1
|
Goyal A, Afzal M, Goyal K, Ganesan S, Kumari M, Sunitha S, Dash A, Saini S, Rana M, Gupta G, Ali H, Wong LS, Kumarasamy V, Subramaniyan V. MSC-derived extracellular vesicles: Precision miRNA delivery for overcoming cancer therapy resistance. Regen Ther 2025; 29:303-318. [PMID: 40237010 PMCID: PMC11999318 DOI: 10.1016/j.reth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer remains a prominent worldwide health concern, presenting existing therapies with frequent difficulties, including major toxicity, limited effectiveness, and treatment resistance emergence. These issues highlight the necessity for novel and enhanced remedies. Exosomes, tiny extracellular vesicles that facilitate intercellular communication, have attracted interest for their potential medicinal applications. Carrying a variety of molecules, including microRNAs, small interfering RNAs, long non-coding RNAs, proteins, lipids, and DNA, these vesicles are positioned as promising cancer treatment options. Current studies have increasingly investigated the capacity of microRNAs as a strategic approach for combating malignancy. Mesenchymal stem cells (MSC) are recognized for their aptitude to augment blood vessel formation, safeguard against cellular death, and modulate immune responses. Consequently, researchers examine exosomes derived from MSCs as a safer, non-cellular choice over therapies employing MSCs, which risk undesirable differentiation. The focus is shifting towards employing miRNA-encapsulated exosomes sourced from MSCs to target and heal cancerous cells selectively. However, the exact functions of miRNAs within MSC-derived exosomes in the context of cancer are still not fully understood. Additional exploration is necessary to clarify the role of these miRNAs in malignancy progression and to pinpoint viable therapeutic targets. This review offers a comprehensive examination of exosomes derived from mesenchymal stem cells, focusing on the encapsulation of miRNAs, methods for enhancing cellular uptake and stability, and their potential applications in cancer treatment. It also addresses the difficulties linked to this methodology and considers future avenues, including insights from current clinical oncology research.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S. Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Liu C, Cheng C, Cheng K, Gao AS, Li Q, Atala A, Zhang Y. Precision exosome engineering for enhanced wound healing and scar revision. J Transl Med 2025; 23:578. [PMID: 40410904 PMCID: PMC12103044 DOI: 10.1186/s12967-025-06578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
The dysfunction of wound-healing processes can result in chronic non-healing wounds and pathological scar formation. Current treatment options often fall short, necessitating innovative approaches. Exosomes, extracellular vesicles secreted by various cells, have emerged as promising therapeutic agents serving as an intercellular communication system. By engineering exosomes, their cargo and surface properties can be tailored to enhance therapeutic efficacy and specificity. Engineered exosomes (eExo) are emerging as a favorable tool for treating non-healing wounds and pathological scars. In this review, we delve into the underlying mechanisms of non-healing wounds and pathological scars, outline the current state of engineering strategies, and explore the clinical potential of eExo based on preclinical and clinical studies. In addition, we address the current challenges and future research directions, including standardization, safety and efficacy assessments, and potential immune responses. In conclusion, eExo hold great promise as a novel therapeutic approach for non-healing wounds and non-healing wounds and pathological scars. Further research and clinical trials are warranted to translate preclinical findings into effective clinical treatments.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108-2718, USA
| | - Allen S Gao
- Department of Urologic Surgery, School of Medicine, University of California, Davis Sacramento, CA, 95817, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27151, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27151, USA.
