which PPFG NPs undergoes a sequential reaction starting with phase transition of PFH causing the release of the oxygen carried by PFH and GOx/SPIO carried by PPFG NPs, followed by the supplemented oxygen facilitating the enzymatic activity of glucose consumption by GOx in tumor cells (tumor starvation), the H2O2 produced during the enzymatic activity can further participate in SPIO NPs-mediated Fenton reaction (CDT), generating massive ROS. The continuously generated ROS together with the cut down of tumor nutrients by GOx effectively inhibited the progression of tumors, and synergistically enhanced ROS production together with tumor starvation promoted cell apoptosis and ultimately kills the tumour cells. No off-site injuries was detected in other major organs. Conclusion In this study, PPFG nanoparticles were synthesized to conduct LIFU-triggered combinational therapy on the basis of the cascade reaction among PFH, GOx and SPIO to treat retinoblastoma in vitro/vivo. It showed great potentials in combating retinoblastoma.
Collapse
Affiliation(s)
- Luya Quan
- Department of Ophthalmology, The Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Mengzhu Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zhigang Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zhiyu Du
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
5
|
Ameen SSM, Algethami F, Omer KM. Magnetic rod-shaped Mn-based MOF as a multi-functional and recyclable platform for dual-mode ratiometric-based nitrite detection. Mikrochim Acta 2025; 192:194. [PMID: 40014216 DOI: 10.1007/s00604-025-07054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
The development is shown of rod-shaped manganese-based metal-organic frameworks (Mn-MOFs) as hot- and cold-adapted oxidase-like nanozymes, with strong magnetic properties. These Mn-MOFs enable highly sensitive detection of nitrite ions, utilizing both convenient colorimetric ratio analysis and a visual instrument-free-based approach compatible with smartphone-based detection. The Mn-MOF showed multi-functional activity, such as cold/hot-adapted and magnetic oxidase-like activity, catalyzing the oxidation of chromogenic substrates 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB). Mn-MOF shows high oxidase activity with Vmax of 1.39 × 10-8 M/s and Km of 0.068 mM for TMB oxidation. Nitrite ions further react with oxTMB to form a yellow color via diazotization resulting in the ratiometric change in absorbance (A652/A461). The color ratio is also quantified through the naked eye and/or smartphone app by analyzing RGB values, providing a rapid, portable, and cost-effective method for on-site detection. When applying Mn-MOF for smartphone-based nitrite detection, it performs excellent detection, with a linear range of 5.0-55.0 µM and a limit of detection of 0.18 µM, superior to most of the oxidase nanozyme-based nitrite sensing platforms. The detection platforms develop sensing probes using a reusable nanozyme that enables highly sensitive and selective detection of nitrite, featuring a broad linear range and a low limit of detection.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, Kurdistan Region, 42002, Zakho, Iraq
| | - Faisal Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, 11623, Riyadh, Saudi Arabia
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St. 46002, Kurdistan Region, Sulaymaniyah, Iraq.
