1
|
Cao KLA, Kautsar DB, Kume K, Cao KAL, Septiani EL, Hirano T, Tsunoji N, Matsukata M, Ogi T. Preparation of Hierarchical Porous Zeolite Particles with Multiscale Pore Architectures through a Template-Assisted Spray Process for Enhanced Toluene Adsorption Rate. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24310-24326. [PMID: 40170413 DOI: 10.1021/acsami.4c22163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Hierarchical porous zeolite particles featuring multiscale pore architectures have gained significant attention due to their enhanced mass transfer properties and superior adsorption capabilities. This study reports the first successful synthesis of hierarchical porous zeolites with integrated micropores, mesopores, and macropores using a template-assisted spray process, addressing the limitations of conventional zeolites in adsorbing large organic molecules such as toluene. By employing poly(methyl methacrylate) (PMMA) particles (about 350 nm in size) as a template, we achieved precise control over macropore formation, providing a new level of flexibility in tailoring zeolite pore architectures. The effect of the PMMA/zeolite mass ratio on the resulting macroporous structures and their toluene adsorption performance was systematically investigated. The results revealed that the hierarchical porous zeolite exhibited a significantly enhanced toluene adsorption rate compared to samples synthesized without the PMMA template. This improvement is attributed to the optimized macroporous structure, which facilitates efficient mass transfer. Importantly, this study addresses a critical gap in the literature by demonstrating the successful integration of macropores into zeolites through an environmentally friendly process, with significant implications for applications in volatile organic compound removal. This advancement in porous zeolite design could enable more efficient and practical solutions for industrial air purification and environmental remediation.
Collapse
Affiliation(s)
- Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Duhaul Biqal Kautsar
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kohei Kume
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Khoa Anh Le Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Eka Lutfi Septiani
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomoyuki Hirano
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Nao Tsunoji
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Masahiko Matsukata
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
2
|
del Bosque A, Lampropoulos G, Vergara D. Nanocomposites for Multifunctional Sensors: A Comprehensive Bibliometric Exploration. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:34. [PMID: 39791793 PMCID: PMC11722174 DOI: 10.3390/nano15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Multifunctional nanocomposites have become critical components in advancing sensing technologies, owing to their exceptional integration of mechanical, electrical, thermal, and optical properties. The research landscape of nanocomposites for sensing applications from 2002 to 2024 is examined in this bibliometric review. It identifies key trends, influential works, prominent research areas, and global collaboration networks. This study highlights the creative significance of materials like metal-organic frameworks, carbon-based nanocomposites, and MXenes, which have been instrumental in advances, especially in hybrid systems that improve robustness and sensitivity. Offering an in-depth perspective on current research directions and emerging topics, this review explores areas like eco-friendly nanocomposites and additive manufacturing. Highlighting the relevance of biodegradable materials in supporting global sustainability efforts, it provides insights into future opportunities for advancing multifunctional nanocomposites in sensing technologies.
Collapse
Affiliation(s)
- Antonio del Bosque
- Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, C/Canteros s/n, 05005 Ávila, Spain
| | - Georgios Lampropoulos
- Department of Applied Informatics, University of Macedonia, 54636 Thessaloniki, Greece;
- Department of Education, University of Nicosia, 2417 Nicosia, Cyprus
| | - Diego Vergara
- Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, C/Canteros s/n, 05005 Ávila, Spain
| |
Collapse
|
3
|
Vecchio G, Darcos V, Grill SL, Brouillet F, Coppel Y, Duttine M, Pugliara A, Combes C, Soulié J. Spray-dried ternary bioactive glass microspheres: Direct and indirect structural effects of copper-doping on acellular degradation behavior. Acta Biomater 2024; 181:453-468. [PMID: 38723927 DOI: 10.1016/j.actbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Silicate-based bioactive glass nano/microspheres hold significant promise for bone substitution by facilitating osteointegration through the release of biologically active ions and the formation of a biomimetic apatite layer. Cu-doping enhances properties such as pro-angiogenic and antibacterial behavior. While sol-gel methods usually yield homogeneous spherical particles for pure silica or binary glasses, synthesizing poorly aggregated Cu-doped ternary glass nano/microparticles without a secondary CuO crystalline phase remains challenging. This article introduces an alternative method for fabricating Cu-doped ternary microparticles using sol-gel chemistry combined with spray-drying. The resulting microspheres exhibit well-defined, poorly aggregated particles with spherical shapes and diameters of a few microns. Copper primarily integrates into the microspheres as Cu0 nanoparticles and as Cu2+ within the amorphous network. This doping affects silica network connectivity, as calcium and phosphorus are preferentially distributed in the glass network (respectively as network modifiers and formers) or involved in amorphous calcium phosphate nano-domains depending on the doping rate. These differences affect the interaction with simulated body fluid. Network depolymerization, ion release (SiO44-, Ca2+, PO43-, Cu2+), and apatite nanocrystal layer formation are impacted, as well as copper release. The latter is mainly provided by the copper involved in the silica network and not from metal nanoparticles, most of which remain in the microspheres after interaction. This understanding holds promising implications for potential therapeutic applications, offering possibilities for both short-term and long-term delivery of a tunable copper dose. STATEMENT OF SIGNIFICANCE: A novel methodology, scalable to industrial levels, enables the synthesis of copper-doped ternary bioactive glass microparticles by combining spray-drying and sol-gel chemistry. It provides precise control over the copper percentage in microspheres. This study explores the influence of synthesis conditions on the copper environment, notably Cu0 and Cu2+ ratios, characterized by EPR spectroscopy, an aspect poorly described for copper-doped bioactive glass. Additionally, copper indirectly affects silica network connectivity and calcium/phosphorus distribution, as revealed by SSNMR. Multiscale characterization illustrates how these features impact acellular degradation in simulated body fluid, highlighting the therapeutic potential for customizable copper dosing to address short- and long-term needs.
Collapse
Affiliation(s)
- Gabriele Vecchio
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Vincent Darcos
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, CNRS, UPR 8241, Université Toulouse 3 - Paul Sabatier, Toulouse 31077, France
| | - Mathieu Duttine
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Alessandro Pugliara
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France; Centre de MicroCaractérisation Raimond Castaing, Université Toulouse 3 - Paul Sabatier, Toulouse INP, INSA Toulouse, CNRS, 31400 Toulouse, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France.
| |
Collapse
|
4
|
Zhang Y, Xie X, Yang Y, Pal M, Dong Chen X, Wu Z. Comparative study on Al-SBA-15 prepared by spray drying and traditional methods for bulky hydrocarbon cracking: Properties, performance and influencing factors. J Colloid Interface Sci 2024; 663:749-760. [PMID: 38432173 DOI: 10.1016/j.jcis.2024.02.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Mesoporous aluminosilicates Al-SBA-15 with large pore sizes and suitable acid properties are promising substitutes to zeolites for catalytic cracking of bulky hydrocarbons without molecular diffusion limitation. The conventional processes to synthesize Al-SBA-15 are time-consuming and often suffer from low "framework" Al contents. Herein, Al-SBA-15 microspheres are synthesized using the rapid and scalable microfluidic jet spray drying technique. They possess uniform particle sizes (45-60 μm), variable surface morphologies, high surface areas (264-340 m2/g), uniform mesopores (3.8-4.9 nm) and rich acid sites (126-812 μmol/g) and high acid strength. Their physicochemical properties are compared with the counterparts synthesized using traditional hydrothermal and evaporation-induced self-assembly methods. The spray drying technique results in a higher incorporation of aluminum (Al) atoms into the silica "framework" compared to the other two methods. The catalytic cracking efficiencies of 1,3,5-triisopropylbenzene (TIPB) on the Al-SBA-15 materials synthesized using the three different methods and nanosized ZSM-5 are compared. The optimal spray-dried Al-SBA-15 exhibits the best performance with 100 % TIPB conversion, excellent selectivity (about 75 %) towards the formation of deeply cracked products (benzene and propylene) and high stability. The catalytic performances of the spray-dried Al-SBA-15 with varying Si/Al ratios are also compared. The reasons for the different performances of the different materials are discussed, where the mesopores, high acid density and strength are observed to play the most critical role. This work might provide a basis for the synthesis of mesoporous rich metal-substituted silica materials for different catalytic applications.