| |
Collapse
|
3
|
Liu S, Feng A, Li Z. Neuron-Derived Extracellular Vesicles: Emerging Regulators in Central Nervous System Disease Progression. Mol Neurobiol 2025:10.1007/s12035-025-05010-4. [PMID: 40325332 DOI: 10.1007/s12035-025-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The diagnosis and exploration of central nervous system (CNS) diseases remain challenging due to the blood-brain barrier (BBB), complex signaling pathways, and heterogeneous clinical manifestations. Neurons, as the core functional units of the CNS, play a pivotal role in CNS disease progression. Extracellular vesicles (EVs), capable of crossing the BBB, facilitate intercellular and cell-extracellular matrix (ECM) communication, making neuron-derived extracellular vesicles (NDEVs) a focal point of research. Recent studies reveal that NDEVs, carrying various bioactive substances, can exert either pathogenic or protective effects in numerous CNS diseases. Additionally, NDEVs show significant potential as biomarkers for CNS diseases. This review summarizes the emerging roles of NDEVs in CNS diseases, including Alzheimer's disease, depression, traumatic brain injury, schizophrenia, ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. It aims to provide a novel perspective on developing therapeutic and diagnostic strategies for CNS diseases through the study of NDEVs.
Collapse
Affiliation(s)
- Sitong Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Aitong Feng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Wang M, Chen Y, Xu B, Zhu X, Mou J, Xie J, Che Z, Zuo L, Li J, Jia H, Yu B. Recent advances in the roles of extracellular vesicles in cardiovascular diseases: pathophysiological mechanisms, biomarkers, and cell-free therapeutic strategy. Mol Med 2025; 31:169. [PMID: 40325357 PMCID: PMC12051314 DOI: 10.1186/s10020-025-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
Cardiovascular diseases (CVDs) represent a profound challenge with inflammation playing a significant role in their pathophysiology. Extracellular vesicles (EVs), which are membranous structures encapsulated by a lipid bilayer, are essential for intercellular communication by facilitating the transport of specific bioactive molecules, including microRNAs, proteins, and lipids. Emerging evidence suggests that the regulatory mechanisms governing cardiac resident cells are influenced by EVs, which function as messengers in intercellular communication and thereby contribute to the advancement of CVDs. In this review, we discuss the multifaceted biological functions of EVs and their involvement in the pathogenesis of various CVDs, encompassing myocardial infarction, ischemia-reperfusion injury, heart failure, atherosclerosis, myocarditis, cardiomyopathy, and aneurysm. Furthermore, we summarize the recent advancements in utilizing EVs as non-invasive biomarkers and in cell-free therapy based on EVs for the diagnosis and treatment of CVDs. Future research should investigate effective techniques for the isolation and purification of EVs from body fluids, while also exploring the pathways for the clinical translation of therapy based on EVs. Additionally, it is imperative to identify appropriate EV-miRNA profiles or combinations present in the circulation of patients, which could serve as biomarkers to improve the diagnostic accuracy of CVDs. By synthesizing and integrating recent research findings, this review aims to provide innovative perspectives for the pathogenesis of CVDs and potential therapeutic strategies.
Collapse
Affiliation(s)
- Mengyang Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Xinxin Zhu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Junke Mou
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Jiani Xie
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Ziao Che
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Liyang Zuo
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150001, People's Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, People's Republic of China
| |
Collapse
|
5
|
Ene J, Liu C, Syed F, Sun L, Berry D, Durairaj P, Liu ZL, Zeng C, Jung S, Li Y. Biomanufacturing and lipidomics analysis of extracellular vesicles secreted by human blood vessel organoids in a vertical wheel bioreactor. Stem Cell Res Ther 2025; 16:207. [PMID: 40275401 PMCID: PMC12023677 DOI: 10.1186/s13287-025-04317-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from human organoids are phospholipid bilayer-bound nanoparticles that carry therapeutic cargo. However, the low yield of EVs remains a critical bottleneck for clinical translation. Vertical-Wheel bioreactors (VWBRs), with unique design features, facilitate the scalable production of EVs secreted by human blood vessel organoids (BVOs) under controlled shear stress, using aggregate- and microcarrier-based culture systems. METHODS Human induced pluripotent stem cell-derived BVOs cultured as aggregates or on Synthemax II microcarriers within VWBRs (40 and 80 rpm) were compared to static controls. The organoids were characterized by metabolite profiling, flow cytometry, and gene expression of EV biogenesis markers. EVs were characterized by nanoparticle tracking analysis, electron microscopy, and Western blotting. Lipidomics provided insights into EV lipid composition, while functional assays assessed the impact of EVs in a D-galactose-induced senescence model. RESULTS VWBR cultures showed more aerobic metabolism and higher expression of EV biogenesis genes compared to the static control. EVs from different conditions were comparable in size, but the yields were significantly higher for microcarrier and dynamic cultures than static aggregates. Lipidomic profiling revealed minimal variation (< 0.36%) in total lipid content; however, distinct differences were identified in lipid chain lengths and saturation levels, affecting key pathways such as sphingolipid and neurotrophin signaling. Human BVO EVs demonstrated the abilities of reducing oxidative stress and increasing cell proliferation in vitro. CONCLUSIONS Human BVOs differentiated in VWBRs (in particular 40 rpm) produce 2-3 fold higher yield of EVs (per mL) than static control. The bio manufactured EVs from VWBRs have exosomal characteristics and therapeutic cargo, showing functional properties in in vitro assays. This innovative approach establishes VWBRs as a scalable platform for producing functional EVs with defined lipid profiles and therapeutic potential, paving the way for future in vivo studies.
