1
|
Guo Y, Liu Y, Zhang Z, Zhang X, Jin X, Zhang R, Chen G, Zhu L, Zhu M. Biopolymer based Fibrous Aggregate Materials for Diagnosis and Treatment: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414877. [PMID: 40351104 DOI: 10.1002/adma.202414877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Biopolymer-based fibrous aggregate materials (BFAMs) have gained increasing attention in biomedicine due to their excellent biocompatibility, processability, biodegradability, and multifunctionality. Especially, the medical applications of BFAMs demand advanced structure, performance, and function, which conventional trial-and-error methods struggle to provide. This necessitates the rational selection of materials and manufacturing methods to design BFAMs with various intended functions and structures. This review summarizes the current progress in raw material selection, structural and functional design, processing technology, and application of BFAMs. Additionally, the challenges encountered during the development of BFAMs are discussed, along with perspectives for future research offered.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yifan Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeqi Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaozhe Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Jin
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ruxu Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoyin Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
2
|
Khan WU, Shen Z, Mugo SM, Wang H, Zhang Q. Implantable hydrogels as pioneering materials for next-generation brain-computer interfaces. Chem Soc Rev 2025; 54:2832-2880. [PMID: 40035554 DOI: 10.1039/d4cs01074d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Use of brain-computer interfaces (BCIs) is rapidly becoming a transformative approach for diagnosing and treating various brain disorders. By facilitating direct communication between the brain and external devices, BCIs have the potential to revolutionize neural activity monitoring, targeted neuromodulation strategies, and the restoration of brain functions. However, BCI technology faces significant challenges in achieving long-term, stable, high-quality recordings and accurately modulating neural activity. Traditional implantable electrodes, primarily made from rigid materials like metal, silicon, and carbon, provide excellent conductivity but encounter serious issues such as foreign body rejection, neural signal attenuation, and micromotion with brain tissue. To address these limitations, hydrogels are emerging as promising candidates for BCIs, given their mechanical and chemical similarities to brain tissues. These hydrogels are particularly suitable for implantable neural electrodes due to their three-dimensional water-rich structures, soft elastomeric properties, biocompatibility, and enhanced electrochemical characteristics. These exceptional features make them ideal for signal recording, neural modulation, and effective therapies for neurological conditions. This review highlights the current advancements in implantable hydrogel electrodes, focusing on their unique properties for neural signal recording and neuromodulation technologies, with the ultimate aim of treating brain disorders. A comprehensive overview is provided to encourage future progress in this field. Implantable hydrogel electrodes for BCIs have enormous potential to influence the broader scientific landscape and drive groundbreaking innovations across various sectors.
Collapse
Affiliation(s)
- Wasid Ullah Khan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- CAS Applied Chemistry Science & Technology Co., Ltd, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
3
|
Wei K, Wang W, Giovannini G, Sharma K, Rossi RM, Boesel LF. A plug-and-play microfluidic device for hydrogel fiber spinning. LAB ON A CHIP 2025; 25:1575-1585. [PMID: 39935325 PMCID: PMC11815318 DOI: 10.1039/d4lc00783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Hydrogel fibers are promising biomaterials for a broad range of biomedical applications, including biosensing, drug delivery, and tissue engineering. Different types of microfluidic devices have been developed for hydrogel fiber spinning, however, they often require skillful fabrication procedures with special instruments such as 3D printers and clean-room facilities. On the other hand, microfluidic devices with predetermined and fixed configurations are susceptible to clotting, contamination, and damage, thereby creating a significant barrier for potential users. Herein, we describe a plug-and-play (PnP) microfluidic device for hydrogel fiber spinning. The PnP device was designed to be assembled in a modular manner based on simple mounting of PDMS elastomers on commercial Lego® blocks. Easy disassembly and re-assembly make the device user-friendly, since cleaning or replacing individual modules is convenient. We demonstrated the application of our PnP microfluidic device in alginate (Alg) hydrogel fiber spinning by using a single-module or double-module device. Moreover, thanks to the PnP approach, multi-layered fibers can be produced by using a triple-module device. As proof-of-principle, we fabricated pH-sensitive multi-layered fibers that could be used for monitoring biological environments, showcasing the potential of such a PnP device in advancing biomedical research related to functional fibers.
