1
|
Zhang D, Sun Y, Wang Z, Liu F, Zhang X. Switchable biomimetic nanochannels for on-demand SO 2 detection by light-controlled photochromism. Nat Commun 2023; 14:1901. [PMID: 37019894 PMCID: PMC10076267 DOI: 10.1038/s41467-023-37654-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
In contrast to the conventional passive reaction to analytes, here, we create a proof-of-concept nanochannel system capable of on-demand recognition of the target to achieve an unbiased response. Inspired by light-activatable biological channelrhodopsin-2, photochromic spiropyran/anodic aluminium oxide nanochannel sensors are constructed to realize a light-controlled inert/active-switchable response to SO2 by ionic transport behaviour. We find that light can finely regulate the reactivity of the nanochannels for the on-demand detection of SO2. Pristine spiropyran/anodic aluminium oxide nanochannels are not reactive to SO2. After ultraviolet irradiation of the nanochannels, spiropyran isomerizes to merocyanine with a carbon‒carbon double bond nucleophilic site, which can react with SO2 to generate a new hydrophilic adduct. Benefiting from increasing asymmetric wettability, the proposed device exhibits a robust photoactivated detection performance in SO2 detection in the range from 10 nM to 1 mM achieved by monitoring the rectified current.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yongjie Sun
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Zhichao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fang Liu
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
2
|
Hou Y, Ling Y, Wang Y, Wang M, Chen Y, Li X, Hou X. Learning from the Brain: Bioinspired Nanofluidics. J Phys Chem Lett 2023; 14:2891-2900. [PMID: 36927003 DOI: 10.1021/acs.jpclett.2c03930] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The human brain completes intelligent behaviors such as the generation, transmission, and storage of neural signals by regulating the ionic conductivity of ion channels in neuron cells, which provides new inspiration for the development of ion-based brain-like intelligence. Against the backdrop of the gradual maturity of neuroscience, computer science, and micronano materials science, bioinspired nanofluidic iontronics, as an emerging interdisciplinary subject that focuses on the regulation of ionic conductivity of nanofluidic systems to realize brain-like functionalities, has attracted the attention of many researchers. This Perspective provides brief background information and the state-of-the-art progress of nanofluidic intelligent systems. Two main categories are included: nanofluidic transistors and nanofluidic memristors. The prospects of nanofluidic iontronics' interdisciplinary progress in future artificial intelligence fields such as neuromorphic computing or brain-computer interfaces are discussed. This Perspective aims to give readers a clear understanding of the concepts and prospects of this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Yaqi Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Yixin Ling
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanqiong Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Miao Wang
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Yeyun Chen
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Xipeng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Binzhou Institute of Technology, Binzhou, 256600, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
3
|
Rational design of a negative photochromic spiropyran-containing fluorescent polymeric nanoprobe for sulfur dioxide derivative ratiometric detection and cell imaging. Anal Bioanal Chem 2023; 415:715-724. [PMID: 36520201 DOI: 10.1007/s00216-022-04462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
It is highly desirable to develop high-performance ratiometric fluorescent probes for SO2 derivative detection and realize their application in biological imaging. In this study, we report the rational design of a novel negative photochromic spiropyran derivative, spiro[azahomoadamantane-pyran] (MAHD-SP), with notable orange fluorescence in its stable ring-opened state without UV regulation. The unsaturated double bond of MAHD-SP underwent the Michael addition reaction of the SO2 derivative, making the fluorescence quenching of MAHD-SP obvious. Then, MAHD-SP, a fluorescent conjugated polymer PFO and a polymeric surfactant PEO113-b-PS49 were used to construct a ratiometric fluorescent polymeric nanoprobe (RFPN) via a coprecipitation method. The probe exhibited high sensitivity and selectivity for the ratiometric detection of SO2 derivatives in pure aqueous solutions. Moreover, the good biocompatibility of RFPN can be used to visualize exogenous and endogenous SO2 derivative generation in living cells.
Collapse
|
4
|
Laucirica G, Toum Terrones Y, Wagner MFP, Cayón VM, Cortez ML, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Electrochemically addressed FET-like nanofluidic channels with dynamic ion-transport regimes. NANOSCALE 2023; 15:1782-1793. [PMID: 36602003 DOI: 10.1039/d2nr04510a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanofluidic channels in which the ionic transport can be modulated by the application of an external voltage to the nanochannel walls have been described as nanofluidic field effect transistors (nFETs) because of their analogy with electrolyte-gated field effect transistors. The creation of nFETs is attracting increasing attention due to the possibility of controlling ion transport by using an external voltage as a non-invasive stimulus. In this work, we show that it is possible to extend the actuation range of nFETs by using the supporting electrolyte as a "chemical effector". For this aim, a gold-coated poly(ethylene terephthalate) (PET) membrane was modified with electroactive poly-o-aminophenol. By exploiting the interaction between the electroactive poly-o-aminophenol and the ions in the electrolyte solution, the magnitude and surface charge of the nanochannels were fine-tuned. In this way, by setting the electrolyte nature it has been possible to set different ion transport regimes, i.e.: cation-selective or anion-selective ion transport, whereas the rectification efficiency of the ionic transport was controlled by the gate voltage applied to the electroactive polymer layer. Remarkably, under both regimes, the platform displays a reversible and rapid response. We believe that this strategy to preset the actuation range of nFETs by using the supporting electrolyte as a chemical effector can be extended to other devices, thus offering new opportunities for the development of stimulus-responsive solid-state nanochannels.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Yamili Toum Terrones
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Michael F P Wagner
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Vanina M Cayón
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - María Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287 Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| |
Collapse
|
5
|
Chantipmanee N, Xu Y. Nanofluidics for chemical and biological dynamics in solution at the single molecular level. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Laucirica G, Allegretto JA, Wagner MF, Toimil-Molares ME, Trautmann C, Rafti M, Marmisollé W, Azzaroni O. Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207339. [PMID: 36239253 DOI: 10.1002/adma.202207339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Michael F Wagner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| |
