1
|
Ughade Y, Mehta S, Patel G, Gowda R, Joshi N, Patel R. Progress in CO 2 Gas Sensing Technologies: Insights into Metal Oxide Nanostructures and Resistance-Based Methods. MICROMACHINES 2025; 16:466. [PMID: 40283341 PMCID: PMC12029967 DOI: 10.3390/mi16040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
The demand for reliable and cost-effective CO2 gas sensors is escalating due to their extensive applications in various sectors such as food packaging, indoor air quality assessment, and real-time monitoring of anthropogenic CO2 emissions to mitigate global warming. Nanostructured materials exhibit exceptional properties, including small grain size, controlled morphology, and heterojunction effects, rendering them promising candidates for chemiresistive CO2 gas sensors. This review article provides an overview of recent advancements in chemiresistive CO2 gas sensors based on nanostructured semiconducting materials. Specifically, it discusses single oxide structures, metal-decorated oxide nanostructures, and heterostructures, elucidating the correlations between these nanostructures and their CO2 sensing properties. Additionally, it addresses the challenges and future prospects of chemiresistive CO2 gas sensors, aiming to provide insights into the ongoing developments in this field.
Collapse
Affiliation(s)
- Yash Ughade
- Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Shubham Mehta
- Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Gautam Patel
- Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Roopa Gowda
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Nirav Joshi
- Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Rohan Patel
- Research and Development, Amneal Pharmaceuticals, Bridgewater, NJ 08807, USA
| |
Collapse
|
2
|
Chen WK, Zhao X, Liu XY, Xie XY, Zeng Y, Cui G. Photoinduced Nonadiabatic Dynamics of a Single-Walled Carbon Nanotube-Porphyrin Complex. J Phys Chem A 2024; 128:8803-8815. [PMID: 39344670 DOI: 10.1021/acs.jpca.4c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) have gained a lot of attention in the past few decades due to their promising optoelectronic properties. In addition, SWCNTs can form complexes that have good chemical stability and transport properties with other optical functional materials through noncovalent interactions. Elucidating the detailed mechanism of these complexes is of great significance for improving their optoelectronic properties. Nevertheless, simulating the photoinduced dynamics of these complexes accurately is rather challenging since they usually contain hundreds of atoms. To save computational efforts, most of the previous works have ignored the excitonic effects by employing nonadiabatic carrier (electron and hole) dynamics simulations. To properly consider the influence of excitonic effects on the photoinduced ultrafast processes of the SWCNT-tetraphenyl porphyrin (H2TPP) complex and to further improve the computational efficiency, we developed the nonadiabatic molecular dynamics (NAMD) method based on the extended tight binding-based simplified Tamm-Dancoff approximation (sTDA-xTB), which is applied to study the ultrafast photoinduced dynamics of the noncovalent SWCNT-porphyrin complex. In combination with statically electronic structure calculations, the present work successfully reveals the detailed microscopic mechanism of the ultrafast excitation energy transfer process of the complex. Upon local excitation on the H2TPP molecule, an ultrafast energy transfer process occurs from H2TPP (SWCNT-H2TPP*) to SWCNT (SWCNT*-H2TPP) within 10 fs. Then, two slower processes corresponding to the energy transfer from H2TPP to SWCNT and hole transfer from H2TPP to SWCNT take place in the 1 ps time scale. The sTDA-xTB-based electronic structure calculation and NAMD simulation results not only match the previous experimental observations from static and transient spectra but also provide more insights into the detailed information on the complex's photoinduced dynamics. Therefore, the sTDA-xTB-based NAMD method is a powerful theoretical tool for studying the ultrafast photoinduced dynamics in large extended systems with a large number of electronically excited states, which could be helpful for the subsequent design of SWCNT-based functional materials.
Collapse
Affiliation(s)
- Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xi Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiao-Ying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
4
|
Yang X, Yu G, Chen W. Realizing a high OER activity in new single-atom catalysts formed by introducing TMN x ( x = 3 and 4) units into carbon nanotubes using high-throughput calculations. NANOSCALE 2023; 16:273-283. [PMID: 38059271 DOI: 10.1039/d3nr04396g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Exploring highly efficient electrocatalysts for the oxygen evolution reaction (OER) is of great significance for hydrogen production through water splitting. By means of high-throughput density functional theory (DFT) calculations, we investigated the OER catalytic activity of a series of one-dimensional carbon nanotube (CNT)-based systems containing TMN4 or TMN3 functional units. Through the screening of 3d/4d/5d transition metals (TMs) from Group IVB to Group VIII, eight newly obtained TMNx@CNT (x = 3 and 4) systems were found to exhibit excellent OER activity, with very low overpotentials in the range 0.29-0.51 V, where the Co, Rh, Ir, Ti, Fe, and Ru atoms could be used as active sites. It was found that under the framework of TMN3@CNTs, the pre-adsorption of some species from water dissociation on the relevant TM sites (TM = Ti, Fe, and Ru) could lead to a high OER catalytic activity, which was different from the general situation where OER reactions directly occur on the clean surfaces of the remaining systems with Co/Rh/Ir metal centers. Moreover, the catalytic mechanisms were analyzed in detail. This work can be conducive to obtaining low-cost and high-performance OER single-atom electrocatalysts based on excellent CNT nanomaterials.
Collapse
Affiliation(s)
- Xia Yang
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
- Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University, Fuzhou, 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Ali MK, Javaid S, Afzal H, Zafar I, Fayyaz K, Ain Q, Rather MA, Hossain MJ, Rashid S, Khan KA, Sharma R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. ENVIRONMENTAL RESEARCH 2023; 232:116290. [PMID: 37295589 DOI: 10.1016/j.envres.2023.116290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.
Collapse
Affiliation(s)
- Muhammad Kashif Ali
- Deparment of Physiology, Rashid Latif Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Saher Javaid
- KAM School of Life Sciences, Forman Christian College (a Chartered University) Lahore, Punjab, Pakistan.
| | - Haseeb Afzal
- Department of ENT, Ameer Ud Din Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad (GCWUF), Punjab, 54700, Pakistan.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Solikhin A, Syamani FA, Hastati DY, Budiman I, Purnawati R, Mubarok M, Yanti H, Fachruddin A, Saad S, Jaenab S, Badrudin U, Kurniawan T. Review on lignocellulose valorization for nanocarbon and its composites: Starting from laboratory studies to business application. Int J Biol Macromol 2023; 239:124082. [PMID: 36965566 DOI: 10.1016/j.ijbiomac.2023.124082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
This study concerns a scoping and literature review of nanocarbon and its composites with details on specific propositions, including nanocarbon history, nanocarbon types, and lignocellulose nanocarbon types, properties, applications, toxicity, regulation, and business model for commercialization. The review brings novelties, comprehensively expounding on laboratory studies and industrial applications of biomass or lignocellulose materials-derived nanocarbon and its composites. Since its first discovery in the form of Buckyball in 1985, nanocarbon has brought interest to scientists and industries for applications. From the previous studies, it is discovered that many types of nanocarbon are sourced from lignocellulose materials. With their excellent properties of nanomaterials, nanocarbon has been harnessed for such as reinforcing and filler agents for nanocomposites or direct use of individual nanocarbon for specific purposes. However, the toxicological properties of nanocarbon have delivered a level of concern in its use and application. In addition, with the radically growing increase in the use of nanocarbon, policies have been enacted in several countries that rule on the use of nanocarbon. The business model for the commercialization of lignocellulose-based nanocarbon was also proposed in this study. This study can showcase the importance of both individual nanocarbon and nanocarbon-based composites for industrial implementations by considering their synthesis, properties, application, country legislations/regulations, and business model. The studies also can be the major references for researchers to partner with industries and governments in investing in lignocellulose-sourced nanocarbon potential research, development, and policies.