| |
Collapse
|
6
|
Li Y, Fu B, Jiang W. Emerging Roles of Nanozyme in Tumor Metabolism Regulation: Mechanisms, Applications, and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11552-11577. [PMID: 39936939 DOI: 10.1021/acsami.4c20417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nanozymes, nanomaterials with intrinsic enzyme activity, have garnered significant attention in recent years due to their catalytic abilities comparable to natural enzymes, cost-effectiveness, high catalytic activities, and stability against environmental fluctuations. As functional analogs of natural enzymes, nanozymes participate in various critical metabolic processes, including glucose metabolism, lactate metabolism, and the maintenance of redox homeostasis, all of which are essential for normal cellular functions. However, disruptions in these metabolic pathways frequently promote tumorigenesis and progression, making them potential therapeutic targets. While several therapies targeting tumor metabolism are currently in clinical or preclinical stages, their efficacy requires further enhancement. Consequently, nanozymes that target tumor metabolism are regarded as a promising therapeutic strategy. Despite extensive studies investigating the application of nanozymes in tumor metabolism, relevant reviews are relatively scarce. This article first introduces the physicochemical properties and biological behaviors of nanozymes. Subsequently, we analyze the role of nanozymes in tumor metabolism and explore their potential applications in tumor therapy. In conclusion, this review aims to foster innovative research in related fields and advance the development of nanozyme-based strategies for cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yikai Li
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Bowen Fu
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
7
|
Zheng J, Peng W, Shi H, Zhang J, Hu Q, Chen J. Emerging engineered nanozymes: current status and future perspectives in cancer treatments. NANOSCALE ADVANCES 2025; 7:1226-1242. [PMID: 39882506 PMCID: PMC11774201 DOI: 10.1039/d4na00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Composite nanozymes are composed of enzymes with similar or different catalytic capabilities and have higher catalytic activity than a single enzyme. In recent years, composite nanozymes have emerged as novel nanomaterial platforms for multiple applications in various research fields, where they are used to produce oxygen, consume glutathione, or produce toxic reactive oxygen species (ROS) for cancer therapy. The therapeutic approach using composite nanozymes is known as chemo-dynamic therapy (CDT). Some composite nanozymes also show special photothermal conversion effects, enabling them to be combined with pioneering cancer treatments, such as photodynamic therapy (PDT), photothermal therapy (PTT) and sonodynamic therapy (SDT), and enhance the anti-cancer effects. In this study, the classification and catalytic performances of composite nanozymes are reviewed, along with their advantages and synthesis methods. Furthermore, the applications of composite nanozymes in the treatment of cancers are emphasized, and the prospective challenges in the future are discussed.
Collapse
Affiliation(s)
- Jiajia Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou Zhejiang China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Weili Peng
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Houhui Shi
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
- College of Pharmaceutical Science, Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jiaqi Zhang
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jun Chen
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| |
Collapse
|
8
|
Malla P, Wang YM, Su CH. New horizons for the therapeutic application of nanozymes in cancer treatment. J Nanobiotechnology 2025; 23:130. [PMID: 39979897 PMCID: PMC11844087 DOI: 10.1186/s12951-025-03185-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/01/2025] [Indexed: 02/22/2025] Open
Abstract
The advent of nanozymes has revolutionized approaches to cancer diagnosis and therapy, introducing innovative strategies that address the limitations of conventional treatments. Nanozyme nanostructures with enzyme-mimicking catalytic abilities exhibit exceptional stability, biocompatibility, and customizable functions, positioning them as promising tools for cancer theranostics. By emulating natural enzyme reactions, nanozymes can selectively target and eradicate cancer cells, minimizing harm to adjacent healthy tissues. Nanozymes can also be functionalized with specific targeting ligands, allowing for the precise delivery and regulated release of therapeutic agents, improving treatment effectiveness and reducing adverse effects. However, issues such as biocompatibility, selectivity, and regulatory compliance remain critical challenges for the clinical application of nanozymes. This review provides an overview of nanozymes, highlighting their unique properties, various classifications, catalytic activities, and diverse applications in cancer treatments. The strategic oncological deployment of nanozymes could profoundly impact future advancements in personalized medicine, highlighting recent progress and prospective directions in enzyme-mimetic approaches for cancer treatment. This review summarizes an overview of nanozymes, highlighting their unique properties, various classifications, catalytic activities, and diverse applications in cancer treatments.
