1
|
Ni M, Zhuo Z, Zheng Y, Yang J, Sun L, Xu Z, An X, Wang S, Cai J, Bai L, Xie G, Xu M, Lin J, Wu Y, Huang W. High-Efficiency Intrinsically Thermoplastic Semiconducting Polymer with Excellent Strain-Tolerance Capacity for Flexible Ultra-Deep-Blue Polymer Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411547. [PMID: 39801183 DOI: 10.1002/adma.202411547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Indexed: 02/26/2025]
Abstract
Complex internal stresses that appear in flexible thin-film electronic devices under long-term deformation operation are associated with incompatible mechanical properties of the multiple layers, which potentially cause intralayer fracture and separation. These defects may result in device instability, performance loss, and failure. Herein, a thermoplastic functional strategy is proposed for manufacturing high-performance stretchable semiconducting polymers with excellent strain-tolerance capacities for flexible electronic devices. Internal plasticization is used to obtain a thermoplastic light-emitting polymer (N2) that can suppress intralayer tensile fracture and compressive separation to enhance the deformation stability of flexible thin-film optoelectronic devices, enabling outstanding energy dissipation capacity under stress. The thermoplastic films exhibit stable and efficient ultra-deep-blue emission with a high efficiency of ≈90% and chromaticity coordinates of (0.16, 0.04). Moreover, the N2-based rigid and flexible polymer light-emitting diodes (PLEDs) exhibit stable ultra-deep-blue electroluminescence properties with high EQEs of ≈2.4% and 1.9%, respectively. Compared with devices based on brittle PODPF, flexible PLEDs based on thermoplastic films effectively suppress performance degradation after hundreds of cycles of bending fatigue, even under extremely rigid conditions. Introducing intrinsically thermoplastic semiconducting polymers in flexible electronic devices can thus substantially enhance their operational stability under deformation.
Collapse
Affiliation(s)
- Mingjian Ni
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Zhiqiang Zhuo
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yingying Zheng
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jing Yang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Zhenhua Xu
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiang An
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Shengjie Wang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jiangli Cai
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lubing Bai
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guohua Xie
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Man Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinyi Lin
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yutong Wu
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, 422 Siming South Road, Xiamen, 361005, China
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
2
|
Wang N, Hong R, Zhang G, Pan M, Bao Y, Zhang W. Molecular Imprinting Strategy Enables Circularly Polarized Luminescence Enhancement of Recyclable Chiral Polymer Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409078. [PMID: 39551998 DOI: 10.1002/smll.202409078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Circularly polarized luminescence (CPL) plays a crucial role in the fields of optical display and information technology. The pursuit of high dissymmetry factors (glum) and fluorescence quantum yields in CPL materials remains challenging due to inherent trade-offs. In this work, molecular imprinting technology is employed to develop novel CPL-active polymer films based entirely on achiral fluorene-based polymers, achieving an enhanced glum value exceeding 4.2 × 10-2 alongside high quantum yields. These chiral molecularly imprinted polymer films (MIPF) are synthesized via a systematic three-step process: co-assembly with limonene and a porphyrin derivative (TBPP), interchain crosslinking, and subsequent removal of small molecules. During this process, limonene acts as the chiral inducer, while TBPP serves dual roles as both the chiral enhancer and imprinted molecule. The elimination of TBPP creates chiral sites for various fluorescent molecules, facilitating full-color CPL emission. The chiral MIPF exhibits stable CPL performance even after multiple cycles of post-assembly and removal. Furthermore, these films can function as interfacial microreactors, enabling in situ chemical reactions that dynamically regulate CPL signals. Additionally, chiral self-organization within achiral azobenzene polymer films can also be achieved using MIPF, serving as intense chiral light sources.
Collapse
Affiliation(s)
- Nianwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- School of Material Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Menghan Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yinglong Bao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| |
Collapse
|
3
|
Yu ZD, Lu Y, Yao ZF, Wu HT, Wang ZY, Pan CK, Wang JY, Pei J. Buffer Chain Model for Understanding Crystallization Competition in Conjugated Polymers. Angew Chem Int Ed Engl 2024; 63:e202405139. [PMID: 38588277 DOI: 10.1002/anie.202405139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
It remains challenging to comprehensively understand the packing models of conjugated polymers, in which side chains play extremely critical roles. The side chains are typically flexible and non-conductive and are widely used to improve the polymer solubility in organic solutions. Herein, a buffer chain model is proposed to describe link between conjugated backbone and side chains for understanding the relationship of crystallization competition of conductive conjugated backbones and non-conductive side chains. A longer buffer chain is beneficial for alleviating such crystallization competition and further promoting the spontaneous packing of conjugated backbones, resulting in enhanced charge transport properties. Our results provide a novel concept for designing conjugated polymers towards ordered organization and enhanced electronic properties and highlight the importance of balancing the competitive interactions between different parts of conjugated polymers.
Collapse
Affiliation(s)
- Zi-Di Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chen-Kai Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Berndt D, Glaap D, Jennings T, Dose C, Werz DB, Reckert DNH. Water-Soluble Fluorescent Polymer Dyes with Tunable Emission Spectra for Flow Cytometry Applications. Angew Chem Int Ed Engl 2024; 63:e202402616. [PMID: 38488317 DOI: 10.1002/anie.202402616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 04/04/2024]
Abstract
The application of spectrally unique, bright, and water-soluble fluorescent dyes is indispensable for the analysis of biological systems. Multiparameter flow cytometry is a powerful tool for characterization of mixed cell populations. To discriminate the different cell populations, they are typically stained by a set of fluorescent reagents, e.g., antibody-fluorophore conjugates. The number of parameters which can be studied simultaneously strongly depends on the availability of reagents which can be differentiated by their spectral properties. In this study a series of fluorescent polymer dyes was developed, that can be excited with a single violet laser (405 nm) but distinguished by their unique emission spectra. The polyfluorene-based polymers can be used on their own, or in combination with covalently bound small-molecule dyes to generate energy transfer constructs to red-shift the emission wavelength based on Förster resonance energy transfer (FRET). The polymer dyes were utilized in a biological flow cytometry assay by conjugating several of them to antibodies, demonstrating their effectiveness as reagents. This report represents the first systematic investigation of structure-property relationships for this type of fluorescent dyes.