Collapse
|
7
|
Yamaguchi T, Ogawa M. Photoinduced movement: how photoirradiation induced the movements of matter. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:796-844. [PMID: 36465797 PMCID: PMC9718566 DOI: 10.1080/14686996.2022.2142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Pioneered by the success on active transport of ions across membranes in 1980 using the regulation of the binding properties of crown ethers with covalently linked photoisomerizable units, extensive studies on the movements by using varied interactions between moving objects and environments have been reported. Photoinduced movements of various objects ranging from molecules, polymers to microscopic particles were discussed from the aspects of the driving for the movements, materials design to achieve the movements and systems design to see and to utilize the movements are summarized in this review.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
8
|
Liu Y, Chen Y, Guo Y, Wang X, Ding S, Sun X, Wang H, Zhu Y, Jiang L. Photo-controllable Ion-Gated Metal-Organic Framework MIL-53 Sub-nanochannels for Efficient Osmotic Energy Generation. ACS NANO 2022; 16:16343-16352. [PMID: 36226827 DOI: 10.1021/acsnano.2c05498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
By closing and opening ion channels, electric eels are able to convert ion concentration gradients into electricity. Inspired by electric eels, considerable artificial sub-nanoscale ion channels with high ion selectivity and transportation efficiency have been designed for harvesting the osmotic energy between ionic solutions of different salinities, but constructing smart ion-gated sub-nanochannels for effective ion transport is still a huge challenge. Herein, photo-controllable sub-nanochannels of metal-organic framework (MOF) NH2-MIL-53 encapsulated with spiropyrans (SP-MIL-53) were fabricated by a facile in situ growth strategy. Interestingly, the highly ordered sub-nanochannels of SP-MIL-53 were switched on and off to efficiently regulate the ion flux by the light-driven isomerization of SP, which made it a smart ionic gate with a high on-off ratio of 16.2 in 10 mM KCl aqueous solution via UV irradiation. Moreover, the ion-gated sub-nanochannel membrane yielded a high power density of 8.3 W m-2 under a 50-fold KCl concentration gradient in the open state. Density functional theory calculations revealed that K+ ions in SP-MIL-53 sub-nanochannels had a higher mobility constant (3.61 × 10-2) with UV irradiation than without UV illumination (2.33 × 10-22). This work provides an effective way to develop smart ion-gating sub-nanochannels for capturing salinity gradient power.
Collapse
Affiliation(s)
- You Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria3800, Australia
| | - Yalan Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
| | - Yumeng Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria3800, Australia
| | - Xingpu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
| | - Shaosong Ding
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
| | - Xiang Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria3800, Australia
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria3800, Australia
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
9
|
Quan J, Guo Y, Ma J, Long D, Wang J, Zhang L, Sun Y, Dhinakaran MK, Li H. Light-responsive nanochannels based on the supramolecular host–guest system. Front Chem 2022; 10:986908. [PMID: 36212057 PMCID: PMC9532542 DOI: 10.3389/fchem.2022.986908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The light-responsive nanochannel of rhodopsin gained wider research interest from its crucial roles in light-induced biological functions, such as visual signal transduction and energy conversion, though its poor stability and susceptibility to inactivation in vitro have limited its exploration. However, the fabrication of artificial nanochannels with the properties of physical stability, controllable structure, and easy functional modification becomes a biomimetic system to study the stimulus-responsive gating properties. Typically, light-responsive molecules of azobenzene (Azo), retinal, and spiropyran were introduced into nanochannels as photo-switches, which can change the inner surface wettability of nanochannels under the influence of light; this ultimately results in the photoresponsive nature of biomimetic nanochannels. Furthermore, the fine-tuning of their stimulus-responsive properties can be achieved through the introduction of host–guest systems generally combined with a non-covalent bond, and the assembling process is reversible. These host–guest systems have been introduced into the nanochannels to form different functions. Based on the host–guest system of light-responsive reversible interaction, it can not only change the internal surface properties of the nanochannel and control the recognition and transmission behaviors but also realize the controlled release of a specific host or guest molecules in the nanochannel. At present, macrocyclic host molecules have been introduced into nanochannels including pillararenes, cyclodextrin (CD), and metal–organic frameworks (MOFs). They are introduced into the nanochannel through chemical modification or host–guest assemble methods. Based on the changes in the light-responsive structure of azobenzene, spiropyran, retinal, and others with macrocycle host molecules, the surface charge and hydrophilic and hydrophobic properties of the nanochannel were changed to regulate the ionic and molecular transport. In this study, the development of photoresponsive host and guest-assembled nanochannel systems from design to application is reviewed, and the research prospects and problems of this photo-responsive nanochannel membrane are presented.
Collapse
Affiliation(s)
- Jiaxin Quan
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| | - Ying Guo
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry, School of Pharmacy Hubei University of Medicine, Shiyan, China
| | - Deqing Long
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Jingjing Wang
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Liling Zhang
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Yong Sun
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| |
Collapse
|
10
|
Yang L, Hu J, Li MC, Xu M, Gu ZY. Solid-state nanopore: chemical modifications, interactions, and functionalities. Chem Asian J 2022; 17:e202200775. [PMID: 36071031 DOI: 10.1002/asia.202200775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Indexed: 11/08/2022]
Abstract
Nanopore technology is a burgeoning detection technology for single-molecular sensing and ion rectification. Solid-state nanopores have attracted more and more attention because of their higher stability and tunability than biological nanopores. However, solid-state nanopores still suffer the drawbacks of low signal-to-noise ratio and low resolution, which hinders their practical applications. Thus, developing operatical and useful methods to overcome the shortages of solid-state nanopores is urgently needed. Here, we summarize the recent research on nanopore modification to achieve this goal. Modifying solid-state nanopores with different coating molecules can improve the selectivity, sensitivity, and stability of nanopores. The modified molecules can introduce different functions into the nanopores, greatly expanding the applications of this novel detection technology. We hope that this review of nanopore modification will provide new ideas for this field.