Collapse
Affiliation(s)
- Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Wuchao Wang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Giorgia Giovannini
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Khushdeep Sharma
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
4
|
Ban S, Yi H, Park J, Huang Y, Yu KJ, Yeo WH. Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416899. [PMID: 39905874 DOI: 10.1002/adma.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Indexed: 02/06/2025]
Abstract
Recent advances in developing photonic technologies using various materials offer enhanced biosensing, therapeutic intervention, and non-invasive imaging in healthcare. Here, this article summarizes significant technological advancements in materials, photonic devices, and bio-interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on-skin health monitoring. The details of required materials, necessary properties, and device configurations are described for next-generation healthcare systems, followed by an explanation of the working principles of light-based therapeutics and diagnostics. Next, this paper shares the recent examples of integrated photonic systems focusing on translation and immediate applications for clinical studies. In addition, the limitations of existing materials and devices and future directions for smart photonic systems are discussed. Collectively, this review article summarizes the recent focus and trends of technological advancements in developing new nanomaterials, light delivery methods, system designs, mechanical structures, material functionalization, and integrated photonic systems to advance human healthcare and digital healthcare.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yunuo Huang
- School of Industrial Design, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
- The Biotech Center, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, South Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, Seoul, 03722, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
5
|
Wang X, Li R, Jiang Z, He M. Self-Healing Flexible Fiber Optic Sensors for Safe Underwater Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4067-4074. [PMID: 39762157 DOI: 10.1021/acsami.4c20647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The advancement of underwater monitoring technologies has been significantly hampered by the limitations of traditional electrical sensors, particularly in the presence of electromagnetic interference and safety concerns in aquatic environments. Fiber optic sensors are therefore nowadays widely applied to underwater monitoring devices. However, silicon- and polymer-based optical fibers often face challenges, such as rigidity, susceptibility to environmental stress, and limited operational flexibility. Here, we propose an ingenious flexible step-index fiber construction strategy for the preparation of core-cladding poly(polymerizable deep eutectic solvent (PDES)) optical fiber (CPOF) by in situ light curing of the functional PDES monomer in a commercial silicone tube. The liquid-free poly(PDES) fiber core not only possesses high transparency (>90%), excellent flexibility, and wide temperature range tolerance (from -27 to 156 °C), but the supramolecular network of it also provides self-adhesion and optical self-healing, which ensures the bonding stability of the core-cladding interface as well as the lifetime of the optical device. On the other hand, the hydrophobic fiber cladding allows CPOF to stably transmit optical signals under water, and the application potential of CPOF for underwater sensing devices was verified by underwater motion monitoring.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Ren'ai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zihan Jiang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
6
|
Kafrashian Z, Brück S, Rogin P, Khamdan M, Farrukh HSUB, Pearson S, del Campo A. Segmented, Side-Emitting Hydrogel Optical Fibers for Multimaterial Extrusion Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2309166. [PMID: 39632473 PMCID: PMC11775871 DOI: 10.1002/adma.202309166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Side-emitting optical fibers allow light to be deliberately outcoupled along the fiber. Introducing a customized side-emission profile requires modulation of the guiding and emitting properties along the fiber length, which is a particular challenge in continuous processing of soft waveguides. In this work, it is demonstrated that multimaterial extrusion printing can generate hydrogel optical fibers with tailored segments for light-side emission. The fibers are based on diacrylated Pluronic F-127 (PluDA). 1 mm diameter fibers are printed with segments of different optical properties by switching between a PluDA waveguiding ink and a PluDA scattering ink containing nanoparticles. The method allows the fabrication of fibers with segment lengths below 500 microns in a continuous process. The length of the segments is tailored by varying the switching time between inks during printing. Fibers with customized side-emission profiles along their length are presented. The functionality of the printed fibers is demonstrated by exciting fluorescence inside a surrounding 3D hydrogel. The presented technology and material combination allow unprecedented flexibility for designing soft optical fibers with customizable optical properties using simple processes and a medical material. This approach can be of interest to improve illumination inside tissues for photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Zahra Kafrashian