Collapse
Affiliation(s)
- Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Falak Syed
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Danyale Berry
- Department of Industrial and Manufacture Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
- High Performance Materials Institute, Florida State University, Tallahassee, FL, 32310, USA
| | - Pradeepraj Durairaj
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Zixiang Leonardo Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Changchun Zeng
- Department of Industrial and Manufacture Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
- High Performance Materials Institute, Florida State University, Tallahassee, FL, 32310, USA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| |
Collapse
|
6
|
Palamà MEF, Gorgun C, Rovere M, Shaw GM, Reverberi D, Formica M, Quarto E, Barry F, Murphy M, Gentili C. Batch variability and anti-inflammatory effects of iPSC-derived mesenchymal stromal cell extracellular vesicles in osteoarthritis in vitro model. Front Bioeng Biotechnol 2025; 13:1536843. [PMID: 40242358 PMCID: PMC11999995 DOI: 10.3389/fbioe.2025.1536843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) hold promise as a cell-free therapy for osteoarthritis (OA), due to their immunomodulatory and anti-inflammatory properties. However, the need for large-scale expansion to obtain MSC-EVs for clinical use can lead to senescence-related changes and loss of stem-like properties. In this scenario, induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) offer the unique opportunity to address obstacles associated with traditional MSC-based therapies. This study used a xeno-free (XFS) medium for long-term expansion of both MSCs and iMSCs, and their EVs comparison. Characterization of both cells and EVs was conducted across different passages, and the anti-inflammatory potential of EVs and iEVs was assessed using an in vitro model of osteoarthritis. Long-term expansion of MSCs resulted in cellular senescence and a reduction in trilineage differentiation capacity by passage five, accompanied by diminished anti-inflammatory properties of EVs. On the other hand, iMSCs exhibited batch-to-batch variability in differentiation and EV biological properties. However, the effects of iMSC-EVs were prolonged compared to MSC-EVs, providing a wider window of activity for therapeutic purposes. Despite this, the variability among iMSC batches poses challenges for their reliability in OA treatment. Further work is needed to overcome these limitations for clinical application.