Collapse
Affiliation(s)
- Yali Zhang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China
| | - Xianglin Xie
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China
| | - Yunhan Yang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China
| | - Manas Pal
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| | - Xiao Dong Chen
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu Province 215123, People's Republic of China.
| |
Collapse
|
5
|
Miles B, Chan DH, Varlas S, Mahato LK, Archer J, Miles RE, Armes SP, Reid JP. Effect of the Addition of Diblock Copolymer Nanoparticles on the Evaporation Kinetics and Final Particle Morphology for Drying Aqueous Aerosol Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:734-743. [PMID: 38128476 PMCID: PMC10786045 DOI: 10.1021/acs.langmuir.3c02930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
A deeper understanding of the key processes that determine the particle morphologies generated during aerosol droplet drying is highly desirable for spray-drying of powdered pharmaceuticals and foods, predicting the properties of atmospheric particles, and monitoring disease transmission. Particle morphologies are affected by the drying kinetics of the evaporating droplets, which are in turn influenced by the composition of the initial droplet as well as the drying conditions. Herein, we use polymerization-induced self-assembly (PISA) to prepare three types of sterically stabilized diblock copolymer nanoparticles comprising the same steric stabilizer block and differing core blocks with z-average diameters ranging from 32 to 238 nm. These well-defined nanoparticles enable a systematic investigation of the effect of the nanoparticle size and composition on the drying kinetics of aqueous aerosol droplets (20-28 μm radius) and the final morphology of the resulting microparticles. A comparative kinetics electrodynamic balance was used to obtain evaporation profiles for 10 examples of nanoparticles at a relative humidity (RH) of 0, 45, or 65%. Nanoparticles comprising the same core block with mean diameters of 32, 79, and 214 nm were used to produce microparticles, which were dried under different RH conditions in a falling droplet column. Scanning electron microscopy was used to examine how the drying kinetics influenced the final microparticle morphology. For dilute droplets, the chemical composition of the nanoparticles had no effect on the evaporation rate. However, employing smaller nanoparticles led to the formation of dried microparticles with a greater degree of buckling.
Collapse
Affiliation(s)
| | - Derek H.H. Chan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield S3 7HF, South Yorkshire, U.K.
| | - Spyridon Varlas
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield S3 7HF, South Yorkshire, U.K.
| | - Lukesh K. Mahato
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Justice Archer
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | | | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield S3 7HF, South Yorkshire, U.K.
| | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
6
|
Naggar AH, Dhmees A, Seaf-Elnasr TA, Chong KF, Ali GAM, Ali HM, Kh Alshamery RM, AlNahwa LHM, Bakr ASA. Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3872-3886. [PMID: 38093080 DOI: 10.1007/s11356-023-31453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated. The maximum sorption capacity of Th(IV) on SBL is 158.88 mg/L at pH value of 4328 K, and 60 min contact time. We demonstrated that the adsorption processes comport well with pseudo-second-order and Langmuir adsorption models considering the kinetics and equilibrium data. According to thermodynamic inspections results, the Th(IV) adsorption process exhibited endothermic and random behavior suggested by positive ΔH° and ΔS° values, while the negative ΔG° values indicated a spontaneous sorption process. The maximum Th(IV) desorption from the loaded SBL (Th/SBL) was carried out at 0.25 M of NaHCO3 and 60 min of contact. Sorption/desorption processes have five successive cycles. Finally, this study suggests that the recycling of BFS and BL can be exploited for the procurement of a promising Th(IV) adsorbents.
Collapse
Affiliation(s)
- Ahmed H Naggar
- Department of Chemistry, College of Science and Arts, Jouf University, Al-Qurayyat, Saudi Arabia.
| | - Abdelghaffar Dhmees
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Tarek A Seaf-Elnasr
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Kwok Feng Chong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300, Gambang, Kuantan, Malaysia
| | - Gomaa A M Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Hazim M Ali
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Lubna H M AlNahwa
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Al-Sayed A Bakr
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| |
Collapse
|
7
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
8
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020447. [PMID: 36839771 PMCID: PMC9965229 DOI: 10.3390/pharmaceutics15020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, the functionalization of mesoporous silica nanoparticles (MSNs) with different types of responsive pore gatekeepers have shown great potential for the formulation of drug delivery systems (DDS) with minimal premature leakage and site-specific controlled release. New nanotechnological approaches have been developed with the objective of utilizing natural biopolymers as smart materials in drug delivery applications. Natural biopolymers are sensitive to various physicochemical and biological stimuli and are endowed with intrinsic biodegradability, biocompatibility, and low immunogenicity. Their use as biocompatible smart coatings has extensively been investigated in the last few years. This review summarizes the MSNs coating procedures with natural polysaccharides and protein-based biopolymers, focusing on their application as responsive materials to endogenous stimuli. Biopolymer-coated MSNs, which conjugate the nanocarrier features of mesoporous silica with the biocompatibility and controlled delivery provided by natural coatings, have shown promising therapeutic outcomes and the potential to emerge as valuable candidates for the selective treatment of various diseases.
Collapse
|
10
|
De Marco ML, Baaziz W, Sharna S, Devred F, Poleunis C, Chevillot-Biraud A, Nowak S, Haddad R, Odziomek M, Boissière C, Debecker DP, Ersen O, Peron J, Faustini M. High-Entropy-Alloy Nanocrystal Based Macro- and Mesoporous Materials. ACS NANO 2022; 16:15837-15849. [PMID: 36066922 DOI: 10.1021/acsnano.2c05465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition-property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of in situ characterization techniques; notably, in situ transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials.
Collapse
Affiliation(s)
- Maria Letizia De Marco
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Walid Baaziz
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - Sharmin Sharna
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - François Devred
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | | | - Sophie Nowak
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Ryma Haddad
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Mateusz Odziomek
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Cédric Boissière
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Damien P Debecker
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Ovidiu Ersen
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - Jennifer Peron
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Marco Faustini
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| |
Collapse
|
11
|
Zhao P, Cao Q, Yi W, Hao X, Li J, Zhang B, Huang L, Huang Y, Jiang Y, Xu B, Shan Z, Chen J. Facile and General Method to Synthesize Pt-Based High-Entropy-Alloy Nanoparticles. ACS NANO 2022; 16:14017-14028. [PMID: 35998311 DOI: 10.1021/acsnano.2c03818] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pt-based high-entropy-alloy nanoparticles (HEA-NPs) have excellent physical and chemical properties due to the diversity of composition, complexity of surface structure, high mixing entropy, and properties of nanoscale, and they are used in a wide range of catalytic applications such as catalytic ammoxidation, the electrolysis of water to produce hydrogen, CO2/CO reduction, and ethanol/methanol oxidation reaction. However, offering a facile, low-cost, and large-scale method for preparing Pt-based HEA-NPs still faces great challenges. In this study, we employed a spray drying technique combined with thermal decomposition reduction (SD-TDR) method to synthesize a single-phase solid solution from binary nanoparticles to denary Pt-based HEA-NPs containing 10 dissimilar elements loaded on carbon supports in an H2 atmosphere with a moderate heating rate (3 °C/min), thermal decomposition temperature (300-850 °C), duration time (30 min), and low cooling rate (5-10 °C/min). The Pt autocatalytic behavior was found and investigated, confirming that Pt element could decrease the reduction temperature of other metals via autocatalytic behavior. Therefore, using the feature of Pt autocatalytic behavior, we have achieved Pt-based HEA-NPs at a minimum temperature of 300 °C. We not only prepared a series of Pt-based HEA-NPs with targetable ingredient, size, and phase using the SD-TDR method but also proved the expandability of the SD-TDR technique by synthesizing Pt-based HEA-NPs loaded on different supports. Moreover, we investigated methanol oxidation reaction (MOR) on as-synthesized senary PtCoCuRuFeNi HEA-NPs, which presented superior electrocatalytic performance over commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Panchao Zhao
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, People's Republic of China
| | - Qigao Cao
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, People's Republic of China
| | - Wei Yi
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Jigang Li
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
| | - Bosheng Zhang
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, People's Republic of China
| | - Long Huang
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
| | - Yujie Huang
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, People's Republic of China
| | - Yunbo Jiang
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhiwei Shan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jialin Chen
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
| |
Collapse
|
12
|
Liu S, Dun C, Chen J, Rao S, Shah M, Wei J, Chen K, Xuan Z, Kyriakidou EA, Urban JJ, Swihart MT. A General Route to Flame Aerosol Synthesis and In Situ Functionalization of Mesoporous Silica. Angew Chem Int Ed Engl 2022; 61:e202206870. [DOI: 10.1002/anie.202206870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shuo Liu
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Chaochao Dun
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Junjie Chen
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Satyarit Rao
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Mihir Shah
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Jilun Wei
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Zhengxi Xuan
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
- RENEW Institute University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Eleni A. Kyriakidou
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
| | - Jeffrey J. Urban
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering University at Buffalo (SUNY) Buffalo NY 14260 USA
- RENEW Institute University at Buffalo (SUNY) Buffalo NY 14260 USA
| |
Collapse
|
13
|
An R, Liang Y, Deng R, Lei P, Zhang H. Hollow nanoparticles synthesized via Ostwald ripening and their upconversion luminescence-mediated Boltzmann thermometry over a wide temperature range. LIGHT, SCIENCE & APPLICATIONS 2022; 11:217. [PMID: 35817780 PMCID: PMC9273585 DOI: 10.1038/s41377-022-00867-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 05/10/2023]
Abstract
Upconversion nanoparticles (UCNPs) with hollow structures exhibit many fascinating optical properties due to their special morphology. However, there are few reports on the exploration of hollow UCNPs and their optical applications, mainly because of the difficulty in constructing hollow structures by conventional methods. Here, we report a one-step template-free method to synthesize NaBiF4:Yb,Er (NBFYE) hollow UCNPs via Ostwald ripening under solvothermal conditions. Moreover, we also elucidate the possible formation mechanism of hollow nanoparticles (HNPs) by studying the growth process of nanoparticles in detail. By changing the contents of polyacrylic acid and H2O in the reaction system, the central cavity size of NBFYE nanoparticles can be adjusted. Benefiting from the structural characteristics of large internal surface area and high surface permeability, NBFYE HNPs exhibit excellent luminescence properties under 980 nm near-infrared irradiation. Importantly, NBFYE hollow UCNPs can act as self-referenced ratiometric luminescent thermometers under 980 nm laser irradiation, which are effective over a wide temperature range from 223 K to 548 K and have a maximum sensitivity value of 0.0065 K-1 at 514 K. Our work clearly demonstrates a novel method for synthesizing HNPs and develops their applications, which provides a new idea for constructing hollow structure UCNPs and will also encourage researchers to further explore the optical applications of hollow UCNPs.
