1
|
Jaberi A, Ghelich P, Samandari M, Kheirabadi S, Ataie Z, Kedzierski A, Hassani Najafabadi A, Tamayol A, Sheikhi A. Gelatin methacryloyl granular hydrogel scaffolds for skin wound healing. Biomater Sci 2025. [PMID: 40298015 PMCID: PMC12038805 DOI: 10.1039/d4bm01062k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
The pore size and structure of hydrogel scaffolds play a key role in regulating host-scaffold interactions. Incorporating macropores within bulk hydrogels may increase cell ingrowth and modulate scaffold-induced inflammation. To this end, granular hydrogel scaffolds (GHS) have been developed via assembling hydrogel microparticles (microgels). GHS have interconnected cell-scale pores, tailored by microgel size, which are readily accessible to cells. Although bulk gelatin methacryloyl (GelMA) hydrogel scaffolds have frequently been used for tissue regeneration, the efficacy of GelMA GHS in wound healing remains unknown. Here, GelMA GHS are fabricated using microfluidic-generated near-uniform microgels to study the effect of macropores on macrophage behavior in vitro, followed by assessing wound healing in a murine model of full thickness skin injury. Compared with the bulk hydrogel counterpart, macrophages interfaced with GHS secrete less interferon gamma (IFN-γ) and more insulin-like growth factor 1 (IGF-1), which show a transition to pro-healing activities. In addition, GelMA GHS improve the quality of wound healing via increasing the thickness of granulation tissue and downregulating inflammatory markers without affecting the wound closure rate. This work is a step forward in engineering GelMA scaffolds with tailored porosity for wound care.
Collapse
Affiliation(s)
- Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA.
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA.
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alireza Hassani Najafabadi
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA.
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA.
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Zhang S, Zhong R, Zhou M, Li K, Lv H, Wang H, Xu Y, Liu D, Ma Q, Chen L, Zhang H. Mechanisms of Baicalin Alleviates Intestinal Inflammation: Role of M1 Macrophage Polarization and Lactobacillus amylovorus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415948. [PMID: 40200426 DOI: 10.1002/advs.202415948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Baicalin has been widely used for its anti-inflammatory pharmacological properties, yet its effects on bacterial intestinal inflammation and the mechanisms remain unclear. This study revealed that baicalin alleviates bacterial intestinal inflammation through regulating macrophage polarization and increasing Lactobacillus amylovorus abundance in colon. Specifically, transcriptomic analysis showed that baicalin restored Escherichia coli-induced genes expression changes including T helper cell 17 differentiation-related genes, macrophage polarization related genes, and TLR/IRF/STAT signaling pathway. Subsequent microbial and non-targeted metabolomic analysis revealed that these changes may be related to the enhancement of Lactobacillus amylovorus and the upregulation of its metabolites including chrysin, lactic acid, and indoles. Furthermore, whole-genome sequencing of Lactobacillus amylovorus provided insights into its functional potential and metabolic annotations. Lactobacillus amylovorus supplementation alleviates Escherichia coli-induced intestinal inflammation in mice and similarly inhibited M1 macrophage polarization through TLR4/IRF/STAT pathway. Additionally, baicalin, Lactobacillus amylovorus, or chrysin alone could regulate macrophage polarization, highlighting their independent anti-inflammatory potential. Notably, this study revealed that baicalin alleviates intestinal inflammation through TLR4/IRF/STAT pathway and increasing Lactobacillus amylovorus abundance and the synthesis of chrysin. These findings provide new insights into the therapeutic potential of baicalin and Lactobacillus amylovorus in preventing and treating intestinal inflammation, offering key targets for future interventions.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Miao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Kai Li
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiyuan Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huixin Wang
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye Xu
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dadan Liu
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiugang Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Key Laboratory of Animal Nutrition and Feed Science of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
3
|
Rodriguez Ayala A, Christ G, Griffin D. Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss. NPJ Regen Med 2025; 10:12. [PMID: 40025057 PMCID: PMC11873130 DOI: 10.1038/s41536-025-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 03/04/2025] Open
Abstract
Volumetric muscle loss (VML) from severe traumatic injuries results in irreversible loss of contractile tissue and permanent functional deficits. These injuries resist endogenous healing and clinical treatment due to excessive inflammation, leading to fibrosis, muscle fiber denervation, and impaired regeneration. Using a rodent tibialis anterior VML model, this study demonstrates microporous annealed particle (MAP) hydrogel scaffolds as a biomaterial platform for improved muscle regeneration. Unlike bulk (nanoporous) hydrogel scaffolds, MAP scaffolds enhance integration by preventing a foreign body reaction, slowing implant degradation, and promoting regenerative macrophage polarization. Cell migration and angiogenesis occur throughout the implant before MAP scaffold degradation, with muscle fibers and neuromuscular junctions forming within the scaffolds. These structures continue developing as the implant degrades, suggesting MAP hydrogel scaffolds offer a promising therapeutic approach for VML injuries.