Collapse
Affiliation(s)
- Daniel Berndt
- Miltenyi Biotec BV & Co. KG, Department Chemical Biology, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, 79104, Freiburg, Germany
| | - Dorina Glaap
- Miltenyi Biotec BV & Co. KG, Department Chemical Biology, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany
| | - Travis Jennings
- Miltenyi Biotec BV & Co. KG, Department Chemical Biology, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany
| | - Christian Dose
- Miltenyi Biotec BV & Co. KG, Department Chemical Biology, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, 79104, Freiburg, Germany
| | - Dirk N H Reckert
- Miltenyi Biotec BV & Co. KG, Department Chemical Biology, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany
| |
Collapse
|
5
|
Sun N, Han Y, Huang W, Xu M, Wang J, An X, Lin J, Huang W. A Holistic Review of C = C Crosslinkable Conjugated Molecules in Solution-Processed Organic Electronics: Insights into Stability, Processibility, and Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309779. [PMID: 38237201 DOI: 10.1002/adma.202309779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Solution-processable organic conjugated molecules (OCMs) consist of a series of aromatic units linked by σ-bonds, which present a relatively freedom intramolecular motion and intermolecular re-arrangement under external stimulation. The cross-linked strategy provides an effective platform to obtain OCMs network, which allows for outstanding optoelectronic, excellent physicochemical properties, and substantial improvement in device fabrication. An unsaturated double carbon-carbon bond (C = C) is universal segment to construct crosslinkable OCMs. In this review, the authors will set C = C cross-linkable units as an example to summarize the development of cross-linkable OCMs for solution-processable optoelectronic applications. First, this review provides a comprehensive overview of the distinctive chemical, physical, and optoelectronic properties arising from the cross-linking strategies employed in OCMs. Second, the methods for probing the C = C cross-linking reaction are also emphasized based on the perturbations of chemical structure and physicochemical property. Third, a series of model C = C cross-linkable units, including styrene, trifluoroethylene, and unsaturated acid ester, are further discussed to design and prepare novel OCMs. Furthermore, a concise overview of the optoelectronic applications associated with this approach is presented, including light-emitting diodes (LEDs), solar cells (SCs), and field-effect transistors (FETs). Lastly, the authors offer a concluding perspective and outlook for the improvement of OCMs and their optoelectronic application via the cross-linking strategy.
Collapse
Affiliation(s)
- Ning Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
6
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
7
|
Nakamura T, Omagari S, Liang X, Tan Q, Nakajima K, Vacha M. Simultaneous Force and Fluorescence Spectroscopy on Single Chains of Polyfluorene: Effect of Intra-Chain Aggregate Coupling. ACS NANO 2023; 17:8074-8082. [PMID: 37122036 DOI: 10.1021/acsnano.2c09773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Conjugated polymer chains in compact conformations or in films exhibit spectral features that can be attributed to interactions between individual conjugated segments of the chain, including formation of aggregates or excimers. Here, we use atomic force microscopy (AFM) on single chains of the conjugated polymer polyfluorene (PFO) to control the intersegment interactions by mechanically unfolding the chain. Simultaneously with the force spectroscopy we monitor fluorescence from the single PFO chains using a fluorescence microscope. We found that mechanical stretching of the chain causes disappearance of the green emission band. This observation provides evidence that the green emission originates from an intrachain aggregated state on the self-folded chain, which is decoupled by the stretching. In addition, the stretching upon laser irradiation leads to the appearance of additional features in the force spectra, small force peaks in the initial stages of the unfolding. These features are attributed to a combination of excitonic and van der Waals coupling of a ground-state intrachain aggregate.
Collapse
Affiliation(s)
- Tomonori Nakamura
- Department of Materials Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Shun Omagari
- Department of Materials Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Qiwen Tan
- Department of Materials Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, School of Materials and Chemical Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
8
|
Al-Ithawi WKA, Khasanov AF, Kovalev IS, Nikonov IL, Platonov VA, Kopchuk DS, Santra S, Zyryanov GV, Ranu BC. TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers (Basel) 2023; 15:1853. [PMID: 37112002 PMCID: PMC10142995 DOI: 10.3390/polym15081853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no solvent consumption, the accessibility of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly, the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during polymerization. Consequently, the development of new functional polymers and materials, including those based on mechanochemically synthesized polymers, has drawn much interest, particularly from the perspective of green chemistry. In this review, we tried to highlight the most representative examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials for photovoltaics, etc.
Collapse
Affiliation(s)
- Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- Energy and Renewable Energies Technology Center, University of Technology—Iraq, Baghdad 10066, Iraq
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Vadim A. Platonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
9
|
Ultrafast photoexcitation dynamics behavior of hydrogen-bonded polyfluorenol. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Wang S, Sun L, Zheng Y, Zhang Y, Yu N, Yang J, Li M, Chen W, He L, Liu B, Ni M, Liu H, Xu M, Bai L, Lin J, Huang W. Large-Area Blade-Coated Deep-Blue Polymer Light-Emitting Diodes with a Narrowband and Uniform Emission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205411. [PMID: 36574468 PMCID: PMC9951302 DOI: 10.1002/advs.202205411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Large-area polymer light-emitting diodes (PLEDs) manufactured by printing are required for flat-panel lighting and displays. Nevertheless, it remains challenging to fabricate large-area and stable deep-blue PLEDs with narrowband emission due to the difficulties in precisely tuning film uniformity and obtaining single-exciton emission. Herein, efficient and stable large-area deep-blue PLEDs with narrowband emission are prepared from encapsulated polydiarylfluorene. Encapsulated polydiarylfluorenes presented an efficient and stable deep-blue emission (peak: 439 nm; full width at half maximum (FWHM): 39 nm) in the solid state due to their single-chain emission behavior without inter-backbone chain aggregation. Large-area uniform blade-coated films (16 cm2 ) are also fabricated with excellent smoothness and morphology. Benefitting from efficient emission and excellent printed capacity, the blade-coated PLEDs with a device area of 9 mm2 realized uniform deep-blue emission (FWHM: 38 nm; CIE: 0.153, 0.067), with a corresponding maximum external quantum efficiency and the brightness comparable to those of devices based on spin-coated films. Finally, considering the essential role of deep-blue LEDs, a preliminary patterned PLED array with a pixel size of 800 × 1000 µm2 and a monochrome display is fabricated, highlighting potential full-color display applications.