Collapse
Affiliation(s)
- Lei Yang
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Jun Hu
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Min-Chao Li
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Ming Xu
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Zhi-Yuan Gu
- Nanjing Normal University, College of Chemistry and Materials Science, 1 Wenyuan Rd, 210023, Nanjing, CHINA
| |
Collapse
|
11
|
Lu B, Xiao T, Zhang C, Jiang J, Wang Y, Diao X, Zhai J. Brain Wave-Like Signal Modulator by Ionic Nanochannel Rectifier Bridges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203104. [PMID: 35931455 DOI: 10.1002/smll.202203104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Smart modulation of bioelectric signals is of great significance for the development of brain-computer interfaces, bio-computers, and other technologies. The regulation and transmission of bioelectrical signals are realized through the synergistic action of various ion channels in organisms. The bionic nanochannels, which have similar physiological working environment and ion rectification as their biological counterparts, can be used to construct ion rectifier bridges to modulate the bioelectric signals. Here, the artificial smart ionic rectifier bridge with light response is constructed by anodic aluminum oxide (AAO)/poly (spiropyran acrylate) (PSP) nanochannels. The output ion current of the rectifier bridge can be switched between "ON" and "OFF" states by irradiation with UV and visible (Vis) light, and the conversion efficiency (η) of the system in "ON" state is ≈70.5%. The controllable modulation of brain wave-like signal can be realized by ionic rectifier bridge. The ion transport properties and processes of ion rectifier bridges are explained using theoretical calculations based on Poisson-Nernst-Planck (PNP) equations. These findings have significant implications for the understanding of the intelligent ionic circuit and combination of artificial smart ionic channels to organisms, which provide new avenues for development of intelligent ion devices.
Collapse
Affiliation(s)
- Bingxin Lu
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Caili Zhang
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Jiaqiao Jiang
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Yuting Wang
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xungang Diao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| |
Collapse
|
12
|
Zhou Z, Chen IC, Rehman LM, Aboalsaud AM, Shinde DB, Cao L, Zhang Y, Lai Z. Conjugated microporous polymer membranes for light-gated ion transport. SCIENCE ADVANCES 2022; 8:eabo2929. [PMID: 35714184 PMCID: PMC9205585 DOI: 10.1126/sciadv.abo2929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 05/28/2023]
Abstract
Inspired by the light-gated ion channels in cell membranes that play important roles in many biological activities, herein, we developed an artificial light-gated ion channel membrane out of conjugated microporous polymers. Through bottom-up design of the monomer molecular structure and by the electropolymerization method, the membrane pore size and thickness were precisely controlled on the molecular level. The obtained membrane exhibited uniform pore size and highly sensitive light-switchable response. The photoisomerization of the polymer chain resulted in a reversible "on and off" light control over the pore size and subsequently led to light-gated ion transport across the membrane for a series of ions including hydrogen, potassium, sodium, lithium, calcium, magnesium, and aluminum ions.
Collapse
|
13
|
Li J, Zhang K, Zhao X, Li D. Single Artificial Ion Channels with Tunable Ion Transport Based on the Surface Modification of pH-Responsive Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27130-27139. [PMID: 35670465 DOI: 10.1021/acsami.2c03949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial ion channels with tunable ionic transport control and intelligent iontronic functions at the nanoscale have a wide application in logic computing and biosensing. Although some artificial ion channels with smart ion transport characteristics have been developed, most of them are constructed on porous membranes with undefined channel numbers. It is still challenging to achieve multiple ion transport features in single nanochannels and to control the ion flow more accurately with excellent repeatability. In this paper, a design strategy is presented to fabricate pH-responsive ion channels with various ion transport features based on a single polydimethylsiloxane (PDMS) nanochannel. The single-ion nanochannel developed by this approach can be further integrated into electronic systems on a chip. Three types of artificial ion channels are demonstrated and investigated systematically in this work. With symmetric or asymmetric pH stimuli, these ion channels can alternatively change their working states among an opened state, a closed state, and an ionic diode state. Four different ion transport features can be realized in a triple-gated ion channel system. With these advantages of the design, it is promising to build smart nanofluidic iontronic devices with widespread applicability in energy conversions, active ion transport control, and biological analysis.
Collapse
Affiliation(s)
- Jun Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kaiping Zhang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaoye Zhao
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
14
|
Yang J, Xu Y. Nanofluidics for sub-single cellular studies: Nascent progress, critical technologies, and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Wang J, Law CS, Gunenthiran S, Que Tran HN, Tran KN, Lim SY, Abell AD, Santos A. Structural Engineering of the Barrier Oxide Layer of Nanoporous Anodic Alumina for Iontronic Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21181-21197. [PMID: 35485719 DOI: 10.1021/acsami.2c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hemispherical barrier oxide layer (BOL) closing the bottom tips of hexagonally distributed arrays of cylindrical nanochannels in nanoporous anodic alumina (NAA) membranes is structurally engineered by anodizing aluminum substrates in three distinct acid electrolytes at their corresponding self-ordering anodizing potentials. These nanochannels display a characteristic ionic current rectification (ICR) signal between high and low ionic conduction states, which is determined by the thickness and chemical composition of the BOL and the pH of the ionic electrolyte solution. The rectification efficiency of the ionic current associated with the flow of ions across the anodic BOL increases with its thickness, under optimal pH conditions. The inner surface of the nanopores in NAA membranes was chemically modified with thiol-terminated functional molecules. The resultant NAA-based iontronic system provides a model platform to selectively detect gold metal ions (Au3+) by harnessing dynamic ICR signal shifts as the core sensing principle. The sensitivity of the system is proportional to the thickness of the barrier oxide layer, where NAA membranes produced in phosphoric acid at 195 V with a BOL thickness of 232 ± 6 nm achieve the highest sensitivity and low limit of detection in the sub-picomolar range. This study provides exciting opportunities to engineer NAA structures with tailorable ICR signals for specific applications across iontronic sensing and other nanofluidic disciplines.
