1
|
Dou B, Shen H, Li Z, Cheng H, Wang P. A chemically modified DNAzyme-based electrochemical sensor for binary and highly sensitive detection of reactive oxygen species. Chem Sci 2025; 16:3470-3478. [PMID: 39867952 PMCID: PMC11756597 DOI: 10.1039/d4sc05512h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/08/2024] [Indexed: 01/28/2025] Open
Abstract
Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge. In this study, we address this challenge by integrating chemically modified DNAzyme probes with a functionalized metal-organic framework (MOF) to create an efficient electrochemical sensing platform for the binary detection of ROS. ROS targets would activate the DNAzyme cleavage activity by removing the phenylboronate (BO) and phosphorothioate (PS) modifications, leading to the controlled release of doxorubicin (DOX) and methylene blue (MB) enclosed within MOF nanocomposites. This process generates two distinct voltammetric current peaks, with their potentials and intensities reflecting the identity and concentration of the ROS targets. The sensor demonstrates simultaneous detection of multiple ROS (H2O2 and HClO) produced by cancer cells with high sensitivity across a broad linear range of 1 to 200 nM and a low detection limit in the sub-nanomolar range. The design strategies behind the developed ROS sensing system could also be exploited to create other biosensors with highly sensitive and binary detection to promote clinical research and revolutionize disease diagnostics.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
| | - Hui Shen
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
| | - Zhimin Li
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, State College PA 16802 USA
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
| |
Collapse
|
2
|
Zhao S, Yue Z, Zhu D, Harberts J, Blick RH, Zierold R, Lisdat F, Parak WJ. Quantum Dot/TiO 2 Nanocomposite-Based Photoelectrochemical Sensor for Enhanced H 2O 2 Detection Applied for Cell Monitoring and Visualization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401703. [PMID: 39210661 DOI: 10.1002/smll.202401703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
This work exploits the possibility of using CdSe/ZnS quantum dot (QD)-electrodes to monitor the metabolism of living cells based on photoelectrochemical (PEC) measurements. To realize that, the PEC setup is improved with respect to an enhanced photocurrent signal, better stability, and an increased signal-to-noise ratio, but also for a better biocompatibility of the sensor surface on which cells have been grown. To achieve this, a QD-TiO2 heterojunction is introduced with the help of atomic layer deposition (ALD). The heterojunction reduces the charge carrier recombination inside the semiconductor nanoparticles and improves the drift behavior. The PEC performance is carefully analyzed by adjusting the TiO2 thickness and combining this strategy with multilayer immobilizations of QDs. The optimal thickness of this coating is ≈5 nm; here, photocurrent generation can be enhanced significantly (e.g., for a single QD layer electrode by more than one order of magnitude at 0 V vs Ag/AgCl). The resulting optimized electrode is used for hydrogen peroxide (H2O2) sensing with a good sensitivity down to µmolar concentrations, reusability, stability, response rate, and repeatability. Finally, the sensing system is applied to monitor the activity of cells directly grown on top of the electrode surface.
Collapse
Grants
- F2021203102 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- C20210324 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- F2023203085 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- F2024203033 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- ZD2022108 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- 236Z1705G Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- China Scholarship Council
- Deutsche Forschungsgemeinschaft
- EXC 2056 Cluster of Excellence "Advanced Imaging of Matter"
- 390715994 Cluster of Excellence "Advanced Imaging of Matter"
- 192346071 the SFB986 "Tailor-Made Multi-Scale Materials Systems"
- 61871240 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 30071, China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jann Harberts
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, 3168, VIC, Australia
| | - Robert H Blick
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| | - Robert Zierold
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Wildau, 15745, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| |
Collapse
|
3
|
Sahar S, Zeb A, Mao Z, Xu AW, Wang W. PBA-Derived Heteroatom-Doped Mesoporous Graphitic Spheroids as Peroxidase Nanozyme for In Vitro Tumor Cells Detection. ACS APPLIED BIO MATERIALS 2024; 7:1778-1789. [PMID: 38437514 DOI: 10.1021/acsabm.3c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Inspired by the two kinds of naturally occurring peroxidases (POD) with vanadium or heme (iron)-based active catalytic centers, we have developed a dual metal-based nanozyme with dual V and Fe-based active catalytic centers. Co-doping of graphene with heteroatoms has a synergistic effect on the catalytic properties of the nanomaterial as the distances of migration of the substrates drastically reduce. However, a few studies have reported the codoping of heterometallic elements in the graphene structure due to the complexity of the synthesis procedures. Herein, we report the synthesis of in situ doped bimetallic VNFe@C mesoporous graphitic spheroids nanozyme via pyrolysis without the assistance of any template assisted method. The Prussian-blue analog-based precursor material was synthesized by a facile one-step low-temperature synthesis procedure. The bimetallic spheroids showed an excellent affinity toward H2O2, with a Km value of 0.26 mM when compared to 0.436 for the natural POD, which is much better than the natural POD, which was utilized to detect tumor cells in vitro through the intracellular H2O2 produced by these cells under high oxidative stress. The VNFe@C mesoporous spheroids generate dual reactive oxygen species, including the •OH and •O2H- radicals, in the presence of H2O2, which are responsible for the POD-like activity of these nanozymes, while the bimetallic V/Fe doping plays a synergistic role in the enhancement of the activity of codoped graphitic spheroids.
Collapse
Affiliation(s)
- Shafaq Sahar
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Akif Zeb
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha 410082, China
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| |
Collapse
|
4
|
Shi Z, Li Y, Wu X, Chen B, Sun W, Guo C, Li CM. Integrated Sandwich-Paper 3D Cell Sensing Device to In Situ Wirelessly Monitor H 2O 2 Released from Living Cells. Anal Chem 2024. [PMID: 38324759 DOI: 10.1021/acs.analchem.3c05639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Point-of-care testing (POCT) has attracted great interest because of its prominent advantages of rapidness, precision, portability, and real-time monitoring, thus becoming a powerful biomedical device in early clinical diagnosis and convenient medical treatments. However, its complicated manufacturing process and high expense severely impede mass production and broad applications. Herein, an innovative but inexpensive integrated sandwich-paper three-dimensional (3D) cell sensing device is fabricated to in situ wirelessly detect H2O2 released from living cells. The paper-based electrochemical sensing device was constructed by a sealed sandwiched bottom plastic film/fiber paper/top hole-centered plastic film that was printed with patterned electrodes. A new (Fe, Mn)3(PO4)2/N-doped carbon nanorod was developed and immobilized on the sensing carbon electrode while cell culture solution filled the exposed fiber paper, allowing living cells to grow on the fiber paper surrounding the electrode. Due to the significantly shortening diffusion distance to access the sensing sites by such a unique device and a rationally tuned ratio of Fe2+/Mn2+, the device exhibits a fast response time (0.2 s), a low detection limit (0.4 μM), and a wide detection range (2-3200 μM). This work offers great promise for a low-cost and highly sensitive POCT device for practical clinic diagnosis and broad POCT biomedical applications.