Collapse
Affiliation(s)
- Shengjie Wang
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Lili Sun
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Yingying Zheng
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Yahui Zhang
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Ningning Yu
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Jinghao Yang
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Mengyuan Li
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Wenyu Chen
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Liangliang He
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Bin Liu
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Mingjian Ni
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Heyuan Liu
- School of Materials Science and EngineeringInstitute of New EnergyCollege of ScienceChina University of Petroleum (East China)QingdaoShandong266580China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life SciencesNanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Lubing Bai
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Jinyi Lin
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) (SoFE) and Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life SciencesNanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
- Frontiers Science Center for Flexible Electronics (FSCFE)Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME)Northwestern Polytechnical UniversityXi'an710072China
| |
Collapse
|
11
|
Sun N, Zou Q, Chen W, Zheng Y, Sun K, Li C, Han Y, Bai L, Wei C, Lin J, Yin C, Wang J, Huang W. Fluorene pendant-functionalization of poly(N-vinylcarbazole) as deep-blue fluorescent and host materials for polymer light-emitting diodes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Sun L, Wang S, Zheng Y, Chen W, Li M, Yu N, Wang Y, Yang J, Xu Y, Sun N, Liu B, An X, Bai L, Liu H, Lin J, Huang W. Poly(diarylfluorene) Deep-Blue Polymer Light-Emitting Diodes Based on Submicrometer-Scale Morphological Films Induced by Trace β-Conformation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lili Sun
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shengjie Wang
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yingying Zheng
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wenyu Chen
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Mengyuan Li
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ningning Yu
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yunhao Wang
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinghao Yang
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Xu
- School of Chemistry and ARC Centre of Excellence in Exciton Science, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ning Sun
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Bin Liu
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang An
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lubing Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Heyuan Liu
- School of Materials Science and Engineering, Institute of New Energy, College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jinyi Lin
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Centre for Supramolecular Optoelectronics (CSO), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
14
|
Liu B, He L, Li M, Yu N, Chen W, Wang S, Sun L, Ni M, Bai L, Pan W, Sun P, Lin J, Huang W. Improving the Intrinsic Stretchability of Fully Conjugated Polymer for Deep-Blue Polymer Light-Emitting Diodes with a Narrow Band Emission: Benefits of Self-Toughness Effect. J Phys Chem Lett 2022; 13:7286-7295. [PMID: 35916779 DOI: 10.1021/acs.jpclett.2c02071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is challenging to construct the intrinsically stretchable active layer of rigid conjugated polymers (CPs) toward flexible deep-blue light-emitting diodes (FLEDs). Inspired by the self-toughness effect, sacrificial hydrogen bonding (H-bonding) and a cross-linked network synergistically enabled polydiarylfluorene (PFs-NH) films to present efficient deep-blue emission and excellent intrinsic stretchability. In particular, a cross-linked network structure presenting viscoelasticity behaviors, which was successfully inherited into postprocessed films with interchain interpenetration and a crystallinity domain and behaved as energy absorption and dissipation centers, was induced by the interchain H-bonding interaction in toluene (Tol) precursor solutions where the storage moduli (G') gradually exceeded the loss moduli (G″). Subsequently, intrinsic stretchable films with a tensile rate of 30% were prepared from Tol solutions, different from the brittle films from polar solvents. Eventually, narrow band, deep-blue PLEDs showed a maximum EQE of 1.28% and a full width half-maximum (fwhm) of 28 nm. Therefore, the self-toughness effect induced by hierarchical structures will be feasible to obtain high-performance FLEDs.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Liangliang He
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shengjie Wang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Mingjian Ni
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lubing Bai
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Weichun Pan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
15
|
Li T, He Q, Guan Y, Liao J, He Y, Luo X, Cao W, Cui Z, Jia S, Liu A, Yao S, Guan X, Zhang H, Lu D. Influence of molecular weight and the change of solvent solubility on β conformation and chains condensed state structure for poly (9,9-dioctylfluorene) (PFO) in solution. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Enhancement of morphological and emission stability of deep-blue small molecular emitter via a universal side-chain coupling strategy for optoelectronic device. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Danielsen SPO, Bridges CR, Segalman RA. Chain Stiffness of Donor–Acceptor Conjugated Polymers in Solution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott P. O. Danielsen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Colin R. Bridges
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Mohamed MG, Chou YS, Yang PC, Kuo SW. Multi-stimuli responsive fluorescence chemosensor based on diketopyrrolopyrrole-based conjugated polyfluorene. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Yu M, Jia X, Lin D, Du X, Jin D, Wei Y, Xie L, Huang W. Stereoisomer-Independent Stable Blue Emission in Axial Chiral Difluorenol. Front Chem 2021; 9:717892. [PMID: 34540799 PMCID: PMC8446198 DOI: 10.3389/fchem.2021.717892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/04/2022] Open
Abstract
Bulky conjugated molecules with high stability are the prerequisite for the overall improvement of performance in wide-bandgap semiconductors. Herein, a chiral difluorenol, 2,2′-(9,9′-spirobi[fluorene]-2,2′-diyl)bis(9-(4-(octyloxy)phenyl)-9H-fluoren-9-ol) (DOHSBF), is set as a desirable model to reveal the stereoisomeric effects of wide-bandgap molecules toward controlling photophysical behavior and improving thermal and optical stability. Three diastereomers are obtained and elucidated by NMR spectra. Interestingly, the effect of modifying the stereo-centers is not observed on optical properties in solutions, pristine films, or post-treated film states. All three diastereomers as well as the mixture exhibit excellent spectral stability without undesirable green emission. Therefore, this stereoisomer-independent blue-emitting difluorenol will be a promising candidate for next-generation wide-bandgap semiconductors that would have extensive application in organic photonics.