Collapse
Affiliation(s)
- Achmad Solikhin
- Indonesian Green Action Forum, Bogor, West Java 16680, Indonesia; Economic Research Institute for ASEAN and East Asia, DKI Jakarta 12110, Indonesia.
| | - Firda Aulya Syamani
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor, West Java 16911, Indonesia
| | - Dwi Yuni Hastati
- College of Vocational Studies, Bogor Agricultural University, Bogor, West Java 16128, Indonesia
| | - Ismail Budiman
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Bogor, West Java 16911, Indonesia
| | - Renny Purnawati
- Faculty of Forestry, University of Papua, Manokwari, Papua Barat 98314, Indonesia
| | - Mahdi Mubarok
- Faculty of Forestry and Environment, Bogor Agricultural University, Bogor, West Java 16680, Indonesia
| | - Hikma Yanti
- Faculty of Forestry, Tanjungpura University, Pontianak, Kalimantan Barat 78124, Indonesia
| | - Achmad Fachruddin
- Creavill Consultant, Bantul, Daerah Istimewa Yogyakarta 55184, Indonesia
| | - Sahriyanti Saad
- Faculty of Forestry, Hasannudin University, South Sulawesi 90245, Indonesia
| | - Siti Jaenab
- Faculty of Forestry and Environment, Bogor Agricultural University, Bogor, West Java 16680, Indonesia
| | - Ubad Badrudin
- Faculty of Agriculture, University of Pekalongan, Pekalongan, Central Java 51115, Indonesia
| | - Tegar Kurniawan
- Sultan Agung Islamic University, Semarang, Central Java 50112, Indonesia
| |
Collapse
|
7
|
Xie RF, Zhang JB, Wu Y, Li L, Liu XY, Cui G. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. J Chem Phys 2023; 158:054108. [PMID: 36754819 DOI: 10.1063/5.0134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.
Collapse
Affiliation(s)
- Rui-Fang Xie
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing-Bin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Talha-Dean T, Chen K, Mastroianni G, Gesuele F, Mol J, Palma M. Nanoscale Control of DNA-Linked MoS 2-Quantum Dot Heterostructures. Bioconjug Chem 2023; 34:78-84. [PMID: 35969686 PMCID: PMC9853502 DOI: 10.1021/acs.bioconjchem.2c00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Indexed: 01/24/2023]
Abstract
The ability to control the assembly of mixed-dimensional heterostructures with nanoscale control is key for the fabrication of novel nanohybrid systems with new functionalities, particularly for optoelectronics applications. Herein we report a strategy to control the assembly of heterostructures and tune their electronic coupling employing DNA as a linker. We functionalized MoS2 nanosheets (NSs) with biotin-terminated dsDNA employing three different chemical strategies, namely, thiol, maleimide, and aryl diazonium. This allowed us to then tether streptavidinated quantum dots (QDs) to the DNA functionalized MoS2 surface via biotin-avidin recognition. Nanoscale control over the separation between QDs and NSs was achieved by varying the number of base pairs (bp) constituting the DNA linker, between 10, 20, and 30 bp, corresponding to separations of 3.4, 6.8, and 13.6 nm, respectively. Spectroscopic data confirmed the successful functionalization, while atomic force and transmission electron microscopy were employed to image the nanohybrids. In solution steady-state and time-resolved photoluminescence demonstrated the electronic coupling between the two nanostructures, that in turn was observed to progressively scale as a function of DNA linker employed and hence distance between the two nanomoieties in the hybrids.
Collapse
Affiliation(s)
- Teymour Talha-Dean
- Department
of Physics and Astronomy, Queen Mary University
of London, London, E1 4NS, United Kingdom
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 138634, Singapore
| | - Kai Chen
- Department
of Chemistry, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Giulia Mastroianni
- School
of Biological and Behavioral Sciences, Queen
Mary University of London, London, E1 4NS, United Kingdom
| | - Felice Gesuele
- Department
of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 21 Ed. 6, 80126 Napoli, Italy
| | - Jan Mol
- Department
of Physics and Astronomy, Queen Mary University
of London, London, E1 4NS, United Kingdom
| | - Matteo Palma
- Department
of Chemistry, Queen Mary University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
9
|
Possetto D, Pecnikaj I, Marzari G, Orlandi S, Sereno S, Cavazzini M, Pozzi G, Fungo F. Influence of Polyfluorinated Side Chains and Soft-Template Method on the Surface Morphologies and Hydrophobic Properties of Electrodeposited Films from Fluorene Bridged Dicarbazole Monomers. Chemphyschem 2023; 24:e202200371. [PMID: 36073234 PMCID: PMC10091753 DOI: 10.1002/cphc.202200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/07/2022] [Indexed: 01/20/2023]
Abstract
A clear case of relationship between the monomer molecular structure and the capability of tuning the morphology of electrodeposited gas bubbles template polymer thin films is shown. To this end, a series of fluorene-bridged dicarbazole derivatives containing either linear or terminally branched polyfluorinated side chains connected to the fluorene subunit were synthesized and their electrochemical properties were investigated. The new compounds underwent electrochemical polymerization over indium tin oxide electrodes to give hydrophobic films with nanostructural and morphological properties strongly dependent on the nature of the side chains. Gas bubbles templated electropolymerization was next achieved by the addition of tiny amounts of water to the monomer solutions, without using surfactants. Within the investigated set of molecules, the nanostructural properties of the soft-templated films obtained from monomers bearing linear side chains could be fine-tuned by adjusting electrochemical parameters, leading to superhydrophobic surfaces.
Collapse
Affiliation(s)
- David Possetto
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales AvanzadosIITEMA-UNRC-CONICET) Departamento de QuímicaUniversidad Nacional de Río CuartoAgencia Postal 3X5804BYARío CuartoArgentina
| | - Ilir Pecnikaj
- University of Medicine TiranaDepartment of PharmacyRruga e Dibrës Nr. 371AL1005TiranëAlbania
| | - Gabriela Marzari
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales AvanzadosIITEMA-UNRC-CONICET) Departamento de QuímicaUniversidad Nacional de Río CuartoAgencia Postal 3X5804BYARío CuartoArgentina
| | - Simonetta Orlandi
- CNR Institute of Chemical Sciences and Technologies “Giulio Natta” (CNR SCITEC)UOS Golgi, via Golgi 1920133MilanItaly
| | - Silvia Sereno
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales AvanzadosIITEMA-UNRC-CONICET) Departamento de QuímicaUniversidad Nacional de Río CuartoAgencia Postal 3X5804BYARío CuartoArgentina
| | - Marco Cavazzini
- CNR Institute of Chemical Sciences and Technologies “Giulio Natta” (CNR SCITEC)UOS Golgi, via Golgi 1920133MilanItaly
| | - Gianluca Pozzi
- CNR Institute of Chemical Sciences and Technologies “Giulio Natta” (CNR SCITEC)UOS Golgi, via Golgi 1920133MilanItaly
| | - Fernando Fungo
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales AvanzadosIITEMA-UNRC-CONICET) Departamento de QuímicaUniversidad Nacional de Río CuartoAgencia Postal 3X5804BYARío CuartoArgentina
| |
Collapse
|
10
|
Facile preparation of ternary heterostructured Au/polyoxometalate/nitrogen- doped hollow carbon sphere nanohybrids for the acetaminophen detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Alam MM, Masud A, Scharf B, Bradley I, Aich N. Long-Term Exposure and Effects of rGO-nZVI Nanohybrids and Their Parent Nanomaterials on Wastewater-Nitrifying Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:512-524. [PMID: 34931813 DOI: 10.1021/acs.est.1c02586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single nanomaterials and nanohybrids (NHs) can inhibit microbial processes in wastewater treatment, especially nitrification. While existing studies focus on short-term and acute exposures of single nanomaterials on wastewater microbial community growth and function, long-term, low-exposure, and emerging NHs need to be examined. These NHs have distinctly different physicochemical properties than their parent nanomaterials and, therefore, may exert previously unknown effects onto wastewater microbial communities. This study systematically investigated long-term [∼6 solid residence time [(SRT)] exposure effects of a widely used carbon-metal NH (rGO-nZVI = 1:2 and 1:0.2, mass ratio) and compared these effects to their single-parent nanomaterials (i.e., rGO and nZVI) in nitrifying sequencing batch reactors. nZVI and NH-dosed reactors showed relatively unaffected microbial communities compared to control, whereas rGO showed a significantly different (p = 0.022) and less diverse community. nZVI promoted a diverse community and significantly higher (p < 0.05) biomass growth under steady-state conditions. While long-term chronic exposure (10 mg·L-1) of single nanomaterials and NHs had limited impact on long-term nutrient recovery, functionally, the reactors dosed with higher iron content, that is, nZVI and rGO-nZVI (1:2), promoted faster NH4+-N removal due to higher biomass growth and upregulation of amoA genes at the transcript level, respectively. The transmission electron microscopy images and scanning electron microscopy─energy-dispersive X-ray spectroscopy analysis revealed high incorporation of iron in nZVI-dosed biomass, which promoted higher cellular growth and a diverse community. Overall, this study shows that NHs have unique effects on microbial community growth and function that cannot be predicted from parent materials alone.