Collapse
Affiliation(s)
- Areli Rodriguez Ayala
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - George Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Wang J, Zhang Q, Chen L. Microporous annealed particle hydrogels in cell culture, tissue regeneration, and emerging application in cancer immunotherapy. Am J Cancer Res 2025; 15:665-683. [PMID: 40084361 PMCID: PMC11897623 DOI: 10.62347/wrgw4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Microporous annealed particle (MAP) hydrogels consist of densely crosslinked and annealed hydrogel particles. Compared to common hydrogels, the inherent porosity within and among these hydrogel particles offers interconnected channels for substance exchange in addition to sufficient growth space for cells, thereby forming a three-dimensional culture system that highly mimics the in vivo microenvironment. Such characteristics enable MAP hydrogels to adapt to various requirements of biomedical applications, along with their excellent injectability and mechanical properties. This review initially provides a comprehensive summary of the fabrication methods and material types of MAP hydrogels, alongside an assessment of their mechanical properties and porosity. In vitro studies are evaluated based on the impact of MAP hydrogels on cellular behaviors, focusing on cell proliferation, differentiation, migration, activity, and phenotype. In vivo research highlights the promising applications of MAP hydrogels in tissue regeneration, as well as their innovative use in cancer immunotherapy. Current challenges and future research directions are outlined, underscoring the potential of MAP hydrogels to significantly improve clinical outcomes in cancer treatment and regenerative medicine.
Collapse
Affiliation(s)
- Junjie Wang
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and TechnologyShanghai 200093, China
| | - Qin Zhang
- Medical Engineering Department of Northern Jiangsu People’s HospitalYangzhou 225009, Jiangsu, China
| | - Liwen Chen
- Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and TechnologyShanghai 200093, China
| |
Collapse
|
5
|
Puiggalí-Jou A, Hui I, Baldi L, Frischknecht R, Asadikorayem M, Janiak J, Chansoria P, McCabe MC, Stoddart MJ, Hansen KC, Christman KL, Zenobi-Wong M. Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix. Biofabrication 2025; 17:015044. [PMID: 39757574 DOI: 10.1088/1758-5090/ad9cc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability. This study proposes a rapid light-based bioprinting method using a tyrosine-based crosslinking mechanism, which does not require chemical modifications of dECM and thereby preserves its structure and bioactivity. Combining this resin with Filamented Light (FLight) biofabrication enables the creation of cellular, porous, and anisotropic dECM scaffolds composed of aligned microfilaments. Specifically, we focus on the effects of various biopolymer compositions (i.e. hyaluronic acid, collagen I, and dECM) and inner architecture (i.e. bulk light vs FLight) on immune response and cell morphology, and we investigate their influence on nascent ECM production and long-term tissue maturation. Our findings highlight the importance of FLight scaffolds in directing collagen deposition resembling articular cartilage structure and promoting construct maturation, and they emphasize the superiority of biological-rich dECM over single-component materials for engineering articular cartilage, thereby offering new avenues for the development of effective cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Isabel Hui
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Lucrezia Baldi
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Rea Frischknecht
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Jakub Janiak
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
- Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California at San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, United States of America
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Qian Y, Ding J, Zhao R, Song Y, Yoo J, Moon H, Koo S, Kim JS, Shen J. Intrinsic immunomodulatory hydrogels for chronic inflammation. Chem Soc Rev 2025; 54:33-61. [PMID: 39499495 DOI: 10.1039/d4cs00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The immune system plays a pivotal role in maintaining physiological homeostasis and influencing disease processes. Dysregulated immune responses drive chronic inflammation, which in turn results in a range of diseases that are among the leading causes of death globally. Traditional immune interventions, which aim to regulate either insufficient or excessive inflammation, frequently entail lifelong comorbidities and the risk of severe side effects. In this context, intrinsic immunomodulatory hydrogels, designed to precisely control the local immune microenvironment, have recently attracted increasing attention. In particular, these advanced hydrogels not only function as delivery mechanisms but also actively engage in immune modulation, optimizing interactions with the immune system for enhanced tissue repair, thereby providing a sophisticated strategy for managing chronic inflammation. In this tutorial review, we outline key elements of chronic inflammation and subsequently explore the strategic design principles of intrinsic immunomodulatory hydrogels based on these elements. Finally, we examine the challenges and prospects of such immunomodulatory hydrogels, which are expected to inspire further preclinical research and clinical translation in addressing chronic inflammation.
Collapse
Affiliation(s)
- Yuna Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Jiayi Ding
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Institute of Imaging Diagnosis and Minimally Invasive Intervention, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rui Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yang Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Jiyoung Yoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seyoung Koo
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jong Seung Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
7
|
Lai C, Chen W, Qin Y, Xu D, Lai Y, He S. Innovative Hydrogel Design: Tailoring Immunomodulation for Optimal Chronic Wound Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412360. [PMID: 39575827 PMCID: PMC11727140 DOI: 10.1002/advs.202412360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 01/14/2025]
Abstract
Despite significant progress in tissue engineering, the full regeneration of chronic wounds persists as a major challenge, with the immune response to tissue damage being a key determinant of the healing process's quality and duration. Post-injury, a crucial aspect is the transition of macrophages from a pro-inflammatory state to an anti-inflammatory. Thus, this alteration in macrophage polarization presents an enticing avenue within the realm of regenerative medicine. Recent advancements have entailed the integration of a myriad of cellular and molecular signals into hydrogel-based constructs, enabling the fine-tuning of immune cell activities during different phases. This discussion explores modern insights into immune cell roles in skin regeneration, underscoring the key role of immune modulation in amplifying the overall efficacy of wounds. Moreover, a comprehensive review is presented on the latest sophisticated technologies employed in the design of immunomodulatory hydrogels to regulate macrophage polarization. Furthermore, the deliberate design of hydrogels to deliver targeted immune stimulation through manipulation of chemistry and cell integration is also emphasized. Moreover, an overview is provided regarding the influence of hydrogel properties on immune traits and tissue regeneration process. Conclusively, the accent is on forthcoming pathways directed toward modulating immune responses in the milieu of chronic healing.