Collapse
Affiliation(s)
- Mengna Yu
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiong Jia
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongqing Lin
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xue Du
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dong Jin
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ying Wei
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Linghai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China.,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, China
| | - Wei Huang
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China.,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, China
| |
Collapse
|
20
|
Yahya M, Çakmaz D, Achelle S, le Gall E, Şahin E, Seferoğlu Z. Synthesis, photophysical, thermal properties and X-Ray studies of novel organic dyes bearing Inden-1-ylidene and fluorene. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Ding L, Wang ZY, Yao ZF, Liu NF, Wang XY, Zhou YY, Luo L, Shen Z, Wang JY, Pei J. Controllable Transformation between the Kinetically and Thermodynamically Stable Aggregates in a Solution of Conjugated Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Nai-Fu Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yang-Yang Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
22
|
Sun N, Han Y, Sun L, Xu M, Wang K, Lin J, Sun C, An J, Wang S, Wei Q, Zheng Y, Zhuo Z, Bai L, Xie L, Yin C, Zhang X, Huang W. Diarylfluorene Flexible Pendant Functionalization of Polystyrene for Efficient and Stable Deep-Blue Polymer Light-Emitting Diodes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ning Sun
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yamin Han
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lili Sun
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Man Xu
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Kai Wang
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyi Lin
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chen Sun
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - JingXi An
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shengjie Wang
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qi Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Yingying Zheng
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhiqiang Zhuo
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lubing Bai
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Linghai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chengrong Yin
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xinwen Zhang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
23
|
Yamaguchi I, Ooe R, Wang A. Polyfluorenes bearing N1-Alkylcytosine, Alkylphosphoryl, and Alkylammonium side chains: Synthesis, chemical properties, and sensing ability for metal ions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Pan S, Peng J, Lin Z. Large‐Scale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscus‐Assisted Self‐Assembly. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuang Pan
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Zhiqun Lin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
25
|
Pan S, Peng J, Lin Z. Large-Scale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscus-Assisted Self-Assembly. Angew Chem Int Ed Engl 2021; 60:11751-11757. [PMID: 33650301 DOI: 10.1002/anie.202101272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Rapid and deliberate patterning of nanomaterials over a large area is desirable for device manufacturing. We report a method for meniscus-assisted self-assembly (MASA)-enabled rapid positioning of hierarchically assembled dots and stripes composed of luminescent conjugated polymer over two length scales. Periodically arranged conjugated poly(9,9-dioctylfluorene) (PFO) polymers, yield dots, punch-holes and stripes at microscopic scale via MASA. Concurrent self-assembly of PFOs into two-dimensional lenticular crystals within each dot, punch-hole and stripe is realized at nanoscopic scale. Hierarchical assembly is achieved by constraining the evaporation of the PFOs solution in two approximately parallel plates via a MASA process. The three-phase contact line (TCL) of the liquid meniscus of the PFOs was printed using the upper plate, yielding an array of curved stripes. Rapid creation of hierarchical assemblies via MASA opens up possibilities for large-scale organization of a wide range of soft matters and nanomaterials.
Collapse
Affiliation(s)
- Shuang Pan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
26
|
Ding Z, Liu D, Zhao K, Han Y. Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
27
|
Synchronization in Non-Mirror-Symmetrical Chirogenesis: Non-Helical π–Conjugated Polymers with Helical Polysilane Copolymers in Co-Colloids. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A curious question is whether two types of chiroptical amplifications, called sergeants-and-soldiers (Ser-Sol) and majority-rule (Maj) effects, between non-charged helical copolymers and non-charged, non-helical homopolymers occur when copolymer encounter homopolymer in co-colloids. To address these topics, the present study chose (i) two helical polysilane copolymers (HCPSs) carrying (S)- or (R)-2-methylbutyl with isobutyl groups as chiral/achiral co-pendants (type I) and (S)- and (R)-2-methylbutyl groups as chiral/chiral co-pendants (type II) and (ii) two blue luminescent π-conjugated polymers, poly[(dioctylfluorene)-alt-(trans-vinylene)] (PFV8) and poly(dioctylfluorene) (PF8). Analyses of circular dichroism (CD) and circularly polarized luminescence (CPL) spectral datasets of the co-colloids indicated noticeable, chiroptical inversion in the Ser-Sol effect of PFV8/PF8 with type I HCPS. PF8 with type IIHCPS showed the anomalous Maj rule with chiroptical inversion though PFV8 with type IIHCPS was the normal Maj effect. The noticeable non-mirror-symmetric CD-and-CPL characteristics and marked differences in hydrodynamic sizes of these colloids were assumed to originate from non-mirror-symmetrical main-chain stiffness of HCPSs in dilute toluene solution. The present chirality/helicity transfer experiments alongside of previous/recent publications reported by other workers and us allowed to raise the fundamental question; is mirror symmetry on macroscopic levels in the ground and photoexcited states rigorously conserved?