Collapse
Affiliation(s)
- Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, 341000, Ganzhou, Jiangxi, China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
14
|
Liu S, Dun C, Chen J, Rao S, Shah M, Wei J, Chen K, Xuan Z, Kyriakidou EA, Urban JJ, Swihart MT. A General Route to Flame Aerosol Synthesis and in situ Functionalization of Mesoporous Silica. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuo Liu
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Chaochao Dun
- Lawrence Berkeley National Laboratory: E O Lawrence Berkeley National Laboratory Molecular Foundry UNITED STATES
| | - Junjie Chen
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Satyarit Rao
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Mihir Shah
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Jilun Wei
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Kaiwen Chen
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | - Zhengxi Xuan
- University at Buffalo Chemical and Biological Engineering UNITED STATES
| | | | - Jeffrey J. Urban
- Lawrence Berkeley National Laboratory: E O Lawrence Berkeley National Laboratory Molecular Foundry UNITED STATES
| | - Mark T. Swihart
- University at Buffalo Chemical and Biological Engineering 308 Furnas Hall 14260-4200 Buffalo UNITED STATES
| |
Collapse
|
15
|
Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Lecacheux L, Sadoudi A, Duri A, Planchot V, Ruiz T. The role of Laplace pressure in the maximal weight of pendant drops. J Colloid Interface Sci 2022; 606:920-928. [PMID: 34487939 DOI: 10.1016/j.jcis.2021.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The value of the maximal weight of a pendant drop formed at the end of a syringe needle is lower than the intensity of the corresponding capillary force. The balance of the external forces applied to the maximal pendant drop must be completed by the overpressure generated by the piston of the syringe. Inside the drop, the Laplace pressure corresponds to this overpressure. EXPERIMENTS Pendant drops are made with three liquids and five different needle diameters. The influence of Laplace pressure on the maximal weight is experimentally highlighted by modulating the drop curvatures thanks to glass beads placed at the apex of the pendant drop. Their maximal weight and curvatures are measured by image analysis. FINDINGS Experiments confirm that the balance of external forces must be completed by the force acting on the syringe piston. The overpressure on the piston has an impact on the drops via the Laplace pressure. A master curve between the mean curvature and the maximal volume of the pendant drops is observed. This result allows to validate an expression of the maximal weight which integrates the Laplace pressure. This work contributes to a better understanding of the maximal pendant drop properties and beyond, of the capillary phenomenon.
Collapse
Affiliation(s)
- Laure Lecacheux
- UMR QualiSud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Univ. Avignon, Univ. La Réunion - 15 avenue Charles Flahault, Montpellier cedex 5 34093, France; UMR IATE 1208 INRAE/Montpellier SupAgro/Univ. Montpellier - 2 Place Pierre Viala, Montpellier cedex 1 34060, France.
| | - Abdelkrim Sadoudi
- UMR IATE 1208 INRAE/Montpellier SupAgro/Univ. Montpellier - 2 Place Pierre Viala, Montpellier cedex 1 34060, France.
| | - Agnès Duri
- UMR IATE 1208 INRAE/Montpellier SupAgro/Univ. Montpellier - 2 Place Pierre Viala, Montpellier cedex 1 34060, France.
| | - Véronique Planchot
- UMR IATE 1208 INRAE/Montpellier SupAgro/Univ. Montpellier - 2 Place Pierre Viala, Montpellier cedex 1 34060, France.
| | - Thierry Ruiz
- UMR QualiSud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Univ. Avignon, Univ. La Réunion - 15 avenue Charles Flahault, Montpellier cedex 5 34093, France.
| |
Collapse
|
17
|
Smeets V, Gaigneaux EM, Debecker DP. Titanosilicate Epoxidation Catalysts: A Review of Challenges and Opportunities. ChemCatChem 2022. [DOI: 10.1002/cctc.202101132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Valentin Smeets
- Institute of Condensed Matter and Nanosciences (IMCN) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1, Box L4.01.09 1348 Louvain-la-Neuve Belgium
| | - Eric M. Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1, Box L4.01.09 1348 Louvain-la-Neuve Belgium
| | - Damien P. Debecker
- Institute of Condensed Matter and Nanosciences (IMCN) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1, Box L4.01.09 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
18
|
Ruiz-González ML, Torres-Pardo A, González-Calbet JM. The Role of Transmission Electron Microscopy in the Early Development of Mesoporous Materials for Tissue Regeneration and Drug Delivery Applications. Pharmaceutics 2021; 13:2200. [PMID: 34959481 PMCID: PMC8708363 DOI: 10.3390/pharmaceutics13122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
For the last 20 years, silica-based mesoporous materials have provided a sound platform for the development of biomedical technology applied to tissue engineering and drug delivery. Their unique structural and textural characteristics, chiefly, the ordered distribution of homogeneous and tunable pores with high surface areas and large pore volume, and their excellent biocompatibility provide an excellent starting point for bone tissue regeneration on the mesoporous surface, and also to load species of interest inside the pores. Adequate control of the synthesis conditions and functionalization of the mesoporous surface are critical factors in the design of new systems that are suitable for use in specific medical applications. Simultaneously, the use of appropriate characterization techniques in the several stages of design and manufacture of mesoporous particles allows us to ascertain the textural, structural and compositional modifications induced during the synthesis, functionalization and post-in vitro assays processes. In this scenario, the present paper shows, through several examples, the role of transmission electron microscopy and associated spectroscopic techniques in the search for useful information in the early design stages of mesoporous systems, with application in the fields of tissue regeneration and drug delivery systems.
Collapse
Affiliation(s)
- María Luisa Ruiz-González
- Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.R.-G.); (A.T.-P.)
- ICTS ELECMI Centro Nacional de Microscopia Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Almudena Torres-Pardo
- Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.R.-G.); (A.T.-P.)
- ICTS ELECMI Centro Nacional de Microscopia Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. González-Calbet
- Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.L.R.-G.); (A.T.-P.)
- ICTS ELECMI Centro Nacional de Microscopia Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
19
|
Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021; 121:14349-14429. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.
Collapse
Affiliation(s)
- Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yonghui Deng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
20
|
Low-Temperature Atmospheric Pressure Plasma Processes for the Deposition of Nanocomposite Coatings. Processes (Basel) 2021. [DOI: 10.3390/pr9112069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Low-temperature atmospheric pressure (AP) plasma technologies have recently proven to offer a range of interesting opportunities for the preparation of a variety of nanocomposite (NC) coatings with different chemical compositions, structures, and morphologies. Since the late 2000s, numerous strategies have been implemented for the deposition of this intriguing class of coatings by using both direct and remote AP plasma sources. Interestingly, considerable progress has been made in the development of aerosol-assisted deposition processes in which the use of either precursor solutions or nanoparticle dispersions in aerosol form allows greatly widening the range of constituents that can be combined in the plasma-deposited NC films. This review summarizes the research published on this topic so far and, specifically, aims to present a concise survey of the developed plasma processes, with particular focus on their optimization as well as on the structural and functional properties of the NC coatings to which they provide access. Current challenges and opportunities are also briefly discussed to give an outlook on possible future research directions.