Collapse
Affiliation(s)
- Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yunpeng Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| |
Collapse
|
5
|
Jiang N, Qian L, Peng Q, Zhang S, Yue W. Fluorescent sensor based on PtS 2-PEG nanosheets with peroxidase-like activity for intracellular hydrogen peroxide detection and imaging. Anal Chim Acta 2023; 1259:341179. [PMID: 37100474 DOI: 10.1016/j.aca.2023.341179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Hydrogen peroxide (H2O2) is produced in living organisms and is involved in a variety of redox-regulated processes. Therefore, the detection of H2O2 is important for tracing the molecular mechanisms of some biological events. Here, we demonstrated for the first time the peroxidase activity of PtS2-PEG NSs under the physiological conditions. PtS2 NSs were synthesized by mechanical exfoliation followed by functionalization with polyethylene glycol amines (PEG-NH2) to improve their biocompatibility and physiological stability. Fluorescence was generated by catalyzing the oxidation of o-phenylenediamine (OPD) by H2O2 in the presence of the PtS2 NSs. The proposed sensor had a limit of detection (LOD) of 248 nM and a detection range of 0.5-50 μM in the solution state, which was better than or comparable to previous reports in the literature. The developed sensor was further applied for the detection of H2O2 released from cells as well as for imaging studies. The results show that the sensor is promising for future applications in clinical analysis and pathophysiology.
Collapse
Affiliation(s)
- Nian Jiang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China
| | - Ling Qian
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China
| | - Qiang Peng
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China
| | - Shuqi Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing, 211198, PR China.
| |
Collapse
|
6
|
Guo G, Xu SH, Du YT, Jiang TM, Song JL, Yang ZQ, Gao YJ. Potassium cobalt hexacyanoferrate as a peroxidase mimic for electrochemical immunosensing of Lactobacillus rhamnosus GG. Talanta 2023; 264:124746. [PMID: 37285699 DOI: 10.1016/j.talanta.2023.124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In this paper, the potassium cobalt hexacyanoferrate (II), K2CoFe(CN)6, with peroxidase-like activity was used for the fabrication of a novel label-free Lactobacillus rhamnosus GG (LGG) electrochemical immunosensor. The K2CoFe(CN)6 nanocubes were made by a simple hydrothermal method and followed by low-temperature calcination. In addition to structural characterization, the peroxidase-mimicking catalytic property of the material was confirmed by a chromogenic reaction. It is known that H2O2 can oxidize electroactive thionine molecules under the catalysis of horseradish peroxidase (HRP). In this nanozyme-based electrochemical immunoassay, due to the steric hindrance, the formation of immune-complex of LGG and LGG antibody on the modified GCE inhibits the catalytic activity of the peroxidase mimics of K2CoFe(CN)6 and thus reduced the current signal. Therefore, the developed electrochemical immunosensor achieved quantitative detection of LGG. Under optimal conditions, the linear range of the sensor was obtained from 101 to 106 CFU mL-1 with a minimum detection limit (LOD) of 12 CFU mL-1. Furthermore, the immunosensor was successfully applied in the quantitative detection of LGG in dairy product samples with recoveries ranging from 93.2% to 106.8%. This protocol presents a novel immunoassay method, which provides an alternative implementation pathway for the quantitative detection of microorganisms.
Collapse
Affiliation(s)
- Ge Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Su-Hui Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi-Tian Du
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Tie-Min Jiang
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin 541004, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, Guilin Medical University, Guilin, Guangxi, 541004, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
7
|
Peng M, Wang J, Li Z, Ren G, Li K, Gu C, Lin Y. Three-dimensional flexible and stretchable gold foam scaffold for real-time electrochemical sensing in cells and in vivo. Talanta 2023; 253:123891. [PMID: 36095938 DOI: 10.1016/j.talanta.2022.123891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Compared with typical two-dimensional electrodes, the three-dimensional (3D) cell culture platform can simulate the real cell survival environment for cell growth to accurately reproduce cell functions. Moreover, considering that living cells are exposed to various of mechanical force in the microenvironment, the construction of 3D electrodes with excellent flexible, stretchable, and biocompatibility is of great significance to real-time monitor mechanically evoked biomolecule release from cells. Herein, we demonstrated a straightforward and effective three-step approach to fabricate three-dimensional flexible and stretchable gold foam scaffold (3D Au foam scaffold) for construction of 3D cell culture integrated electrochemical sensing platform. The excellent biological and electrical properties of Au nanostructures and porous networks of the 3D scaffold endow the platform with desirable biocompatibility and sensitive electrochemical sensing performance. As a proof of concept, the 3D Au foam scaffold functionalized with cobalt based nanocubes (Co NCs/Au foam scaffold) was validated to provide 3D culture for human umbilical vein endothelial cells (HUVECs), and synchronously real-time monitor superoxide anion (O2•-) released by HUVECs under mechanical stretching. Furthermore, 3-mercaptopropionic acid (3-MPA) modified 3D Au foam (3-MPA/Au foam scaffold) was successfully used for real-time monitoring of catecholamines in rat brain. The results demonstrate the great potential of this 3D Au foam scaffold for real-time electrochemical monitoring biomolecules in vitro and in vivo, providing convenience for future research on mechanotransduction relevant processes.
Collapse
Affiliation(s)
- Meihong Peng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jialu Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zaoming Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chaoyue Gu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
8
|
2D Co 3O 4 modified by IrO 2 nanozyme for convenient detection of aqueous Fe 2+ and intercellular H 2O 2. Mikrochim Acta 2022; 190:1. [PMID: 36456757 DOI: 10.1007/s00604-022-05582-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
A portable sensor for visual monitoring of Fe2+ and H2O2, two-dimensional Co3O4 modified by nano-IrO2 (IrO2@2D Co3O4) was prepared in this work, for the first time, with the help of microwave radiation at 140 °C, which was further stabilized onto common test strips. The present IrO2@2D Co3O4 possessed superior dual-function enzyme-like activity with low toxicity and excellent biocompatibility. Especially, trace Fe2+ and H2O2 could exclusively alter their enzyme-like catalytic activity with discriminating hyperchromic or hypochromic effect, i.e., from blue to colorless or to dark blue for both IrO2@2D Co3O4 dispersion and its functionalized test strips. The linear regression equations were A652 = 0.5940 - 0.00041 cFe2+ (10-8 M, R2 = 0.9927) for Fe2+ and ∆A652 = 0.0023 cH2O2 + 0.00025 (10-7 M, R2 = 0.9982) for H2O2, respectively. When applied to visual monitoring of aqueous Fe2+ and intercellular H2O2, the recoveries were 101.2 ~ 102.5% and 95.8 ~ 103.7% with detection limits of 1.25 × 10-8 mol/L and 1.02 × 10-7 mol/L, respectively, far below the permitted values in drinking water set by the World Health Organization. The mechanisms for the enhancing enzyme-mimetic activity of IrO2@2D Co3O4 and its selective responses to Fe2+ and H2O2 were investigated in detail.