Collapse
Affiliation(s)
- Pravanjan Malla
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
9
|
Vivancos AG, Zhou Y, Lappan U, Boye S, Muñoz-Moreno L, Appelhans D, Moreno S. Biological activation of Fenton reaction in polymeric nanoreactors driven by ferrocene-containing membranes: a microenvironment dependent study. J Mater Chem B 2025; 13:1980-1990. [PMID: 39760488 DOI: 10.1039/d4tb01776e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Nanocatalytic medicine for treating cancer requires effective, versatile and novel tools and approaches to significantly improve the therapeutic efficiency for the interactions of (non-)enzymatic reactions. However, it is necessary to develop (non-)enzymatic nanotechnologies capable of selectively killing tumour cells without harming normal cells. Their therapeutic characteristics should be the adaption of tumours' extra- and intracellular environment to being specifically active. To contribute to this common goal, we propose the use of pH- and redox-responsive ferrocene containing polymersomes (FcPsomes). This allows the regulation of their biological activities for the controlled production of radicals via the Fenton reaction and the transport and release of cargo molecules via (destroying) host-guest interactions. This is provided by the Fc-membrane composition of FcPsomes showing different pH responsive active membrane, meaning the membrane permeability is triggering the Fenton reaction. The modulation of radical production is validated by various spectroscopic techniques. Moreover, these nanocontainers allow biological action of glucose oxidase (GOx) as therapeutic enzyme to produce glucono-1,5-lactone as proton source and hydrogen peroxide, initiating the Fenton reaction, in their interior. This provides a synergistic cancer therapeutic treatment for the starvation of hydrogen peroxide, but also ROS-mediated chemodynamic therapy at defined pH values. By modulating membrane permeability, we achieve environmentally regulated and locally driven therapeutic activity in the confinement of FcPsomes, ensuring specificity and safety treatments. The versatility of this platform extends beyond their specific application, allowing for their beneficial therapeutic use, for example, in signaling pathways of cells through the integration of various enzymes in FcPsomes.
Collapse
Affiliation(s)
| | - Yang Zhou
- Leibniz Institute of Polymer Research Dresden (IPF), Dresden, Germany.
| | - Uwe Lappan
- Leibniz Institute of Polymer Research Dresden (IPF), Dresden, Germany.
| | - Susanne Boye
- Leibniz Institute of Polymer Research Dresden (IPF), Dresden, Germany.
| | - Laura Muñoz-Moreno
- Department of Organic and Inorganic Chemistry, University of Alcalá, 28805 Madrid, Spain
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden (IPF), Dresden, Germany.
| | - Silvia Moreno
- Leibniz Institute of Polymer Research Dresden (IPF), Dresden, Germany.
- Department of Organic and Inorganic Chemistry, University of Alcalá, 28805 Madrid, Spain
| |
Collapse
|
10
|
Zhang H, Wei Z, Wang Y, Bi Z, Han W, Shi M, Chen T, Sun Y, Wang L, Zhang S. Au 3+-Functionalized Metal-Organic Framework Coordinated Nanotherapeutics for Substrate Self-Supplied Parallel Catalytic and Calcium-Overload-Mediated Therapy of Cancer. ACS APPLIED BIO MATERIALS 2025; 8:446-456. [PMID: 39829267 DOI: 10.1021/acsabm.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The multiple enzymatic properties of the Au3+-modified metal-organic framework (Au3+-MOFs) have made it a functional catalytic system for antitumor treatment. However, in the face of insufficient catalytic substrates in tumor tissue, it is still impossible to achieve efficient treatment of tumors. Herein, Au3+-MOFs loaded with hyaluronic acid (HA)-modified calcium peroxide nanoparticles (CaO2 NPs) were used to construct a nanozyme (Au3+-MOF/CaO2/HA) for substrate self-supplied and parallel catalytic/calcium-overload-mediated therapy of cancer. Due to the specific targeted ability and retention (EPR) effect of the HA, the built nanozyme can effectively accumulate at the tumor site. Due to the oxidase-like (OXD) activity and peroxidase-like (POD) activity of Au3+-MOFs, superoxide radical anion (O2•-) and hydroxyl radicals (·OH) were cooperatively formed for parallel catalytic therapy (PCT) of cancer. Subsequently, CaO2 NPs were decomposed to Ca2+, H2O2, and O2 in the weak acidic environment of the tumor microenvironment (TME). Thus, self-supplementation of O2 as well as H2O2 was achieved, alleviating the deficiency of Au3+-MOF nanozyme catalytic substrate. In addition, Ca2+ can lead to oxidative stress for tumor calcification and calcium-overload-mediated therapy (COMT) to promote tumor necrosis in vivo. An effective paradigm of tumor PCT/COMT therapy with a self-supplying substrate has been successfully established for considerably enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zizhen Wei