Collapse
Affiliation(s)
| | - Cansu Gorgun
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Matteo Rovere
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Georgina M. Shaw
- Regenerative Medicine Institute (REMEDI), University of Galway (UoG), Galway, Ireland
| | - Daniele Reverberi
- UOC Research-Scientific Direction, Istituto di Scientifico Ricovero e Cura a Carattere, Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Formica
- UOC Clinica Ortopedica, Istituto di Scientifico Ricovero e Cura a Carattere, Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuele Quarto
- UOC Clinica Ortopedica, Istituto di Scientifico Ricovero e Cura a Carattere, Ospedale Policlinico San Martino, Genoa, Italy
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), University of Galway (UoG), Galway, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), University of Galway (UoG), Galway, Ireland
| | - Chiara Gentili
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UOC Oncologia Cellulare, Istituto di Scientifico Ricovero e Cura a Carattere, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
7
|
Balaraman AK, Arockia Babu M, Afzal M, Sanghvi G, M M R, Gupta S, Rana M, Ali H, Goyal K, Subramaniyan V, Wong LS, Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen Ther 2025; 28:558-572. [PMID: 40034540 PMCID: PMC11872554 DOI: 10.1016/j.reth.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Recently, increasing interest has been in utilizing mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially exosomes, as nanocarriers for miRNA delivery in cancer treatment. Due to such characteristics, nanocarriers are specific: biocompatible, low immunogenicity, and capable of spontaneous tumor accumulation. MSC-EVs were loaded with therapeutic miRNAs and minimized their susceptibility to degradation by protecting the miRNA from accessibility to degrading enzymes and providing targeted delivery of the miRNAs to the tumor cells to modulate oncogenic pathways. In vitro and in vivo experiments suggest that MSC-EVs loaded with miRNAs may inhibit tumor growth, prevent metastasis, and increase the effectiveness of chemotherapy and radiotherapy. However, these improvements present difficulties such as isolation, scalability, and stability of delivered miRNA during storage. Furthermore, the issues related to off-target effects, as well as immunogenicity, can be a focus. The mechanisms of miRNA loading into MSC-EVs, as well as their targeting efficiency and therapeutic potential, can be outlined in this manuscript. For the final part of the manuscript, the current advances in MSC-EV engineering and potential strategies for clinical application have been described. The findings of MSC-EVs imply that they present MSC-EVs as a second-generation tool for precise oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | - M. Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP, 281406, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Xu T, Peng Y, Xu Y, Zhu J, Yang Q, Liu Y, Yang H. Exploring the therapeutic potential of small extracellular vesicles derived from induced pluripotent stem cell in periodontal regeneration. J Oral Biosci 2025; 67:100621. [PMID: 39892783 DOI: 10.1016/j.job.2025.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES To investigate the role of small extracellular vesicles derived from induced pluripotent stem cells (iPSC-sEVs) in periodontal tissue regeneration, elucidate their potential molecular mechanisms, and provide theoretical guidance for the clinical application of iPSC-sEVs as a cell-free therapeutic strategy for periodontal tissue regeneration. METHODS We investigated the effects of iPSC-sEVs on the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in vitro. The regenerative potential of iPSC-sEVs was evaluated in vivo, using a periodontal defect model. Bulk RNA sequencing was performed to elucidate the underlying molecular mechanisms. RESULTS iPSC-sEVs were isolated, characterized, and systemically evaluated for regenerative potential. The results revealed that treatment with iPSC-sEVs significantly enhanced the proliferation, migration, and osteogenic differentiation of PDLSCs. In situ treatment with iPSC-sEVs loaded onto collagen sponges was performed in a rat model of periodontal defects. Micro-CT and histological analyses indicated that iPSC-sEV treatment markedly promoted alveolar bone repair and periodontal ligament regeneration. Mechanistically, the analysis of bulk RNA sequencing data coupled with experimental validation revealed that iPSC-sEV treatment significantly activated the mitogen-activated protein kinase (MAPK) signaling pathway in PDLSCs. Further investigation showed that the inhibition of this pathway completely abolished the proliferative effects of iPSC-sEVs on PDLSCs. CONCLUSIONS iPSC-sEVs promote PDLSC proliferation through MAPK signaling pathway activation, while also enhancing PDLSC migratory and osteogenic differentiation capacities, facilitates the repair and regeneration of damaged periodontal tissue and presents a potential novel therapeutic strategy for clinical periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tingting Xu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yi Peng