Collapse
Affiliation(s)
- Juan Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Adelaide, Australia
| | - Cheryl Suwen Law
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Monash Institute of Pharmaceutics Science, Monash University, Victoria 3052, Melbourne, Australia
| | - Satyathiran Gunenthiran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Adelaide, Australia
| | - Huong Nguyen Que Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Adelaide, Australia
| | - Khoa Nhu Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Adelaide, Australia
| | - Siew Yee Lim
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Adelaide, Australia
| | - Andrew D Abell
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Department of Chemistry, The University of Adelaide, South Australia 5005, Adelaide, Australia
| | - Abel Santos
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia 5005, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia 5005, Adelaide, Australia
| |
Collapse
|
16
|
Hao J, Wang W, Zhao J, Che H, Chen L, Sui X. Construction and application of bioinspired nanochannels based on two-dimensional materials. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Kan X, Wu C, Wen L, Jiang L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. SMALL METHODS 2022; 6:e2101255. [PMID: 35218163 DOI: 10.1002/smtd.202101255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biological nanochannels which can regulate ionic transport across cell membranes intelligently play a significant role in physiological functions. Inspired by these nanochannels, numerous artificial nanochannels have been developed during recent years. The exploration of smart solid-state nanochannels can lay a solid foundation, not only for fundamental studies of biological systems but also practical applications in various fields. The basic fabrication principles, functional materials, and diverse applications based on artificial nanochannels are summarized in this review. In addition, theoretical insights into transport mechanisms and structure-function relationships are discussed. Meanwhile, it is believed that improvements will be made via computer-guided strategy in designing more efficient devices with upgrading accuracy. Finally, some remaining challenges and perspectives for developments in both novel conceptions and technology of this inspiring research field are stated.
Collapse
Affiliation(s)
- Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
19
|
Cheng SQ, Zhang SY, Min XH, Tao MJ, Han XL, Sun Y, Liu Y. Photoresponsive Solid Nanochannels Membranes: Design and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105019. [PMID: 34910848 DOI: 10.1002/smll.202105019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Light stimuli have notable advantages over other environmental stimuli, such as more precise spatial and temporal regulation, and the ability to serve as an energy source to power the system. In nature, photoresponsive nanochannels are important components of organisms, with examples including the rhodopsin channels in optic nerve cells and photoresponsive protein channels in the photosynthesis system of plants. Inspired by biological channels, scientists have constructed various photoresponsive, smart solid-state nanochannels membranes for a range of applications. In this review, the methods and applications of photosensitive nanochannels membranes are summarized. The authors believe that this review will inspire researchers to further develop multifunctional artificial nanochannels for applications in the fields of biosensors, stimuli-responsive smart devices, and nanofluidic devices, among others.
Collapse
Affiliation(s)
- Shi-Qi Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Si-Yun Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, P. R. China
| | - Xue-Hong Min
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Ming-Jie Tao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Xiao-Le Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Yue Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
20
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
21
|
Wang J, Zhou Y, Jiang L. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS NANO 2021; 15:18974-19013. [PMID: 34846138 DOI: 10.1021/acsnano.1c08582] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
22
|
Zhao L, Gong M, Yang J, Gu J. Switchable Ionic Transportation in the Nanochannels of the MOFs Triggered by Light and pH. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13952-13960. [PMID: 34788532 DOI: 10.1021/acs.langmuir.1c02579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of a biomimetic ionic channel is of great significance for the fabrication of smart biodevices or logic circuit. Inspired by the selective permeability of the cell membrane toward bioions, a light-induced and pH-modulated artificial nanochannel is herein prepared by integrating the multistimuli-response molecule of carboxylated spiropyran (SP-COOH) into the frameworks of NU-1000 (Zr-based MOFs defined by Northwestern University). The loading density of the SP-COOH could reach as high as 7 wt % while keeping unchanged crystallinity and high porosity. Thanks to the precise matching of pore size of NU-1000 and molecular dimensions of SP-COOH, the loaded molecules could proceed free and reversible for isomerization between the hydrophilic and hydrophobic states. The ion-switchable characteristics of the channel are implemented by the amphiphilic change of the light-controlled gate molecule. Additionally, in the hydrophilic state, the channel presents reversible affinity toward cations or anions due to the reverse charge state induced by pH, thus constructing a pH-controlled subgate. Taking [Ru(NH3)6]3+ and [Fe(NH3)]3- as the model cation and anion, their redox peak currents occur as reversible change under different signal combinations of light and pH. Moreover, in accordance with the ionic selective permeability, several logic circuits/devices are designed to display the relationships between exogenous stimuli and ionic transportations in a computer language, prefiguring their wide application prospects in electronic devices and life sciences.
Collapse
Affiliation(s)
- Liwei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Gong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., Putian, Fujian 351100, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
23
|
|
24
|
Spiropyrans: molecules in motion. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Li J, Li D. Integrated Iontronic Circuits Based on Single Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48208-48218. [PMID: 34585930 DOI: 10.1021/acsami.1c12324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article presents an invention of iontronic circuits to achieve effective electronic signal manipulation base on paralleled single polydimethylsiloxane (PDMS) nanochannels. The regulation of ion transport through the designed device is achieved by the asymmetrical decoration of charged polyelectrolytes on nanochannels. This circuit can serve as either a bipolar junction transistor or an ionic rectifier. The functionalities of the circuit are demonstrated and confirmed in different operation modes. The fabrication of this device is relatively simple. High accuracy in signal rectification can be obtained through the circuit because of the significant consistency of integrated ionic diodes. The iontronic integrated circuits presented in this paper provide new possibilities in the fabrication of iontronic devices with various functionalities on PDMS chips, toward improved biological computing and sensing.
Collapse
Affiliation(s)
- Jun Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
27
|
Li J, Li D. A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel. J Colloid Interface Sci 2021; 596:54-63. [PMID: 33831750 DOI: 10.1016/j.jcis.2021.03.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Nanofluidic diodes have attracted intense attention recently. Commonly used materials to design these devices are membrane-based short nanopores and aligned Carbon nanotube bundles. It is highly desirable and very challenging to develop a nanofluidic diode based on a single PDMS nanochannel which is easier to be introduced into an integrated electronic system on a chip. Layer-by-layer (LBL) deposition of charged polyelectrolytes can change the size and surface properties of PDMS nanochannels that provides new possibilities to develop high-performance nanofluidic based on PDMS nanochannels. EXPERIMENTS A novel design of nanofluidic diode is presented by controlling the surface charges and sizes of single PDMS nanochannels by surface modification using polyelectrolytes. Polybrene (PB) and Dextran sulfate (DS) are used to reduce the PDMS nanochannel size to meet the requirement of ion gating by LBL method and generate opposite surface charges at the ends of nanochannels. The parameters of such a nanofluidic diode are investigated systematically. FINDINGS This nanofluidic diode developed in this work has high effective current rectification performance. The rectification ratio can be as high as 218 which is the best ever reported in PB/DS modified nanochannels. This rectification ratio reduces with high voltage frequency and ionic concentration whereas increases in shorter nanochannels.