Collapse
Affiliation(s)
- Chun‐Mei Lai
- College of Life SciencesFujian Provincial Key laboratory of Haixia applied plant systems biologyFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
| | - Wei‐Ji Chen
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| | - Yuan Qin
- College of Life SciencesFujian Provincial Key laboratory of Haixia applied plant systems biologyFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
| | - Di Xu
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| | - Yue‐Kun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC‐CFC)College of Chemical EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Shao‐Hua He
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| |
Collapse
|
8
|
Ghasemzadeh-Hasankolaei M, Correia TR, Mano JF. Bioinstructive Liquefied Pockets in Hierarchical Hydrogels and Bioinks. Adv Healthc Mater 2025; 14:e2400286. [PMID: 39235370 DOI: 10.1002/adhm.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
This study proposes a novel, versatile, and modular platform for constructing porous and heterogeneous microenvironments based on the embedding of liquefied-based compartments in hydrogel systems. Using a bottom-up approach, microgels carrying the necessary cargo components, including cells and microparticles, are combined with a hydrogel precursor to fabricate a hierarchical structured (HS) system. The HS system possesses three key features that can be fully independently controlled: I) liquefied pockets enabling free cellular mobility; II) surface modified microparticles facilitating 3D microtissue organization inside the liquefied pockets; III) at a larger scale, the pockets are jammed in the hydrogel, forming a macro-sized construct. After crosslinking, the embedded microgels undergo a liquefaction process, forming a porous structure that ensures high diffusion of small biomolecules and enables cells to move freely within their miniaturized compartmentalized volume. More importantly, this platform allows the creation of multimodular cellular microenvironments within a hydrogel with controlled macrostructures, while decoupling micro- and macroenvironments. As a proof of concept, the enhancement of cellular functions using the HS system by encapsulating human adipose-derived mesenchymal stem cells (hASCs) is successfully demonstrated. Finally, the potential application of this system as a hybrid bioink for bioprinting complex 3D structures is showcased.
Collapse
Affiliation(s)
| | - Tiago R Correia
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
9
|
Da Silva André G, Labouesse C. Mechanobiology of 3D cell confinement and extracellular crowding. Biophys Rev 2024; 16:833-849. [PMID: 39830117 PMCID: PMC11735831 DOI: 10.1007/s12551-024-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate. It is well known that the mechanical properties of the microenvironment, such as stiffness and stress relaxation, are important in activating mechanosensitive pathways, and these are responsive to confinement conditions. In this review, we look at how low, intermediate, and high levels of confinement modulate the activation of known mechanobiology pathways, in single cells, organoids, and tumor spheroids, with a specific focus on 3D confinement in microwells, elastic, or viscoelastic scaffolds. In addition, a confining microenvironment can drastically limit cellular communication in both healthy and diseased tissues, due to extracellular crowding. We discuss potential implications of extracellular crowding on molecular transport, extracellular matrix deposition, and fluid transport. Understanding how cells sense and respond to various levels of confinement should inform the design of 3D engineered matrices that recapitulate the physical properties of tissues.
Collapse
Affiliation(s)
- Gabriela Da Silva André
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Kamaraj M, Moghimi N, McCarthy A, Chen J, Cao S, Chethikkattuveli Salih AR, Joshi A, Jucaud V, Panayi A, Shin SR, Noshadi I, Khademhosseini A, Xie J, John JV. Granular Porous Nanofibrous Microspheres Enhance Cellular Infiltration for Diabetic Wound Healing. ACS NANO 2024; 18:28335-28348. [PMID: 39356827 DOI: 10.1021/acsnano.4c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Diabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities. The proposed technology combines electrospinning and electrospraying to develop a therapeutic option for DFUs. Specifically, porous NMs were constructed using electrospun poly(lactic-co-glycolic acid) (PLGA):gelatin short nanofibers, followed by gelatin cross-linking. These NMs demonstrated enhanced cell adhesion to human dermal fibroblasts (HDF) during an in vitro cytocompatibility assessment. Notably, porous NMs displayed superior performance owing to their interconnected pores compared to nonporous NMs. Cell-laden NMs demonstrated higher Young's modulus values than NMs without loaded cells, suggesting improved material resiliency attributed to the reinforcement of cells and their secreted extracellular matrix. Dynamic injection studies on cell-laden NMs further elucidated their capacity to safeguard loaded cells under pressure. In addition, porous NMs promoted host cell infiltration, neovascularization, and re-epithelialization in a diabetic mouse wound model, signifying their effectiveness in healing diabetic wounds. Taken together, porous NMs hold significant potential as minimally invasive, injectable treatments that effectively promote tissue integration and regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Selena Cao