Collapse
Affiliation(s)
- Md Mahbubul Alam
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Arvid Masud
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brianna Scharf
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ian Bradley
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy, Environmental and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
12
|
Properties, synthesis, and recent advancement in photocatalytic applications of graphdiyne: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Yang F, Backov R, Blin JL, Fáklya B, Tron T, Mekmouche Y. Site directed confinement of laccases in a porous scaffold towards robustness and selectivity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00645. [PMID: 34189063 PMCID: PMC8219655 DOI: 10.1016/j.btre.2021.e00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 10/31/2022]
Abstract
We immobilized a fungal laccase with only two spatially close lysines available for functionalization into macrocellular Si(HIPE) monoliths for the purpose of continuous flow catalysis. Immobilization (30-45 % protein immobilization yields) was obtained using a covalent bond forming reaction between the enzyme and low glutaraldehyde (0.625 % (w/w)) functionalized foams. Testing primarily HBT-mediated RB5 dye decolorization in continuous flow reactors, we show that the activity of the heterogeneous catalyst is comparable to its homogeneous counterpart. More, its operational activity remains as high as 60 % after twelve consecutive decolorization cycles as well as after one-year storage, performances remarkable for such a material. We further immobilized two variants of the laccase containing a unique lysine: one located in the vicinity of the substrate oxidation site (K157) and one at the opposite side of this oxidation site (K71) to study the effect of the proximity of the Si(HIPE) surface on enzyme activity. Comparing activities on different substrates for monoliths with differentially oriented catalysts, we show a twofold discrimination for ABTS relative to ascorbate. This study provides ground for the development of neo-functionalized materials that beyond allowing stability and reusability will become synergic partners in the catalytic process.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
- APTES, (3-Aminopropyl)triethoxysilane
- Asc, ascorbic acid
- BET, Brunauer, Emmett et Teller
- DPBS, Dulbecco's Phosphate-Buffered Saline, pH 7.0
- Enz., enzyme
- HBT, N-Hydroxy benzotriazole
- HIPE, High Internal Phase Emulsion
- Heterogeneous catalysis
- Laccase
- Orientation
- RB5, Reactive black 5
- RBBR, Remazol Brilliant Blue B
- S.A., specific activity
- Site-directed immobilization
- TEOS, Tetraethyl-orthosilane
- TNC, TriNuclear Cluster
- TTAB, tetradecyltrimethylammonium bromide
Collapse
Affiliation(s)
- Fangfang Yang
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Rénal Backov
- Université de Bordeaux, CNRS, CRPP, UMR5031, 115 Avenue Albert Schweitzer, F-33600, Pessac, France
| | - Jean-Luc Blin
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Bernadett Fáklya
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Thierry Tron
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Yasmina Mekmouche
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| |
Collapse
|
14
|
Anichini C, Samorì P. Graphene-Based Hybrid Functional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100514. [PMID: 34174141 DOI: 10.1002/smll.202100514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Indexed: 06/13/2023]
Abstract
Graphene is a 2D material combining numerous outstanding physical properties, including high flexibility and strength, extremely high thermal conductivity and electron mobility, transparency, etc., which make it a unique testbed to explore fundamental physical phenomena. Such physical properties can be further tuned by combining graphene with other nanomaterials or (macro)molecules to form hybrid functional materials, which by design can display not only the properties of the individual components but also exhibit new properties and enhanced characteristics arising from the synergic interaction of the components. The implementation of the hybrid approach to graphene also allows boosting the performances in a multitude of technological applications. This review reports the hybrids formed by graphene combined with other low-dimensional nanomaterials of diverse dimensionality (0D, 1D, and 2D) and (macro)molecules, with emphasis on the synthetic methods. The most important applications of these hybrids in the fields of sensing, water purification, energy storage, biomedical, (photo)catalysis, and opto(electronics) are also reviewed, with a special focus on the superior performances of these hybrids compared to the individual, nonhybridized components.
Collapse
Affiliation(s)
- Cosimo Anichini
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
15
|
Rangraz Y, Heravi MM. Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Adv 2021; 11:23725-23778. [PMID: 35479780 PMCID: PMC9036543 DOI: 10.1039/d1ra03446d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
The development of cost-effective, efficient, and novel catalytic systems is always an important topic for heterogeneous catalysis from academia and industrial points of view. Heteroatom-doped carbon materials have gained more and more attention as effective heterogeneous catalysts to replace metal-based catalysts, because of their excellent physicochemical properties, outstanding structure characteristics, environmental compatibility, low cost, inexhaustible resources, and low energy consumption. Doping of heteroatoms can tailor the properties of carbons for different utilizations of interest. In comparison to pure carbon catalysts, these catalysts demonstrate superior catalytic activity in many organic reactions. This review highlights the most recent progress in synthetic strategies to fabricate metal-free heteroatom-doped carbon catalysts including single and multiple heteroatom-doped carbons and the catalytic applications of these fascinating materials in various organic transformations such as oxidation, hydrogenation, hydrochlorination, dehydrogenation, etc.
Collapse
Affiliation(s)
- Yalda Rangraz
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran
| |
Collapse
|
16
|
|
17
|
Salihovic M, Schoiber J, Cherevan A, Rameshan C, Fritz-Popovski G, Ulbricht M, Arnold S, Presser V, Paris O, Musso M, Hüsing N, Elsaesser MS. Hybrid carbon spherogels: carbon encapsulation of nano-titania. Chem Commun (Camb) 2021; 57:3905-3908. [PMID: 33871512 DOI: 10.1039/d1cc00697e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Extraordinarily homogeneous, freestanding titania-loaded carbon spherogels can be obtained using Ti(acac)2(OiPr)2 in the polystyrene sphere templated resorcinol-formaldehyde gelation. Thereby, a distinct, crystalline titania layer is achieved inside every hollow sphere building unit. These hybrid carbon spherogels allow capitalizing on carbon's electrical conductivity and the lithium-ion intercalation capacity of titania.
Collapse
Affiliation(s)
- Miralem Salihovic
- Chemistry and Physics of Materials, University of Salzburg, Salzburg 5020, Austria.
| | - Jürgen Schoiber
- Chemistry and Physics of Materials, University of Salzburg, Salzburg 5020, Austria.
| | | | | | | | - Maike Ulbricht
- INM - Leibniz Institute for New Materials, Saarbrücken 66123, Germany and Saarland University, Saarbrücken 66123, Germany
| | - Stefanie Arnold
- INM - Leibniz Institute for New Materials, Saarbrücken 66123, Germany and Saarland University, Saarbrücken 66123, Germany
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Saarbrücken 66123, Germany and Saarland University, Saarbrücken 66123, Germany
| | - Oskar Paris
- Institute of Physics, Montanuniversitaet Leoben, Leoben 8700, Austria
| | - Maurizio Musso
- Chemistry and Physics of Materials, University of Salzburg, Salzburg 5020, Austria.
| | - Nicola Hüsing
- Chemistry and Physics of Materials, University of Salzburg, Salzburg 5020, Austria.
| | - Michael S Elsaesser
- Chemistry and Physics of Materials, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
18
|
Wang W, Nadagouda MN, Mukhopadhyay SM. Flexible reusable hierarchical hybrid catalyst for rapid and complete degradation of triclosan in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144109. [PMID: 33418263 DOI: 10.1016/j.scitotenv.2020.144109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
A flexible, durable, and reusable nanocatalyst system was fabricated by anchoring palladium nanoparticles on carbon nanotube (CNT) carpets covalently attached to carbon cloth. These hierarchical hybrid materials were tested for catalytic degradation of triclosan (TCS), an emerging contaminant. Materials were characterized using scanning & transmission electron microscopy techniques (SEM and TEM), X-Ray Diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS). The reaction kinetics was studied using HPLC and reaction pathways proposed based on LC-MS/GC-MS analyses. In the presence of hydrogen, complete step-wise chlorine removal was seen until complete dechlorination was accomplished. The pseudo-first-order rate constant was measured to be orders of magnitude higher than earlier reported values. Moreover, the same material was usable for multiple cycles in flowing water. This study demonstrates that robustness and reusability of larger structural materials can be combined with the ultra-high surface activity of nanocatalysts to provide practical and eco-friendly solutions for water sustainability.