Collapse
|
21
|
Avci C, De Marco ML, Byun C, Perrin J, Scheel M, Boissière C, Faustini M. Metal-Organic Framework Photonic Balls: Single Object Analysis for Local Thermal Probing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104450. [PMID: 34486183 DOI: 10.1002/adma.202104450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Indexed: 05/24/2023]
Abstract
Due to their high porosity and chemical versatility, metal-organic frameworks (MOFs) exhibit physical properties appealing for photonic-based applications. While several MOF photonic structures have been reported, examples of applications thereof are mainly limited to chemical sensing. Herein, the range of application of photonic MOFs is extended to local thermal and photothermal sensing by integrating them into a new architecture: MOF photonic balls. Micrometric-sized photonic balls are made of monodispersed MOFs colloids that are self-assembled via spray-drying, a low-cost, green, and high-throughput method. The versatility of the process allows tuning the morphology and the composition of photonic balls made of several MOFs and composites with tailored optical properties. X-ray nanotomography and environmental hyperspectral microscopy enable analysis of single objects and their evolution in controlled atmosphere and temperature. Notably, in presence of vapors, the MOF photonic balls act as local, label-free temperature probes. Importantly, compared to other thermal probes, the temperature detection range of these materials can be adjusted "on-demand." As proof of concept, the photonic balls are used to determine local temperature profiles around a concentrated laser beam. More broadly, this work is expected to stimulate new research on the physical properties of photonic MOFs providing new possibilities for device fabrication.
Collapse
Affiliation(s)
- Civan Avci
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| | - Maria Letizia De Marco
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| | - Caroline Byun
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| | | | - Mario Scheel
- Synchrotron Soleil, Gif-sur-Yvette, 91192, France
| | - Cédric Boissière
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| | - Marco Faustini
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| |
Collapse
|
22
|
Aggrey P, Nartey M, Kan Y, Cvjetinovic J, Andrews A, Salimon AI, Dragnevski KI, Korsunsky AM. On the diatomite-based nanostructure-preserving material synthesis for energy applications. RSC Adv 2021; 11:31884-31922. [PMID: 35495528 PMCID: PMC9041881 DOI: 10.1039/d1ra05810j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
The present article overviews the current state-of-the-art and future prospects for the use of diatomaceous earth (DE) in the continuously expanding sector of energy science and technology. An eco-friendly direct source of silica and the production of silicon, diatomaceous earth possesses a desirable nano- to micro-structure that offers inherent advantages for optimum performance in existing and new applications in electrochemistry, catalysis, optoelectronics, and biomedical engineering. Silica, silicon and silicon-based materials have proven useful for energy harvesting and storage applications. However, they often encounter setbacks to their commercialization due to the limited capability for the production of materials possessing fascinating microstructures to deliver optimum performance. Despite many current research trends focusing on the means to create the required nano- to micro-structures, the high cost and complex, potentially environmentally harmful chemical synthesis techniques remain a considerable challenge. The present review examines the advances made using diatomaceous earth as a source of silica, silicon-based materials and templates for energy related applications. The main synthesis routes aimed at preserving the highly desirable naturally formed neat nanostructure of diatomaceous earth are assessed in this review that culminates with the discussion of recently developed pathways to achieving the best properties. The trend analysis establishes a clear roadmap for diatomaceous earth as a source material of choice for current and future energy applications.
Collapse
Affiliation(s)
- Patrick Aggrey
- Hierarchically Structured Materials, Center for Energy Science and Technology, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow Russia 121205
| | - Martinson Nartey
- Department of Materials Engineering, Kwame Nkrumah University of Science and Technology Private Mail Box Kumasi Ghana
| | - Yuliya Kan
- Hierarchically Structured Materials, Center for Energy Science and Technology, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow Russia 121205
| | - Julijana Cvjetinovic
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow Russia 121205
| | - Anthony Andrews
- Department of Materials Engineering, Kwame Nkrumah University of Science and Technology Private Mail Box Kumasi Ghana
| | - Alexey I Salimon
- Hierarchically Structured Materials, Center for Energy Science and Technology, Skolkovo Institute of Science and Technology Bolshoy Boulevard 30, bld. 1 Moscow Russia 121205
| | - Kalin I Dragnevski
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| |
Collapse
|
23
|
|
24
|
Vivian A, Soumoy L, Fusaro L, Louette P, Felten A, Fiorilli S, Debecker DP, Aprile C. The high activity of mesoporous Ga-SiO2 catalysts in the upgrading of glycerol to solketal explained by in-depth characterization. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nat Commun 2021; 12:3935. [PMID: 34168129 PMCID: PMC8225786 DOI: 10.1038/s41467-021-24181-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Combining high activity and stability, iridium oxide remains the gold standard material for the oxygen evolution reaction in acidic medium for green hydrogen production. The reasons for the higher electroactivity of amorphous iridium oxides compared to their crystalline counterpart is still the matter of an intense debate in the literature and, a comprehensive understanding is needed to optimize its use and allow for the development of water electrolysis. By producing iridium-based mixed oxides using aerosol, we are able to decouple the electronic processes from the structural transformation, i.e. Ir oxidation from IrO2 crystallization, occurring upon calcination. Full characterization using in situ and ex situ X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy allows to unambiguously attribute their high electrochemical activity to structural features and rules out the iridium oxidation state as a critical parameter. This study indicates that short-range ordering, corresponding to sub-2nm crystal size for our samples, drives the activity independently of the initial oxidation state and composition of the calcined iridium oxides. The origins of the superior catalytic activity of poorly crystallized Ir-based oxide material for the OER in acid is still under debate. Here, authors synthesize porous IrMo oxides to deconvolute the effect of Ir oxidation state from short-range ordering and show the latter to be a key factor.
Collapse
|
26
|
Nadal E, Milaniak N, Glenat H, Laroche G, Massines F. A new approach for synthesizing plasmonic polymer nanocomposite thin films by combining a gold salt aerosol and an atmospheric pressure low-temperature plasma. NANOTECHNOLOGY 2021; 32:175601. [PMID: 33470988 DOI: 10.1088/1361-6528/abdd60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The proof of the concept of a new, onestep and safe by design process to synthesize metal-polymer nanocomposites thin films on a large surface is presented. It is based on the injection of an aerosol of a solution of metal (gold) salts dissolved in a polymerizable solvent (isopropanol) into an argon atmospheric pressure dielectric barrier discharge. The main novelty of this method resides in the fact that the nanoparticles are formed in situ, inside the plasma reactor, in the gas phase. Consequently, the nanoparticle synthesis and deposition are concomitant with the solvent polymerization used to produce the matrix, which makes it possible to obtain homogeneous layers of non-agglomerated nanoparticles (NPs) with high NPs density. By toggling between low and high-frequency discharges, gold/polymer nanocomposites with different morphologies and optical properties are synthesized. The effect of the concentration of gold in the aerosol and the gas residence time in the plasma as well as the ratio of high and low-frequency discharge and their repetition rate are presented. The thin films are systematically characterized by AFM and UV-visible spectroscopy to analyze their morphologies along with their plasmonic resonances.
Collapse
Affiliation(s)
- Elie Nadal
- CNRS PROMES, Processes Materials Solar Energy Laboratory, Rambla de la Thermodynamique, F-66100 Perpignan, France
- University of Perpignan Via Domitia, UPVD, 52 Avenue Paul Alduy, F-66100, Perpignan, France
| | - Natalia Milaniak
- CNRS PROMES, Processes Materials Solar Energy Laboratory, Rambla de la Thermodynamique, F-66100 Perpignan, France
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avances, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1045, Avenue de la Médicine, Québec G1V 0A6, Québec, Canada
| | - Hervé Glenat
- CNRS PROMES, Processes Materials Solar Energy Laboratory, Rambla de la Thermodynamique, F-66100 Perpignan, France
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avances, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1045, Avenue de la Médicine, Québec G1V 0A6, Québec, Canada
| | - Françoise Massines
- CNRS PROMES, Processes Materials Solar Energy Laboratory, Rambla de la Thermodynamique, F-66100 Perpignan, France
| |
Collapse
|
27
|
Biswas P, Sen D, Bouwman W. Structural characterization of spray-dried microgranules by spin-echo small-angle neutron scattering. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Paris C, Karelovic A, Manrique R, Le Bras S, Devred F, Vykoukal V, Styskalik A, Eloy P, Debecker DP. CO 2 Hydrogenation to Methanol with Ga- and Zn-Doped Mesoporous Cu/SiO 2 Catalysts Prepared by the Aerosol-Assisted Sol-Gel Process*. CHEMSUSCHEM 2020; 13:6409-6417. [PMID: 32996706 DOI: 10.1002/cssc.202001951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The preparation of copper-based heterogeneous catalysts dedicated to the hydrogenation of CO2 to methanol typically relies on multi-step procedures carried out in batch. These steps are precisely tailored to introduce the active phase (Cu) and the promoters (e. g., zinc, gallium) onto a preformed support to maximize catalyst performance. However, each process step can be associated with the formation of waste and with the consumption of energy, thereby negatively impacting the environmental performance of the overall catalyst preparation procedure. Here, a direct and continuous production process is proposed for the synthesis of efficient catalysts for the CO2 -to-methanol reaction. Gallium- and zinc-promoted mesoporous Cu-SiO2 catalysts were prepared in one step by the aerosol-assisted sol-gel process. The catalysts consisted of spherical microparticles and featured high specific surface area and pore volume, with interconnected pores of about 6 nm. A strong promoting effect of Ga and Zn was highlighted, boosting the selectivity for methanol at the expense of CO. Upon calcination, it was shown that Cu species (initially trapped in the silica matrix) underwent a migration towards the catalyst surface and a progressive sintering. After optimization, the catalysts obtained via such direct, continuous, simple, and scalable route could compete with the best catalysts reported in the literature and obtained via multi-step approaches.