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | | | - Akshat Joshi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Adriana Panayi
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg 69117, Germany
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V John
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| |
Collapse
|
11
|
Ross BC, Kent RN, Saunders MN, Schwartz SR, Smiley BM, Hocevar SE, Chen SC, Xiao C, Williams LA, Anderson AJ, Cummings BJ, Baker BM, Shea LD. Building-Block Size Mediates Microporous Annealed Particle Hydrogel Tube Microenvironment Following Spinal Cord Injury. Adv Healthc Mater 2024; 13:e2302498. [PMID: 37768019 PMCID: PMC10972780 DOI: 10.1002/adhm.202302498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Spinal cord injury (SCI) is a life-altering event, which often results in loss of sensory and motor function below the level of trauma. Biomaterial therapies have been widely investigated in SCI to promote directional regeneration but are often limited by their pre-constructed size and shape. Herein, the design parameters of microporous annealed particles (MAPs) are investigated with tubular geometries that conform to the injury and direct axons across the defect to support functional recovery. MAP tubes prepared from 20-, 40-, and 60-micron polyethylene glycol (PEG) beads are generated and implanted in a T9-10 murine hemisection model of SCI. Tubes attenuate glial and fibrotic scarring, increase innate immune cell density, and reduce inflammatory phenotypes in a bead size-dependent manner. Tubes composed of 60-micron beads increase the cell density of the chronic macrophage response, while neutrophil infiltration and phenotypes do not deviate from those seen in controls. At 8 weeks postinjury, implantation of tubes composed of 60-micron beads results in enhanced locomotor function, robust axonal ingrowth, and remyelination through both lumens and the inter-tube space. Collectively, these studies demonstrate the importance of bead size in MAP construction and highlight PEG tubes as a biomaterial therapy to promote regeneration and functional recovery in SCI.
Collapse
Affiliation(s)
- Brian C Ross
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Samantha R Schwartz
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Brooke M Smiley
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Sarah E Hocevar
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA
| | - Shao-Chi Chen
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Chengchuan Xiao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA
| | - Laura A Williams
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California, Biological Sciences III, 2642, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, 845 Health Sciences Rd, Irvine, CA, 92697, USA
- Physical Medicine and Rehabilitation, University of California, 18124 Culver Dr # F, Irvine, CA, 92612, USA
| | - Brian J Cummings
- Institute for Memory Impairments and Neurological Disorders, University of California, Biological Sciences III, 2642, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, 845 Health Sciences Rd, Irvine, CA, 92697, USA
- Physical Medicine and Rehabilitation, University of California, 18124 Culver Dr # F, Irvine, CA, 92612, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
Widener AE, Roberts A, Phelps EA. Granular Hydrogels for Harnessing the Immune Response. Adv Healthc Mater 2024; 13:e2303005. [PMID: 38145369 PMCID: PMC11196388 DOI: 10.1002/adhm.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| |
Collapse
|
13
|
Liu HC, Huang CH, Chiang MR, Hsu RS, Chou TC, Lu TT, Lee IC, Liao LD, Chiou SH, Lin ZH, Hu SH. Sustained Release of Nitric Oxide-Mediated Angiogenesis and Nerve Repair by Mussel-Inspired Adaptable Microreservoirs for Brain Traumatic Injury Therapy. Adv Healthc Mater 2024; 13:e2302315. [PMID: 37713592 DOI: 10.1002/adhm.202302315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Traumatic brain injury (TBI) triggers inflammatory response and glial scarring, thus substantially hindering brain tissue repair. This process is exacerbated by the accumulation of activated immunocytes at the injury site, which contributes to scar formation and impedes tissue repair. In this study, a mussel-inspired nitric oxide-release microreservoir (MINOR) that combines the features of reactive oxygen species (ROS) scavengers and sustained NO release to promote angiogenesis and neurogenesis is developed for TBI therapy. The injectable MINOR fabricated using a microfluidic device exhibits excellent monodispersity and gel-like self-healing properties, thus allowing the maintenance of its structural integrity and functionality upon injection. Furthermore, polydopamine in the MINOR enhances cell adhesion, significantly reduces ROS levels, and suppresses inflammation. Moreover, a nitric oxide (NO) donor embedded into the MINOR enables the sustained release of NO, thus facilitating angiogenesis and mitigating inflammatory responses. By harnessing these synergistic effects, the biocompatible MINOR demonstrates remarkable efficacy in enhancing recovery in mice. These findings benefit future therapeutic interventions for patients with TBI.