Collapse
|
28
|
Yao ZF, Zheng YQ, Dou JH, Lu Y, Ding YF, Ding L, Wang JY, Pei J. Approaching Crystal Structure and High Electron Mobility in Conjugated Polymer Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006794. [PMID: 33501736 DOI: 10.1002/adma.202006794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Conjugated polymers usually form crystallized and amorphous regions in the solid state simultaneously, making it difficult to accurately determine their precise microstructures. The lack of multiscale microstructures of conjugated polymers limits the fundamental understanding of the structure-property relationships in polymer-based optoelectronic devices. Here, crystals of two typical conjugated polymers based on four-fluorinated benzodifurandione-based oligo(p-phenylene vinylene) (F4 BDOPV) and naphthalenediimide (NDI) motifs, respectively, are obtained by a controlled self-assembly process. The strong diffractivity of the polymer crystals brings an opportunity to determine the crystal structures by combining X-ray techniques and molecular simulations. The precise polymer packing structures are useful as initial models to evaluate the charge transport properties in the ordered and disordered phases. Compared to the spin-coated thin films, the highly oriented polymer chains in crystals endow higher mobilities with a lower hopping energy barrier. Microwire crystal transistors of F4 BDOPV- and NDI-based polymers exhibit high electron mobilities of up to 5.58 and 2.56 cm2 V-1 s-1 , respectively, which are among the highest values in polymer crystals. This work presents a simple method to obtain polymer crystals and their precise microstructures, promoting a deep understanding of molecular packing and charge transport for conjugated polymers.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu-Qing Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jin-Hu Dou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi-Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
29
|
Yao ZF, Wang JY, Pei J. High-performance polymer field-effect transistors: from the perspective of multi-level microstructures. Chem Sci 2020; 12:1193-1205. [PMID: 34163881 PMCID: PMC8179153 DOI: 10.1039/d0sc06497a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 01/13/2023] Open
Abstract
The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors (FETs). However, controlling the hierarchical microstructures and the structural evolution remains a significant challenge. In this perspective, we discuss the key aspects of multi-level microstructures of conjugated polymers towards high-performance FETs. We highlight the recent progress in the molecular structures, solution-state aggregation, and polymer crystal structures, representing the multi-level microstructures of conjugated polymers. By tuning polymer hierarchical microstructures, we attempt to provide several guidelines for developing high-performance polymer FETs and polymer electronics.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
30
|
Tseng TW, Yan H, Nakamura T, Omagari S, Kim JS, Vacha M. Real-Time Monitoring of Formation and Dynamics of Intra- and Interchain Phases in Single Molecules of Polyfluorene. ACS NANO 2020; 14:16096-16104. [PMID: 33084298 DOI: 10.1021/acsnano.0c08038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poly(9,9-dioctylfluorene) (PFO) is one of the most important conjugated polymer materials, exhibiting outstanding photophysical and electrical properties. PFO is also known for a diversity of morphological phases determined by conformational states of the main chain. Our goal in this work is to address some of the key questions on formation and dynamics of one such conformation, the β-phase, by following in real time the evolution of fluorescence spectra of single PFO chains. The PFO is dispersed in a thin polystyrene film, and the spectra are monitored during the process of solvent vapor annealing with toluene. We confirm unambiguously that the PFO β-phase segments are formed on a true single-chain level at room temperature in the solvent-softened polystyrene. We further find that the formation of the β-phase is a dynamic and reversible process occurring on the order of seconds, leading to repeated spontaneous transitions between the glassy and β-phase segments during the annealing. Comparison of PFO with two largely different molecular weights (Mw) shows that chains with lower Mw form the β-phase segments much faster. For the high Mw PFO chains, a detailed Franck-Condon analysis of the β-phase spectra shows a large distribution of the Huang-Rhys factor, S, and even dynamic changes of this factor occurring on a single chain. Such dynamics are likely a manifestation of changing coherence length of the exciton. Further, for the high Mw PFO chains we observe an additional conformational state, a crystalline γ-phase. The γ-phase formation is also a spontaneous reversible process in the solvent-softened matrix. The phase can form from both the β-phase and the glassy phase, and the formation requires high Mw to enable intersegment interactions in a self-folded chain.
Collapse
Affiliation(s)
- Tzu-Wei Tseng
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Hao Yan
- Department of Physics and Centre for Plastic Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tomonori Nakamura
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Shun Omagari
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Ji-Seon Kim
- Department of Physics and Centre for Plastic Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
31
|
Wollmann J, Kahle FJ, Bauer I, Köhler A, Strohriegl P. Versatile Approach to Well-Defined Oligofluorenes and Polyfluorenes with Low Dispersity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Ma T, Song N, Qiu J, Zhang H, Lu D. Synergistic Effects of External Electric Field and Solvent Vapor Annealing with Different Polarities to Enhance β-Phase and Carrier Mobility of the Poly(9,9-dioctylfluorene) Films. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0129-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Li T, Zhang H, Liu B, Ma T, Lin J, Xie L, Lu D. Effect of Solvent on the Solution State of Conjugated Polymer P7DPF Including Single-Chain to Aggregated State Structure Formation, Dynamic Evolution, and Related Mechanisms. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, China
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, China
| | - Bin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, China
| | - Tengning Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Linghai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays &Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, China
| |
Collapse
|
34
|
Dias KDS, Savedra RML, de Magalhães CET, Siqueira MF. Solvent influence on molecular interactions in the bulk of fluorene copolymer films. RSC Adv 2020; 10:20772-20777. [PMID: 35517723 PMCID: PMC9054281 DOI: 10.1039/d0ra02058c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022] Open
Abstract
The effect of intermolecular interactions between the chains of the amorphous PFO–MEH-PPV films built from toluene and tetrahydrofuran (THF) were studied by atomistic molecular dynamics simulations, applying a successive solvent removal procedure. In the good solvent toluene, the incidence of topological entanglements is more significant. While in the poor solvent, coplanar interactions between neighbouring segments of the chains were also found, which is characteristics of cohesional entanglements. Structure factor curves of the films showed three peaks associated with the microstructure of the film, as previously reported by WAX diffractogram measurements. Moreover, the good solvent promotes more flexibility in dihedral angles, and the chains become nearer to each other. The effect of intermolecular interactions between the chains of the amorphous PFO–MEH-PPV films built from toluene and tetrahydrofuran (THF) were studied by atomistic molecular dynamics simulations, applying a successive solvent removal procedure.![]()
Collapse
Affiliation(s)
- Karina da Silva Dias
- Department of Physics, MolSMat - Molecular Simulation of Materials, Laboratory of Computational Simulation (LabSimCo), Federal University of Ouro Preto 35400-000 Ouro Preto MG Brazil
| | - Ranylson Marcello Leal Savedra
- Department of Physics, MolSMat - Molecular Simulation of Materials, Laboratory of Computational Simulation (LabSimCo), Federal University of Ouro Preto 35400-000 Ouro Preto MG Brazil .,Department of Physics, Laboratory of Polymers and Electronic Properties of Materials (LAPPEM), Federal University of Ouro Preto Ouro Preto MG Brazil
| | - Carlos Eduardo Tavares de Magalhães
- Department of Physics, MolSMat - Molecular Simulation of Materials, Laboratory of Computational Simulation (LabSimCo), Federal University of Ouro Preto 35400-000 Ouro Preto MG Brazil
| | - Melissa Fabíola Siqueira
- Department of Physics, MolSMat - Molecular Simulation of Materials, Laboratory of Computational Simulation (LabSimCo), Federal University of Ouro Preto 35400-000 Ouro Preto MG Brazil .,Department of Physics, Laboratory of Polymers and Electronic Properties of Materials (LAPPEM), Federal University of Ouro Preto Ouro Preto MG Brazil
| |
Collapse
|
35
|
Ji SY, Zhao W, Gao H, Pan JB, Xu CH, Quan YW, Xu JJ, Chen HY. Highly Efficient Aggregation-Induced Electrochemiluminescence of Polyfluorene Derivative Nanoparticles Containing Tetraphenylethylene. iScience 2020; 23:100774. [PMID: 31887665 PMCID: PMC6941856 DOI: 10.1016/j.isci.2019.100774] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
The aggregation-induced electrochemiluminescence (AIECL) of polyfluorene derivative nanoparticles containing tetraphenylethylene (TPE) in aqueous media is reported in this work. The TPE unit limits the intramolecular free rotation of phenyl rings, as well as the π-π stacking interactions of molecules, which significantly enhances ECL signal of the polyfluorene nanoparticles. With co-reactants of tri-n-propylamine (TPrA) and S2O82-, the copolymer nanoparticles show visualized ECL emissions at both positive and negative potentials. The ECL efficiency of copolymer nanoparticles in solid state is 163% compared with that of standard ECL species, Ru(bpy)32+. And at negative potential, the ECL intensity of copolymer nanoparticles is even stronger with 6.5 times compared with that at positive potential. The ECL generation mechanisms are analyzed detailed by annihilation and co-reactant route transient ECL test (millisecond scale). This work provides a reference for the organic structure design for AIECL and shows promising potential in luminescent device and biological applications.