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yanan Xu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Jing Zhu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Qiao Yang
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yali Liu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Prosthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| |
Collapse
|
9
|
Barilani M, Peli V, Manzini P, Pistoni C, Rusconi F, Pinatel EM, Pischiutta F, Tace D, Iachini MC, Elia N, Tribuzio F, Banfi F, Sessa A, Cherubini A, Dolo V, Bollati V, Fiandra L, Longhi E, Zanier ER, Lazzari L. Extracellular Vesicles from Human Induced Pluripotent Stem Cells Exhibit a Unique MicroRNA and CircRNA Signature. Int J Biol Sci 2024; 20:6255-6278. [PMID: 39664576 PMCID: PMC11628337 DOI: 10.7150/ijbs.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Extracellular vesicles (EV) have emerged as promising cell-free therapeutics in regenerative medicine. However, translating primary cell line-derived EV to clinical applications requires large-scale manufacturing and several challenges, such as replicative senescence, donor heterogeneity, and genetic instability. To address these limitations, we used a reprogramming approach to generate human induced pluripotent stem cells (hiPSC) from the young source of cord blood mesenchymal stem/stromal cells (CBMSC). Capitalizing on their inexhaustible supply potential, hiPSC offer an attractive EV reservoir. Our approach encompassed an exhaustive characterization of hiPSC-EV, aligning with the rigorous MISEV2023 guidelines. Analyses demonstrated physical features compatible with small EV (sEV) and established their identity and purity. Moreover, the sEV-shuttled non-coding (nc) RNA landscape, focusing on the microRNA and circular RNA cargo, completed the molecular signature. The kinetics of the hiPSC-sEV release and cell internalization assays unveiled robust EV production and consistent uptake by human neurons. Furthermore, hiPSC-sEV demonstrated ex vivo cell tissue-protective properties. Finally, via bioinformatics, the potential involvement of the ncRNA cargo in the hiPSC-sEV biological effects was explored. This study significantly advances the understanding of pluripotent stem cell-derived EV. We propose cord blood MSC-derived hiPSC as a promising source for potentially therapeutic sEV.
Collapse
Affiliation(s)
- Mario Barilani
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valeria Peli
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paolo Manzini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Clelia Pistoni
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Francesco Rusconi
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Eva Maria Pinatel
- ITB-CNR, Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Francesca Pischiutta
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Dorian Tace
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria Chiara Iachini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Noemi Elia
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Tribuzio
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Federica Banfi
- San Raffaele Scientific Institute, Division of Neuroscience, Neuroepigenetics Unit, Milano, Italy
| | - Alessandro Sessa
- San Raffaele Scientific Institute, Division of Neuroscience, Neuroepigenetics Unit, Milano, Italy
| | - Alessandro Cherubini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milano, Italy
| | - Elena Longhi
- Laboratory of Transplant Immunology SC Trapianti Lombardia - NITp. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa R Zanier
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
10
|
Pottash AE, Levy D, Powsner EH, Pirolli NH, Kuo L, Solomon TJ, Nowak R, Wang J, Kronstadt SM, Jay SM. Enhanced Extracellular Vesicle Cargo Loading via microRNA Biogenesis Pathway Modulation. ACS Biomater Sci Eng 2024; 10:6286-6298. [PMID: 39305230 DOI: 10.1021/acsbiomaterials.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are physiological vectors for the intercellular transport of a variety of molecules. Among these, small RNAs, and especially microRNAs (miRNAs), have been identified as prevalent components, and there has thus been a robust investigation of EVs for therapeutic miRNAs delivery. However, intrinsic levels of EV-associated miRNAs are generally too low to enable efficient and effective therapeutic outcomes. We hypothesized that miRNA localization to EVs could be improved by limiting competing interactions that occur throughout the miRNA biogenesis process. Using miR-146a-5p as a model, modulation of transcription, nuclear export, and enzymatic cleavage steps of miRNA biogenesis were tested for impact on EV miRNA loading. Working in HEK293T cells, various alterations in the EV biogenesis pathway were shown to impact miRNA localization to EVs. The system was then applied in induced pluripotent stem cells (iPSCs), a more promising substrate for therapeutic EV production, and EVs were separated and assessed for anti-inflammatory efficacy in vitro and in a murine colitis model, where the preservation of function was validated. Overall, the results highlight necessary considerations when designing a cell culture system for the devoted production of miRNA-loaded EVs.