Collapse
Affiliation(s)
- Jun Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
28
|
Su Y, Liu D, Yang G, Wang L, Razal JM, Lei W. Light-Controlled Ionic Transport through Molybdenum Disulfide Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34679-34685. [PMID: 34261305 DOI: 10.1021/acsami.1c04698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In recent years, two-dimensional (2D) nanomaterials have been extensively explored in the field of nanofluidics due to their interconnected and well-controlled nanochannels. In particular, the investigation of 2D nanomaterials using their intrinsic properties for smart nanofluidics is receiving increased interest. Here, we report that MoS2 membranes can be used for light-controlled nanofluidic applications based on their photoelectrical properties. We show that the MoS2 membranes exhibit surface charge-governed ionic transport in NaCl and KCl solution without light illumination, while the ionic conductivity of the MoS2 membranes is up to 2 orders of magnitude higher at low concentration solution than that in bulk solution. We also show that the ionic conductivity of the membranes is enhanced under light illumination at 405 and 635 nm and reversible and stable switching of ionic current upon light illumination is observed. In addition, ionic current through membranes is enhanced by increasing light intensity. Therefore, our findings demonstrate that MoS2 membranes can be a potential platform for light-controlled nanofluidic applications.
Collapse
Affiliation(s)
- Yuyu Su
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Dan Liu
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Guoliang Yang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Lifeng Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| |
Collapse
|
29
|
Cayón VM, Laucirica G, Toum Terrones Y, Cortez ML, Pérez-Mitta G, Shen J, Hess C, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Borate-driven ionic rectifiers based on sugar-bearing single nanochannels. NANOSCALE 2021; 13:11232-11241. [PMID: 34152340 DOI: 10.1039/d0nr07733j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recently, much scientific effort has been centered on the control of the ionic transport properties of solid state nanochannels and the rational design and integration of chemical systems to induce changes in the ionic transport by means of interactions with selected target molecules. Here, we report the fabrication of a novel nanofluidic device based on solid-state nanochannels, which combines silane chemistry with both track-etched and atomic layer deposition (ALD) technologies. Nanodevice construction involves the coating of bullet-shaped single-pore nanochannels with silica (SiO2) by ALD and subsequent surface modification by reaction between silanol groups exposed on pore walls and N-(3-triethoxysilylpropyl)-gluconamide, in order to create a gluconamide-decorated nanochannel surface. The formation of a boroester derivative resulting from the selective reaction of borate with the appended saccharides leads to important changes in the surface charge density and, concomitantly, in the iontronic properties of the nanochannel. Furthermore, we propose a binding model to rationalize the specific interaction saccharide-borate in the surface. Besides, this unique nanodevice exhibits a highly selective and reversible response towards borate/fructose exposure. On the basis of the surface charge variation resulting from borate binding, the nanochannel can reversibly switch between "ON" and "OFF" states in the presence of borate and fructose, respectively. In addition, this work describes the first report of the functionalization of PET/SiO2 nanochannels by the ALD technique. We believe that this work provides a promising framework for the development of new nanochannel-based platforms suitable for multiple applications, such as water quality monitoring or directed molecular transport and separation.
Collapse
Affiliation(s)
- Vanina M Cayón
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cai J, Ma W, Hao C, Sun M, Guo J, Xu L, Xu C, Kuang H. Artificial light-triggered smart nanochannels relying on optoionic effects. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Wu YY, Chen LD, Cai XH, Zhao Y, Chen M, Pan XH, Li YQ. Smart pH-Modulated Two-Way Photoswitch Based on a Polymer-Modified Single Nanochannel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25241-25249. [PMID: 34018390 DOI: 10.1021/acsami.1c01975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this article, we have demonstrated a smart pH-modulated two-way photoswitch that can reversibly switch ion transport under alternating light exposure over a wide pH range. This photoswitch was prepared by functionalizing the interior of a single conical glass nanochannel with a poly-spiropyran-linked methacrylate (P-SPMA) polymer through surface-initiated atom transfer radical polymerization. The P-SPMA polymer brushes comprise functional groups that are responsive to light and pH, which can cause configuration and charge changes to affect the properties of the nanochannel wall. The SPMA polymer-modified nanochannel not only reversibly controlled ion transport under alternating light irradiation but also efficiently and flexibly regulated the direction and extent of the ion transport based on the pH. This two-way photoswitch exhibits the considerable potential of photoresponsive polymers for the advancement of "intelligent" bionic nanochannel devices for ion screening and optical sensing in various applications.
Collapse
Affiliation(s)
- Yuan-Yi Wu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Li-Dong Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xiu-Hong Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yan Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Min Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xiao-Hui Pan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
32
|
Fu L, Yang Z, Wang Y, Li R, Zhai J. Construction of Metal‐Organic Frameworks (MOFs)–Based Membranes and Their Ion Transport Applications. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lulu Fu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Zhao Yang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yuting Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Ruirui Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Chemistry Beihang University Beijing 100191 P. R. China
- School of Energy and Power Engineering Beihang University Beijing 100191 P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Chemistry Beihang University Beijing 100191 P. R. China
| |
Collapse
|
33
|
Wang Y, Gu Y, Yang Y, Sun K, Li H. Glutathione transmembrane transmission gated by light-switches. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Xu Y, Tong Y, Yan F, Chen S, Xu F. Bioinspired redox-driven NAD+ pump membranes with composition of annulated and cylindrical channel. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Lucas RA, Siwy ZS. Tunable Nanopore Arrays as the Basis for Ionic Circuits. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56622-56631. [PMID: 33283510 DOI: 10.1021/acsami.0c18574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been considerable interest in preparing ionic circuits capable of manipulating ionic and molecular transport in a solution. This direction of research is inspired by biological systems where multiple pores with different functionalities embedded in a cell membrane transmit external signals and underlie all physiological processes. In this manuscript, we describe the modeling of ion transport through small arrays of nanopores consisting of 3, 6, and 9 nanopores and an integrated gate electrode placed on the membrane surface next to one pore opening. We show that by tuning the gate voltage and strategically placing nanopores with nonlinear current-voltage characteristics, the local signal at the gate affects ionic transport through all nanopores in the array. Conditions were identified when the same gate voltage induced opposite rectification properties of neighboring nanopores. We also demonstrate that an ionic diode embedded in a nanopore array can modulate transport properties of neighboring pores even without a gate voltage. The results are explained by the role of concentration polarization and overlapping depletion zones on one side of the membrane. The modeling presented here is intended to become an inspiration to future experiments to create nanopore arrays that can transduce signals in space and time.