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuqi Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhiru Bi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Wenxiu Han
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Minghui Shi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
| | - Tingting Chen
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yongbiao Sun
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
| | - Linjing Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
11
|
Wang C, Yuan F, Yan Z, Zhang T, Fu C, Li Y, Dai G, Kim HS, Xia S, Yu L, Debnath S, Ren WX, Shu J, Qiu M, Kim JS. High Entropy 2D Layered Double Hydroxide Nanosheet Toward Cascaded Nanozyme-Initiated Chemodynamic and Immune Synergistic Therapy. J Am Chem Soc 2025; 147:136-148. [PMID: 39477803 DOI: 10.1021/jacs.4c04523] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
High-entropy nanomaterials (HEMs) are a hot topic in the fields of energy and catalysis. However, in terms of promising biomedical applications, potential therapeutic studies involving HEMs are unprecedented. Herein, we demonstrated high entropy two-dimensional layered double hydroxide (HE-LDH) nanoplatforms with versatile physicochemical advantages that reprogram the tumor microenvironment (TME) and provide antitumor treatment via cascaded nanoenzyme-initiated chemodynamic and immune synergistic therapy. In response to the TME, the multifunctional HE-LDHs sequentially release metal ions, such as Co2+, Fe3+, and Cu2+, exhibiting exquisite superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPX) activities. The multiple enzymatic activities convert specific tumor metabolites into a continuous supply of cytotoxic reactive oxygen species (ROS) to relieve hypoxia under a TME. Thus, HE-LDHs facilitate robust nanozyme-initiated chemodynamic therapy (NCDT), achieving high therapeutic efficacy without obvious side effects. In addition, the release of Zn2+ from the HE-LDH matrix triggers the cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling pathway, boosting the innate immunotherapeutic efficacy. The intratumoral applications of the nanocomposite in tumor-bearing mice models indicate that HE-LDH-mediated NCDT and immune synergistic therapy effectively upregulated the expression of relevant antitumor cytokines and induced cytotoxic T lymphocyte infiltration, showing superior efficacy in inhibiting tumor growth. Therefore, this work opens a new research direction toward synchronized NCDT and immunotherapy of tumors using HEMs for advanced healthcare.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Fengying Yuan
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Zichao Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Tianqi Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Chenchen Fu
- College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Ya Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Shuwei Xia
- College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Liangmin Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | | | - Wen Xiu Ren
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Meng Qiu
- College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
12
|
Zhang X, Zhang Y, Lv X, Zhang P, Xiao C, Chen X. DNA-Free Guanosine-Based Polymer Nanoreactors with Multienzyme Activities for Ferroptosis-Apoptosis Combined Antitumor Therapy. ACS NANO 2024; 18:33531-33544. [PMID: 39610058 DOI: 10.1021/acsnano.4c11275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Concurrent induction of ferroptosis and apoptosis by enzyme catalysis represents a promising modality for cancer therapy. Inspired by the structures of DNA and G-quadruplex/hemin DNAzyme, a DNA-free guanosine-based polymer nanoreactor (HPG@hemin-GOx) is prepared as a ferroptosis-apoptosis inducer by a one-step assembly of phenylboronic acid-modified hyaluronic acid (HA-PBA), guanosine (G), hemin, and glucose oxidase (GOx). HPG@hemin-GOx shows GOx, peroxidase (POD)-like, catalase (CAT)-like, and glutathione peroxidase (GPX)-like activities. The GOx activity of the nanoreactor can increase intracellular hydrogen peroxide (H2O2) levels by oxidizing glucose in the presence of oxygen. The POD-like activity of HPG@hemin-GOx can then induce the generation of hydroxyl radicals utilizing generated H2O2. Meanwhile, the production of oxygen by the CAT-like activity can facilitate the oxygen-consuming glucose oxidation process of GOx, thus promoting the generation of intracellular reactive oxygen species (ROS). Moreover, the GPX-like activity of HPG@hemin-GOx can deplete intracellular glutathione and thus downregulate GPX4 expression. Consequently, HPG@hemin-GOx induces apoptosis and ferroptosis by ROS-mediated damages of nuclear DNA and mitochondria, and GPX4 depletion-induced lipid peroxidation accumulation, resulting in a strong anticancer effect as demonstrated both in vitro and in vivo. This work provides a method for the construction of polymeric nanoreactors with multienzyme activities for ferroptosis-apoptosis synergistic anticancer therapy.