Collapse
Affiliation(s)
- Charlie Paris
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
- Current address: Cardiff Catalysis Institute (CCI), School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Alejandro Karelovic
- Carbon and Catalysis (CarboCat), Department of Chemical Engineering Faculty of Engineering, University of Concepcion Barrio Universitario s/n, Concepcion, Chile
| | - Raydel Manrique
- Carbon and Catalysis (CarboCat), Department of Chemical Engineering Faculty of Engineering, University of Concepcion Barrio Universitario s/n, Concepcion, Chile
| | - Solène Le Bras
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - François Devred
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - Vit Vykoukal
- Masaryk University, Department of Chemistry, Kotlarska 2, 61137, Brno, Czech Republic
- Masaryk University, CEITEC MU, Kamenice 5, 62500, Brno, Czech Republic
| | - Ales Styskalik
- Masaryk University, Department of Chemistry, Kotlarska 2, 61137, Brno, Czech Republic
| | - Pierre Eloy
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
29
|
Chen Z, Kuckling D, Tiemann M. Nanoporous aluminum oxide micropatterns prepared by hydrogel templating. NANOTECHNOLOGY 2020; 31:445601. [PMID: 32784272 DOI: 10.1088/1361-6528/aba710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micropatterned nanoporous aluminum oxide arrays are prepared on silicon wafer substrates by using photopolymerized poly(dimethylacrylamide) hydrogels as porogenic matrices. Hydrogel micropatterns are fabricated by spreading the prepolymer mixture on the substrate, followed by UV photopolymerization through a micropatterned mask. The hydrogel is covalently bonded to the substrate surface. Al2O3 is produced by swelling the hydrogel in a saturated aluminum nitrate solution and subsequent thermal conversion/calcination. As a result, micropatterned porous Al2O3 microdots with heights in µm range and large specific surface areas up to 274 m2 g-1 are obtained. Hence, the hydrogel fulfills a dual templating function, namely micropatterning and nanoporosity generation. The impact of varying the photopolymerization time on the properties of the products is studied. Samples are characterized by light and confocal laser scanning microscopy, scanning electron microscopy, energy-dispersive x-ray spectrometry, and Kr physisorption analysis.
Collapse
Affiliation(s)
- Zimei Chen
- Department of Chemistry - Organic and Macromolecular Chemistry, Paderborn University, Paderborn, Germany. Department of Chemistry - Inorganic Functional Materials, Paderborn University, Paderborn, Germany
| | | | | |
Collapse
|
30
|
Maurya D, Khaleghian S, Sriramdas R, Kumar P, Kishore RA, Kang MG, Kumar V, Song HC, Lee SY, Yan Y, Park JM, Taheri S, Priya S. 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles. Nat Commun 2020; 11:5392. [PMID: 33106481 PMCID: PMC7588488 DOI: 10.1038/s41467-020-19088-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
The transition of autonomous vehicles into fleets requires an advanced control system design that relies on continuous feedback from the tires. Smart tires enable continuous monitoring of dynamic parameters by combining strain sensing with traditional tire functions. Here, we provide breakthrough in this direction by demonstrating tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis. Ink of graphene based material was designed to directly print strain sensor for measuring tire-road interactions under varying driving speeds, normal load, and tire pressure. A secure wireless data transfer hardware powered by a piezoelectric patch is implemented to demonstrate self-powered sensing and wireless communication capability. Combined, this study significantly advances the design and fabrication of cost-effective smart tires by demonstrating practical self-powered wireless strain sensing capability.
Collapse
Affiliation(s)
- Deepam Maurya
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Seyedmeysam Khaleghian
- Department of Engineering Technology, Texas State University, San Marcos, TX, 78666, USA
| | - Rammohan Sriramdas
- Department of Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA
| | - Prashant Kumar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ravi Anant Kishore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, CO, 80401, USA
| | - Min Gyu Kang
- Department of Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA
| | - Vireshwar Kumar
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Computer Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Hyun-Cheol Song
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seul-Yi Lee
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yongke Yan
- Department of Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA
| | - Jung-Min Park
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Saied Taheri
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Tire Research (CenTiRe), Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Shashank Priya
- Department of Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
31
|
Kollofrath D, Geppert M, Polarz S. Copolymerization of Mesoporous Styrene-Bridged Organosilica Nanoparticles with Functional Monomers for the Stimuli-Responsive Remediation of Water. CHEMSUSCHEM 2020; 13:5100-5111. [PMID: 32662565 PMCID: PMC7540170 DOI: 10.1002/cssc.202001264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Indexed: 06/11/2023]
Abstract
For every mass product, there are problems associated with the resulting waste. Residues of hormones in urine cannot be removed sufficiently from wastewater, and this has undesired consequences. An ideal adsorbent would take up the impurity, enable a simple separation and recyclability. Polymer colloids with high affinity towards the drug, accessible porosity, high surface area, and stimuli-responsive properties would be candidates, but such a complex system does not exist. Here, porous vinyl-functionalized organosilica nanoparticles prepared from a styrene bridged sol-gel precursor act as monomers. Initiation of the polymerization at the pore walls and addition of functional monomers result in a special copolymer, which is covalently linked to the surface and covers it. An orthogonal modification of external surface was done by click attachment of a thermoresponsive polymer. The final core-shell system is able to remove quantitatively hydrophobic molecules such as the hormone progesterone from water. A change of temperature closes the pores and induces the aggregation of the particles. After separation one can reopen the particles and recycle them.
Collapse
Affiliation(s)
- Dennis Kollofrath
- Institute of Inorganic ChemistryLeibniz-University of HannoverCallinstrasse 930167HannoverGermany
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Marcel Geppert
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Sebastian Polarz
- Institute of Inorganic ChemistryLeibniz-University of HannoverCallinstrasse 930167HannoverGermany
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
32
|
Majerič P, Rudolf R. Advances in Ultrasonic Spray Pyrolysis Processing of Noble Metal Nanoparticles-Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3485. [PMID: 32784637 PMCID: PMC7476056 DOI: 10.3390/ma13163485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
In the field of synthesis and processing of noble metal nanoparticles, the study of the bottom-up method, called Ultrasonic Spray Pyrolysis (USP), is becoming increasingly important. This review analyses briefly the features of USP, to underline the physical, chemical and technological characteristics for producing nanoparticles and nanoparticle composites with Au and Ag. The main aim is to understand USP parameters, which are responsible for nanoparticle formation. There are two nanoparticle formation mechanisms in USP: Droplet-To-Particle (DTP) and Gas-To-Particle (GTP). This review shows how the USP process is able to produce Au, Ag/TiO2, Au/TiO2, Au/Fe2O3 and Ag/(Y0.95 Eu0.05)2O3 nanoparticles, and presents the mechanisms of formation for a particular type of nanoparticle. Namely, the presented Au and Ag nanoparticles are intended for use in nanomedicine, sensing applications, electrochemical devices and catalysis, in order to benefit from their properties, which cannot be achieved with identical bulk materials. The development of new noble metal nanoparticles with USP is a constant goal in Nanotechnology, with the objective to obtain increasingly predictable final properties of nanoparticles.