Collapse
Affiliation(s)
- Wenhu Wang
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA; Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Sharmila M Mukhopadhyay
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA; Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| |
Collapse
|
19
|
Mousavi H, Yin Y, Howard-Fabretto L, Sharma SK, Golovko V, Andersson GG, Shearer CJ, Metha GF. Au 101-rGO nanocomposite: immobilization of phosphine-protected gold nanoclusters on reduced graphene oxide without aggregation. NANOSCALE ADVANCES 2021; 3:1422-1430. [PMID: 36132862 PMCID: PMC9417812 DOI: 10.1039/d0na00927j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 05/05/2023]
Abstract
Graphene supported transition metal clusters are of great interest for potential applications, such as catalysis, due to their unique properties. In this work, a simple approach to deposit Au101(PPh3)21Cl5 (Au101NC) on reduced graphene oxide (rGO) via an ex situ method is presented. Reduction of graphene oxide at native pH (pH ≈ 2) to rGO was performed under aqueous hydrothermal conditions. Decoration of rGO sheets with controlled content of 5 wt% Au was accomplished using only pre-synthesised Au101NC and rGO as precursors and methanol as solvent. High resolution scanning transmission electron microscopy indicated that the cluster size did not change upon deposition with an average diameter of 1.4 ± 0.4 nm. It was determined that the rGO reduction method was crucial to avoid agglomeration, with rGO reduced at pH ≈ 11 resulting in agglomeration. X-ray photoelectron spectroscopy was used to confirm the deposition of Au101NCs and show the presence of triphenyl phosphine ligands, which together with attenuated total reflectance Fourier transform infrared spectroscopy, advocates that the deposition of Au101NCs onto the surface of rGO was facilitated via non-covalent interactions with the phenyl groups of the ligands. Inductively coupled plasma mass spectrometry and thermogravimetric analysis were used to determine the gold loading and both agree with a gold loading of ca. 4.8-5 wt%. The presented simple and mild strategy demonstrates that good compatibility between size-specific phosphine protected gold clusters and rGO can prevent aggregation of the metal clusters. This work contributes towards producing an agglomeration-free synthesis of size-specific ligated gold clusters on rGO that could have wide range of applications.
Collapse
Affiliation(s)
- Hanieh Mousavi
- Department of Chemistry, University of Adelaide Adelaide SA 5005 Australia
| | - Yanting Yin
- Flinders Centre for NanoScale Science and Technology, Flinders University Adelaide SA 5001 Australia
| | - Liam Howard-Fabretto
- Flinders Centre for NanoScale Science and Technology, Flinders University Adelaide SA 5001 Australia
| | - Shailendra Kumar Sharma
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury Christchurch 8140 New Zealand
| | - Vladimir Golovko
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury Christchurch 8140 New Zealand
| | - Gunther G Andersson
- Flinders Centre for NanoScale Science and Technology, Flinders University Adelaide SA 5001 Australia
| | - Cameron J Shearer
- Department of Chemistry, University of Adelaide Adelaide SA 5005 Australia
| | - Gregory F Metha
- Department of Chemistry, University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
20
|
Fometu SS, Wu G, Ma L, Davids JS. A review on the biological effects of nanomaterials on silkworm ( Bombyx mori). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:190-202. [PMID: 33614385 PMCID: PMC7884877 DOI: 10.3762/bjnano.12.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The production of high-quality silkworm silk is of importance in sericulture in addition to the production of biomass, silk proteins, and animal feed. The distinctive properties of nanomaterials have the potential to improve the development of various sectors including medicine, cosmetics, and agriculture. The application of nanotechnology in sericulture not only improves the survival rate of the silkworm, promotes the growth and development of silkworm, but also improves the quality of silk fiber. Despite the positive contributions of nanomaterials, there are a few concerns regarding the safety of their application to the environment, in humans, and in experimental models. Some studies have shown that some nanomaterials exhibit toxicity to tissues and organs of the silkworm, while other nanomaterials exhibit therapeutic properties. This review summarizes some reports on the biological effects of nanomaterials on silkworm and how the application of nanomaterials improves sericulture.
Collapse
Affiliation(s)
- Sandra Senyo Fometu
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Guohua Wu
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Lin Ma
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Joan Shine Davids
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| |
Collapse
|
21
|
Lu S, Liu L, Demissie H, An G, Wang D. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. ENVIRONMENT INTERNATIONAL 2021; 146:106273. [PMID: 33264734 DOI: 10.1016/j.envint.2020.106273] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/25/2023]
Abstract
Advanced oxidation process (AOP), with a high oxidation efficiency, fast reaction speed (relatively no secondary pollution), has become one of the core technologies of industrial wastewater and advanced drinking water treatment. Heterogeneous Fenton-like oxidation process (HFOP) is a kind of AOP, which developed rapidly in recent years in such a way to overcome the disadvantages of traditional Fenton reaction. Metal-organic frameworks (MOFs) and their derivatives become essential heterogeneous catalysts for organics mineralization due to the large specific surface area, abundant active sites, and ease of structural regulation. However, the knowledge gap on the mechanism and the fate of heterogeneous catalyst species during organics degradation activities by MOFs presents considerable impediments, particularly for a wide application and scaling up the process. This work has the potential to provide guidance and ideas for researchers and engineers in the fields of environmental remediation, environmental catalysis and functional materials. This review focuses on clarifying the critical mechanism of •OH production from MOFs and derivatives as well as its action on the organic's degradation process. The recent developments in MOF based HFOP are compared, and more attention is paid for the following aspects in this review: (1) classifies systematically progressive modification methods of MOFs by chemical and physical treatments; (2) analyzes the fate of catalytic species during treating organic wastewater; (3) proposes design ideas and principles for improving the performance of MOFs catalysts; (4) discusses the main factors influencing the catalytic properties and practical application; (5) summarizes the possible research challenges and directions for MOFs and their derivatives as catalysts applied to wastewater treatment in the future.
Collapse
Affiliation(s)
- Sen Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libing Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailu Demissie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
22
|
Shukla P, Asati A, Bhardiya SR, Singh M, Rai VK, Rai A. Metal-free C-H Activation over Graphene Oxide toward Direct Syntheses of Structurally Different Amines and Amides in Water. J Org Chem 2020; 85:15552-15561. [PMID: 33146530 DOI: 10.1021/acs.joc.0c02219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unprecedented metal-free synthesis of a variety of amines and amides is reported via amination of C(sp3)-H and C(sp2)-H bonds. The strategy involves graphene-oxide/I2-catalyzed nitrene insertion using PhINTs as a nitrene (NT) source in water at room temperature. A wide range of structurally different substrates, viz., cyclohexane, cyclic ethers, arenes, alkyl aromatic systems, and aldehydes/ketones, having an α-phenyl ring have been employed successfully to afford the corresponding nitrene insertion product in good yield, albeit low in few cases. The envisaged method has superiority over others in terms of its operational simplicity, metal-free catalysis, use of water as a solvent, ambient reaction conditions, and reusability of the catalyst.