Collapse
Affiliation(s)
- Si-Yuan Ji
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Wu Quan
- Key Laboratory of High Performance Polymer Materials & Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Liu B, Bai Z, Li T, Liu Y, Li X, Zhang H, Lu D. Discovery and structure characteristics of the intermediate-state conformation of poly(9,9-dioctylfluorene) (PFO) in the dynamic process of conformation transformation and its effects on carrier mobility. RSC Adv 2019; 10:492-500. [PMID: 35492527 PMCID: PMC9048266 DOI: 10.1039/c9ra07115f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
Good solution processability is a prerequisite for fabricating polymer optoelectronic devices. In this research, a new PFO chain conformation called "intermediate-state conformation" was found through UV-vis absorption spectroscopy, photoluminescence spectroscopy (PL) and Raman spectroscopy in the transition process of α conformation towards β conformation. The intermediate-state conformation not only remedies the defect of film-forming caused by large aggregation of β-conformation but also gains an equivalent carrier mobility similar to that of β conformation. Simultaneously, it was found that the film with the intermediate-state conformation had a smooth surface morphology compared to the film with β-conformation, which indicates that the intermediate-state conformation has good solution processability; thus, it is more suitable for the fabrication of photoelectric films with high carrier mobility. The results of high-resolution transmission electron microscopy (HR-TEM) measurements showed that there were obvious lattice fringes in the films with the intermediate-state conformation and β conformation; this reveals that the intermediate-state conformation has a more planar conformation with extended conjugation length than the β conformation, which is very beneficial to enhance carrier mobility. The research significantly reveals the dynamic evolution of polymer structures based on conjugated polymer physics. The conclusions enrich the understanding of the structure evolution and dynamic process of conjugated polymers and present broad application prospects for photoelectric and other functional devices due to the good film-forming properties of the intermediate-state conformation.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China +86 130 8681 2739
| | - Zeming Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China +86 130 8681 2739
| | - Tao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China +86 130 8681 2739
| | - Yang Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China +86 130 8681 2739
| | - Xiaona Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China +86 130 8681 2739
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China +86 130 8681 2739
| | - Dan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China +86 130 8681 2739
| |
Collapse
|
37
|
Alkyl-chain branched effect on the aggregation and photophysical behavior of polydiarylfluorenes toward stable deep-blue electroluminescence and efficient amplified spontaneous emission. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Yi HL, Hua CC. PBTTT-C 16 sol-gel transition by rod associations and networking. SOFT MATTER 2019; 15:8022-8031. [PMID: 31565725 DOI: 10.1039/c9sm01362h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A low-molecular-weight poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (designated as Lw-pBTTT-C16) in a fair solvent (chlorobenzene, CB) displays peculiar structural, mechanical, and electronic features during sol-gel transition. Using comprehensive (multiscale) dynamic/static analysis schemes, the Lw-pBTTT-C16/CB solution (10 mg mL-1) is shown to capitalize on rod associations and networking to form a gel, in stark contrast with its high-molecular-weight companion previously reported to form gels through hierarchical colloidal bridging. The present study reveals, however, that the molecular weight of pBTTT-C16 has a subtle impact on the gelation behaviors through the rarely recognized, contrasting supramolecular conformations (rod-like vs. wormlike) of the aggregate clusters fostered in the pristine solution. The ac conductivity nearly doubles as a result of improved (mesoscale) packing of cylindrical aggregates near the gel state as well as enhanced backbone rigidity of the constituting chains. Other distinguishing features include: (1) there is no real crossover of the dynamic moduli (G' and G'') upon increasing the temperature from gel (T = 15 °C) to solution (T = 80 °C) states. (2) The gel is about a hundredfold softer in dynamic modulus, yet more resilient with a fivefold increase in the yield strain. Both viscoelastic features are expected to greatly benefit the gel processability. (3) The coexistent microgels and cylinder (aggregate) bundles form a peculiar gel network that has not been reported previously with polymer or colloidal gels. The overall findings provide new mechanistic insight into the phenomenological effects of molecular weight for the pBTTT-Cn series in solution, sol, gel, and thin film.