Collapse
Affiliation(s)
- Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yingqi Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xueli Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
13
|
Yang T, Guo L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell Biol Toxicol 2024; 40:101. [PMID: 39565472 PMCID: PMC11579161 DOI: 10.1007/s10565-024-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.
Collapse
Affiliation(s)
- Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, P. R. China.
| |
Collapse
|
14
|
Lin X, Dong Q, Chang Y, Shi P, Zhang S. Transition-metal-based nanozymes for biosensing and catalytic tumor therapy. Anal Bioanal Chem 2024; 416:5933-5948. [PMID: 38782780 DOI: 10.1007/s00216-024-05345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Nanozymes, as an emerging class of enzyme mimics, have attracted much attention due to their adjustable catalytic activity, low cost, easy modification, and good stability. Researchers have made great efforts in developing and applying high-performance nanozymes. Recently, transition-metal-based nanozymes have been designed and widely developed because they possess unique photoelectric properties and high enzyme-like catalytic activities. To highlight these achievements and help researchers to understand the research status of transition-metal-based nanozymes, the development of transition-metal-based nanozymes from material characteristics to biological applications is summarized. Herein, we focus on introducing six categories of transition-metal-based nanozymes and highlight their progress in biomarker sensing and catalytic therapy for tumors. We hope that this review can guide the further development of transition-metal-based nanozymes and promote their practical applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangfang Lin
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Qinhui Dong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Yalin Chang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China.
| |
Collapse
|
15
|
Li G, Yang J, Zhang Y, Li H, Deng K, Huang H. Light-Controlled Regulation of Dual-Enzyme Properties in YbGd-Carbon Quantum Dots Nano-Hybrid for Advanced Biosensing. Anal Chem 2024; 96:13455-13463. [PMID: 39115218 DOI: 10.1021/acs.analchem.4c01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Compared to nanozymes with single enzyme activity, those with multiple enzyme activities possess broader application potential due to their diversified enzymatic functionalities. However, the multienzyme nanozymes currently face challenges of interference among different enzymatic activities during practical applications. In this study, we report the synthesis of a light-responsive YbGd-carbon quantum dots nano-hybrid, termed YbGd-CDs, which exhibits controllable enzyme-mimicking activities. This light-responsive behavior enables selective control of the enzymatic activities. Under visible light irradiation, YbGd-CDs demonstrate robust oxidase-like activity. Conversely, under dark conditions, they primarily exhibit peroxidase-like activity. Leveraging the dual-enzyme-mimicking capabilities of YbGd-CDs, we developed colorimetric assays for sensitive detection of total antioxidant capacity (TAC) in both normal and cancer cells as well as d-amino acids in human saliva. This study not only advances the synthesis of carbon-based nanozymes but also highlights their potential in biosensing applications.