Collapse
|
9
|
Yu Y, Pan M, Peng J, Hu D, Hao Y, Qian Z. A review on recent advances in hydrogen peroxide electrochemical sensors for applications in cell detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Jiang M, Wang M, Lai W, Zhang M, Ma C, Li P, Li J, Li H, Hong C. Preparation of a pH-responsive controlled-release electrochemical immunosensor based on polydopamine encapsulation for ultrasensitive detection of alpha-fetoprotein. Mikrochim Acta 2022; 189:334. [PMID: 35970980 DOI: 10.1007/s00604-022-05433-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
To accomplish ultra-sensitive detection of alpha-fetoprotein(AFP), a novel electrochemical immunosensor using polydopamine-coated Fe3O4 nanoparticles (PDA@Fe3O4 NPs) as a smart label and polyaniline (PANI) and Au NPs as substrate materials has been created. The sensor has the following advantages over typical immunoassay technology: (1) The pH reaction causes PDA@Fe3O4 NPs to release Prussian blue (PB) prosoma while also destroying the secondary antibody label and immunological platform and lowering electrode impedance; (2) PB has a highly efficient catalytic effect on H2O2, allowing for the obvious amplification of electrical impulses; (3) PANI was electrodeposited on the electrode surface to avoid PB loss and signal leakage, which effectively absorbed and fixed PB while considerably increasing electron transmission efficiency. The sensor's detection limit was 0.254 pg·mL-1 (S/N = 3), with a detection range of 1 pg·mL-1 to 100 ng·mL-1. The sensor has a high level of selectivity, repeatability, and stability, and it is predicted to be utilized to detect AFP in real-world samples.
Collapse
Affiliation(s)
- Mingzhe Jiang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Min Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Wenjing Lai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Mengmeng Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Chaoyun Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Pengli Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Jiajia Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
11
|
Ma CB, Xu Y, Wu L, Wang Q, Zheng JJ, Ren G, Wang X, Gao X, Zhou M, Wang M, Wei H. Guided Synthesis of a Mo/Zn Dual Single-Atom Nanozyme with Synergistic Effect and Peroxidase-like Activity. Angew Chem Int Ed Engl 2022; 61:e202116170. [PMID: 35238141 DOI: 10.1002/anie.202116170] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 01/08/2023]
Abstract
We present a facile route towards a dual single-atom nanozyme composed of Zn and Mo, which utilizes the non-covalent nano-assembly of polyoxometalates, supramolecular coordination complexes as the metal-atom precursor, and a macroscopic amphiphilic aerogel as the supporting substrate. The dual single-atoms of Zn and Mo have a high content (1.5 and 7.3 wt%, respectively) and exhibit a synergistic effect and a peroxidase-like activity. The Zn/Mo site was identified as the main active center by X-ray absorption fine structure spectroscopy and density functional theory calculation. The detection of versatile analytes, including intracellular H2 O2 , glucose in serum, cholesterol, and ascorbic acid in commercial beverages was achieved. The nanozyme has an outstanding stability and maintained its performance after one year's storage. This study develops a new peroxidase-like nanozyme and provides a robust synthetic strategy for single-atom catalysts by utilizing an aerogel as a facile substrate that is capable of stabilizing various metal atoms.
Collapse
Affiliation(s)
- Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Guoxi Ren
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
12
|
Ma CB, Xu Y, Wu L, Wang Q, Zheng JJ, Ren G, Wang X, Gao X, Zhou M, Wang M, Wei H. Guided Synthesis of a Mo/Zn Dual Single‐Atom Nanozyme with Synergistic Effect and Peroxidase‐like Activity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chong-Bo Ma
- Northeast Normal University Department of Chemistry CHINA
| | - Yaping Xu
- Jilin University College of Chemistry CHINA
| | - Lixin Wu
- Jilin University College of Chemistry CHINA
| | | | - Jia-Jia Zheng
- National Center for Nanoscience and Technology Laboratory of Theoretical and Computational Nanoscience CHINA
| | - Guoxi Ren
- Shanghai Institute of Microsystem and Information Technology State Key Laboratory of Functional Materials for Informatics CHINA
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology Laboratory of Theoretical and Computational Nanoscience CHINA
| | - Ming Zhou
- Northeast Normal University Department of Chemistry CHINA
| | - Ming Wang
- Jilin University College of Chemistry CHINA
| | - Hui Wei
- Nanjing University Biomedical Engineering 22 Hankou Rd 210093 Nanjing CHINA
| |
Collapse
|
13
|
|
14
|
Lian M, Liu M, Zhang X, Zhang W, Zhao J, Zhou X, Chen D. Template-Regulated Bimetallic Sulfide Nanozymes with High Specificity and Activity for Visual Colorimetric Detection of Cellular H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53599-53609. [PMID: 34726914 DOI: 10.1021/acsami.1c15839] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the past several decades, most of the research studies on nanozymes have been aimed at improving their catalytic activity and diversity; however, developing nanozymes with strong catalytic activity and great specificity remains a challenge. Herein, a simple and efficient template synthesis method was used to synthesize bimetallic sulfide nanoparticles, NiCo2S4 NPs, and prove that they have excellent peroxidase-like activity with good specificity. By regulating polyvinyl pyrrolidone (PVP) and hexadecyl trimethyl ammonium bromide as the templating agent, we have obtained the NiCo2S4 (PVP) NPs with a high Ni/Co ratio, thus exhibiting superior peroxidase activity. In addition, the NiCo2S4 NPs selectively catalyzed and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB). On being treated with H2O2, TMB turns blue while other substrates did not undergo the oxidation reaction under the same conditions, such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) and dopamine. The high specificity of NiCo2S4 NPs is due to the strong electrostatic driving coordination between negatively charged NiCo2S4 NPs and positively charged TMB. Due to the peroxidase activity of the developed NiCo2S4 NPs, a simple, low-cost, and reliable colorimetric method was established. Simultaneously, this method for in situ quantitative monitoring of H2O2 produced by MDA-MB-231 cells was also achieved. This study has provided a theoretical basis for the improvement of the activity and specificity of bimetallic sulfide nanozymes and may offer guidance for the further reasonable design of related materials.