Collapse
Affiliation(s)
- Hsiu-Ching Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Chu-Han Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Ru-Siou Hsu
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Tsu-Chin Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, 300044, Hsinchu, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, National Yang Ming Chiao Tung University, Taipei Veterans General Hospital, 112304, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Zhong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| |
Collapse
|
14
|
Segura T. From Soft Microgel Assemblies to Advanced Healthcare Materials. Adv Healthc Mater 2024; 13:e2402905. [PMID: 39171761 DOI: 10.1002/adhm.202402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
15
|
Tang RC, Shang L, Scumpia PO, Di Carlo D. Injectable Microporous Annealed Crescent-Shaped (MAC) Particle Hydrogel Scaffold for Enhanced Cell Infiltration. Adv Healthc Mater 2024; 13:e2302477. [PMID: 37985462 PMCID: PMC11102933 DOI: 10.1002/adhm.202302477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels are widely used for tissue engineering applications to support cellular growth, yet the tightly woven structure often restricts cell infiltration and expansion. Consequently, granular hydrogels with microporous architectures have emerged as a new class of biomaterial. Particularly, the development of microporous annealed particle (MAP) hydrogel scaffolds has shown improved stability and integration with host tissue. However, the predominant use of spherically shaped particles limits scaffold porosity, potentially limiting the level of cell infiltration. Here, a novel microporous annealed crescent-shaped particle (MAC) scaffold that is predicted to have improved porosity and pore interconnectivity in silico is presented. With microfluidic fabrication, tunable cavity sizes that optimize interstitial void space features are achieved. In vitro, cells incorporated into MAC scaffolds form extensive 3D multicellular networks. In vivo, the injectable MAC scaffold significantly enhances cell infiltration compared to spherical MAP scaffolds, resulting in increased numbers of myofibroblasts and leukocytes present within the gel without relying on external biomolecular chemoattractants. The results shed light on the critical role of particle shape in cell recruitment, laying the foundation for MAC scaffolds as a next-generation granular hydrogel for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Rui-Chian Tang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lily Shang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Dermatology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
- Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI) University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
16
|
Jaberi A, Kedzierski A, Kheirabadi S, Tagay Y, Ataie Z, Zavari S, Naghashnejad M, Waldron O, Adhikari D, Lester G, Gallagher C, Borhan A, Ravnic D, Tabdanov E, Sheikhi A. Engineering Microgel Packing to Tailor the Physical and Biological Properties of Gelatin Methacryloyl Granular Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2402489. [PMID: 39152936 PMCID: PMC11828485 DOI: 10.1002/adhm.202402489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Granular hydrogel scaffolds (GHS) are fabricated via placing hydrogel microparticles (HMP) in close contact (packing), followed by physical and/or chemical interparticle bond formation. Gelatin methacryloyl (GelMA) GHS have recently emerged as a promising platform for biomedical applications; however, little is known about how the packing of building blocks, physically crosslinked soft GelMA HMP, affects the physical (pore microarchitecture and mechanical/rheological properties) and biological (in vitro and in vivo) attributes of GHS. Here, the GHS pore microarchitecture is engineered via the external (centrifugal) force-induced packing and deformation of GelMA HMP to regulate GHS mechanical and rheological properties, as well as biological responses in vitro and in vivo. Increasing the magnitude and duration of centrifugal force increases the HMP deformation/packing, decreases GHS void fraction and median pore diameter, and increases GHS compressive and storage moduli. MDA-MB-231 human triple negative breast adenocarcinoma cells spread and flatten on the GelMA HMP surface in loosely packed GHS, whereas they adopt an elongated morphology in highly packed GHS as a result of spatial confinement. Via culturing untreated or blebbistatin-treated cells in GHS, the effect of non-muscle myosin II-driven contractility on cell morphology is shown. In vivo subcutaneous implantation in mice confirms a significantly higher endothelial, fibroblast, and macrophage cell infiltration within the GHS with a lower packing density, which is in accordance with the in vitro cell migration outcome. These results indicate that the packing state of GelMA GHS may enable the engineering of cell response in vitro and tissue response in vivo. This research is a fundamental step forward in standardizing and engineering GelMA GHS microarchitecture for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Saman Zavari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Mohammad Naghashnejad
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Olivia Waldron
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Daksh Adhikari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Gerald Lester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Colin Gallagher
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Dino Ravnic
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Erdem Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
17
|
Wilson KL, Joseph NI, Onweller LA, Anderson AR, Darling NJ, David-Bercholz J, Segura T. SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis after Stroke. Adv Healthc Mater 2024; 13:e2302081. [PMID: 38009291 PMCID: PMC11128481 DOI: 10.1002/adhm.202302081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Angiogenesis after stroke is correlated with enhanced tissue repair and functional outcomes. The existing body of research in biomaterials for stroke focuses on hydrogels for the delivery of stem cells, growth factors, or small molecules or drugs. Despite the ability of hydrogels to enhance all these delivery methods, no material has significantly regrown vasculature within the translatable timeline of days to weeks after stroke. Here, two novel biomaterial formulations of granular hydrogels are developed for tissue regeneration after stroke: highly porous microgels (i.e., Cryo microgels) and microgels bound with heparin-norbornene nanoparticles with covalently bound SDF-1α. The combination of these materials results in perfused vessels throughout the stroke core in only 10 days, in addition to increased neural progenitor cell recruitment, maintenance, and increased neuronal differentiation.