Collapse
Affiliation(s)
- Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Emily H Powsner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Leo Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Talia J Solomon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Raith Nowak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
11
|
Zhou X, Liu J, Wu F, Mao J, Wang Y, Zhu J, Hong K, Xie H, Li B, Qiu X, Xiao X, Wen C. The application potential of iMSCs and iMSC-EVs in diseases. Front Bioeng Biotechnol 2024; 12:1434465. [PMID: 39135947 PMCID: PMC11317264 DOI: 10.3389/fbioe.2024.1434465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
The immune system, functioning as the body's "defense army", plays a role in surveillance, defense. Any disruptions in immune system can lead to the development of immune-related diseases. Extensive researches have demonstrated the crucial immunoregulatory role of mesenchymal stem cells (MSCs) in these diseases. Of particular interest is the ability to induce somatic cells under specific conditions, generating a new cell type with stem cell characteristics known as induced pluripotent stem cell (iPSC). The differentiation of iPSCs into MSCs, specifically induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs), hold promise as a potential solution to the challenges of MSCs, potentially serving as an alternative to traditional drug therapies. Moreover, the products of iMSCs, termed induced pluripotent stem cell-derived mesenchymal stem cell-derived extracellular vesicles (iMSC-EVs), may exhibit functions similar to iMSCs. With the biological advantages of EVs, they have become the focus of "cell-free therapy". Here, we provided a comprehensive summary of the biological impact of iMSCs on immune cells, explored the applications of iMSCs and iMSC-EVs in diseases, and briefly discussed the fundamental characteristics of EVs. Finally, we overviewed the current advantages and challenges associated with iMSCs and iMSC-EVs. It is our hope that this review related to iMSCs and iMSC-EVs will contribute to the development of new approaches for the treatment of diseases.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinyu Liu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangbin Xiao
- Department of Cardiovascular, People’s Hospital of Jianyang, Jianyang, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Wang L, Chen J, Song J, Xiang Y, Yang M, Xia L, Yang J, Hou X, Chen L, Wang L. Activation of the Wnt/β-catenin signalling pathway enhances exosome production by hucMSCs and improves their capability to promote diabetic wound healing. J Nanobiotechnology 2024; 22:373. [PMID: 38926800 PMCID: PMC11201861 DOI: 10.1186/s12951-024-02650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The use of stem cell-derived exosomes (Exos) as therapeutic vehicles is receiving increasing attention. Exosome administration has several advantages over cell transplantation, thus making exosomes promising candidates for large-scale clinical implementation and commercialization. However, exosome extraction and purification efficiencies are relatively low, and therapeutic heterogeneity is high due to differences in culture conditions and cell viability. Therefore, in this study, we investigated a priming procedure to enhance the production and therapeutic effects of exosomes from human umbilical cord mesenchymal stem cells (hucMSCs). After preconditioning hucMSCs with agonists/inhibitors that target the Wnt/β-catenin pathway, we assessed both the production of exosomes and the therapeutic efficacy of the optimized exosomes in the context of diabetic wound healing, hoping to provide a safer, more stable and more effective option for clinical application. RESULTS The Wnt signalling pathway agonist CHIR99021 increased exosome production by 1.5-fold without causing obvious changes in the characteristics of the hucMSCs or the size of the exosome particles. Further studies showed that CHIR99021 promoted the production of exosomes by facilitating exocytosis. This process was partly mediated by SNAP25. To further explore whether CHIR99021 changed the cargo that was loaded into the exosomes and its therapeutic effects, we performed proteomic and transcriptomic analyses of exosomes from primed and control hucMSCs. The results showed that CHIR99021 significantly upregulated the expression of proteins that are associated with cell migration and wound healing. Animal experiments confirmed that, compared to control hucMSC-derived exosomes, CHIR99021-pretreated hucMSC-derived exosomes (CHIR-Exos) significantly accelerated wound healing in diabetic mice, enhanced local collagen deposition, promoted angiogenesis, and reduced chronic inflammation. Subsequent in vitro experiments confirmed that the CHIR-Exos promoted wound healing by facilitating cell migration, inhibiting oxidative stress-induced apoptosis, and preventing cell cycle arrest. CONCLUSIONS The Wnt agonist CHIR99021 significantly increased exosome secretion by hucMSCs, which was partly mediated by SNAP25. Notably, CHIR99021 treatment also significantly increased the exosomal levels of proteins that are associated with wound healing and cell migration, resulting in enhanced acceleration of wound healing. All of these results suggested that pretreatment of hucMSCs with CHIR99021 not only promoted exosome production but also improved the exosome therapeutic efficacy, thus providing a promising option for large-scale clinical implementation and commercialization.