Collapse
Affiliation(s)
- Meiling Lian
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Meihan Liu
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiao Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Wei Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Jingbo Zhao
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
15
|
Gao J, Hua X, Yuan R, Li Q, Xu W. Amplified electrochemical biosensing based on bienzymatic cascade catalysis confined in a functional DNA structure. Talanta 2021; 234:122643. [PMID: 34364452 DOI: 10.1016/j.talanta.2021.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
Herein, an amplified and renewable electrochemical biosensor was developed via bienzymatic cascade catalysis of glucose oxidase (GOx) and horseradish peroxidase (HRP), which were confined in a functional Y-shaped DNA nanostructure oriented by a dual-thiol-ended hairpin probe (dSH-HP) with a paired stem as a rigid scaffold and unpaired loop as enclosed binding platform. For proof-of-concept assay of sequence-specific biomarker DNA related to Alzheimer's disease (aDNA), GOx and redox ferrocene-modified HRP (Fc@HRP) were chemically conjugated in two enzyme strands (GOx-ES1 and Fc@HRP-ES2), respectively. The repeated recycling of aDNA was powered by the displacement of GOx-ES1 by aDNA and exonuclease III (ExoIII)-assisted cleavage reaction for amplified output of numerous GOx-ES1 as dependent transducers, together with Fc@HRP-ES2 which was simultaneously hybridized with dSH-HP to assemble this DNA structure. Rationally, the bienzymatic cascade catalysis was motivated through GOx-catalyzed glucose oxidization to in situ generate hydrogen peroxide (H2O2) and overlapped HRP-catalyzed H2O2 decomposition to promote the electron transfer, producing significantly enhanced electrochemical signal of Fc with an ultrahigh sensitivity down to 0.22 fM of aDNA. Benefited from the unique design of dSH-HP-oriented bienzymatic cascades, this one-step strategy without non-specific blockers passivation was simple and renewable, and would pave a promising avenue for sensitive electrochemical assay of biomolecules.
Collapse
Affiliation(s)
- Jiaxi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Hua
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qiong Li
- College of Geophysics, Chengdu University of Technology, Chengdu, 610059, China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
16
|
Zong LP, Ruan LY, Li J, Marks RS, Wang JS, Cosnier S, Zhang XJ, Shan D. Fe-MOGs-based enzyme mimetic and its mediated electrochemiluminescence for in situ detection of H 2O 2 released from Hela cells. Biosens Bioelectron 2021; 184:113216. [PMID: 33894426 DOI: 10.1016/j.bios.2021.113216] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Enzyme mimetics have attracted wide interest due to their inherent enzyme-like activity and unique physicochemical properties, as well as promising applications in disease diagnosis, treatment and monitoring. Inspired by the attributes of nonheme iron enzymes, synthetic models were designed to mimic their capability and investigate the catalytic mechanisms. Herein, metal-organic gels (Fe-MOGs) with horseradish peroxidase (HRP) like Fe-NX structure were successfully synthesized though the coordination between iron and 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) and exhibited excellent peroxidase-like activity. Its structure-activity relationship and the in-situ electrochemiluminescence (ECL) detection of H2O2 secreted by Hela cells were further investigated. The highly dispersed Fe-NX active sites inside Fe-MOGs were able to catalyze the decomposition of H2O2 into large amounts of reactive oxygen species (ROS) via a Fenton-like reaction under a low overpotential. Due to the accumulation of ROS free radicals, the luminol ECL emission was significantly amplified. A proof-of-concept biosensor was constructed with a detection limit as low as 2.2 nM and a wide linear range from 0.01 to 40 μM. As a novel metal organic gels based enzyme mimetic, Fe-MOGs show great promises in early cancer detection and pathological process monitoring.
Collapse
Affiliation(s)
- Li-Ping Zong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ling-Yu Ruan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junji Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jun-Song Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000, Grenoble, France
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
17
|
Shang X, He S, Xu Z, Lu W, Zhang W. Hemin‐phytic Acid Functionalized Porous Conducting Polymer Hydrogel With Good Biocompatibility for Electrochemical Detection of H
2
O
2
Released From Living Cells. ELECTROANAL 2021. [DOI: 10.1002/elan.202060499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xin Shang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Shaoying He
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200062 P. R. China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
18
|
Liu X, Qin J, Zhang X, Zou L, Yang X, Wang Q, Zheng Y, Mei W, Wang K. The mechanisms of HSA@PDA/Fe nanocomposites with enhanced nanozyme activity and their application in intracellular H 2O 2 detection. NANOSCALE 2020; 12:24206-24213. [PMID: 33289738 DOI: 10.1039/d0nr05732k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanozymes have drawn increasing attention with their broad applications but most nanozymes lack enzyme-like molecular structures, resulting in weak selectivity and low activity. Bioinspired molecular assembly provides an extremely promising strategy to mimic natural enzyme processes and develop function enhanced architectures. Herein, a new bioinspired molecular assembly strategy based on human serum albumin@polydopamine/Fe nanocomposites (HSA@PDA/Fe NCs) was proposed, in which Fe(iii)/Fe(ii) were anchored on HSA supported on PDA. HSA@PDA/Fe NCs with iron as the active center and HSA@PDA as the skeleton showed excellent peroxidase-like activity, which was nearly 1000 times higher than that of free Fe(iii). This may be attributed to the phenomenon that the cycle of quinones and the hydroxyl group on the nanocomposite surface greatly accelerate the conversion of Fe(iii)/Fe(ii) in acidic microenvironments. Systematic experimental studies illustrated that its activity was mainly affected by the metal active center, followed by the polymeric ligand, while the protein framework has little effect on its activity. Meanwhile, even after freeze-thaw and thermal cycle tests, it also showed excellent catalytic stability. Besides, a colorimetric assay based on HSA@PDA/Fe NCs was developed for detection of H2O2in vitro and in situ detection of H2O2 generated from live cells. This work will facilitate the developments on theoretical analysis, rational design and practical applications of nanozymes based on bioinspired molecular assemblies.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang Y, Wang D, Sun LH, Zhang LC, Lu ZS, Xue P, Wang F, Xia QY, Bao SJ. BC@DNA-Mn3(PO4)2 Nanozyme for Real-Time Detection of Superoxide from Living Cells. Anal Chem 2020; 92:15927-15935. [DOI: 10.1021/acs.analchem.0c03322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ying Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Deng Wang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Li-Hong Sun
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Long-Cheng Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Zhi-Song Lu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, P. R. China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, P. R. China
| | - Shu-Juan Bao
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
20
|
Fan WT, Qin Y, Hu XB, Yan J, Wu WT, Liu YL, Huang WH. Stretchable Electrode Based on Au@Pt Nanotube Networks for Real-Time Monitoring of ROS Signaling in Endothelial Mechanotransduction. Anal Chem 2020; 92:15639-15646. [PMID: 33179904 DOI: 10.1021/acs.analchem.0c04015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular endothelial cells (ECs) are natively exposed to dynamic cyclic stretch and respond to it by the production of vasoactive molecules. Among them, reactive oxygen species (ROS) are closely implicated to the endothelial function and vascular homeostasis. However, the dynamic monitoring of ROS release during endothelial mechanotransduction remains a steep challenge. Herein, we developed a stretchable electrochemical sensor by decoration of uniform and ultrasmall platinum nanoparticles (Pt NPs) on gold nanotube (Au NT) networks (denoted as Au@Pt NTs). The orchestrated structure exhibited prominent electrocatalytic property toward the oxidation of hydrogen peroxide (H2O2) (as the most stable ROS) while maintaining excellent mechanical compliance of Au NT networks. Moreover, the favorable biocompatibility of Au NTs and Pt NPs promoted the adhesion and proliferation of ECs cultured thereon. These allowed in situ inducing ECs mechanotransduction and synchronously real-time monitoring of H2O2 release. Further investigation revealed that the production of H2O2 was positively correlated with the applied mechanical strains and could be boosted by other coexisting pathogenic factors. This indicates the great prospect of our proposed sensor in exploring ROS-related signaling for the deep understanding of cell mechanotransduction and vascular disorder.