Collapse
Affiliation(s)
- Rachel A Lucas
- Department of Physics and Astronomy, University of California, 210G Rowland Hall, Irvine, California 92697, United States
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, 210G Rowland Hall, Irvine, California 92697, United States
| |
Collapse
|
36
|
Wang C, Wang D, Miao W, Shi L, Wang S, Tian Y, Jiang L. Bioinspired Ultrafast-Responsive Nanofluidic System for Ion and Molecule Transport with Speed Control. ACS NANO 2020; 14:12614-12620. [PMID: 32852939 DOI: 10.1021/acsnano.0c05156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of an intelligent nanofluidic system for regulating the transport of substances such as ions and molecules is significant for applications in biological sensing, drug delivery, and energy harvesting. However, the existing nanofluidic system faces challenges in terms of an uncontrollable transport speed for molecules and ions and also a complex preparation processes, low durability, and slow response rate. Herein, we demonstrate the use of a bioinspired ferrofluid-based nanofluid that can facilitate multilevel ultrafast-responsive ion and molecule transport with speed control. Specifically, we reversibly deform bulk ferrofluids using a magnet and wet/dewet the outer surface of superhydrophilic nanochannels for building a smart transport system. By changing the direction and strength of the external magnetic field, a speed control, ultrafast-responsive molecular transport (<0.1 s), and controlled current gating ratio are achieved owing to the different pattern changes of ferrofluids on the outer surface of nanochannels. We also illustrate a practical application of this strategy for antibacterial devices to control the transport of drug molecules in a programmed manner. These results suggest that molecule transport can be further complexified and quantified through an intelligent nanofluidic system.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dianyu Wang
- Beihang University, Beijing 100191, People's Republic of China
| | - Weining Miao
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lianxin Shi
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shutao Wang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ye Tian
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
37
|
Qian T, Zhang H, Li X, Hou J, Zhao C, Gu Q, Wang H. Efficient Gating of Ion Transport in Three-Dimensional Metal-Organic Framework Sub-Nanochannels with Confined Light-Responsive Azobenzene Molecules. Angew Chem Int Ed Engl 2020; 59:13051-13056. [PMID: 32343468 DOI: 10.1002/anie.202004657] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/09/2022]
Abstract
1D nanochannels modified with responsive molecules are fabricated to replicate gating functionalities of biological ion channels, but gating effects are usually weak because small molecular gates cannot efficiently block the large channels in the closed states. Now, 3D metal-organic framework (MOF) sub-nanochannels (SNCs) confined with azobenzene (AZO) molecules achieve efficient light-gating functionalities. The 3D MOFSNCs consisting of a MOF UiO66 with ca. 9-12 Å cavities connected by ca. 6 Å triangular windows work as angstrom-scale ion channels, while confined AZO within the MOF cavities function as light-driven molecular gates to efficiently regulate the ion flux. The AZO-MOFSNCs show good cyclic gating performance and high on-off ratios up to 17.8, an order of magnitude higher than ratios observed in conventional 1D AZO-modified nanochannels (1.3-1.5). This work provides a strategy to develop highly efficient switchable ion channels based on 3D porous MOFs and small responsive molecules.
Collapse
Affiliation(s)
- Tianyue Qian
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Jue Hou
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Chen Zhao
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Qinfen Gu
- Australian Synchrotron ANSTO, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
38
|
Qian T, Zhang H, Li X, Hou J, Zhao C, Gu Q, Wang H. Efficient Gating of Ion Transport in Three‐Dimensional Metal–Organic Framework Sub‐Nanochannels with Confined Light‐Responsive Azobenzene Molecules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tianyue Qian
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Huacheng Zhang
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Xingya Li
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Jue Hou
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Chen Zhao
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Qinfen Gu
- Australian Synchrotron ANSTO 800 Blackburn Rd Clayton VIC 3168 Australia
| | - Huanting Wang
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| |
Collapse
|
39
|
Morim DR, Meeks A, Shastri A, Tran A, Shneidman AV, Yashin VV, Mahmood F, Balazs AC, Aizenberg J, Saravanamuttu K. Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions. Proc Natl Acad Sci U S A 2020; 117:3953-3959. [PMID: 32029591 PMCID: PMC7049136 DOI: 10.1073/pnas.1902872117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Next-generation photonics envisions circuitry-free, rapidly reconfigurable systems powered by solitonic beams of self-trapped light and their particlelike interactions. Progress, however, has been limited by the need for reversibly responsive materials that host such nonlinear optical waves. We find that repeatedly switchable self-trapped visible laser beams, which exhibit strong pairwise interactions, can be generated in a photoresponsive hydrogel. Through comprehensive experiments and simulations, we show that the unique nonlinear conditions arise when photoisomerization of spiropyran substituents in pH-responsive poly(acrylamide-co-acrylic acid) hydrogel transduces optical energy into mechanical deformation of the 3D cross-linked hydrogel matrix. A Gaussian beam self-traps when localized isomerization-induced contraction of the hydrogel and expulsion of water generates a transient waveguide, which entraps the optical field and suppresses divergence. The waveguide is erased and reformed within seconds when the optical field is sequentially removed and reintroduced, allowing the self-trapped beam to be rapidly and repeatedly switched on and off at remarkably low powers in the milliwatt regime. Furthermore, this opto-chemo-mechanical transduction of energy mediated by the 3D cross-linked hydrogel network facilitates pairwise interactions between self-trapped beams both in the short range where there is significant overlap of their optical fields, and even in the long range--over separation distances of up to 10 times the beam width--where such overlap is negligible.