Collapse
Affiliation(s)
- Liming Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jun Chen
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China
| | - Jia Song
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China
| | - Yingyue Xiang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Mengmeng Yang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Longqing Xia
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xinguo Hou
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China.
| | - Lingshu Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Zhang B, Bi Y, Wang K, Guo X, Liu Z, Li J, Wu M. Stem Cell-Derived Extracellular Vesicles: Promising Therapeutic Opportunities for Diabetic Wound Healing. Int J Nanomedicine 2024; 19:4357-4375. [PMID: 38774027 PMCID: PMC11108067 DOI: 10.2147/ijn.s461342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Wound healing is a sophisticated and orderly process of cellular interactions in which the body restores tissue architecture and functionality following injury. Healing of chronic diabetic wounds is difficult due to impaired blood circulation, a reduced immune response, and disrupted cellular repair mechanisms, which are often associated with diabetes. Stem cell-derived extracellular vesicles (SC-EVs) hold the regenerative potential, encapsulating a diverse cargo of proteins, RNAs, and cytokines, presenting a safe, bioactivity, and less ethical issues than other treatments. SC-EVs orchestrate multiple regenerative processes by modulating cellular communication, increasing angiogenesis, and promoting the recruitment and differentiation of progenitor cells, thereby potentiating the reparative milieu for diabetic wound healing. Therefore, this review investigated the effects and mechanisms of EVs from various stem cells in diabetic wound healing, as well as their limitations and challenges. Continued exploration of SC-EVs has the potential to revolutionize diabetic wound care.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jia Li
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
14
|
Chen W, Wu P, Jin C, Chen Y, Li C, Qian H. Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells. J Nanobiotechnology 2024; 22:215. [PMID: 38693585 PMCID: PMC11064407 DOI: 10.1186/s12951-024-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.
Collapse
Affiliation(s)
- Wenya Chen
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Can Jin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yinjie Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Chong Li
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Hui Qian
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
15
|
Ju Y, Yang P, Liu X, Qiao Z, Shen N, Lei L, Fang B. Microenvironment Remodeling Self-Healing Hydrogel for Promoting Flap Survival. Biomater Res 2024; 28:0001. [PMID: 38390027 PMCID: PMC10882600 DOI: 10.34133/bmr.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024] Open
Abstract
Random flap grafting is a routine procedure used in plastic and reconstructive surgery to repair and reconstruct large tissue defects. Flap necrosis is primarily caused by ischemia-reperfusion injury and inadequate blood supply to the distal flap. Ischemia-reperfusion injury leads to the production of excessive reactive oxygen species, creating a pathological microenvironment that impairs cellular function and angiogenesis. In this study, we developed a microenvironment remodeling self-healing hydrogel [laminarin-chitosan-based hydrogel-loaded extracellular vesicles and ceria nanozymes (LCH@EVs&CNZs)] to improve the flap microenvironment and synergistically promote flap regeneration and survival. The natural self-healing hydrogel (LCH) was created by the oxidation laminarin and carboxymethylated chitosan via a Schiff base reaction. We loaded this hydrogel with CNZs and EVs. CNZs are a class of nanomaterials with enzymatic activity known for their strong scavenging capacity for reactive oxygen species, thus alleviating oxidative stress. EVs are cell-secreted vesicular structures containing thousands of bioactive substances that can promote cell proliferation, migration, differentiation, and angiogenesis. The constructed LCH@EVs&CNZs demonstrated a robust capacity for scavenging excess reactive oxygen species, thereby conferring cellular protection in oxidative stress environments. Moreover, these constructs notably enhance cell migration and angiogenesis. Our results demonstrate that LCH@EVs&CNZs effectively remodel the pathological skin flap microenvironment and marked improve flap survival. This approach introduces a new therapeutic strategy combining microenvironmental remodeling with EV therapy, which holds promise for promoting flap survival.