Collapse
Affiliation(s)
- Prashant Shukla
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Ambika Asati
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Smita R Bhardiya
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Vijai K Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
23
|
Kunisu M, Yahiro J, Morimoto N, Nishina Y. Analyzing Dynamic Chemical States of Palladium Supported on Graphene Oxide by X-ray Absorption Fine Structure under Oxidative and Reductive Environments. CHEM LETT 2020. [DOI: 10.1246/cl.200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masahiro Kunisu
- Toray Research Center, Inc., Surface Science Laboratories, 3-7 Sonoyama 3-chome, Otsu, Shiga 520-8567, Japan
| | - Jumpei Yahiro
- Toray Research Center, Inc., Surface Science Laboratories, 3-7 Sonoyama 3-chome, Otsu, Shiga 520-8567, Japan
| | - Naoki Morimoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
24
|
Synthesis of Ni2+ cation modified TS-1 molecular sieve nanosheets as effective photocatalysts for alcohol oxidation and pollutant degradation. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63555-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Kortel M, Mansuriya BD, Vargas Santana N, Altintas Z. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. MICROMACHINES 2020; 11:E866. [PMID: 32962061 PMCID: PMC7570118 DOI: 10.3390/mi11090866] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Graphene quantum dots (GQDs) are considerably a new member of the carbon family and shine amongst other members, thanks to their superior electrochemical, optical, and structural properties as well as biocompatibility features that enable us to engage them in various bioengineering purposes. Especially, the quantum confinement and edge effects are giving GQDs their tremendous character, while their heteroatom doping attributes enable us to specifically and meritoriously tune their prospective characteristics for innumerable operations. Considering the substantial role offered by GQDs in the area of biomedicine and nanoscience, through this review paper, we primarily focus on their applications in bio-imaging, micro-supercapacitors, as well as in therapy development. The size-dependent aspects, functionalization, and particular utilization of the GQDs are discussed in detail with respect to their distinct nano-bio-technological applications.
Collapse
Affiliation(s)
| | | | | | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.K.); (B.D.M.); (N.V.S.)
| |
Collapse
|
26
|
Hu X, Zeng X, Liu Y, Lu J, Zhang X. Carbon-based materials for photo- and electrocatalytic synthesis of hydrogen peroxide. NANOSCALE 2020; 12:16008-16027. [PMID: 32720961 DOI: 10.1039/d0nr03178j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high demand for hydrogen peroxide (H2O2) has been dominantly supplied by the anthraquinone process for various applications globally, including chemical synthesis and wastewater treatment. However, the centralized manufacturing and intensive energy input and waste output are significant challenges associated with this process. Accordingly, the on-site production of H2O2via electro- and photocatalytic water oxidation and oxygen reduction partially is greener and easier to handle and has recently emerged with extensive research aiming to seek active, selective and stable catalysts. Herein, we review the current status and future perspectives in this field focused on carbon-based catalysts and their hybrids, since they are relatively inexpensive, bio-friendly and flexible for structural modulation. We present state-of-the-art progress, typical strategies for catalyst engineering towards selective and active H2O2 production, discussion on electro- and photochemical mechanisms and H2O2 formation through both reductive and oxidative reaction pathways, and conclude with the key challenges to be overcome. We expect promising developments would be inspired in the near future towards practical decentralized H2O2 production and its direct use.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3168, Australia.
| | | | | | | | | |
Collapse
|
27
|
Long Z, Li Q, Wei T, Zhang G, Ren Z. Historical development and prospects of photocatalysts for pollutant removal in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122599. [PMID: 32302881 DOI: 10.1016/j.jhazmat.2020.122599] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 05/21/2023]
Abstract
Photocatalysis, as a low-cost and environment friendly technology, has demonstrated a significant potential for water pollution purification; it has received extensive attention in recent decades. The key is the photocatalyst; a large number of photocatalysts have been developed. To better understand and further develop the photocatalysis technology for water treatment, this review summarizes its development over time. The development period is divided into four stages (1960s-1993, 1994-2000, 2001-2010, and 2011-present) to provide readers with a better understanding of the development characteristics, and causes and consequences of each historical stage. This review expounds the origin and development of photocatalysis and the obstacles encountered and overcome. It describes the development of mechanisms and methods to solve these problems in each time period. Moreover, it reviews the recent development of new photocatalysts, the concept of designing photocatalysts, and photocatalytic-coupling systems. Finally, it enumerates the problems that continue to exist in the application of photocatalysis technology, and highlights the key issues that must be addressed in future research. The review is aimed at providing the researchers with a deeper understanding of photocatalysis technology and encourage further development of the application of photocatalysis to water treatment.
Collapse
Affiliation(s)
- Zeqing Long
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China; School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Qiangang Li
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Ting Wei
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China; School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Zhijun Ren
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
28
|
Abstract
Field Effect Transistor (FET)-based electrochemical biosensor is gaining a lot of interest due to its malleability with modern fabrication technology and the ease at which it can be integrated with modern digital electronics. To increase the sensitivity and response time of the FET-based biosensor, many semiconducting materials have been categorized, including 2 dimensional (2D) nanomaterials. These 2D materials are easy to fabricate, increase sensitivity due to the atomic layer, and are flexible for a range of biomolecule detection. Due to the atomic layer of 2D materials each device requires a supporting substrate to fabricate a biosensor. However, uneven morphology of supporting substrate leads to unreliable output from every device due to scattering effect. This review summarizes advances in 2D material-based electrochemical biosensors both in supporting and suspended configurations by using different atomic monolayer, and presents the challenges involved in supporting substrate-based 2D biosensors. In addition, we also point out the advantages of nanomaterials over bulk materials in the biosensor domain.
Collapse
|
29
|
Hejazi S, Mohajernia S, Osuagwu B, Zoppellaro G, Andryskova P, Tomanec O, Kment S, Zbořil R, Schmuki P. On the Controlled Loading of Single Platinum Atoms as a Co-Catalyst on TiO 2 Anatase for Optimized Photocatalytic H 2 Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908505. [PMID: 32125728 DOI: 10.1002/adma.201908505] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/04/2020] [Indexed: 05/21/2023]
Abstract
Single-atom (SA) catalysis is a novel frontline in the catalysis field due to the often drastically enhanced specific activity and selectivity of many catalytic reactions. Here, an atomic-scale defect engineering approach to form and control traps for platinum SA sites as co-catalyst for photocatalytic H2 generation is described. Thin sputtered TiO2 layers are used as a model photocatalyst, and compared to the more frequently used (001) anatase sheets. To form stable SA platinum, the TiO2 layers are reduced in Ar/H2 under different conditions (leading to different but defined Ti3+ -Ov surface defects), followed by immersion in a dilute hexachloroplatinic acid solution. HAADF-STEM results show that only on the thin-film substrate can the density of SA sites be successfully controlled by the degree of reduction by annealing. An optimized SA-Pt decoration can enhance the normalized photocatalytic activity of a TiO2 sputtered sample by 150 times in comparison to a conventional platinum-nanoparticle-decorated TiO2 surface. HAADF-STEM, XPS, and EPR investigation jointly confirm the atomic nature of the decorated Pt on TiO2 . Importantly, the density of the relevant surface exposed defect centers-thus the density of Pt-SA sites, which play the key role in photocatalytic activity-can be precisely optimized.