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Saarland UniversityChemistry Department66123SaarbrückenGermany
| | - Stefan Brück
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Peter Rogin
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Mokhamad Khamdan
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Hafiz Syed Usama Bin Farrukh
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Saarland UniversityChemistry Department66123SaarbrückenGermany
| | - Samuel Pearson
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Aránzazu del Campo
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Saarland UniversityChemistry Department66123SaarbrückenGermany
| |
Collapse
|
7
|
Chen X, Feng Y, Zhang P, Ni Z, Xue Y, Liu J. Hydrogel Fibers-Based Biointerfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413476. [PMID: 39578344 DOI: 10.1002/adma.202413476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The unique 1D structure of fibers offers intriguing attributes, including a high length-to-diameter ratio, miniatured size, light-weight, and flexibility, making them suitable for various biomedical applications, such as health monitoring, disease treatment, and minimally invasive surgeries. However, traditional fiber devices, typically composed of rigid, dry, and non-living materials, are intrinsically different from the soft, wet, and living essence of biological tissues, thereby posing grand challenges for long-term, reliable, and seamless interfacing with biological systems. Hydrogel fibers have recently emerged as a promising candidate, in light of their similarity to biological tissues in mechanical, chemical and biological aspects, as well as distinct fiber geometry. In this review, a comprehensive overview of recent progress in hydrogel fibers-based biointerfacing technology is provided. It thoroughly summarizes the manufacturing strategy and functional design, especially for hydrogel fibers with distinct optical and electron conductive performance, as well as responsiveness to triggers including thermal, magnetic field and ultrasonic wave, etc. Such unique attributes enable various biomedical applications, which are also examined in detail. Future challenges and potential directions, including biosafety, long-term reliability, sterilization, multi-modalities integration and intelligent therapeutic systems, are raised. This review will serve as a valuable resource for further advancement and implementation as next-generation biointerfacing technology.
Collapse
Affiliation(s)
- Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Patrakka J, Hynninen V, Lahtinen M, Hokkanen A, Orelma H, Sun Z, Nonappa. Mechanically Robust Biopolymer Optical Fibers with Enhanced Performance in the Near-Infrared Region. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42704-42716. [PMID: 39083595 PMCID: PMC11332404 DOI: 10.1021/acsami.4c08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Polymer optical fibers (POFs) are lightweight, fatigue-tolerant, and suitable for local area networks, automobiles, aerospace, smart textiles, supercomputers, and servers. However, commercially available POFs are exclusively fabricated using synthetic polymers derived from nonrenewable resources. Recently, attempts have been made to fabricate biocompatible and biopolymeric optical fibers. However, their limitations in mechanical performance, thermal stability, and optical properties foil practical applications in waveguiding. Here, we report a comprehensive study of the preparation of biopolymer optical fibers with tailored mechanical strength, thermal properties, and their short-distance applications. Specifically, we use alginate as one of the key components with methylcelluloses to promote readily scalable wet spinning at ambient conditions to fabricate 21 combinations of composite fibers. The fibers display high maximum strain (up to 58%), Young's modulus (up to 11 GPa), modulus of toughness (up to 63 MJ/m3), and a high strength (up to 195 MPa), depending on the composition and fabrication conditions. The modulus of toughness is comparable to that of glass optical fibers, while the maximum strain is nearly 15 times higher. The mechanically robust fibers with high thermal stability allow rapid humidity, touch sensing, and complex shapes such as serpentine, coil, or twisted structures without losing their light transmission properties. More importantly, the fibers display enhanced optical performance and sensitivity in the near-infrared (NIR) region, making them suitable for advanced biomedical applications. Our work suggests that biobased materials offer innovative solutions to create short-distance optical fibers from fossil fuel-free resources with novel functionalities.