Collapse
Affiliation(s)
- Guoming Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jing Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuanyuan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haiyan Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
16
|
Wu J, Zhu X, Li Q, Fu Q, Wang B, Li B, Wang S, Chang Q, Xiang H, Ye C, Li Q, Huang L, Liang Y, Wang D, Zhao Y, Li Y. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat Commun 2024; 15:6174. [PMID: 39039047 PMCID: PMC11263674 DOI: 10.1038/s41467-024-50416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN3-centered SAzyme (CuN3-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN4-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN3 active moiety confers optimal H2O2 adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN3-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H2O2 by CuN3-SAzyme. Moreover, CuN3-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN3-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.
Collapse
Affiliation(s)
- Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianyu Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Qun Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Bingxue Wang
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Beibei Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shanshan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingchao Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Huandong Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| | - Chengliang Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiqiang Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
17
|
Zhong YL, Zhang X, Wang AJ, Song P, Zhao T, Feng JJ. Zeolitic imidazole framework-derived rich-Zn-Co 3O 4/N-doped porous carbon with multiple enzyme-like activities for synergistic cancer therapy. J Colloid Interface Sci 2024; 665:1065-1078. [PMID: 38579389 DOI: 10.1016/j.jcis.2024.03.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.
Collapse
Affiliation(s)
- Yu-Lin Zhong
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
18
|
Alshehri AM, Wilson OC. Biomimetic Hydrogel Strategies for Cancer Therapy. Gels 2024; 10:437. [PMID: 39057460 PMCID: PMC11275631 DOI: 10.3390/gels10070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Recent developments in biomimetic hydrogel research have expanded the scope of biomedical technologies that can be used to model, diagnose, and treat a wide range of medical conditions. Cancer presents one of the most intractable challenges in this arena due to the surreptitious mechanisms that it employs to evade detection and treatment. In order to address these challenges, biomimetic design principles can be adapted to beat cancer at its own game. Biomimetic design strategies are inspired by natural biological systems and offer promising opportunities for developing life-changing methods to model, detect, diagnose, treat, and cure various types of static and metastatic cancers. In particular, focusing on the cellular and subcellular phenomena that serve as fundamental drivers for the peculiar behavioral traits of cancer can provide rich insights into eradicating cancer in all of its manifestations. This review highlights promising developments in biomimetic nanocomposite hydrogels that contribute to cancer therapies via enhanced drug delivery strategies and modeling cancer mechanobiology phenomena in relation to metastasis and synergistic sensing systems. Creative efforts to amplify biomimetic design research to advance the development of more effective cancer therapies will be discussed in alignment with international collaborative goals to cure cancer.
Collapse
Affiliation(s)
- Awatef M. Alshehri
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
- Department of Nanomedicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdelaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia;
| | - Otto C. Wilson
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
19
|
Fu Q, Wei C, Wang M. Transition-Metal-Based Nanozymes: Synthesis, Mechanisms of Therapeutic Action, and Applications in Cancer Treatment. ACS NANO 2024; 18:12049-12095. [PMID: 38693611 DOI: 10.1021/acsnano.4c02265] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Cancer, as one of the leading causes of death worldwide, drives the advancement of cutting-edge technologies for cancer treatment. Transition-metal-based nanozymes emerge as promising therapeutic nanodrugs that provide a reference for cancer therapy. In this review, we present recent breakthrough nanozymes for cancer treatment. First, we comprehensively outline the preparation strategies involved in creating transition-metal-based nanozymes, including hydrothermal method, solvothermal method, chemical reduction method, biomimetic mineralization method, and sol-gel method. Subsequently, we elucidate the catalytic mechanisms (catalase (CAT)-like activities), peroxidase (POD)-like activities), oxidase (OXD)-like activities) and superoxide dismutase (SOD)-like