Collapse
Affiliation(s)
- Seyedsina Hejazi
- Department of Materials Science, University of Erlangen-Nuremberg, Institute for Surface Science and Corrosion WW4-LKO, Martensstraße 7, D-91058, Erlangen, Germany
| | - Shiva Mohajernia
- Department of Materials Science, University of Erlangen-Nuremberg, Institute for Surface Science and Corrosion WW4-LKO, Martensstraße 7, D-91058, Erlangen, Germany
| | - Benedict Osuagwu
- Department of Materials Science, University of Erlangen-Nuremberg, Institute for Surface Science and Corrosion WW4-LKO, Martensstraße 7, D-91058, Erlangen, Germany
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Listopadu 50A, 772 07, Olomouc, Czech Republic
| | - Pavlina Andryskova
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Listopadu 50A, 772 07, Olomouc, Czech Republic
| | - Ondrej Tomanec
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Listopadu 50A, 772 07, Olomouc, Czech Republic
| | - Stepan Kment
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Listopadu 50A, 772 07, Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Listopadu 50A, 772 07, Olomouc, Czech Republic
| | - Patrik Schmuki
- Department of Materials Science, University of Erlangen-Nuremberg, Institute for Surface Science and Corrosion WW4-LKO, Martensstraße 7, D-91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Listopadu 50A, 772 07, Olomouc, Czech Republic
| |
Collapse
|
30
|
Ng B, Putri LK, Kong XY, Teh YW, Pasbakhsh P, Chai S. Z-Scheme Photocatalytic Systems for Solar Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903171. [PMID: 32274312 PMCID: PMC7141076 DOI: 10.1002/advs.201903171] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/22/2019] [Indexed: 05/27/2023]
Abstract
As the world decides on the next giant step for the renewable energy revolution, scientists have begun to reinforce their headlong dives into the exploitation of solar energy. Hitherto, numerous attempts are made to imitate the natural photosynthesis of plants by converting solar energy into chemical fuels which resembles the "Z-scheme" process. A recreation of this system is witnessed in artificial Z-scheme photocatalytic water splitting to generate hydrogen (H2). This work outlines the recent significant implication of the Z-scheme system in photocatalytic water splitting, particularly in the role of electron mediator and the key factors that improve the photocatalytic performance. The Review begins with the fundamental rationales in Z-scheme water splitting, followed by a survey on the development roadmap of three different generations of Z-scheme system: 1) PS-A/D-PS (first generation), 2) PS-C-PS (second generation), and 3) PS-PS (third generation). Focus is also placed on the scaling up of the "leaf-to-tree" challenge of Z-scheme water splitting system, which is also known as Z-scheme photocatalyst sheet. A detailed investigation of the Z-scheme system for achieving H2 evolution from past to present accompanied with in-depth discussion on the key challenges in the area of Z-scheme photocatalytic water splitting are provided.
Collapse
Affiliation(s)
- Boon‐Junn Ng
- Multidisciplinary Platform of Advanced EngineeringChemical Engineering DisciplineSchool of EngineeringMonash UniversityJalan Lagoon Selatan47500Bandar SunwaySelangorMalaysia
| | - Lutfi Kurnianditia Putri
- Multidisciplinary Platform of Advanced EngineeringChemical Engineering DisciplineSchool of EngineeringMonash UniversityJalan Lagoon Selatan47500Bandar SunwaySelangorMalaysia
| | - Xin Ying Kong
- Multidisciplinary Platform of Advanced EngineeringChemical Engineering DisciplineSchool of EngineeringMonash UniversityJalan Lagoon Selatan47500Bandar SunwaySelangorMalaysia
| | - Yee Wen Teh
- Multidisciplinary Platform of Advanced EngineeringChemical Engineering DisciplineSchool of EngineeringMonash UniversityJalan Lagoon Selatan47500Bandar SunwaySelangorMalaysia
| | - Pooria Pasbakhsh
- Mechanical Engineering DisciplineSchool of EngineeringMonash UniversityJalan Lagoon Selatan47500Bandar SunwaySelangorMalaysia
| | - Siang‐Piao Chai
- Multidisciplinary Platform of Advanced EngineeringChemical Engineering DisciplineSchool of EngineeringMonash UniversityJalan Lagoon Selatan47500Bandar SunwaySelangorMalaysia
| |
Collapse
|
31
|
Fradin C, Celestini F, Guittard F, Darmanin T. Templateless Electrodeposition of Conducting Polymer Nanotubes on Mesh Substrates. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Brian D, Eslamian M. Design and development of a coating device: Multiple-droplet drop-casting (MDDC-Alpha). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:033902. [PMID: 32260015 DOI: 10.1063/1.5129699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
We report the development of a coating device (multiple-droplet drop-casting), which releases multiple droplets simultaneously or with a short time-lag (<10 ms) using a multi-channel syringe pump to achieve deposition of large-area (up to ∼100 cm2) and patterned coatings. The device exhibits the following features and characteristics: simple, low-cost, and scalable; adaptive to various solution-processed materials; insensitive to small contaminations/impurities; minimizes material waste; and can create patterns (printing). The demonstration of the device performance was carried out by fabricating coatings using four strategic model solutions, namely, carbon nanotube ink, graphene oxide ink, [poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)] PEDOT:PSS solution, and n-methyl-2-pyrrolidone diluted methylammonium lead iodide (CH3NH3PbI3)-based light harvesting perovskite. We investigated the effect of release height (droplet velocity or Weber number) and the film area on the film characteristics. The results show that the device yields reproducible and uniform films on the order of micrometers in thickness and ∼1 μm in roughness.
Collapse
Affiliation(s)
- Dominikus Brian
- University of Michigan-Shanghai Jiao Tong University Joint Institute, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Morteza Eslamian
- University of Michigan-Shanghai Jiao Tong University Joint Institute, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| |
Collapse
|
33
|
Jo C, Groombridge AS, De La Verpilliere J, Lee JT, Son Y, Liang HL, Boies AM, De Volder M. Continuous-Flow Synthesis of Carbon-Coated Silicon/Iron Silicide Secondary Particles for Li-Ion Batteries. ACS NANO 2020; 14:698-707. [PMID: 31834775 PMCID: PMC6990505 DOI: 10.1021/acsnano.9b07473] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/13/2019] [Indexed: 05/24/2023]
Abstract
The development of better Li-ion battery (LIB) electrodes requires an orchestrated effort to improve the active materials as well as the electron and ion transport in the electrode. In this paper, iron silicide is studied as an anode material for LIBs because of its higher conductivity and lower volume expansion compared to pure Si particles. In addition, carbon nanotubes (CNTs) can be synthesized from the surface of iron-silicides using a continuous flow coating process where precursors are first spray dried into micrometer-scale secondary particles and are then flown through a chemical vapor deposition (CVD) reactor. Some CNTs are formed inside the secondary particles, which are important for short-range electrical transport and good utilization of the active material. Surface-bound CNTs on the secondary particles may help establish a long-range conductivity. We also observed that these spherical secondary particles allow for better electrode coating quality, cyclability, and rate performance than unstructured materials with the same composition. The developed electrodes retain a gravimetric capacity of 1150 mAh/g over 300 cycles at 1A/g as well as a 43% capacity retention at a rate of 5 C. Further, blended electrodes with graphite delivered a 539 mAh/g with high electrode density (∼1.6 g/cm3) and areal capacity (∼3.5 mAh/cm2) with stable cycling performance.
Collapse
|
34
|
Moya A, Hernando-Pérez M, Pérez-Illana M, San Martín C, Gómez-Herrero J, Alemán J, Mas-Ballesté R, de Pablo PJ. Multifunctional carbon nanotubes covalently coated with imine-based covalent organic frameworks: exploring structure-property relationships through nanomechanics. NANOSCALE 2020; 12:1128-1137. [PMID: 31850432 DOI: 10.1039/c9nr07716b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The assembly of 3-dimensional covalent organic frameworks on the surface of carbon nanotubes is designed and successfully developed for the first time via the hybridization of imine-based covalent organic frameworks (COF-300) and oxidized MWCNTs by one-pot chemical synthesis. The resulting hybrid material ox-MWCNTs@COF exhibits a conformal structure that consists of a uniform amorphous COF layer covering the ox-MWCNT surface. The measurements of individual hybrid nanotube mechanical strength performed with atomic force microscopy provide insights into their stability and resistance. The results evidence a very robust hybrid tubular nanostructure that preserves the benefits obtained from COF, such as CO2 adsorption. Further digestion of the organic structure with aniline enables the study of the interplay between the hybrid interface and its nanomechanics. This new hybrid nanomaterial presents exceptional mechanical and electrical properties, merging the properties of the CNT template and COF-300.