Collapse
Affiliation(s)
- Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xue-Bo Hu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114354] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Jiao L, Wu J, Zhong H, Zhang Y, Xu W, Wu Y, Chen Y, Yan H, Zhang Q, Gu W, Gu L, Beckman SP, Huang L, Zhu C. Densely Isolated FeN4 Sites for Peroxidase Mimicking. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01647] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Jiabin Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
| | - Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yu Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Scott P. Beckman
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People’s Republic of China
| |
Collapse
|
23
|
Ma X, Tang KL, Yang M, Shi W, Zhao W. A controllable synthesis of hollow pumpkin-like CuO/Cu 2O composites for ultrasensitive non-enzymatic glucose and hydrogen peroxide biosensors. NEW J CHEM 2020. [DOI: 10.1039/d0nj05038e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Different ratios of hollow pumpkin-like CuO/Cu2O composites are investigated and their remarkable catalytic capability for glucose and H2O2 detection are demonstrated.
Collapse
Affiliation(s)
- Xiaoqing Ma
- School of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing
- China
- Sports Medicine Center
| | - Kang-lai Tang
- Sports Medicine Center
- Department of Orthopedic Surgery
- Southwest Hospital
- The 3rd Military Medical University
- Chongqing
| | - Mingyu Yang
- Sports Medicine Center
- Department of Orthopedic Surgery
- Southwest Hospital
- The 3rd Military Medical University
- Chongqing
| | - Wenbing Shi
- School of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing
- China
| | - Wenxi Zhao
- School of Electronic Information Engineering
- Yangtze Normal University
- Chongqing
- China
| |
Collapse
|
24
|
Mohammadniaei M, Nguyen HV, Tieu MV, Lee MH. 2D Materials in Development of Electrochemical Point-of-Care Cancer Screening Devices. MICROMACHINES 2019; 10:E662. [PMID: 31575012 PMCID: PMC6843145 DOI: 10.3390/mi10100662] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Effective cancer treatment requires early detection and monitoring the development progress in a simple and affordable manner. Point-of care (POC) screening can provide a portable and inexpensive tool for the end-users to conveniently operate test and screen their health conditions without the necessity of special skills. Electrochemical methods hold great potential for clinical analysis of variety of chemicals and substances as well as cancer biomarkers due to their low cost, high sensitivity, multiplex detection ability, and miniaturization aptitude. Advances in two-dimensional (2D) material-based electrochemical biosensors/sensors are accelerating the performance of conventional devices toward more practical approaches. Here, recent trends in the development of 2D material-based electrochemical biosensors/sensors, as the next generation of POC cancer screening tools, are summarized. Three cancer biomarker categories, including proteins, nucleic acids, and some small molecules, will be considered. Various 2D materials will be introduced and their biomedical applications and electrochemical properties will be given. The role of 2D materials in improving the performance of electrochemical sensing mechanisms as well as the pros and cons of current sensors as the prospective devices for POC screening will be emphasized. Finally, the future scopes of implementing 2D materials in electrochemical POC cancer diagnostics for the clinical translation will be discussed.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| |
Collapse
|
25
|
Jiao L, Xu W, Yan H, Wu Y, Liu C, Du D, Lin Y, Zhu C. Fe-N-C Single-Atom Nanozymes for the Intracellular Hydrogen Peroxide Detection. Anal Chem 2019; 91:11994-11999. [PMID: 31436084 DOI: 10.1021/acs.analchem.9b02901] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, in situ detection of hydrogen peroxide (H2O2) generated from live cells have caused tremendous attention, because it is of great significance in the control of multiple biological processes. Herein, Fe-N-C single-atom nanozymes (Fe-N-C SAzymes) with intrinsic peroxidase-like activity were successfully prepared via high-temperature calcination using FeCl2, glucose, and dicyandiamide as precursors. The Fe-N-C SAzymes with FeNx as active sites were similar to natural metalloproteases, which can specifically enhance the peroxidase-like activity rather than oxidase-like activity. Accordingly, owing to the excellent catalytic efficiency of the Fe-N-C SAzymes, colorimetric biosensing of H2O2 in vitro was performed via a typical 3,3',5,5'-tetramethylbenzidine induced an allochroic reaction, demonstrating the satisfactory specificity and sensitivity. With regard to the practical application, in situ detection of H2O2 generated from the Hela cells by the Fe-N-C SAzymes was also performed, which can expand the applications of the newborn SAzymes.
Collapse
Affiliation(s)
- Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Dan Du
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| |
Collapse
|
26
|
Guo Z, Zhao Q, Zhang Y, Li B, Li L, Feng L, Wang M, Meng X, Zuo G. A novel “turn‐on” fluorescent sensor for hydrogen peroxide based on oxidized porous g‐C
3
N
4
nanosheets. J Biomed Mater Res B Appl Biomater 2019; 108:1077-1084. [DOI: 10.1002/jbm.b.34459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Zhaoliang Guo
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Qiannan Zhao
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Yuqian Zhang
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Bingdong Li
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Lijuan Li
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Liwei Feng
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Manman Wang
- School of Public HealthNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Xianguang Meng
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| | - Guifu Zuo
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and Technology Tangshan Hebei People's Republic of China
| |
Collapse
|
27
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
28
|
Shi Z, Li X, Yu L, Wu X, Wu J, Guo C, Li CM. Atomic matching catalysis to realize a highly selective and sensitive biomimetic uric acid sensor. Biosens Bioelectron 2019; 141:111421. [PMID: 31207567 DOI: 10.1016/j.bios.2019.111421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
A main challenge for biomimetic non-enzyme biosensors is to achieve high selectivity. Herein, an innovative biomimetic non-enzyme sensor for electrochemical detection of uric acid (UA) with high selectivity and sensitivity is realized by growing Prussian blue (PB) nanoparticles on nitrogen-doped carbon nanotubes (N-doped CNTs). The enhancement mechanism of the biomimetic UA sensor is proposed to be atomically matched active sites between two reaction sites (oxygen atoms of 2, 8-trione, 6.9 Å) of UA molecule and two redox centers (FeII on the diagonal, 7.2 Å) of PB. Such an atomically matching manner not only promotes strong adsorption of UA on PB but also selectively enhances electron transfer between reaction sites of UA and active FeII centers of PB. This biomimetic UA sensor can offer great selectivity to avoid interferences from other oxidative and reductive species, showing excellent selectivity. An electrochemical biomimetic sensor based on PB/N-doped CNTs was applied to in situ detect UA in human serum, delivering a wide dynamic detection range (0.001-1 mM) and a low detection limit (0.26 μM). This work provides a high-performance UA sensor while shedding a scientific light on using atomic matching catalysis to fabricate highly sensitive and selective biomimetic sensors.