Collapse
Affiliation(s)
- Han-Liou Yi
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Chi-Chung Hua
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
39
|
|
40
|
Smyslov RY, Tomilin FN, Shchugoreva IA, Nosova GI, Zhukova EV, Litvinova LS, Yakimansky AV, Kolesnikov I, Abramov IG, Ovchinnikov SG, Avramov PV. Synthesis and photophysical properties of copolyfluorenes for light-emitting applications: Spectroscopic experimental study and theoretical DFT consideration. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Bo YF, Liu YY, Soleimaninejad H, Yu MN, Xie LH, Smith TA, Ghiggino KP, Huang W. Photophysical Identification of Three Kinds of Low-Energy Green Band Defects in Wide-Bandgap Polyfluorenes. J Phys Chem A 2019; 123:2789-2795. [DOI: 10.1021/acs.jpca.9b00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi-Fan Bo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yu-Yu Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | | | - Meng-Na Yu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ling-Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | | | | | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|
42
|
Lin J, Liu B, Yu M, Wang X, Lin Z, Zhang X, Sun C, Cabanillas-Gonzalez J, Xie L, Liu F, Ou C, Bai L, Han Y, Xu M, Zhu W, Smith TA, Stavrinou PN, Bradley DDC, Huang W. Ultrastable Supramolecular Self-Encapsulated Wide-Bandgap Conjugated Polymers for Large-Area and Flexible Electroluminescent Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804811. [PMID: 30370608 DOI: 10.1002/adma.201804811] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Controlling chain behavior through smart molecular design provides the potential to develop ultrastable and efficient deep-blue light-emitting conjugated polymers (LCPs). Herein, a novel supramolecular self-encapsulation strategy is proposed to construct a robust ultrastable conjugated polydiarylfluorene (PHDPF-Cz) via precisely preventing excitons from interchain cross-transfer/coupling and contamination from external trace H2 O/O2 . PHDPF-Cz consists of a mainchain backbone where the diphenyl groups localize at the 9-position as steric bulk moieties, and carbazole (Cz) units localize at the 4-position as supramolecular π-stacked synthon with the dual functionalities of self-assembly capability and hole-transport facility. The synergistic effect of the steric bulk groups and π-stacked carbazoles affords PHDPF-Cz as an ultrastable property, including spectral, morphological stability, and storage stability. In addition, PHDPF-Cz spin-coated gelation films also show thickness-insensitive deep-blue emission with respect to the reference polymers, which are suitable to construct solution-processed large-scale optoelectronic devices with higher reproducibility. High-quality and uniform deep-blue emission is observed in large-area solution-processed films. The electroluminescence shows high-quality deep-blue intrachain emission with a CIE (0.16, 0.12) and a very narrow full width at half-maximum of 32 nm. Finally, large-area and flexible polymer light-emitting devices with a single-molecular excitonic behavior are also fabricated. The supramolecular self-encapsulation design provides an effective strategy to construct ultrastable LCPs for optoelectronic applications.
Collapse
Affiliation(s)
- Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Departments of Engineering Science and Physics and Division of Mathematical, Physical and Life Sciences, University of Oxford, 9 Parks Road, Oxford, OX1 3PD, UK
- Department of Physics and Centre for Plastic Electronics, The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Bin Liu
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Mengna Yu
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xuhua Wang
- Department of Physics and Centre for Plastic Electronics, The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Zongqiong Lin
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Xinwen Zhang
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chen Sun
- Madrid Institute for Advanced Studies (IMDEA Nanociencia), Ciudad Universitaria de Cantoblanco, Calle Faraday 9, Madrid, 28049, Spain
| | - Juan Cabanillas-Gonzalez
- Madrid Institute for Advanced Studies (IMDEA Nanociencia), Ciudad Universitaria de Cantoblanco, Calle Faraday 9, Madrid, 28049, Spain
| | - Linghai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Feng Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Changjin Ou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wensai Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Trevor A Smith
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul N Stavrinou
- Department of Physics and Centre for Plastic Electronics, The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PD, UK
| | - Donal D C Bradley
- Departments of Engineering Science and Physics and Division of Mathematical, Physical and Life Sciences, University of Oxford, 9 Parks Road, Oxford, OX1 3PD, UK
- Department of Physics and Centre for Plastic Electronics, The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
43
|
Sun Z, Huang Q, Han J, He W, Chen J, Xu Y, Deng H, Shao M, Zhang H, Cao W. Facile synthesis of perfluoroalkylated fluorenes via a one-pot two-step three-component process. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Vázquez-Guilló R, Falco A, Martínez-Tomé MJ, Mateo CR, Herrero MA, Vázquez E, Mallavia R. Advantageous Microwave-Assisted Suzuki Polycondensation for the Synthesis of Aniline-Fluorene Alternate Copolymers as Molecular Model with Solvent Sensing Properties. Polymers (Basel) 2018; 10:E215. [PMID: 30966250 PMCID: PMC6415332 DOI: 10.3390/polym10020215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 01/19/2023] Open
Abstract
Polymerization via Suzuki coupling under microwave (µW) irradiation has been studied for the synthesis of poly{1,4-(2/3-aminobenzene)-alt-2,7-(9,9-dihexylfluorene)} (PAF), chosen as molecular model. Briefly, µW-assisted procedures accelerated by two orders of magnitude the time required when using classical polymerization processes, and the production yield was increased (>95%). In contrast, although the sizes of the polymers that were obtained by non-conventional heating reactions were reproducible and adequate for most applications, with this methodology the molecular weight of final polymers were not increased with respect to conventional heating. Asymmetric orientation of the amine group within the monomer and the assignments of each dyad or regioregularity, whose values ranged from 38% to 95% with this molecule, were analysed using common NMR spectroscopic data. Additionally, the synthesis of a new cationic polyelectrolyte, poly{1,4-(2/3-aminobenzene)-co-alt-2,7-[9,9´-bis(6''-N,N,N-trimethylammonium-hexyl)fluorene]} dibromide (PAFAm), from poly{1,4-(2/3-aminobenzene)-co-alt-2,7-[9,9´-bis(6''-bromohexyl)fluorene]} (PAFBr) by using previously optimized conditions for µW-assisted heating procedures was reported. Finally, the characterization of the final products from these batches showed unkown interesting solvatochromic properties of the PAF molecule. The study of the solvatochromism phenomena, which was investigated as a function of the polarity of the solvents, showed a well-defined Lippert correlation, indicating that the emission shift observed in PAF might be due to its interaction with surrounding environment. Proven high sensitivity to changes of its environment makes PAF a promising candidate of sensing applications.
Collapse
Affiliation(s)
- Rebeca Vázquez-Guilló
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| | - Alberto Falco
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| | - M José Martínez-Tomé
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| | - C Reyes Mateo
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| | - María Antonia Herrero
- Departamento de Química Inorgánica, Orgánica and Bioquímica, Facultad Ciencias y Tecnologías Químicas, Universidad Castilla La Mancha, E-13071 Ciudad Real, Spain.