Collapse
Affiliation(s)
- Jani Patrakka
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| | - Ville Hynninen
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| | - Manu Lahtinen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Ari Hokkanen
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Hannes Orelma
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Zhipei Sun
- Department
of Electronics and Nanoengineering, Aalto
University, Maarintie
13, 02150 Espoo, Finland
| | - Nonappa
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| |
Collapse
|
9
|
Arefnia F, Zibaii MI, Layeghi A, Rostami S, Babakhani-Fard MM, Moghadam FM. Citrate polymer optical fiber for measuring refractive index based on LSPR sensor. Sci Rep 2024; 14:18637. [PMID: 39128906 PMCID: PMC11317514 DOI: 10.1038/s41598-024-69083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Fiber optic localized surface plasmon resonance (LSPR) sensors have become an effective tool in refractive index (RI) detection for biomedical applications because of their high sensitivity. However, using conventional optical fiber has caused limitations in implanting the sensor in the body. This research presents the design and construction of a new type of polymer-based LSPR sensors to address this issue. Also, finite element method (FEM) is used to design the sensor and test it theoretically. The proposed polymer optical fiber (POF) based on citrate is biocompatible, flexible, and degradable, with a rate of 22% and 27 over 12 days. The step RI structure utilizes two polymers for light transmission: poly (octamethylene maleate citrate) (POMC) as the core and poly (octamethylene citrate) (POC) as the cladding. The POF core and cladding diameters and lengths are 700 µm, 1400 µm, and 7 cm, respectively. The coupling efficiency of light to the POF was enhanced using a microsphere fiber optic tip. The obtained results show that the light coupling efficiency increased to 77.8%. Plasma surface treatment was used to immobilize gold nanoparticles (AuNPs) on the tip of the POF, as a LSPR-POF sensor. Adsorption kinetics was measured based on the pseudo-first-order model to determine the efficiency of immobilizing AuNPs, in which the adsorption rate constant (k) was obtained be 8.6 × 10-3 min-1. The RI sensitivity of the sensor in the range from 1.3332 to 1.3604 RIU was obtained as 7778%/RIU, and the sensitivity was enhanced ~ 5 times to the previous RI POF sensors. These results are in good agreement with theory and computer simulation. It promises a highly sensitive and label-free detection biosensor for point-of-care applications such as neurosciences.
Collapse
Affiliation(s)
- Fatemeh Arefnia
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839 69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839 69411, Iran.
| | - Azam Layeghi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839 69411, Iran
| | - Soroush Rostami
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839 69411, Iran
| | | | | |
Collapse
|
10
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Zhang Z, Li K, Li Y, Zhang Q, Wang H, Hou C. Dual-Function Wearable Hydrogel Optical Fiber for Monitoring Posture and Sweat pH. ACS Sens 2024; 9:3413-3422. [PMID: 38887933 DOI: 10.1021/acssensors.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, wearable devices have been widely used for human health monitoring. Such monitoring predominantly relies on the principles of optics and electronics. However, electronic detection is susceptible to electromagnetic interference, and traditional optical fiber detection is limited in functionality and unable to simultaneously detect both physical and chemical signals. Hence, a wearable, embedded asymmetric color-blocked optical fiber sensor based on a hydrogel has been developed. Its sensing principle is grounded in the total internal reflection within the optical fiber. The method for posture sensing involves changes in the light path due to fiber bending with color blocks providing wavelength-selective modulation by absorption changes. Sweat pH sensing is facilitated by variations in fluorescence intensity triggered by sweat-induced conformational changes in Rhodamine B. With just one fiber, it achieves both physical and chemical signal detection. Fabricated using a molding technique, this fiber boasts excellent biocompatibility and can accurately discern single and multiple bending points, with a recognition range of 0-90° for a single segment, a detection limit of 0.02 mm-1 and a sweat pH sensing linear regression R2 of 0.993, alongside great light propagation properties (-0.6 dB·cm-1). With its extensive capabilities, it holds promise for applications in medical monitoring.
Collapse
Affiliation(s)
- Zhihui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
12
|
Doguet P, Garnier J, Nieuwenhuys A, Godfraind C, Botquin Y, Lemaire A, Justice J, Nonclercq A, El Tahry R, Corbett B, Delbeke J. An optoelectronic implantable neurostimulation platform allowing full MRI safety and optical sensing and communication. Sci Rep 2024; 14:11110. [PMID: 38750033 PMCID: PMC11096369 DOI: 10.1038/s41598-024-61330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
A novel programmable implantable neurostimulation platform based on photonic power transfer has been developed for various clinical applications with the main focus of being safe to use with MRI scanners. The wires usually conveying electrical current from the neurostimulator to the electrodes are replaced by optical fibers. Photovoltaic cells at the tip of the fibers convert laser light to biphasic electrical impulses together with feedback signals with 54% efficiency. Furthermore, a biocompatible, implantable and ultra-flexible optical lead was developed including custom optical fibers. The neurostimulator platform incorporates advanced signal processing and optical physiological sensing capabilities thanks to a hermetically sealed transparent nonmetallic casing. Skin transparency also allowed the development of a high-speed optical transcutaneous communication channel. This implantable neurostimulation platform was first adapted to a vagus nerve stimulator for the treatment of epilepsy. This neurostimulator has been designed to fulfill the requirements of a class III long-term implantable medical device. It has been proven compliant with standard ISO/TS10974 for 1.5 T and 3 T MRI scanners. The device poses no related threat and patients can safely undergo MRI without specific or additional precautions. Especially, the RF induced heating near the implant remains below 2 °C whatever the MRI settings used. The main features of this unique advanced neurostimulator and its architecture are presented. Its functional performance is evaluated, and results are described with a focus on optoelectronics aspects and MRI safety.