Collapse
Affiliation(s)
- Alicia Moya
- Department of Condense Matter Physics (module 03). Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Xia S, Yang Y, Zhu W, Lü C. Quaternized polyhedral oligomeric silsesquioxanes stabilized Pd nanoparticles as efficient nanocatalysts for reduction reaction. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
|
37
|
Ghosh A, Singha A, Auroux A, Das A, Sen D, Chowdhury B. A green approach for the preparation of a surfactant embedded sulfonated carbon catalyst towards glycerol acetalization reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00336k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A surfactant embedded carbon-based acid catalyst was prepared via simple physical mixing and thermal treatment to establish the relationship between hydrophobicity and acidic site density for efficient glycerol acetalization reaction.
Collapse
Affiliation(s)
- Anindya Ghosh
- Department of Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Aniruddha Singha
- Department of Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| | - Aline Auroux
- Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON)
- UMR 5256 CNRS – Université Lyon1
- Villeurbanne Cedex
- France
| | - Avik Das
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| | - Debasis Sen
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| | - Biswajit Chowdhury
- Department of Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad
- India
| |
Collapse
|
38
|
Ekwueme EC, Rao R, Mohiuddin M, Pellegrini M, Lee YS, Reiter MP, Jackson J, Freeman JW. Single-walled carbon nanohorns modulate tenocyte cellular response and tendon biomechanics. J Biomed Mater Res B Appl Biomater 2019; 108:1907-1914. [PMID: 31785088 DOI: 10.1002/jbm.b.34532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 10/21/2019] [Accepted: 11/16/2019] [Indexed: 12/26/2022]
Abstract
Subfailure ligament and tendon injury remain a significant burden to global healthcare. Here, we present the use of biocompatible single-walled carbon nanohorns (CNH) as a potential treatment for the repair of sub-failure injury in tendons. First, in vitro exposure of CNH to human tenocytes revealed no change in collagen deposition but a significant decrease in cell metabolic activity after 14 days. Additionally, gene expression studies revealed significant downregulation of collagen Types I and III mRNA at 7 days with some recovery after 14 days of exposure. Biomechanical tests with explanted porcine digitorum tendons showed the ability of CNH suspensions to modulate tendon biomechanics, most notably elastic moduli immediately after treatment. in vivo experiments demonstrated the ability of CNH to persist in the damaged matrix of stretch-injured Sprague Dawley rat Achilles tendon but not significantly modify tendon biomechanics after 7 days of treatment. Although these results demonstrate the early feasibility of utility of CNH as a potential modality for tendon subfailure injury, additional work is needed to further validate and ensure clinical efficacy.
Collapse
Affiliation(s)
- Emmanuel C Ekwueme
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Rohit Rao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Mahir Mohiuddin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Michael Pellegrini
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Yong S Lee
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Mary P Reiter
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - James Jackson
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
39
|
Yu F, Tao L, Cao T. High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen-doped porous carbon carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113119. [PMID: 31546080 DOI: 10.1016/j.envpol.2019.113119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/18/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to develop a new modified graphite felt (GF) as carbonaceous cathode for electro-Fenton (EF) application loaded with nitrogen-doped porous carbon (NPC) carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as carbon precursor. At initial pH 7, the highest generation rate of H2O2 was 0.74 mg h-1 cm-2 by applying 12.5 mA cm-2 by modified cathode, but in the same condition, the GF only had 0.067 mg h-1 cm-2. The production efficiency increased 10 times. Additionally, phenol (50 mg L-1) could be largely removed by NPC modified cathode, the mineralization ratio and TOC reached 100% and 82.61% at 120 min of optimization condition, respectively. The NPC cathode kept its stability after 5 cycles. The materials were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and linear sweep voltammetry (LSV). The results demonstrated that a homogenous NPC covered the carbon-based material GF. The existing graphitic-N and sp2 carbon of NPC promoted the electron transfer between carbon surface and oxygen molecules, as well as accelerated the oxygen reduction reaction (ORR) and the modified graphite felt had much higher electrocatalytic activity. In this work, several manufacturing parameters like the current, pH and load of NPC were optimized. The optimized design could improve the efficiency of new cathode with in situ electro-chemical production of H2O2 and significantly offer a potential material for degradation of organic pollutants.
Collapse
Affiliation(s)
- Fangke Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Ling Tao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianyi Cao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
40
|
Jessl S, Copic D, Engelke S, Ahmad S, De Volder M. Hydrothermal Coating of Patterned Carbon Nanotube Forest for Structured Lithium-Ion Battery Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901201. [PMID: 31544336 DOI: 10.1002/smll.201901201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Controlling the arrangement and interface of nanoparticles is essential to achieve good transfer of charge, heat, or mechanical load. This is particularly challenging in systems requiring hybrid nanoparticle mixtures such as combinations of organic and inorganic materials. This work presents a process to coat vertically aligned carbon nanotube (CNT) forests with metal oxide nanoparticles using microwave-assisted hydrothermal synthesis. Hydrothermal processes normally damage delicate CNT forests, which is addressed here by a combination of lithographic patterning, transfer printing, and reduction of the synthesis time. This process is applied for the fabrication of structured Li-ion battery (LIB) electrodes where the aligned CNTs provide a straight electron transport path through the electrode and the hydrothermal coating process is used to coat the CNTs with conversion anode materials for LIBs. These nanoparticles are anchored on the surface of the CNTs and batteries fabricated following this process show a fourfold longer cyclability. Finally, this process is used to create thick electrodes (350 µm) with a gravimetric capacity of over 900 mAh g-1 .
Collapse
Affiliation(s)
- Sarah Jessl
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Davor Copic
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Simon Engelke
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Shahab Ahmad
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), New Delhi, 110025, India
| | - Michael De Volder
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| |
Collapse
|
41
|
Sane O, Diouf A, Pan M, Morán Cruz G, Savina F, Méallet-Renault R, Dieng SY, Amigoni S, Guittard F, Darmanin T. Nanotubular structures through templateless electropolymerization using thieno[3,4-b]thiophene derivatives with different substituents and water content. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Wang D, Saleh NB, Sun W, Park CM, Shen C, Aich N, Peijnenburg WJGM, Zhang W, Jin Y, Su C. Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7265-7287. [PMID: 31199142 PMCID: PMC7388031 DOI: 10.1021/acs.est.9b01453] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon-metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy-water-environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.
Collapse
Affiliation(s)
- Dengjun Wang
- National Research Council Resident Research Associate at the United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Wenjie Sun
- Department of Civil and Environmental Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Chang Min Park
- Department of Environmental Engineering , Kyungpook National University , Buk-gu , Daegu 41566 , South Korea
| | - Chongyang Shen
- Department of Soil and Water Sciences , China Agricultural University , Beijing 100193 , China
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , The Netherlands
- Center for Safety of Substances and Products , National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven , The Netherlands
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, and Environmental Science and Policy Program , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Yan Jin
- Department of Plant and Soil Sciences , University of Delaware , Newark , Delaware 19716 , United States
| | - Chunming Su
- Groundwater, Watershed, and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development , United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States
| |
Collapse
|
43
|
Abstract
In this work, we employed a step-by-step sol-gel process to controllably deposit ultra-thin layers of SiO2 on anatase nanoparticles in the range between 0 and 1 nm. The deposition was confirmed by TEM, EDX, and ATR-FTIR (e.g., Ti-O-Si band at 960 cm-1). Zeta potential measurements unravelled a continuous change in surface charge density with increasing silica shell thickness. The photocatalysts were evaluated towards adsorption and degradation of positively-charged and negatively-charged dyes (methylene blue, methyl orange) under UV illumination. The growth mechanism follows the Stranski–Krastanov model with three thickness regimes: (a) Flat islands (first step), (b) mono/bilayers (second/third step), and (c) regular thick films (fourth/fifth step). The results suggest different rate limiting processes for these regimes: (a) For the thinnest scenario, acidic triple-phase boundaries (TPBs) increase the activity for both dyes with their accessibility being the rate limiting step; (b) for continuous mono/bilayers, dye adsorption on the negatively-charged SiO2 shells becomes the rate liming step, which leads to a stark increase in activity for the positively-charged MB and a decrease for MO; (c) for thicker shells, the activity decreases for both dyes and is limited by the charge transport through the isolating shells.