Collapse
Affiliation(s)
- Katrina L. Wilson
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Neica I. Joseph
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Lauren A. Onweller
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Alexa R. Anderson
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Nicole J. Darling
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
- Department of Neurology, Duke University, Durham, NC, 27708-0281 USA
- Department of Dermatology, Duke University, Durham, NC, 27708-0281 USA
| |
Collapse
|
18
|
Tigner TJ, Dampf G, Tucker A, Huang YC, Jagrit V, Clevenger AJ, Mohapatra A, Raghavan SA, Dulin JN, Alge DL. Clickable Granular Hydrogel Scaffolds for Delivery of Neural Progenitor Cells to Sites of Spinal Cord Injury. Adv Healthc Mater 2024; 13:e2303912. [PMID: 38470994 PMCID: PMC11390979 DOI: 10.1002/adhm.202303912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Spinal cord injury (SCI) is a serious condition with limited treatment options. Neural progenitor cell (NPC) transplantation is a promising treatment option, and the identification of novel biomaterial scaffolds that support NPC engraftment and therapeutic activity is a top research priority. The objective of this study is to evaluate in situ assembled poly (ethylene glycol) (PEG)-based granular hydrogels for NPC delivery in a murine model of SCI. Microgel precursors are synthesized by using thiol-norbornene click chemistry to react four-armed PEG-amide-norbornene with enzymatically degradable and cell adhesive peptides. Unreacted norbornene groups are utilized for in situ assembly into scaffolds using a PEG-di-tetrazine linker. The granular hydrogel scaffolds exhibit good biocompatibility and do not adversely affect the inflammatory response after SCI. Moreover, when used to deliver NPCs, the granular hydrogel scaffolds supported NPC engraftment, do not adversely affect the immune response to the NPC grafts, and successfully support graft differentiation toward neuronal or astrocytic lineages as well as axonal extension into the host tissue. Collectively, these data establish PEG-based granular hydrogel scaffolds as a suitable biomaterial platform for NPC delivery and justify further testing, particularly in the context of more severe SCI.
Collapse
Affiliation(s)
- Thomas J Tigner
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Yu-Chi Huang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Vipin Jagrit
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Arpita Mohapatra
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843-3258, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843-3474, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
19
|
Yang X, Wang Q, Shao F, Zhuang Z, Wei Y, Zhang Y, Zhang L, Ren C, Wang H. Cell volume regulation modulates macrophage-related inflammatory responses via JAK/STAT signaling pathways. Acta Biomater 2024; 186:286-299. [PMID: 39098445 DOI: 10.1016/j.actbio.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Cell volume as a characteristic of changes in response to external environmental cues has been shown to control the fate of stem cells. However, its influence on macrophage behavior and macrophage-mediated inflammatory responses have rarely been explored. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to regulate macrophage polarization towards anti-inflammatory phenotypes, thereby enabling to reverse macrophage-mediated inflammation response. Specifically, lower the volume of primary macrophages can induce both resting macrophages (M0) and stimulated pro-inflammatory macrophages (M1) to up-regulate the expression of anti-inflammatory factors and down-regulate pro-inflammatory factors. Further mechanistic investigation revealed that macrophage polarization resulting from changing cell volume might be mediated by JAK/STAT signaling pathway evidenced by the transcription sequencing analysis. We further propose to apply this strategy for the treatment of arthritis via direct introduction of PEG into the joint cavity to modulate synovial macrophage-related inflammation. Our preliminary results verified the credibility and effectiveness of this treatment evidenced by the significant inhibition of cartilage destruction and synovitis at early stage. In general, our results suggest that cell volume can be a biophysical regulatory factor to control macrophage polarization and potentially medicate inflammatory response, thereby providing a potential facile and effective therapy for modulating macrophage mediated inflammatory responses. STATEMENT OF SIGNIFICANCE: Cell volume has recently been recognized as a significantly important biophysical signal in regulating cellular functionalities and even steering cell fate. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to induce M1 pro-inflammatory macrophages to polarize towards anti-inflammatory M2 phenotype, and this immunomodulatory effect may be mediated by the JAK/STAT signaling pathway. We also proposed the feasible applications of this PEG-induced volume regulation approach towards the treatment of osteoarthritis (OA), wherein our preliminary results implied an effective alleviation of early synovitis. Our study on macrophage polarization mediated by cell volume may open up new pathways for immune regulation through microenvironmental biophysical clues.
Collapse
Affiliation(s)
- Xueying Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qifan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fei Shao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhumei Zhuang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wei
- First Affiliated Hospital of Dalian Medical University, Dalian 116024, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China; School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518015, China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian 116024, China
| | - Changle Ren
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, China
| | - Huanan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
20
|
Recalde Phillips S, Perez-Ponce KD, Ruben E, Baig T, Poux E, Gregory CA, Alge DL. Impact of Annealing Chemistry on the Properties and Performance of Microporous Annealed Particle Hydrogels. Biomacromolecules 2024; 25:5798-5808. [PMID: 39190621 PMCID: PMC11388458 DOI: 10.1021/acs.biomac.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Microporous annealed particle (MAP) hydrogels are a promising class of in situ-forming scaffolds for tissue repair and regeneration. While an expansive toolkit of annealing chemistries has been described, the effects of different annealing chemistries on MAP hydrogel properties and performance have not been studied. In this study, we address this gap through a controlled head-to-head comparison of poly(ethylene glycol) (PEG)-based MAP hydrogels that were annealed using tetrazine-norbornene and thiol-norbornene click chemistry. Characterization of material properties revealed that tetrazine click annealing significantly increases MAP hydrogel shear storage modulus and results in slower in vitro degradation kinetics when microgels with a higher cross-link density are used. However, these effects are muted when the MAP hydrogels are fabricated from microgels with a lower cross-link density. In contrast, in vivo testing in murine critical-sized calvarial defects revealed that these differences in physicochemical properties do not translate to differences in bone volume or calvarial defect healing when growth-factor-loaded MAP hydrogel scaffolds are implanted into mouse calvarial defects. Nonetheless, the impact of tetrazine click annealing could be important in other applications and should be investigated further.