activities) of transition-metal-based nanozymes along with their activity regulation strategies such as morphology control, size manipulation, modulation, composition adjustment and surface modification under environmental stimulation. Furthermore, we elaborate on the diverse applications of transition-metal-based nanozymes in anticancer therapies encompassing radiotherapy (RT), chemodynamic therapy (CDT), photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), immunotherapy, and synergistic therapy. Finally, the challenges faced by transition-metal-based nanozymes are discussed alongside future research directions. The purpose of this review is to offer scientific guidance that will enhance the clinical applications of nanozymes based on transition metals.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Chuang Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| |
Collapse
|
20
|
Wang Y, He X, Huang K, Cheng N. Nanozyme as a rising star for metabolic disease management. J Nanobiotechnology 2024; 22:226. [PMID: 38711066 PMCID: PMC11071342 DOI: 10.1186/s12951-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Nanozyme, characterized by outstanding and inherent enzyme-mimicking properties, have emerged as highly promising alternatives to natural enzymes owning to their exceptional attributes such as regulation of oxidative stress, convenient storage, adjustable catalytic activities, remarkable stability, and effortless scalability for large-scale production. Given the potent regulatory function of nanozymes on oxidative stress and coupled with the fact that reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of metabolic diseases, nanozyme offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of metabolic diseases by directly scavenging excess ROS or regulating pathologically related molecules. The rational design strategies, nanozyme-enabled therapeutic mechanisms at the cellular level, and the therapies of nanozyme for several typical metabolic diseases and underlying mechanisms are discussed, mainly including obesity, diabetes, cardiovascular disease, diabetic wound healing, and others. Finally, the pharmacokinetics, safety analysis, challenges, and outlooks for the application of nanozyme are also presented. This review will provide some instructive perspectives on nanozyme and promote the development of enzyme-mimicking strategies in metabolic disease therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Xiaoyun He
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| |
Collapse
|
21
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
22
|
Zhao RM, Zhang QF, Tian XL, Chen JJ, Yu XQ, Zhang J. ROS-Responsive Bola-Lipid Nanoparticles as a Codelivery System for Gene/Photodynamic Combination Therapy. Mol Pharm 2024; 21:2012-2024. [PMID: 38497779 DOI: 10.1021/acs.molpharmaceut.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The nonviral delivery systems that combine genes with photosensitizers for multimodal tumor gene/photodynamic therapy (PDT) have attracted much attention. In this study, a series of ROS-sensitive cationic bola-lipids were applied for the gene/photosensitizer codelivery. Zn-DPA was introduced as a cationic headgroup to enhance DNA binding, while the hydrophobic linking chains may facilitate the formation of lipid nanoparticles (LNP) and the encapsulation of photosensitizer Ce6. The length of the hydrophobic chain played an important role in the gene transfection process, and 14-TDZn containing the longest chains showed better DNA condensation, gene transfection, and cellular uptake. 14-TDZn LNPs could well load photosensitizer Ce6 to form 14-TDC without a loss of gene delivery efficiency. 14-TDC was used for codelivery of p53 and Ce6 to achieve enhanced therapeutic effects on the tumor cell proliferation inhibition and apoptosis. Results showed that the codelivery system was more effective in the inhibition of tumor cell proliferation than individual p53 or Ce6 monotherapy. Mechanism studies showed that the production of ROS after Ce6 irradiation could increase the accumulation of p53 protein in tumor cells, thereby promoting caspase-3 activation and inducing apoptosis, indicating some synergistic effect. These results demonstrated that 14-TDC may serve as a promising nanocarrier for gene/PDT combination therapy.
Collapse
Affiliation(s)
- Rui-Mo Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Qin-Fang Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Li Tian
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Jia-Jia Chen
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Qi Yu
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Ji Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
23
|
Qu Y, Zou Y, Wang G, Zhang Y, Yu Q. Disruption of Communication: Recent Advances in Antibiofilm Materials with Anti-Quorum Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13353-13383. [PMID: 38462699 DOI: 10.1021/acsami.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|