Collapse
Affiliation(s)
- Derek R Morim
- Department of Chemistry and Chemical Biology, McMaster University, ON L8S 4M1, Canada
| | - Amos Meeks
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Ankita Shastri
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Andy Tran
- Department of Chemistry and Chemical Biology, McMaster University, ON L8S 4M1, Canada
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138
| | - Victor V Yashin
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Fariha Mahmood
- Department of Chemistry and Chemical Biology, McMaster University, ON L8S 4M1, Canada
| | - Anna C Balazs
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
40
|
Bhattacharyya S, Maity M, Chowdhury A, Saha ML, Panja SK, Stang PJ, Mukherjee PS. Coordination-Assisted Reversible Photoswitching of Spiropyran-Based Platinum Macrocycles. Inorg Chem 2020; 59:2083-2091. [PMID: 31971781 PMCID: PMC10615217 DOI: 10.1021/acs.inorgchem.9b03572] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Control over the stimuli-responsive behavior of smart molecular systems can influence their capability to execute complex functionalities. Herein, we report the development of a suite of spiropyran-based multi-stimuli-responsive self-assembled platinum(II) macrocycles (5-7), rendering coordination-assisted enhanced photochromism relative to the corresponding ligands. 5 showed shrinking and swelling during photoreversal, while 6 and 7 are fast and fatigue-free supramolecular photoswitches. 6 turns out to be a better fatigue-resistant photoswitch and can retain an intact photoswitching ability of up to 20 reversible cycles. The switching behavior of the macrocycles can also be precisely controlled by tuning the pH of the medium. Our present strategy for the construction of rapid stimuli-responsive supramolecular architectures via coordination-driven self-assembly represents an efficient route for the development of smart molecular switches.
Collapse
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
- Department of Industrial Chemistry , Mizoram University , Aizawl , Mizoram 796004 , India
| | - Manik Lal Saha
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Sumit Kumar Panja
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| |
Collapse
|
41
|
Liu Q, Liu Y, Lu B, Wang Y, Xu Y, Zhai J, Fan X. A high rectification ratio nanofluidic diode induced by an “ion pool”. RSC Adv 2020; 10:7377-7383. [PMID: 35492185 PMCID: PMC9049848 DOI: 10.1039/c9ra09006a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
Inspired by functionalized biological ion channels, artificial channels were prepared to mimic the natural ones. The key concept behind the rectifying phenomena in nanochannels is the construction of asymmetric restrictive nanochannels. Here, we prepared nanoporous oxidized polyvinyl alcohol (PVA) and WO3 composite coatings on hourglass-shaped anodic aluminum oxide (AAO) nanochannel surfaces. Accordingly, a special “ion pool” is formed between the homogeneous junction in the middle of the AAO and the nanoporous PVA/WO3 film-covered AAO surface and its two ends are greatly nano-confined. Ion enrichment and ion depletion occur in the “ion pool” and are dependant on the applied voltage polarity. A rectification ratio of 458, which is in accordance with the highest value found in previous reports, was obtained from the cooperative effects of the two small open ends of the “ion pool”. Furthermore, this value is enhanced to about 2000 under constant voltage. An excellent pH-sensitive rectification property, with a single rectification direction from acidic to basic conditions, has also been demonstrated. Nanoporous polyvinyl alcohol (PVA)/WO3 composite coatings were prepared onto the hourglass-shaped AAO nanochannels surface, and an “ion pool” is formed. A rectification ratio of 2000 was obtained with constant voltage enhancement.![]()
Collapse
Affiliation(s)
- Qingqing Liu
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices
- School of Chemistry
- Beihang University
- Beijing 100191
- P. R. China
| | - You Liu
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices
- School of Chemistry
- Beihang University
- Beijing 100191
- P. R. China
| | - Bingxin Lu
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices
- School of Chemistry
- Beihang University
- Beijing 100191
- P. R. China
| | - Yuting Wang
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices
- School of Chemistry
- Beihang University
- Beijing 100191
- P. R. China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- College of Materials Science and Technology
- Beijing Forestry University
- Beijing 100083
- P.R. China
| | - Jin Zhai
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices
- School of Chemistry
- Beihang University
- Beijing 100191
- P. R. China
| | - Xia Fan
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices
- School of Chemistry
- Beihang University
- Beijing 100191
- P. R. China
| |
Collapse
|
42
|
Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. NANOSCALE 2019; 11:19636-19657. [PMID: 31603455 DOI: 10.1039/c9nr05367k] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since their introduction in 2001, solid-state nanopores have been increasingly exploited for the detection and characterization of biomolecules ranging from single DNA strands to protein complexes. A major factor that enables the application of nanopores to the analysis and characterization of a broad range of macromolecules is the preparation of coatings on the pore wall to either prevent non-specific adhesion of molecules or to facilitate specific interactions of molecules of interest within the pore. Surface coatings can therefore be useful to minimize clogging of nanopores or to increase the residence time of target analytes in the pore. This review article describes various coatings and their utility for changing pore diameters, increasing the stability of nanopores, reducing non-specific interactions, manipulating surface charges, enabling interactions with specific target molecules, and reducing the noise of current recordings through nanopores. We compare the coating methods with respect to the ease of preparing the coating, the stability of the coating and the requirement for specialized equipment to prepare the coating.
Collapse
Affiliation(s)
- Olivia M Eggenberger
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Cuifeng Ying
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Michael Mayer
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
43
|
Xiao T, Ma J, Jiang J, Gan M, Lu B, Luo R, Liu Q, Zhang Q, Liu Z, Zhai J. Rod-Cell-Mimetic Photochromic Layered Ion Channels with Multiple Switchable States for Controllable Ion Transport. Chemistry 2019; 25:12795-12800. [PMID: 31376182 DOI: 10.1002/chem.201902450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Indexed: 01/10/2023]
Abstract
The controllable ion transport in the photoreceptors of rod cells is essentially important for the light detection and information transduction in visual systems. Herein, inspired by the photochromism-regulated ion transport in rod cells with stacking structure, layered ion channels have been developed with a visual photochromic function induced by the alternate irradiation with visible and UV light. The layered structure is formed by stacking spiropyran-modified montmorillonite 2D nanosheets on the surface of an alumina nanoporous membrane. The visual photochromism resulting from the photoisomerization of spiropyran chromophores reversibly regulates the ion transport through layered ion channels. Furthermore, the cooperation of photochromism and pH value achieves multiple switchable states of layered ion channels for the controllable ion transport mimicking the biological process of the visual cycle. The ion transport properties of these states are explained quantitatively by a theoretical calculation based on the Poisson and Nernst-Plank (PNP) equations.