Collapse
Affiliation(s)
- Peter Majerič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Zlatarna Celje d.o.o., Kersnikova 19, 3000 Celje, Slovenia
| | - Rebeka Rudolf
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Zlatarna Celje d.o.o., Kersnikova 19, 3000 Celje, Slovenia
| |
Collapse
|
33
|
Hao P, Peng B, Shan BQ, Yang TQ, Zhang K. Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres. NANOSCALE ADVANCES 2020; 2:1792-1810. [PMID: 36132521 PMCID: PMC9416971 DOI: 10.1039/d0na00219d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 05/24/2023]
Abstract
The interest in the design and controlled fabrication of dendritic mesoporous silica nanospheres (DMSNs) emanates from their widespread application in drug-delivery carriers, catalysis and nanodevices owing to their unique open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas. A variety of synthesis strategies have been reported, but there is no basic consensus on the elucidation of the pore structure and the underlying formation mechanism of DMSNs. Although all the DMSNs show a certain degree of similarity in structure, do they follow the same synthesis mechanism? What are the exact pore structures of DMSNs? How did the bimodal pore size distributions kinetically evolve in the self-assembly? Can the relative fractions of small mesopores and dendritic large pores be precisely adjusted? In this review, by carefully analysing the structures and deeply understanding the formation mechanism of each reported DMSN and coupling this with our research results on this topic, we conclude that all the DMSNs indeed have the same mesostructures and follow the same dynamic self-assembly mechanism using microemulsion droplets as super templates in the early reaction stage, even without the oil phase.
Collapse
Affiliation(s)
- Pan Hao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Tai-Qun Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| |
Collapse
|
34
|
Li Y, Zhang X, Shang C, Wei X, Wu L, Wang X, Wu WD, Chen XD, Selomulya C, Zhao D, Wu Z. Scalable Synthesis of Uniform Mesoporous Aluminosilicate Microspheres with Controllable Size and Morphology and High Hydrothermal Stability for Efficient Acid Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21922-21935. [PMID: 32324368 DOI: 10.1021/acsami.0c04998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesoporous aluminosilicates are promising solid acid catalysts. They are also excellent supports for transition metal catalysts for various catalytic applications. Synthesis of mesoporous aluminosilicates with controllable particle size, morphology, and structure, as well as adjustable acidity and high hydrothermal stability, is very desirable. In this work, we demonstrate the scalable synthesis of Al-SBA-15 microspheres with controllable physicochemical properties by using the microfluidic jet-spray-drying technology. The productivity is up to ∼30 g of dried particles per nozzle per hour. The Al-SBA-15 microspheres possess uniform controllable micron sizes (27.5-70.2 μm), variable surface morphologies, excellent hydrothermal stability (in pure steam at 800 °C), high surface areas (385-464 m2/g), ordered mesopore sizes (5.4-5.8 nm), and desirable acid properties. The dependence of various properties, including particle size, morphology, porosity, pore size, acidity, and hydrothermal stability, of the obtained Al-SBA-15 microspheres on experimental parameters including precursor composition (Si/Al ratio and solid content) and processing conditions (drying and calcination temperatures) is established. A unique morphology transition from smooth to wrinkled microsphere triggered by control of the Si/Al ratio and solid content is observed. The particle formation and morphology-evolution mechanism are discussed. The Al-SBA-15 microspheres exhibit high acid catalytic performance for aldol-condensation reaction between benzaldehyde and ethyl alcohol with a high benzaldehyde conversion (∼56.3%), a fast pseudo-first-order reaction rate (∼0.1344 h-1), and a high cyclic stability, superior to the commercial zeolite acid (H-ZSM-5). Several influencing factors on the catalytic performance of the obtained Al-SBA-15 microspheres are also studied.
Collapse
Affiliation(s)
- Yunqing Li
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiangcheng Zhang
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Chao Shang
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiangru Wei
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Wu
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaoning Wang
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Winston Duo Wu
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiao Dong Chen
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Cordelia Selomulya
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dongyuan Zhao
- Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhangxiong Wu
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
35
|
Nirwan VP, Pandey S, Hey‐Hawkins E, Fahmi A. Hybrid 2D nanofibers based on poly(ethylene oxide)/polystyrene matrix and poly(ferrocenylphosphinoboranes) as functional agents. J Appl Polym Sci 2020. [DOI: 10.1002/app.49091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Viraj P. Nirwan
- Faculty of Technology and BionicsRhine‐Waal University of Applied Sciences Kleve Germany
- Aix‐Marseille University, CNRS, LP3 UMR 7341 Marseille Cedex 9 France
| | - Souvik Pandey
- Fakultät für Chemie und MineralogieInstitut für Anorganische Chemie Leipzig Germany
- Department of ChemistryJadavpur University Kolkata India
| | - Evamarie Hey‐Hawkins
- Fakultät für Chemie und MineralogieInstitut für Anorganische Chemie Leipzig Germany
| | - Amir Fahmi
- Faculty of Technology and BionicsRhine‐Waal University of Applied Sciences Kleve Germany
| |
Collapse
|
36
|
Wang HL, Hsu CY, Wu KC, Lin YF, Tsai DH. Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Lama M, Fernandes FM, Marcellan A, Peltzer J, Trouillas M, Banzet S, Grosbot M, Sanchez C, Giraud-Guille MM, Lataillade JJ, Coulomb B, Boissière C, Nassif N. Self-Assembled Collagen Microparticles by Aerosol as a Versatile Platform for Injectable Anisotropic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902224. [PMID: 31880410 DOI: 10.1002/smll.201902224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Extracellular matrices (ECM) rich in type I collagen exhibit characteristic anisotropic ultrastructures. Nevertheless, working in vitro with this biomacromolecule remains challenging. When processed, denaturation of the collagen molecule is easily induced in vitro avoiding proper fibril self-assembly and further hierarchical order. Here, an innovative approach enables the production of highly concentrated injectable collagen microparticles, based on collagen molecules self-assembly, thanks to the use of spray-drying process. The versatility of the process is shown by performing encapsulation of secretion products of gingival mesenchymal stem cells (gMSCs), which are chosen as a bioactive therapeutic product for their potential efficiency in stimulating the regeneration of a damaged ECM. The injection of collagen microparticles in a cell culture medium results in a locally organized fibrillar matrix. The efficiency of this approach for making easily handleable collagen microparticles for encapsulation and injection opens perspectives in active tissue regeneration and 3D bioprinted scaffolds.
Collapse
Affiliation(s)
- Milena Lama
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005, Paris, France
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 10 rue Vauquelin, F-75005, Paris, France
| | - Francisco M Fernandes
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005, Paris, France
| | - Alba Marcellan
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 10 rue Vauquelin, F-75005, Paris, France
| | - Juliette Peltzer
- Prof. J.-J. Lataillade, Unité mixte Inserm UMR-1197 - Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées, 1, rue du Lieutenant Raoul Batany, F-92141, Clamart, France
| | - Marina Trouillas
- Prof. J.-J. Lataillade, Unité mixte Inserm UMR-1197 - Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées, 1, rue du Lieutenant Raoul Batany, F-92141, Clamart, France
| | - Sébastien Banzet
- Prof. J.-J. Lataillade, Unité mixte Inserm UMR-1197 - Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées, 1, rue du Lieutenant Raoul Batany, F-92141, Clamart, France
| | - Marion Grosbot
- Prof. J.-J. Lataillade, Unité mixte Inserm UMR-1197 - Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées, 1, rue du Lieutenant Raoul Batany, F-92141, Clamart, France
| | - Clément Sanchez
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005, Paris, France
| | - Marie-Madeleine Giraud-Guille
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005, Paris, France
| | - Jean-Jacques Lataillade
- Prof. J.-J. Lataillade, Unité mixte Inserm UMR-1197 - Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées, 1, rue du Lieutenant Raoul Batany, F-92141, Clamart, France
| | - Bernard Coulomb
- Paris Research Cardiovascular Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM) U970, Paris-Descartes University, 56 rue Leblanc, F-75015, Paris, France
| | - Cédric Boissière
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005, Paris, France
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005, Paris, France
| |
Collapse
|
38
|
Abstract
In this review, the recent advances in the shaping of MOFs are overviewed, and some promising strategies recently developed are highlighted, including templated shaping, self-shaping, shaping on substrates, and shaping with sacrificial materials.