Collapse
Affiliation(s)
- Sarea
Y. Recalde Phillips
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiara D. Perez-Ponce
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Elizabeth Ruben
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Talia Baig
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Emily Poux
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Carl A. Gregory
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Medical Physiology, School of Medicine, Texas A&M University, Bryan, Texas 77807, United States
| | - Daniel L. Alge
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Chang CY, Nguyen H, Frahm E, Kolaczyk K, Lin CC. Triple click chemistry for crosslinking, stiffening, and annealing of gelatin-based microgels. RSC APPLIED POLYMERS 2024; 2:656-669. [PMID: 39035826 PMCID: PMC11255916 DOI: 10.1039/d3lp00249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/22/2024] [Indexed: 07/23/2024]
Abstract
Microgels are spherical hydrogels with physicochemical properties ideal for many biomedical applications. For example, microgels can be used as individual carriers for suspension cell culture or jammed/annealed into granular hydrogels with micron-scale pores highly permissive to molecular transport and cell proliferation/migration. Conventionally, laborious optimization processes are often needed to create microgels with different moduli, sizes, and compositions. This work presents a new microgel and granular hydrogel preparation workflow using gelatin-norbornene-carbohydrazide (GelNB-CH). As a gelatin-derived macromer, GelNB-CH presents cell adhesive and degradable motifs while being amenable to three orthogonal click chemistries, namely the thiol-norbornene photo-click reaction, hydrazone bonding, and the inverse electron demand Diels-Alder (iEDDA) click reaction. The thiol-norbornene photo-click reaction (with thiol-bearing crosslinkers) and hydrazone bonding (with aldehyde-bearing crosslinkers) were used to crosslink the microgels and to realize on-demand microgel stiffening, respectively. The tetrazine-norbornene iEDDA click reaction (with tetrazine-bearing crosslinkers) was used to anneal microgels into granular hydrogels. In addition to materials development, we demonstrated the value of the triple-click chemistry granular hydrogels via culturing human mesenchymal stem cells and pancreatic cancer cells.
Collapse
Affiliation(s)
- Chun-Yi Chang
- Weldon School of Biomedical Engineering, Purdue University West Lafayette IN 47907 USA
| | - Han Nguyen
- Weldon School of Biomedical Engineering, Purdue University West Lafayette IN 47907 USA
| | - Ellen Frahm
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Keith Kolaczyk
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University West Lafayette IN 47907 USA
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center Indianapolis IN 46202 USA
- Integrated Nanosystems Development Institute Indianapolis IN 46202 USA
| |
Collapse
|
22
|
Wu C, Zhang H, Guo Y, Sun X, Hu Z, Teng L, Zeng Z. Porous Hydrogels for Immunomodulatory Applications. Int J Mol Sci 2024; 25:5152. [PMID: 38791191 PMCID: PMC11121438 DOI: 10.3390/ijms25105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant. Due to their extracellular matrix mimetics and tunable chemical or physical performance, hydrogels are promising platforms for building immunomodulatory microenvironments for realizing cancer therapy and tissue regeneration. However, submicron or nanosized pore structures within hydrogels are not favorable for modulating immune cell function, such as cell invasion, migration, and immunophenotype. In contrast, hydrogels with a porous structure not only allow for nutrient transportation and metabolite discharge but also offer more space for realizing cell function. In this review, the design strategies and influencing factors of porous hydrogels for cancer therapy and tissue regeneration are first discussed. Second, the immunomodulatory effects and therapeutic outcomes of different porous hydrogels for cancer immunotherapy and tissue regeneration are highlighted. Beyond that, this review highlights the effects of pore size on immune function and potential signal transduction. Finally, the remaining challenges and perspectives of immunomodulatory porous hydrogels are discussed.