Collapse
Affiliation(s)
- Zhuanzhuan Shi
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ling Yu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jinggao Wu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China; Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
29
|
Zhang HW, Hu XB, Qin Y, Jin ZH, Zhang XW, Liu YL, Huang WH. Conductive Polymer Coated Scaffold to Integrate 3D Cell Culture with Electrochemical Sensing. Anal Chem 2019; 91:4838-4844. [PMID: 30864440 DOI: 10.1021/acs.analchem.9b00478] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Remarkable progresses have been made in electrochemical monitoring of living cells based on one-dimensional (1D) or two-dimensional (2D) sensors, but the cells cultured on 2D substrate under these circumstances are departed from their three-dimensional (3D) microenvironments in vivo. Significant advances have been made in developing 3D culture scaffolds to simulate the 3D microenvironment yet most of them are insulated, which greatly restricts their application in electrochemical sensing. Herein, we propose a versatile strategy to endow 3D insulated culture scaffolds with electrochemical performance while granting their biocompatibility through conductive polymer coating. More specifically, 3D polydimethylsiloxane scaffold is uniformly coated by poly(3,4-ethylenedioxythiophene) and further modified by platinum nanoparticles. The integrated 3D device demonstrates desirable biocompatibility for long-term 3D cell culture and excellent electrocatalytic ability for electrochemical sensing. This allows real-time monitoring of reactive oxygen species release from cancer cells induced by a novel potential anticancer drug and reveals its promising application in cancer treatment. This work provides a new idea to construct 3D multifunctional electrochemical sensors, which will be of great significance for physiological and pathological research.
Collapse
Affiliation(s)
- Hai-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xue-Bo Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yu Qin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zi-He Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
30
|
Abstract
Current chemical-fuel-driven nanomotors are driven by gas (e.g. H2, O2, NH3) which only provides motion ability, and can produce waste (e.g. Mg(OH)2, Pt). Here, inspired by endogenous biochemical reactions in the human body involving conversion of amino acid L-arginine to nitric oxide (NO) by NO synthase (NOS) or reactive oxygen species (ROS), we report on a nanomotor made of hyperbranched polyamide/L-arginine (HLA). The nanomotor utilizes L-arginine as fuel for the production of NO both as driving force and to provide beneficial effects, including promoting endothelialisation and anticancer effects, along with other beneficial by-products. In addition, the HLA nanomotors are fluorescent and can be used to monitor the movement of nanomotors in vivo in the future. This work presents a zero-waste, self-destroyed and self-imaging nanomotor with potential biological application for the treatment of various diseases in different tissues including blood vessels and tumours. Depletion of propellant in chemical-fuel-driven nanomotors is a limiting factor in device design and application. Here, the authors create a nitric-oxide-generating nanoparticle and explore cellular uptake and application of the nanomotors in nitric oxide treatments.
Collapse
|
31
|
Syama S, Mohanan PV. Comprehensive Application of Graphene: Emphasis on Biomedical Concerns. NANO-MICRO LETTERS 2019; 11:6. [PMID: 34137957 PMCID: PMC7770934 DOI: 10.1007/s40820-019-0237-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/25/2018] [Indexed: 05/03/2023]
Abstract
Graphene, sp2 hybridized carbon framework of one atom thickness, is reputed as the strongest material to date. It has marked its impact in manifold applications including electronics, sensors, composites, and catalysis. Current state-of-the-art graphene research revolves around its biomedical applications. The two-dimensional (2D) planar structure of graphene provides a large surface area for loading drugs/biomolecules and the possibility of conjugating fluorescent dyes for bioimaging. The high near-infrared absorbance makes graphene ideal for photothermal therapy. Henceforth, graphene turns out to be a reliable multifunctional material for use in diagnosis and treatment. It exhibits antibacterial property by directly interacting with the cell membrane. Potential application of graphene as a scaffold for the attachment and proliferation of stem cells and neuronal cells is captivating in a tissue regeneration scenario. Fabrication of 2D graphene into a 3D structure is made possible with the help of 3D printing, a revolutionary technology having promising applications in tissue and organ engineering. However, apart from its advantageous application scope, use of graphene raises toxicity concerns. Several reports have confirmed the potential toxicity of graphene and its derivatives, and the inconsistency may be due to the lack of standardized consensus protocols. The present review focuses on the hidden facts of graphene and its biomedical application, with special emphasis on drug delivery, biosensing, bioimaging, antibacterial, tissue engineering, and 3D printing applications.
Collapse
Affiliation(s)
- S Syama
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India.
| |
Collapse
|
32
|
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019; 119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrically-transduced sensors, with their simplicity and compatibility with standard electronic technologies, produce signals that can be efficiently acquired, processed, stored, and analyzed. Two dimensional (2D) nanomaterials, including graphene, phosphorene (BP), transition metal dichalcogenides (TMDCs), and others, have proven to be attractive for the fabrication of high-performance electrically-transduced chemical sensors due to their remarkable electronic and physical properties originating from their 2D structure. This review highlights the advances in electrically-transduced chemical sensing that rely on 2D materials. The structural components of such sensors are described, and the underlying operating principles for different types of architectures are discussed. The structural features, electronic properties, and surface chemistry of 2D nanostructures that dictate their sensing performance are reviewed. Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules. The sensing performance is discussed in the context of the molecular design, structure-property relationships, and device fabrication technology. The outlook of challenges and opportunities for 2D nanomaterials for the future development of electrically-transduced sensors is also presented.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
33
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
34
|
Nanostructured Nickel on Porous Carbon-Silica Matrix as an Efficient Electrocatalytic Material for a Non-Enzymatic Glucose Sensor. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nanostructured nickel on porous carbon-silica matrix (N-CS) has been synthesized using a sol gel process and subsequent pyrolysis treatment at a temperature of 650 °C. The morphology and microstructure of the N-CS sample has been investigated using XRD (X-ray Diffraction), SEM-EDS (Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy), and BET (Brunauer-Emmett-Teller) analysis. The synthesized nanocomposite has been used for developing NCS-modified screen-printed electrodes (NCS-SPCEs) and was applied in the electrochemical monitoring of glucose. After electrochemical activation, via cycling the modified electrode in a potential window from 0 to 0.8 V in 0.1 M KOH solution, the fabricated NCS-SPCEs electrodes were evaluated for the voltammetric and amperometric determination of glucose. The developed sensors showed good sensing performance towards glucose, displaying a sensitivity of 585 µA/mM cm−1 in the linear range from 0.05 to 1.5 mM, a detection limit lower than 30 µM with excellent selectivity.