Collapse
Affiliation(s)
- Xiao-Min Liu
- Institute of Circular Economy
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yufeng Wu
- Institute of Circular Economy
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|
39
|
Smeets V, Baaziz W, Ersen O, Gaigneaux EM, Boissière C, Sanchez C, Debecker DP. Hollow zeolite microspheres as a nest for enzymes: a new route to hybrid heterogeneous catalysts. Chem Sci 2019; 11:954-961. [PMID: 34084349 PMCID: PMC8146638 DOI: 10.1039/c9sc04615a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023] Open
Abstract
In the field of heterogeneous catalysis, the successful integration of enzymes and inorganic catalysts could pave the way to multifunctional materials which are able to perform advanced cascade reactions. However, such combination is not straightforward, for example in the case of zeolite catalysts for which enzyme immobilization is restricted to the external surface. Herein, this challenge is overcome by developing a new kind of hybrid catalyst based on hollow zeolite microspheres obtained by the aerosol-assisted assembly of zeolite nanocrystals. The latter spheres possess open entry-ways for enzymes, which are then loaded and cross-linked to form cross-linked enzyme aggregates (CLEAs), securing their entrapment. This controlled design allows the combination of all the decisive features of the zeolite with a high enzyme loading. A chemo-enzymatic reaction is demonstrated, where the structured zeolite material is used both as a nest for the enzyme and as an efficient inorganic catalyst. Glucose oxidase (GOx) ensures the in situ production of H2O2 subsequently utilized by the TS-1 zeolite to catalyze the epoxidation of allylic alcohol toward glycidol. The strategy can also be used to entrap other enzymes or combination of enzymes, as demonstrated here with combi-CLEAs of horseradish peroxidase (HRP) and glucose oxidase. We anticipate that this strategy will open up new perspectives, leveraging on the spray-drying (aerosol) technique to shape microparticles from various nano-building blocks and on the entrapment of biological macromolecules to obtain new multifunctional hybrid microstructures.
Collapse
Affiliation(s)
- Valentin Smeets
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS - Université de Strasbourg 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS - Université de Strasbourg 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Eric M Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Cédric Boissière
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, PSL Research University 4 Place Jussieu F-75005 Paris France
| | - Clément Sanchez
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, PSL Research University 4 Place Jussieu F-75005 Paris France
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
40
|
Li R, Yang Y, Sun N, Kuai L. Mesoporous Cu-Ce-O x Solid Solutions from Spray Pyrolysis for Superior Low-Temperature CO Oxidation. Chemistry 2019; 25:15586-15593. [PMID: 31574171 DOI: 10.1002/chem.201903680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/10/2022]
Abstract
Development of Pt group metal-free catalysts for low-temperature CO oxidation remains critical. In this work, active and stable mesoporous Cu-Ce-Ox solid solutions are prepared by using spray pyrolysis. The specific surface areas and pore volumes reach as high as 170 m2 g-1 and 0.24 cm3 g-1 , respectively. The results of CO oxidation study suggest that (1) the catalyst obtained by spray pyrolysis possesses much higher activity than those made by co-precipitation, sol-gel, and hydrothermal methods; (2) the optimal Cu0.2 -Ce0.8 -Ox solid solution presents a reactivity over 28 times that of both single-component CuO and CeO2 at 70 °C. Based on the study of pure-phase Cu-Ce-Ox solid solutions by selective leaching of segregated CuOx species, the active center for CO oxidation is confirmed as the bimetallic Cu-Ce-O site, whereas the individual CuOx particles not only act as spectators but also block the active Cu-Ce-O sites. A low apparent activation energy of approximately 48 kJ mol-1 is detected for CO oxidation at the Cu-Ce-O site, making Cu-Ce-Ox solid solutions able to present high activity at low temperature. Furthermore, the Cu-Ce-Ox catalysts exhibit excellent stability and thermal tolerance toward CO oxidation.
Collapse
Affiliation(s)
- Rengui Li
- School of Biological and Chemical Engineering, the Key Laboratory of Renewable Energy Materials & Substance Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, P.R. China
| | - Yixuan Yang
- School of Biological and Chemical Engineering, the Key Laboratory of Renewable Energy Materials & Substance Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, P.R. China
| | - Na Sun
- School of Biological and Chemical Engineering, the Key Laboratory of Renewable Energy Materials & Substance Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, P.R. China
| | - Long Kuai
- School of Biological and Chemical Engineering, the Key Laboratory of Renewable Energy Materials & Substance Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, P.R. China
| |
Collapse
|
41
|
Nandiyanto ABD, Ogi T, Wang WN, Gradon L, Okuyama K. Template-assisted spray-drying method for the fabrication of porous particles with tunable structures. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.08.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Park JS, Kim JK, Hong JH, Cho JS, Park SK, Kang YC. Advances in the synthesis and design of nanostructured materials by aerosol spray processes for efficient energy storage. NANOSCALE 2019; 11:19012-19057. [PMID: 31410433 DOI: 10.1039/c9nr05575d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increasing demand for energy storage has motivated the search for highly efficient electrode materials for use in rechargeable batteries with enhanced energy density and longer cycle life. One of the most promising strategies for achieving improved battery performance is altering the architecture of nanostructured materials employed as electrode materials in the energy storage field. Among numerous synthetic methods suggested for the fabrication of nanostructured materials, aerosol spray techniques such as spray pyrolysis, spray drying, and flame spray pyrolysis are reliable, as they are facile, cost-effective, and continuous processes that enable the synthesis of nanostructured electrode materials with desired morphologies and compositions with controlled stoichiometry. The post-treatment of spray-processed powders enables the fabrication of oxide, sulfide, and selenide nanostructures hybridized with carbonaceous materials including amorphous carbon, reduced graphene oxide, carbon nanotubes, etc. In this article, recent progress in the synthesis of nanostructured electrode materials by spray processes and their general formation mechanisms are discussed in detail. A brief introduction to the working principles of each spray process is given first, and synthetic strategies for the design of electrode materials for lithium-ion, sodium-ion, lithium-sulfur, lithium-selenium, and lithium-oxygen batteries are discussed along with some examples. This analysis sheds light on the synthesis of nanostructured materials by spray processes and paves the way toward the design of other novel and advanced nanostructured materials for high performance electrodes in rechargeable batteries of the future.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jin Koo Kim
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jeong Hoo Hong
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Seung-Keun Park
- Department of Chemical Engineering, Kongju National University, Budae-dong 275, Cheonan, Chungnam 314-701, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| |
Collapse
|
43
|
Sun YA, Chen LT, Hsu SY, Hu CC, Tsai DH. Silver Nanoparticles-Decorating Manganese Oxide Hybrid Nanostructures for Supercapacitor Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14203-14212. [PMID: 31596591 DOI: 10.1021/acs.langmuir.9b02409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A facile aerosol-based synthetic approach is demonstrated for the fabrication of silver-manganese oxide (Ag-MnOx) and cetyltrimethylammonium bromide (CTAB)-templated silver-manganese oxide (c-Ag-MnOx) hybrid nanostructures as the positive electrode materials of supercapacitors. Through gas-phase evaporation-induced self-assembly, silver nanoparticles are homogeneously decorated in the hybrid nanostructure to create a conductive path at the interface of the cluster of MnOx crystallites. The utilization of the capacitance of MnOx increases by the addition of Ag nanoparticles (>2 times for Ag-MnOx and ∼1.7 times for c-Ag-MnOx). An optimal specific capacitance is achieved when the concentration of the silver precursor (CAg) is 0.5 wt %, 118 F g-1 for Ag-MnOx, and 154 F g-1 for c-Ag-MnOx at a specific current of 1 A g-1. The enhanced supercapacitive performance by the addition of CTAB at low CAg is attributed to the increased surface area (>19.4%) for electrochemical reactions. The prototype method with mechanistic understanding demonstrated in this study shows promise for the fabrication of a variety of MnOx-based hybrid nanostructures for supercapacitor applications.