- Instituto Regional de Investigación Científica Aplicada (IRICA), Edificio Marie Curie, Universidad Castilla La Mancha, E-13071 Ciudad Real, Spain.
| | - Ester Vázquez
- Departamento de Química Inorgánica, Orgánica and Bioquímica, Facultad Ciencias y Tecnologías Químicas, Universidad Castilla La Mancha, E-13071 Ciudad Real, Spain.
- Instituto Regional de Investigación Científica Aplicada (IRICA), Edificio Marie Curie, Universidad Castilla La Mancha, E-13071 Ciudad Real, Spain.
| | - Ricardo Mallavia
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche, Spain.
| |
Collapse
|
45
|
Yi HL, Hua CC. PBTTT-C 16 sol-gel transition by hierarchical colloidal bridging. SOFT MATTER 2018; 14:1270-1280. [PMID: 29367967 DOI: 10.1039/c7sm02493b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A versatile conjugated polymer, poly(2,5-bis(3-hexadecyllthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C16, with Mw = 61 309 g mol-1), in a relatively good solvent (chlorobenzene, CB) medium is shown to produce gels through hierarchical colloidal bridging. Multiscale static/dynamic light and X-ray scattering analysis schemes along with complementary microscopy imaging techniques clearly reveal that upon cooling from the solution state at 80 °C to various gelation temperatures (5, 10, and 15 °C), rod-like colloidal pBTTT-C16 aggregates morph into spherical ones, triggering hierarchical colloid formation and bridging that eventually turn the solution into a gel after about one-day aging. A certain fraction of primal packing units-spherical gelators (∼1 nm in mean radius)-constitute the spherical building particles (∼10 nm) noted above, which in turn constitute loose-packing aggregate clusters (∼300 nm) in the sol state. As gelation proceeds, the aggregate cluster interiors tighten substantially, and micrometer-sized clusters (∼3 μm) formed by them begin to take shape and further interconnect to form the gel network (mean porosity size ∼240 nm and spatial inhomogeneity length ∼20 μm). Rheological measurements and kinetic analysis reveal that the gelation temperature can also have a notable impact on gel microstructure, gelation rate, and mechanical strength, resulting in, for instance, a prominently nonergodic and porous structure for the soft gel incubated at a higher temperature T = 15 °C. The ac conductivity exhibits a notable upturn near pBTTT-C16/CB gelation, well above those achieved by the counterpart pBTTT-C14 solutions, which, in interesting contrast, cannot be brought to the gel phase under similar experimental conditions.
Collapse
Affiliation(s)
- Han-Liou Yi
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| | | |
Collapse
|
46
|
Czarnecki S, Bertin A. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science. Chemistry 2018; 24:3354-3373. [PMID: 29218744 DOI: 10.1002/chem.201705286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 11/11/2022]
Abstract
Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science.
Collapse
Affiliation(s)
- Sebastian Czarnecki
- German Federal Institute for Materials Research and Testing (BAM), Dpt. 6. Materials Protection and Surface Technology, Unter den Eichen 87, 12205, Berlin, Germany
| | - Annabelle Bertin
- German Federal Institute for Materials Research and Testing (BAM), Dpt. 6. Materials Protection and Surface Technology, Unter den Eichen 87, 12205, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry-Organic Chemistry, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
47
|
Yu MN, Soleimaninejad H, Lin JY, Zuo ZY, Liu B, Bo YF, Bai LB, Han YM, Smith TA, Xu M, Wu XP, Dunstan DE, Xia RD, Xie LH, Bradley DDC, Huang W. Photophysical and Fluorescence Anisotropic Behavior of Polyfluorene β-Conformation Films. J Phys Chem Lett 2018; 9:364-372. [PMID: 29298074 DOI: 10.1021/acs.jpclett.7b03148] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate a systematic visualization of the unique photophysical and fluorescence anisotropic properties of polyfluorene coplanar conformation (β-conformation) using time-resolved scanning confocal fluorescence imaging (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) measurements. We observe inhomogeneous morphologies and fluorescence decay profiles at various micrometer-sized regions within all types of polyfluorene β-conformational spin-coated films. Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) and poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF) β-domains both have shorter lifetime than those of the glassy conformation for the longer effective conjugated length and rigid chain structures. Besides, β-conformational regions have larger fluorescence anisotropy for the low molecular rotational motion and high chain orientation, while the low anisotropy in glassy conformational regions shows more rotational freedom of the chain and efficient energy migration from amorphous regions to β-conformation as a whole. Finally, ultrastable ASE threshold in the PODPF β-conformational films also confirms its potential application in organic lasers. In this regard, FLIM and FAIM measurements provide an effective platform to explore the fundamental photophysical process of conformational transitions in conjugated polymer.
Collapse
Affiliation(s)
- Meng-Na Yu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Hamid Soleimaninejad
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jin-Yi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Zong-Yan Zuo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Bin Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Yi-Fan Bo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Lu-Bing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Ya-Min Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Trevor A Smith
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Man Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Ping Wu
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Dave E Dunstan
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Rui-Dong Xia
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Ling-Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Donal D C Bradley
- Departments of Engineering Science and Physics and Division of Mathematical, Physical and Life Sciences, Oxford University , 9 Parks Road, Oxford OX1 3PD, United Kingdom
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) , 127 West Youyi Road, Xi'an 710072, Shaanxi, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
48
|
Blue light-emitting polyfluorenes containing dibenzothiophene-S,S-dioxide unit in alkyl side chain. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9100-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Synthesis of polyfluorene-polytriarylamine block copolymers with light-emitting benzothiadiazole moieties: effect of chromophore location on electroluminescent properties. Polym J 2017. [DOI: 10.1038/pj.2017.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Meazzini I, Behrendt JM, Turner ML, Evans RC. Targeted β-Phase Formation in Poly(fluorene)–Ureasil Grafted Organic–Inorganic Hybrids. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ilaria Meazzini
- School
of Chemistry and CRANN, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Jonathan M. Behrendt
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael L. Turner
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Rachel C. Evans
- School
of Chemistry and CRANN, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|