Collapse
|
35
|
Piperno A, Scala A, Mazzaglia A, Neri G, Pennisi R, Sciortino MT, Grassi G. Cellular Signaling Pathways Activated by Functional Graphene Nanomaterials. Int J Mol Sci 2018; 19:E3365. [PMID: 30373263 PMCID: PMC6274994 DOI: 10.3390/ijms19113365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The paper reviews the network of cellular signaling pathways activated by Functional Graphene Nanomaterials (FGN) designed as a platform for multi-targeted therapy or scaffold in tissue engineering. Cells communicate with each other through a molecular device called signalosome. It is a transient co-cluster of signal transducers and transmembrane receptors activated following the binding of transmembrane receptors to extracellular signals. Signalosomes are thus efficient and sensitive signal-responding devices that amplify incoming signals and convert them into robust responses that can be relayed from the plasma membrane to the nucleus or other target sites within the cell. The review describes the state-of-the-art biomedical applications of FGN focusing the attention on the cell/FGN interactions and signalosome activation.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Antonino Mazzaglia
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131 Milan, Italy.
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giovanni Grassi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
36
|
Zhou C, Geng H, Guo C. Design of DNA-based innovative computing system of digital comparison. Acta Biomater 2018; 80:58-65. [PMID: 30223093 DOI: 10.1016/j.actbio.2018.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023]
Abstract
Despite great potential and extensive interest in developing biomolecule-based computing, the development of even basic molecular logic gates is still in its infancy. Digital comparator (DC) is the basic unit in traditional electronic computers, but it is difficult to construct a system for achieving large-scale integration. Here, we construct, for the first time, a novel logic computing system of DCs that can compare whether two or more numbers are equal. Our approach is by taking advantage of facile preparation and unique properties of graphene oxide and DNA. The DC system reported in this work is developed by the DNA hybridization and effective combination of GO and single-stranded DNA, which is regarded as the reacting platform. On the basis of this platform and reaction principle, we have developed 2-inputs, 3-inputs, and 4-inputs DCs to realize the comparison of two or more binary numbers. We predict that such a state-of-the-art logic system enables its functionality with large-scale input signals, providing a new direction toward prototypical DNA-based logic operations and promoting the development of advanced logic computing. STATEMENT OF SIGNIFICANCE: The overarching objective of this paper is to explore the construction of a novel DNA computing system of digital comparator driven by the interaction of DNA and graphene oxide (GO). GO can efficient bind the dye-labeled, single-stranded DNA probe and then quench its fluorescence. In the case of the target appearing, specific binding between the single-stranded probe and its target occurs, changing the conformation and relationship with GO, then restoring the fluorescence of the dye. We have developed the 2-inputs, 3-inputs, and 4-inputs digital comparator circuits, which are expected to realize the comparison of large-scale input signals and can avoid the problems of design complexity and manufacturing cost of integrated circuits in traditional computing.
Collapse
Affiliation(s)
- Chunyang Zhou
- The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China
| | - Hongmei Geng
- The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China
| | - Chunlei Guo
- The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China; The Institute of Optics, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
37
|
Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. NANO RESEARCH 2018; 12:247-264. [PMID: 32218914 PMCID: PMC7090610 DOI: 10.1007/s12274-018-2209-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 05/23/2023]
Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Collapse
Affiliation(s)
- Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Liqian Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
- National Clinical Research Center of Oral Diseases, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
38
|
Marrella A, Tedeschi G, Giannoni P, Lagazzo A, Sbrana F, Barberis F, Quarto R, Puglisi F, Scaglione S. "Green-reduced" graphene oxide induces in vitro an enhanced biomimetic mineralization of polycaprolactone electrospun meshes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1044-1053. [PMID: 30274035 DOI: 10.1016/j.msec.2018.08.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/22/2018] [Accepted: 08/26/2018] [Indexed: 12/11/2022]
Abstract
A novel green method for graphene oxide (GO) reduction via ascorbic acid has been adopted to realize bio-friendly reduced graphene oxide (RGO)/polycaprolactone (PCL) nanofibrous meshes, as substrates for bone tissue engineering applications. PCL fibrous mats enriched with either RGO or GO (0.25 wt%) were fabricated to recapitulate the fibrillar structure of the bone extracellular matrix (ECM) and the effects of RGO incorporation on the structural proprieties, biomechanics and bioactivity of the nano-composites meshes were evaluated. RGO/PCL fibrous meshes displayed superior mechanical properties (i.e. Young's Modulus and ultimate tensile strength) besides supporting noticeably improved cell adhesion, spreading and proliferation of fibroblasts and osteoblast-like cell lines. Furthermore, RGO-based electrospun substrates enhanced in vitro calcium deposition in the ECM produced by osteoblast-like cells, which was paralleled, in human mesenchymal stem cells grown onto the same substrates, by an increased expression of the osteogenic markers mandatory for mineralization. In this respect, the capability of graphene-based materials to adsorb osteogenic factors cooperates synergically with the rougher surface of RGO/PCL-based materials, evidenced by AFM analysis, to ignite mineralization of the neodeposited matrix and to promote the osteogenic commitment of the cultured cell in the surrounding microenvironment.
Collapse
Affiliation(s)
- Alessandra Marrella
- CNR - National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy; Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy
| | - Giacomo Tedeschi
- CNR - National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via all' Opera Pia 13, 16145 Genoa, Italy
| | - Paolo Giannoni
- Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via all'Opera Pia 15, 16145 Genoa, Italy
| | | | - Fabrizio Barberis
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via all'Opera Pia 15, 16145 Genoa, Italy
| | - Rodolfo Quarto
- Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Puglisi
- Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy
| | - Silvia Scaglione
- CNR - National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy.