Collapse
Affiliation(s)
- Cuifang Wu
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Honghong Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yangyang Guo
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiaomin Sun
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Lijing Teng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (C.W.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
23
|
Guo Q, Li W, Xie R, Wang Y, Xie Y, Cheng K, Sun Z. Visualization of the relationship between macrophage and wound healing from the perspective of bibliometric analysis. Int Wound J 2024; 21:e14597. [PMID: 38124467 PMCID: PMC10961877 DOI: 10.1111/iwj.14597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Macrophages play a crucial role in aiding all phases of the wound-healing process and has garnered increasing attention recently. Although a substantial body of related studies has been published, there remains a lack of comprehensive bibliometric analysis. In this study, we collected 4296 papers from the Web of Science Core Collection database. Three tools including CiteSpace, VOSviewer and one online analytical platform were employed to conduct bibliometric analysis and data visualization. Our results revealed that the annual number of publications related to macrophage and wound healing has increased exponentially with the year. The United States and China stand as the primary driving forces within this field, collectively constituting 58.2% of the total publication output. The application of biomaterials was one of the most concerned research areas in this field. According to references analysis, the current research focus has shifted to diabetic wound healing and regulating macrophage polarization. Based on the keywords analysis, we identified the following research frontiers in the future: exosomes and other extracellular vesicles; bio-derived materials and drug delivery methods such as nanoparticles, scaffolds and hydrogels; immunomodulation and macrophage polarization in the M2-state; chronic wounds, particularly those associated with diabetes; antimicrobial peptides; and antioxidant. Additionally, TNF, IL-6, IL-10, TGF-β1 and VEGF ranked as the five genes that have garnered the most research attention in the intersection of macrophage and wound healing. All in all, our findings offered researchers a holistic view of the ongoing progress in the field of macrophages and wound healing, serving as a valuable reference for scholars and policymakers in this domain.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Clinical College of Neurology, Neurosurgery and NeurorehabilitationTianjin Medical UniversityTianjinChina
- Department of Orthopaedic SurgeryTianjin Baodi HospitalTianjinChina
| | - Wanqing Li
- Department of Operating RoomXiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Ruijie Xie
- Department of MicrosurgeryThe Affiliated Nanhua Hospital, Hengyang Medical school, University of South ChinaHengyangChina
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Yulin Wang
- Department of Clinical College of Neurology, Neurosurgery and NeurorehabilitationTianjin Medical UniversityTianjinChina
| | - Yuchen Xie
- Department of Clinical MedicineXiangya Medical College, Central South UniversityChangshaHunanChina
| | - Kunming Cheng
- Department of Intensive Care UnitThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhiming Sun
- Department of Clinical College of Neurology, Neurosurgery and NeurorehabilitationTianjin Medical UniversityTianjinChina
- Department of The Third Central Clinical CollegeTianjin Medical UniversityTianjinChina
| |
Collapse
|
24
|
D’Elia A, Jones OL, Canziani G, Sarkar B, Chaiken I, Rodell CB. Injectable Granular Hydrogels Enable Avidity-Controlled Biotherapeutic Delivery. ACS Biomater Sci Eng 2024; 10:1577-1588. [PMID: 38357739 PMCID: PMC10934254 DOI: 10.1021/acsbiomaterials.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Protein therapeutics represent a rapidly growing class of pharmaceutical agents that hold great promise for the treatment of various diseases such as cancer and autoimmune dysfunction. Conventional systemic delivery approaches, however, result in off-target drug exposure and a short therapeutic half-life, highlighting the need for more localized and controlled delivery. We have developed an affinity-based protein delivery system that uses guest-host complexation between β-cyclodextrin (CD, host) and adamantane (Ad, guest) to enable sustained localized biomolecule presentation. Hydrogels were formed by the copolymerization of methacrylated CD and methacrylated dextran. Extrusion fragmentation of bulk hydrogels yielded shear-thinning and self-healing granular hydrogels (particle diameter = 32.4 ± 16.4 μm) suitable for minimally invasive delivery and with a high host capacity for the retention of guest-modified proteins. Bovine serum albumin (BSA) was controllably conjugated to Ad via EDC chemistry without affecting the affinity of the Ad moiety for CD (KD = 12.0 ± 1.81 μM; isothermal titration calorimetry). The avidity of Ad-BSA conjugates was directly tunable through the number of guest groups attached, resulting in a fourfold increase in the complex half-life (t1/2 = 5.07 ± 1.23 h, surface plasmon resonance) that enabled a fivefold reduction in protein release at 28 days. Furthermore, we demonstrated that the conjugation of Ad to immunomodulatory cytokines (IL-4, IL-10, and IFNγ) did not detrimentally affect cytokine bioactivity and enabled their sustained release. Our strategy of avidity-controlled delivery of protein-based therapeutics is a promising approach for the sustained local presentation of protein therapeutics and can be applied to numerous biomedical applications.
Collapse
Affiliation(s)
- Arielle
M. D’Elia
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Olivia L. Jones
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Gabriela Canziani
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Biplab Sarkar
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Christopher B. Rodell
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Ataie Z, Horchler S, Jaberi A, Koduru SV, El-Mallah JC, Sun M, Kheirabadi S, Kedzierski A, Risbud A, Silva ARAE, Ravnic DJ, Sheikhi A. Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307928. [PMID: 37824280 PMCID: PMC11699544 DOI: 10.1002/smll.202307928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 10/14/2023]
Abstract
Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long-standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co-developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.
Collapse
Affiliation(s)
- Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Summer Horchler
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Srinivas V Koduru
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Jessica C El-Mallah
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Mingjie Sun
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Aneesh Risbud
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Dino J Ravnic
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
26
|
Liu Y, Suarez-Arnedo A, Caston EL, Riley L, Schneider M, Segura T. Exploring the Role of Spatial Confinement in Immune Cell Recruitment and Regeneration of Skin Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304049. [PMID: 37721722 PMCID: PMC10874253 DOI: 10.1002/adma.202304049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows the authors to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, the immune cell profile within confined and unconfined biomaterials is studied using small (40 µm), medium (70 µm), and large (130 µm) diameter spherical microgels, respectively. This work uncovered that MAP scaffolds impart regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds made with large microgels promote a balanced pro-regenerative macrophage response, resulting in enhanced wound healing with mature collagen regeneration and reduced inflammation levels.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Alejandra Suarez-Arnedo
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Eleanor L.P. Caston
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Lindsay Riley
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Michelle Schneider
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
- Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC 27708, USA
| |
Collapse
|