Collapse
Affiliation(s)
- Yu-An Sun
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| | - Li-Ting Chen
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| | - Sheng-Yaw Hsu
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| | - Chi-Chang Hu
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering , National Tsing-Hua University , Hsinchu 30013 , Taiwan , R.O.C
| |
Collapse
|
44
|
Chang HY, Lai GH, Tsai DH. Aerosol route synthesis of Ni-CeO2-Al2O3 hybrid nanoparticle cluster for catalysis of reductive amination of polypropylene glycol. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Li B, Zeng HC. Architecture and Preparation of Hollow Catalytic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801104. [PMID: 30160321 DOI: 10.1002/adma.201801104] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Indexed: 05/24/2023]
Abstract
Since pioneering work done in the late 1990s, synthesis of functional hollow materials has experienced a rapid growth over the past two decades while their applications have been proven to be advantageous across many technological fields. In the field of heterogeneous catalysis, the development of micro- and nanoscale hollow materials as catalytic devices has also yielded promising results, because of their higher activity, stability, and selectivity. Herein, the architecture and preparation of these catalysts with tailorable composition and morphology are reviewed. First, synthesis of hollow materials is introduced according to the classification of template mediated, template free, and combined approaches. Second, different architectural designs of hollow catalytic devices, such as those without functionalization, with active components supported onto hollow materials, with active components incorporated within porous shells, and with active components confined within interior cavities, are evaluated respectively. The observed catalytic performances of this new class of catalysts are correlated to structural merits of individual configuration. Examples that demonstrate synthetic approaches and architected configurations are provided. Lastly, possible future directions are proposed to advance this type of hollow catalytic devices on the basis of our personal perspectives.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| |
Collapse
|
46
|
Wu Z, Waldron K, Zhang X, Li Y, Wu L, Wu WD, Chen XD, Zhao D, Selomulya C. Spray-drying water-based assembly of hierarchical and ordered mesoporous silica microparticles with enhanced pore accessibility for efficient bio-adsorption. J Colloid Interface Sci 2019; 556:529-540. [PMID: 31473542 DOI: 10.1016/j.jcis.2019.08.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/05/2023]
Abstract
The fast and scalable spray-drying-assisted evaporation-induced self-assembly (EISA) synthesis of hierarchically porous SBA-15-type silica microparticles from a water-based system is demonstrated. The SBA-15-type silica microparticles has bowl-like shapes, uniform micro-sizes (∼90 µm), large ordered mesopores (∼9.5 nm), hierarchical meso-/macropores (20-100 nm) and open surfaces. In the synthesis, soft- and hard-templating approaches are combined in a single rapid drying process with a non-ionic tri-block copolymer (F127) and a water-insoluble polymer colloid (Eudragit RS, 120 nm) as the co-templates. The RS polymer colloid plays three important roles. First, the RS nanoparticles can be partially dissolved by in-situ generated ethanol to form RS polymer chains. The RS chains swell and modulate the hydrophilic-hydrophobic balance of F127 micelles to allow the formation of an ordered mesostructure with large mesopore sizes. Without RS, only worm-like mesostructure with much smaller mesopore sizes can be formed. Second, part of the RS nanoparticles plays a role in templating the hierarchical pores distributed throughout the microparticles. Third, part of the RS polymer forms surface "skins" and "bumps", which can be removed by calcination to enable a more open surface structure to overcome the low pore accessibility issue of spray-dried porous microparticles. The obtained materials have high surface areas (315-510 m2 g-1) and large pore volumes (0.64-1.0 cm3 g-1), which are dependent on RS concentration, HCl concentration, silica precursor hydrolysis time and drying temperature. The representative materials are promising for the adsorption of lysozyme. The adsorption occurs at a >three-fold faster rate, in a five-fold larger capacity (an increase from 20 to 100 mg g-1) and without pore blockage compared with the adsorption of lysozyme onto spray-dried microparticles of similar physicochemical properties obtained without the use of RS.
Collapse
Affiliation(s)
- Zhangxiong Wu
- Particle Technology Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu 215123, PR China; Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia.
| | - Kathryn Waldron
- Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia
| | - Xiangcheng Zhang
- Particle Technology Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu 215123, PR China
| | - Yunqing Li
- Particle Technology Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu 215123, PR China
| | - Lei Wu
- Particle Technology Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu 215123, PR China
| | - Winston Duo Wu
- Particle Technology Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu 215123, PR China
| | - Xiao Dong Chen
- Particle Technology Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou City, Jiangsu 215123, PR China
| | - Dongyuan Zhao
- Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, PR China; Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia
| | - Cordelia Selomulya
- Department of Chemical Engineering, Monash University, Clayton Campus, Victoria 3800, Australia.
| |
Collapse
|
47
|
Kim JK, Jeong SY, Lim SH, Oh JH, Park S, Cho JS, Kang YC. Recent Advances in Aerosol‐Assisted Spray Processes for the Design and Fabrication of Nanostructured Metal Chalcogenides for Sodium‐Ion Batteries. Chem Asian J 2019; 14:3127-3140. [DOI: 10.1002/asia.201900751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Koo Kim
- Department of Materials Science and EngineeringKorea University Anam-dong Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Sun Young Jeong
- Department of Engineering ChemistryChungbuk National University Chungdae-ro 1, Seowon-gu Cheongju Chungbuk 361-763 Republic of Korea
| | - Sae Hoon Lim
- Department of Materials Science and EngineeringKorea University Anam-dong Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Jang Hyeok Oh
- Department of Engineering ChemistryChungbuk National University Chungdae-ro 1, Seowon-gu Cheongju Chungbuk 361-763 Republic of Korea
| | - Seung‐Keun Park
- Department of Chemical EngineeringKongju National University Budae-dong 275 Cheonan, Chungnam 314-701 Republic of Korea
| | - Jung Sang Cho
- Department of Engineering ChemistryChungbuk National University Chungdae-ro 1, Seowon-gu Cheongju Chungbuk 361-763 Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and EngineeringKorea University Anam-dong Seongbuk-gu Seoul 136-713 Republic of Korea
| |
Collapse
|
48
|
Riahinasab ST, Keshavarz A, Melton CN, Elbaradei A, Warren GI, Selinger RLB, Stokes BJ, Hirst LS. Nanoparticle-based hollow microstructures formed by two-stage nematic nucleation and phase separation. Nat Commun 2019; 10:894. [PMID: 30796213 PMCID: PMC6385213 DOI: 10.1038/s41467-019-08702-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Rapid bulk assembly of nanoparticles into microstructures is challenging, but highly desirable for applications in controlled release, catalysis, and sensing. We report a method to form hollow microstructures via a two-stage nematic nucleation process, generating size-tunable closed-cell foams, spherical shells, and tubular networks composed of closely packed nanoparticles. Mesogen-modified nanoparticles are dispersed in liquid crystal above the nematic-isotropic transition temperature (TNI). On cooling through TNI, nanoparticles first segregate into shrinking isotropic domains where they locally depress the transition temperature. On further cooling, nematic domains nucleate inside the nanoparticle-rich isotropic domains, driving formation of hollow nanoparticle assemblies. Structural differentiation is controlled by nanoparticle density and cooling rate. Cahn-Hilliard simulations of phase separation in liquid crystal demonstrate qualitatively that partitioning of nanoparticles into isolated domains is strongly affected by cooling rate, supporting experimental observations that cooling rate controls aggregate size. Microscopy suggests the number and size of internal voids is controlled by second-stage nucleation.
Collapse
Affiliation(s)
- Sheida T Riahinasab
- Department of Physics, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Amir Keshavarz
- Department of Chemistry & Chemical Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Charles N Melton
- Department of Physics, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Ahmed Elbaradei
- Department of Physics, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Gabrielle I Warren
- Department of Chemistry & Chemical Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | | | - Benjamin J Stokes
- Department of Chemistry & Chemical Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Linda S Hirst
- Department of Physics, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.
| |
Collapse
|
49
|
Xu M, Yu Q, Liu Z, Lv J, Lian S, Hu B, Mai L, Zhou L. Tailoring porous carbon spheres for supercapacitors. NANOSCALE 2018; 10:21604-21616. [PMID: 30457149 DOI: 10.1039/c8nr07560c] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The last decade has witnessed significant breakthroughs in the synthesis of porous carbon spheres (PCSs). This Review provides an updated summarization on the controlled synthesis of PCSs for supercapacitors. The synthetic methodologies can be generally categorized into (i) hard templating, (ii) soft templating, (iii) the modified Stöber method, (iv) hydrothermal carbonization (HTC), and (v) aerosol-assisted methods. The obtained PCSs include microporous/mesoporous/macroporous carbon spheres, single-/multi-shelled hollow carbon spheres, and yolk@shell carbon spheres. The structure-electrochemical performance correlation is discussed. Finally, the future research directions on the rational design of PCSs for supercapacitors are predicted.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Qiang Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhenhui Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Jianshuai Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Sitian Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Bin Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
50
|
Ledbetter AD, Shekhani HN, Binkley MM, Meacham JM. Tuning the Coupled-Domain Response for Efficient Ultrasonic Droplet Generation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1893-1904. [PMID: 30047875 DOI: 10.1109/tuffc.2018.2859195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acoustic microfluidic devices encompass mechanical, fluidic, and electromechanical domains. Complicated multidomain interactions require the consideration of each individual material domain, as well as coupled behaviors to achieve optimal performance. Herein, we report the co-optimization of components comprising an ultrasonic droplet generator to achieve the high-efficiency liquid atomization for operation in the 0.5-2.5-MHz frequency range. Due to the complexity of the real system, simplified 2-D representations of the device are investigated using an experimentally validated finite element analysis model. Ejection modes (i.e., frequencies at which droplet generation is predicted) are distinguished by maxima in the local pressure at the tips of an array of triangular nozzles. Resonance behaviors of the transducer assembly and fluid-filled chamber are examined to establish optimal geometric combinations concerning the chamber pressure field. The analysis identifies how domain geometries affect pressure field uniformity, broadband operation, and tip pressure amplitude. Lower frequency modes are found to focus the acoustic energy at the expense of field uniformity within the nozzle array. Resonance matching yields a nearly threefold increase in maximum attainable tip pressure amplitude. Significantly, we establish a set of design principles for these complex devices, which resembles a classical half-wave transducer, quarter-wave matching layer, and half-wave chamber layered system.
Collapse
|