| |
Collapse
|
39
|
Jiang X, Wang H, Yuan R, Chai Y. Functional Three-Dimensional Porous Conductive Polymer Hydrogels for Sensitive Electrochemiluminescence in Situ Detection of H2O2 Released from Live Cells. Anal Chem 2018; 90:8462-8469. [DOI: 10.1021/acs.analchem.8b01168] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinya Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Huijun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
40
|
Dou B, Yang J, Yuan R, Xiang Y. Trimetallic Hybrid Nanoflower-Decorated MoS2 Nanosheet Sensor for Direct in Situ Monitoring of H2O2 Secreted from Live Cancer Cells. Anal Chem 2018; 90:5945-5950. [DOI: 10.1021/acs.analchem.8b00894] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Baoting Dou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jianmei Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
41
|
Shuai C, Yang Y, Feng P, Peng S, Guo W, Min A, Gao C. A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process for bone tissue engineering. Int J Bioprint 2018; 4:133. [PMID: 33102914 PMCID: PMC7582010 DOI: 10.18063/ijb.v4i2.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 12/25/2022] Open
Abstract
It is critical to develop a fabrication technology for precisely controlling an interconnected porous structure of scaffolds to mimic the native bone microenvironment. In this work, a novel combined process of additive manufacturing (AM) and chemical etching was developed to fabricate graphene oxide/poly(L-lactic acid) (GO/PLLA) scaffolds with multiscale porous structure. Specially, AM was used to fabricate an interconnected porous network with pore sizes of hundreds of microns. And the chemical etching in sodium hydroxide solution constructed pores with several microns or even smaller on scaffolds surface. The degradation period of the scaffolds was adjustable via controlling the size and quantity of pores. Moreover, the scaffolds exhibited surprising bioactivity after chemical etching, which was ascribed to the formed polar groups on scaffolds surfaces. Furthermore, GO improved the mechanical strength of the scaffolds.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Youwen Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Cancer Research Institute, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Anjie Min
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
42
|
Shen R, Liu P, Zhang Y, Yu Z, Chen X, Zhou L, Nie B, Żaczek A, Chen J, Liu J. Sensitive Detection of Single-Cell Secreted H2O2 by Integrating a Microfluidic Droplet Sensor and Au Nanoclusters. Anal Chem 2018; 90:4478-4484. [DOI: 10.1021/acs.analchem.7b04798] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rui Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Peipei Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yiqiu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Zhao Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xuyue Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Lu Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Baoqing Nie
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anna Żaczek
- Medical Biotechnology Department, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
43
|
Wang H, Liu C, Liu Z, Ren J, Qu X. Specific Oxygenated Groups Enriched Graphene Quantum Dots as Highly Efficient Enzyme Mimics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703710. [PMID: 29430831 DOI: 10.1002/smll.201703710] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/27/2017] [Indexed: 05/21/2023]
Abstract
Significant progress is achieved for the utilization of graphene quantum dots as enzyme mimics in various biomedical fields recently. Although promising, the biocatalytic performance is far from satisfactory. Here, the rational design and synthesis of specific oxygenated groups enriched graphene quantum dots (o-GQDs) via a facile oxidation reflux route is reported. These well-prepared o-GQDs with uniform size exhibit an ultrahigh peroxidase-like activity in a wide range of pH values, and their superior performance is verified by using glucose detection as a typical model. Compared with classical nanozymes, these o-GQDs show multiple times higher enzymatic activity. It is believed that the super facile synthesis strategy can greatly facilitate the practical use of o-GQDs as enzyme mimics in the future.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Chaoqun Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Zhen Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
44
|
Wang Q, Zhou Q, Zhang Q, Shi R, Ma S, Zhao W, Zhou M. Fabrication of novel superoxide anion biosensor based on 3D interface of mussel-inspired Fe3O4-Mn3(PO3)2@Ni foam. Talanta 2018; 179:145-152. [DOI: 10.1016/j.talanta.2017.10.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
|
45
|
Wan Z, Wang L, Ma L, Sun Y, Yang X. Controlled Hydrophobic Biosurface of Bacterial Cellulose Nanofibers through Self-Assembly of Natural Zein Protein. ACS Biomater Sci Eng 2017; 3:1595-1604. [DOI: 10.1021/acsbiomaterials.7b00116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhili Wan
- Research
and Development Center of Food Proteins, Department of Food Science
and Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People’s Republic of China
| | - Liying Wang
- Research
and Development Center of Food Proteins, Department of Food Science
and Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People’s Republic of China
| | - Lulu Ma
- Research
and Development Center of Food Proteins, Department of Food Science
and Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People’s Republic of China
| | - Yingen Sun
- Research
and Development Center of Food Proteins, Department of Food Science
and Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People’s Republic of China
| | - Xiaoquan Yang
- Research
and Development Center of Food Proteins, Department of Food Science
and Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People’s Republic of China
- Guangdong
Province Key Laboratory for Green Processing of Natural Products and
Product Safety, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
46
|
Wang L, Xiong Q, Xiao F, Duan H. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 2017; 89:136-151. [DOI: 10.1016/j.bios.2016.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022]
|
47
|
Zhang W, Sun Y, Lou Z, Song L, Wu Y, Gu N, Zhang Y. In vitro cytotoxicity evaluation of graphene oxide from the peroxidase-like activity perspective. Colloids Surf B Biointerfaces 2017; 151:215-223. [DOI: 10.1016/j.colsurfb.2016.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/29/2016] [Accepted: 12/18/2016] [Indexed: 01/06/2023]
|
48
|
Chaudhuri H, Dash S, Gupta R, Pathak DD, Sarkar A. Room-Temperature In-Situ Design and Use of Graphene Oxide-SBA-16 Composite for Water Remediation and Reusable Heterogeneous Catalysis. ChemistrySelect 2017. [DOI: 10.1002/slct.201601817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haribandhu Chaudhuri
- Organic Materials Research Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad- 826004, Jharkhand India
| | - Subhajit Dash
- Organic Materials Research Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad- 826004, Jharkhand India
| | - Radha Gupta
- Organic Materials Research Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad- 826004, Jharkhand India
| | - Devendra Deo Pathak
- Organic Materials Research Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad- 826004, Jharkhand India
| | - Ashis Sarkar
- Organic Materials Research Laboratory; Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad- 826004, Jharkhand India
| |
Collapse
|
49
|
Jain D, Karajic A, Murawska M, Goudeau B, Bichon S, Gounel S, Mano N, Kuhn A, Barthélémy P. Low-Molecular-Weight Hydrogels as New Supramolecular Materials for Bioelectrochemical Interfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1093-1098. [PMID: 27997114 DOI: 10.1021/acsami.6b12890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Controlling the interface between biological tissues and electrodes remains an important challenge for the development of implantable devices in terms of electroactivity, biocompatibility, and long-term stability. To engineer such a biocompatible interface a low molecular weight gel (LMWG) based on a glycosylated nucleoside fluorocarbon amphiphile (GNF) was employed for the first time to wrap gold electrodes via a noncovalent anchoring strategy, that is, self-assembly of GNF at the electrode surface. Scanning electron microscopy (SEM) studies indicate that the gold surface is coated with the GNF hydrogels. Electrochemical measurements using cyclic voltammetry (CV) clearly show that the electrode properties are not affected by the presence of the hydrogel. This coating layer of 1 to 2 μm does not significantly slow down the mass transport through the hydrogel. Voltammetry experiments with gel coated macroporous enzyme electrodes reveal that during continuous use their current is improved by 100% compared to the noncoated electrode. This demonstrates that the supramolecular hydrogel dramatically increases the stability of the bioelectrochemical interface. Therefore, such hybrid electrodes are promising candidates that will both offer the biocompatibility and stability needed for the development of more efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Deepak Jain
- Inserm U1212 , F-33076 Bordeaux, France
- CNRS 5320 , F-33076 Bordeaux, France
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Aleksandar Karajic
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- Bordeaux INP-UMR 5255, CNRS-ENSCBP, 16 Avenue Pey Berland, 33607 Pessac, France
| | - Magdalena Murawska
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- Bordeaux INP-UMR 5255, CNRS-ENSCBP, 16 Avenue Pey Berland, 33607 Pessac, France
| | - Bertrand Goudeau
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Bordeaux INP-UMR 5255, CNRS-ENSCBP, 16 Avenue Pey Berland, 33607 Pessac, France
| | - Sabrina Bichon
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
| | - Sébastien Gounel
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
| | - Nicolas Mano
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
| | - Alexander Kuhn
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Bordeaux INP-UMR 5255, CNRS-ENSCBP, 16 Avenue Pey Berland, 33607 Pessac, France
| | - Philippe Barthélémy
- Inserm U1212 , F-33076 Bordeaux, France
- CNRS 5320 , F-33076 Bordeaux, France
- Université de Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
50
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|