Collapse
Affiliation(s)
- Pascal Doguet
- Irisia SRL, Court-Saint-Etienne, Belgium.
- Synergia Medical, Mont-Saint-Guibert, Belgium.
| | - Jérôme Garnier
- Synergia Medical, Mont-Saint-Guibert, Belgium
- Tyndall National Institute, University College, Cork, Ireland
| | | | | | | | - Antoine Lemaire
- UPVD (PROMES-CNRS), Perpignan, France.
- Tyndall National Institute, University College, Cork, Ireland.
| | - John Justice
- Tyndall National Institute, University College, Cork, Ireland
| | - Antoine Nonclercq
- Bio-, Electro- and Mechanical Systems (BEAMS), Universite Libre de Bruxelles, Bruxelles, Belgium.
| | - Riëm El Tahry
- Department of Neurology, Institute of Neurosciences (IONS), Universite Catholique de Louvain, Cliniques Universitaires Saint Luc, Bruxelles, Belgium.
| | - Brian Corbett
- Tyndall National Institute, University College, Cork, Ireland.
| | | |
Collapse
|
13
|
Huang S, Liu X, Lin S, Glynn C, Felix K, Sahasrabudhe A, Maley C, Xu J, Chen W, Hong E, Crosby AJ, Wang Q, Rao S. Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics. Nat Commun 2024; 15:3525. [PMID: 38664445 PMCID: PMC11045824 DOI: 10.1038/s41467-024-47988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.
Collapse
Affiliation(s)
- Sizhe Huang
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Xinyue Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher Glynn
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Kayla Felix
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Collin Maley
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Jingyi Xu
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Eunji Hong
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
14
|
Kazlauskaite JA, Matulyte I, Marksa M, Bernatoniene J. Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines. Pharmaceutics 2024; 16:530. [PMID: 38675191 PMCID: PMC11054921 DOI: 10.3390/pharmaceutics16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Encapsulating antioxidant-rich plant extracts, such as those found in red clover, within microcapsules helps protect them from degradation, thus improving stability, shelf life, and effectiveness. This study aimed to develop a microencapsulation delivery system using chitosan and alginate for microcapsules that dissolve in both the stomach and intestines, with the use of natural and synthetic emulsifiers. The microcapsules were formed using the extrusion method and employing alginate or chitosan as shell-forming material. In this study, all selected emulsifiers formed Pickering (β-CD) and traditional (white mustard extract, polysorbate 80) stable emulsions. Alginate-based emulsions resulted in microemulsions, while chitosan-based emulsions formed macroemulsions, distinguishable by oil droplet size. Although chitosan formulations with higher red clover extract (C1) concentrations showed potential, they exhibited slightly reduced firmness compared to other formulations (C2). Additionally, both alginate and chitosan formulations containing β-CD released bioactive compounds more effectively. The combined use of alginate and chitosan microcapsules in a single pill offers an innovative way to ensure dual solubility in both stomach and intestinal environments, increasing versatility for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Jurga Andreja Kazlauskaite
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.A.K.); (I.M.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Inga Matulyte
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.A.K.); (I.M.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.A.K.); (I.M.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
15
|
Riviello G, Connor B, McBrearty J, Rodriguez G, Hu X. Protein and Polysaccharide-Based Optical Materials for Biomedical Applications. Int J Mol Sci 2024; 25:1861. [PMID: 38339138 PMCID: PMC10855249 DOI: 10.3390/ijms25031861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Recent advances in biomedical research, particularly in optical applications, have sparked a transformative movement towards replacing synthetic polymers with more biocompatible and sustainable alternatives. Most often made from plastics or glass, these materials ignite immune responses from the body, and their production is based on environmentally harsh oil-based processes. Biopolymers, including both polysaccharides and proteins, have emerged as a potential candidate for optical biomaterials due to their inherent biocompatibility, biodegradability, and sustainability, derived from their existence in nature and being recognized by the immune system. Current extraction and fabrication methods for these biomaterials, including thermal drawing, extrusion and printing, mold casting, dry-jet wet spinning, hydrogel formations, and nanoparticles, aim to create optical materials in cost-effective and environmentally friendly manners for a wide range of applications. Present and future applications include optical waveguides and sensors, imaging and diagnostics, optical fibers, and waveguides, as well as ocular implants using biopolymers, which will revolutionize these fields, specifically their uses in the healthcare industry.