Collapse
Affiliation(s)
- Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
| | - Zhihua Qiao
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital,
Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
16
|
Levy D, Solomon TJ, Jay SM. Extracellular vesicles as therapeutics for inflammation and infection. Curr Opin Biotechnol 2024; 85:103067. [PMID: 38277970 PMCID: PMC10922601 DOI: 10.1016/j.copbio.2024.103067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Extracellular vesicles (EVs) are an emergent next-generation biotechnology with broad application potential. In particular, immunomodulatory bioactivity of EVs leading to anti-inflammatory effects is well-characterized. Cell source and culture conditions are critical determinants of EV therapeutic efficacy, while augmenting EV anti-inflammatory bioactivity via diverse strategies, including RNA cargo loading and protein surface display, has proven effective. Yet, translational challenges remain. Additionally, the potential of direct antimicrobial EV functionality has only recently emerged but offers the possibility of overcoming drug-resistant bacterial and fungal infections through novel, multifactorial mechanisms. As discussed herein, these application areas are brought together by the potential for synergistic benefit from technological developments related to EV cargo loading and biomanufacturing.
Collapse
Affiliation(s)
- Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3113 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA
| | - Talia J Solomon
- Fischell Department of Bioengineering, University of Maryland, 3113 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, 3113 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA; Program in Molecular Biology, University of Maryland, 3113 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, USA.
| |
Collapse
|
17
|
陈 君, 邓 呈. [Research advances on stem cell-based treatments in animal studies and clinical trials of lymphedema]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:99-106. [PMID: 38225848 PMCID: PMC10796233 DOI: 10.7507/1002-1892.202309045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/16/2023] [Indexed: 01/17/2024]
Abstract
Objective To summarize the progress of the roles and mechanisms of various types of stem cell-based treatments and their combination therapies in both animal studies and clinical trials of lymphedema. Methods The literature on stem cell-based treatments for lymphedema in recent years at home and abroad was extensively reviewed, and the animal studies and clinical trials on different types of stem cells for lymphedema were summarized. Results Various types of stem cells have shown certain effects in animal studies and clinical trials on the treatment of lymphedema, mainly through local differentiation into lymphoid endothelial cells and paracrine cytokines with different functions. Current research focuses on two cell types, adipose derived stem cells and bone marrow mesenchymal stem cells, both of which have their own advantages and disadvantages, mainly reflected in the therapeutic effect of stem cells, the difficulty of obtaining stem cells and the content in vivo. In addition, stem cells can also play a synergistic role in combination with other treatments, such as conservative treatment, surgical intervention, cytokines, biological scaffolds, and so on. However, it is still limited to the basic research stage, and only a small number of studies have completed clinical trials. Conclusion Stem cells have great transformation potential in the treatment of lymphedema, but there is no unified standard in the selection of cell types, the amount of transplanted cells, and the timing of transplantation.
Collapse
Affiliation(s)
- 君哲 陈
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P. R. China
| | - 呈亮 邓
- 遵义医科大学附属医院烧伤整形外科(贵州遵义 563003)Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P. R. China
- 组织损伤修复与再生医学省部共建协同创新中心(贵州遵义 563003)Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi Guizhou, 563003, P. R. China
| |
Collapse
|