Collapse
|
44
|
Santos A, Amorim L, Nunes JP, Rocha LA, Silva AF, Viana JC. A Comparative Study between Knocked-Down Aligned Carbon Nanotubes and Buckypaper-Based Strain Sensors. MATERIALS 2019; 12:ma12122013. [PMID: 31234602 PMCID: PMC6631796 DOI: 10.3390/ma12122013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes (CNTs) are one of the most promising materials in sensing applications due to their electrical and mechanical properties. This paper presents a comparative study between CNT Buckypaper (BP) and aligned CNT-based strain sensors. The Buckypapers were produced by vacuum filtration of commercial CNTs dispersed in two different solvents, N,N-Dimethylformamide (DMF) and ethanol, forming freestanding sheets, which were cut in 10 × 10 mm squares and transferred to polyimide (PI) films. The morphology of the BP was characterized by scanning electron microscopy (SEM). The initial electrical resistivity of the samples was measured, and then relative electrical resistance versus strain measurements were obtained. The results were compared with the knocked-down vertically aligned CNT/PI based sensors previously reported. Although both types of sensors were sensitive to strain, the aligned CNT/PI samples had better mechanical performance and the advantage of inferring strain direction due to their electrical resistivity anisotropic behavior.
Collapse
Affiliation(s)
- Ana Santos
- IPC/i3N-Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal.
| | - Luís Amorim
- IPC/i3N-Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal.
| | - João Pedro Nunes
- IPC/i3N-Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal.
| | - Luís Alexandre Rocha
- CMEMS-Center for MicroElectroMechanical Systems, University of Minho, 4800-058 Guimarães, Portugal.
| | - Alexandre Ferreira Silva
- CMEMS-Center for MicroElectroMechanical Systems, University of Minho, 4800-058 Guimarães, Portugal.
| | - Júlio César Viana
- IPC/i3N-Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal.
| |
Collapse
|
45
|
Abstract
Incorporating nanomaterials in living systems could force the latter to produce "bionicomposites". We report a review of the first attempts with such bionicomposites, e.g. showing how the control of the eating and dormant states of microorganisms can provide nano-architectures with novel mechanical and functional properties, and how introducing nanomaterials in the diets of animals producing silks (spiders or silkworms) leads to intrinsically reinforced fibers with strengths higher than those of their natural counterparts, as well as those of synthetic polymer fibers or carbon fiber-reinforced polymeric composites.
Collapse
Affiliation(s)
- Nicola M Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy.
| | | |
Collapse
|
46
|
Guo S, Jiang Y, Wu F, Yu P, Liu H, Li Y, Mao L. Graphdiyne-Promoted Highly Efficient Photocatalytic Activity of Graphdiyne/Silver Phosphate Pickering Emulsion Under Visible-Light Irradiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2684-2691. [PMID: 29745636 DOI: 10.1021/acsami.8b04463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As a new kind of two-dimensional carbon allotrope, graphdiyne (GDY) consists of sp- and sp2-hybridized carbon atoms and has recently been used for developing highly efficient photocatalytic systems because of its unique properties. In this study, we find that GDY can form a Pickering emulsion with silver phosphate (Ag3PO4) nanoparticles that exhibits largely enhanced photocatalytic activity in the visible-light region. In this system, Ag3PO4 acts as a photocatalytically active semiconductor with GDY as the hydrophobic nanostructure. Photocatalytic activity of the Ag3PO4/GDY-based Pickering emulsion toward the photodegradation of methylene blue (MB) and photooxidation of water is investigated under visible-light irradiation. Compared to previous Ag3PO4/CNT- or Ag3PO4/graphene-based Pickering emulsions, the Ag3PO4/GDY-based emulsion efficiently catalyzes MB degradation with a higher apparent rate constant k being ∼0.477 min-1, while for water oxidation its photocatalytic activity is also improved by 1.89 and 1.75 times, respectively. Such an enhancement in the photocatalytic activity is mainly ascribed to the capability of GDY in acting as an acceptor of the photogenerated electrons from Ag3PO4 nanoparticles and in facilitating the hole transportation as well as in reducing Ag+ to Ag0. This study demonstrates that GDY is a new candidate with a promising future in developing photocatalytic systems with high efficiency for real applications.
Collapse
Affiliation(s)
- Shuyue Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Huibiao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
47
|
Xia S, Yang Y, Lü C. Quaternized POSS modified rGO-supported Pd nanoparticles as a highly efficient catalyst for reduction and Suzuki coupling reactions. NEW J CHEM 2019. [DOI: 10.1039/c9nj04491d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrophilic QPOSS modified rGO nanosheets are fabricated as a robust catalyst support of PdNPs for reduction and Suzuki coupling reactions.
Collapse
Affiliation(s)
- Siwen Xia
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Yu Yang
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Changli Lü
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| |
Collapse
|
48
|
Attanzio A, Rosillo-Lopez M, Zampetti A, Ierides I, Cacialli F, Salzmann CG, Palma M. Assembly of graphene nanoflake-quantum dot hybrids in aqueous solution and their performance in light-harvesting applications. NANOSCALE 2018; 10:19678-19683. [PMID: 30328464 DOI: 10.1039/c8nr06746e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene nanoflakes and CdSe/ZnS quantum dots were covalently linked in environmentally friendly aqueous solution. Raman spectroscopy and photoluminescence studies, both in solution and on surfaces at the single nanohybrid level, showed evidence of charge transfer between the two nanostructures. The nanohybrids were further incorporated into solar cell devices, demonstrating their potential as light harvesting assemblies.
Collapse
Affiliation(s)
- Antonio Attanzio
- School of Biological and Chemical Sciences, Materials Research Institute, Queen Mary University of London, Mile End Road, London E14NS, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Synthesis of carbon nanotube on stainless steel microfibrous composite—Comparison of direct and indirect growth and its application in fixed bed m-cresol adsorption. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Liu M, Lin H, Mei Z, Yang J, Lin J, Liu Y, Pan F. Tuning Cobalt and Nitrogen Co-Doped Carbon to Maximize Catalytic Sites on a Superabsorbent Resin for Efficient Oxygen Reduction. CHEMSUSCHEM 2018; 11:3631-3639. [PMID: 30136758 DOI: 10.1002/cssc.201801480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/09/2018] [Indexed: 05/13/2023]
Abstract
The electrocatalytic performance and cost of oxygen reduction reaction (ORR) catalysts are crucial to many renewable energy conversion and storage systems/devices. Recently, transition-metal/nitrogen-doping carbon catalysts (M-N-C) have attracted tremendous attention due to their low cost and excellent catalytic activities; however, they are restricted in large-scale commercial applications by complex preparation processing. Here, a facile strategy to prepare Co-N-C catalysts has been developed. A kind of superabsorbent resin normally found in diapers, poly(acrylic acid-acrylamide), is used to adsorb a transition-metal cobalt salt and a pyrolysis strategy at 800 °C under an argon atmosphere is followed. The resin simultaneously plays a multiple role, which includes structural support, dispersing cobalt ions by coordinate bonds, and providing a carbon and nitrogen source. Attributed to the conductive carbon frameworks and abundant catalytic sites, the Co-N-C catalyst exhibits an excellent electrocatalytic performance. High onset potential (0.96 V vs. reversible hydrogen electrode, RHE), half-wave potential (0.80 V vs. RHE), and a large diffusion-limited current density (4.65 mA cm-2 ) are achieved for the ORR, which are comparable or superior to the commercial 20 % Pt/C and reported M-N-C ORR electrocatalysts. This work provides a universal dispersion technology for Co-N-C catalyst, which makes it a very promising candidate toward the ORR.
Collapse
Affiliation(s)
- Mengran Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Hai Lin
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Zongwei Mei
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Jinlong Yang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Jie Lin
- Fujian Institute of Subtropical Botany, Xiamen, 361006, P.R. China
| | - Yidong Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| |
Collapse
|