Collapse
Affiliation(s)
- Tianliang Xiao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jing Ma
- School of Space and Environment, Beihang University, Beijing, 100124, P. R. China
| | - Jiaqiao Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Mengke Gan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Rifeng Luo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qingqing Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qianqian Zhang
- The College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Zhaoyue Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
44
|
Guo J, Yang L, Xu H, Zhao C, Dai Z, Gao Z, Song Y. Biomineralization-Driven Ion Gate in TiO2 Nanochannel Arrays for Cell H2S Sensing. Anal Chem 2019; 91:13746-13751. [DOI: 10.1021/acs.analchem.9b03119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Junli Guo
- College of Sciences, Northeastern University, Box 332, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Box 332, Shenyang 110004, China
| | - Huijie Xu
- College of Sciences, Northeastern University, Box 332, Shenyang 110004, China
| | - Chenxi Zhao
- College of Sciences, Northeastern University, Box 332, Shenyang 110004, China
| | - Zhenqing Dai
- College of Sciences, Northeastern University, Box 332, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Box 332, Shenyang 110004, China
| | - Yanyan Song
- College of Sciences, Northeastern University, Box 332, Shenyang 110004, China
| |
Collapse
|
45
|
Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Molecular Design of Solid-State Nanopores: Fundamental Concepts and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901483. [PMID: 31267585 DOI: 10.1002/adma.201901483] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices. The key point responsible for the vibrant and exciting advance of solid nanopore research in the last decade has been the simultaneous combination of advanced fabrication nanotechnologies to tailor the size, geometry, and application of novel and creative approaches to confer the nanopore surface specific functionalities and responsiveness. Here, the state of the art is described in the following critical areas: i) theory, ii) nanofabrication techniques, iii) (bio)chemical functionalization, iv) construction of nanofluidic actuators, v) nanopore (bio)sensors, and vi) commercial aspects. The plethora of potential applications once envisioned for solid-state nanochannels is progressively and quickly materializing into new technologies that hold promise to revolutionize the everyday life.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| |
Collapse
|
46
|
Laucirica G, Marmisollé WA, Toimil-Molares ME, Trautmann C, Azzaroni O. Redox-Driven Reversible Gating of Solid-State Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30001-30009. [PMID: 31335118 DOI: 10.1021/acsami.9b05961] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The design of an electrochemically addressable nanofluidic diode is proposed, which allows tunable and nanofluidic operations via redox gating under electrochemical control. The fabrication process involves the modification of an asymmetric gold-coated solid-state nanopore with a thin layer of a redox polymer, poly(vinylferrocene) (PVFc). The composite nanochannel acts as a gate electrode by changing the electrochemical state and, consequently, the conversion/switching of ferrocene into ferricenium units upon the application of different voltages. It is shown that the electrochemical input accurately controls the surface charge density of the nanochannel walls with a predictable concomitant effect on the rectification properties. PVFc-based nanofluidic devices are able to discriminate the passage of anionic species through the nanochannel in a qualitative and quantitative manner by simply switching the redox potential of the PVFc layer. Experimental data confirmed that a rapid and reversible modulation of the ionic transport regimes can be easily attained by changing the applied potential. This applied potential plays the role of the gate voltage (Vg) in field-effect transistors (FET), so these nanofluidic channels behave as ionic FETs. Depending on the Vg values, the iontronic behavior can be switched between ohmic and diode-like regimes. We believe that this system illustrates the potential of redox-active polymers integrated into nanofluidic devices as plausible, simple, and versatile platforms to create electrochemically addressable nanofluidic devices for multiple applications.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Technische Universität Darmstadt, Material-Wissenschaft , 64287 Darmstadt , Germany
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| |
Collapse
|
47
|
Deng M, Yang M, Xu Y, Sun Y, Wang Q, Liu J, Huang J, Yang X, Wang K. Biomimetic nanochannel membrane for cascade response of borate and cis-hydroxyl compounds: An IMP logic gate device. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Zhu Z, Wang D, Tian Y, Jiang L. Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions. J Am Chem Soc 2019; 141:8658-8669. [DOI: 10.1021/jacs.9b00086] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhongpeng Zhu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dianyu Wang
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ye Tian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
49
|
Zhang X, Chen L, Lim KH, Gonuguntla S, Lim KW, Pranantyo D, Yong WP, Yam WJT, Low Z, Teo WJ, Nien HP, Loh QW, Soh S. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804540. [PMID: 30624820 DOI: 10.1002/adma.201804540] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/09/2018] [Indexed: 05/22/2023]
Abstract
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man-made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli-responsive materials; these "smart" materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli-responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self-regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli-responsive materials as the basic building blocks.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Spandhana Gonuguntla
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Wen Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wai Pong Yong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wei Jian Tyler Yam
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhida Low
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wee Joon Teo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Ping Nien
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiao Wen Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
50
|
Sachar HS, Sivasankar VS, Das S. Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law. SOFT MATTER 2019; 15:559-574. [PMID: 30520929 DOI: 10.1039/c8sm02163e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we develop a theory to account for the effect of excluded volume (EV) interactions in the strong stretching theory (SST) based description of pH-responsive polyelectrolyte (PE) brushes. The existing studies have considered the PE brushes to be present in a θ-solvent and hence have neglected the EV interactions; however, such a consideration cannot describe the situations where the pH-responsive brushes are in a "good" solvent. Secondly, we consider a more expanded form of the mass action law, governing the pH-dependent ionization of the PE molecules, in the SST description of the PE brushes. This expanded form of the mass action law considers different values of γa3 (γ is the density of chargeable sites on the PE molecule and a is the PE Kuhn length) and therefore is an improvement over the existing SST models of PE brushes as well as other theories involving pH-responsive PE molecules that always consider γa3 = 1. Our results demonstrate that the EV effects enhance the brush height by inducing additional PE inter-segmental repulsion. Similarly, the consideration of the expanded form of the mass action law would lead to a reduced (enhanced) brush height for γa3 < 1 (γa3 > 1). We also quantify variables such as the monomer density distribution, the distribution of the ends of the PE brush, and the EDL electrostatic potential and explain their differences with respect to those obtained with no EV interactions or γa3 = 1.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | | | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| |
Collapse
|