Collapse
Affiliation(s)
- Gianna Riviello
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Brendan Connor
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Jake McBrearty
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Gianna Rodriguez
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
16
|
Fang K, Wan Y, Wei J, Chen T. Hydrogel-Based Sensors for Human-Machine Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16975-16985. [PMID: 37994525 DOI: 10.1021/acs.langmuir.3c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In the past decades, remarkable progress has been made in the field of human-machine interaction. The need for accurate sensing devices with satisfactory user experiences has propelled the development of flexible, stretchable, biocompatible, and imperceptible hydrogel-based interfaces. These innovative interfaces facilitate direct interactions between humans and machines while receiving detected input signals from sensors and giving output commands to controllers, thus motivating accurate real-time responsiveness. This Perspective discusses the sensing mechanisms for the two categories of hydrogel-based sensors and summarizes the recent progress in the development of different representations of human-machine interactions, including intelligent identification, information secrecy, interactive control, and virtual reality and augmented reality technologies. The advantages of hydrogel-based systems over conventionally used rigid electrical components are explicitly discussed. The conclusion provides a perspective on current challenges and outlines a future roadmap for the realization of state-of-the-art hydrogel-based smart systems.
Collapse
Affiliation(s)
- Kecheng Fang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yan Wan
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
17
|
Wu W, Li L, Li Z, Sun J, Wang L. Extensible Integrated System for Real-Time Monitoring of Cardiovascular Physiological Signals and Limb Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304596. [PMID: 37572093 DOI: 10.1002/adma.202304596] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Indexed: 08/14/2023]
Abstract
In recent decades, the rapid growth in flexible materials, new manufacturing technologies, and wearable electronics design techniques has helped establish the foundations for noninvasive photoelectric sensing systems with shape-adaptability and "skin-like" properties. Physiological sensing includes humidity, mechanical, thermal, photoelectric, and other aspects. Photoplethysmography (PPG), an important noninvasive method for measuring pulse rate, blood pressure, and blood oxygen, uses the attenuated signal obtained by the light absorbed and reflected from living tissue to a light source to realize real-time monitoring of human health status. This work illustrates a patch-type optoelectronic system that integrates a flexible perovskite photodetector and all-inorganic light-emitting diodes (LEDs) to realize the real-time monitoring of human PPG signals. The pulse rate of the human body and the swelling degree of finger joints can be extracted and analyzed using photodetectors, thus monitoring human health for the prevention and early diagnosis of certain diseases. Specifically, this work develops a 3D wrinkled-serpentine interconnection wire that increases the shape adaptability of the device in practical applications. The PPG signal sensor reported in this study has considerable potential for future wearable intelligent medical applications.
Collapse
Affiliation(s)
- Weitong Wu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Linlin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhexin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzi Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Galindo JM, Tardío C, Saikia B, Van Cleuvenbergen S, Torres-Moya I. Recent Insights about the Role of Gels in Organic Photonics and Electronics. Gels 2023; 9:875. [PMID: 37998965 PMCID: PMC10670943 DOI: 10.3390/gels9110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
This review article provides an in-depth exploration of the role of gels in the fields of organic electronics and photonics, focusing on their unique properties and applications. Despite their remarkable potential, gel-based innovations remain relatively uncharted in these domains. This brief review aims to bridge the knowledge gap by shedding light on the diverse roles that gels can fulfil in the enhancement of organic electronic and photonic devices. From flexible electronics to light-emitting materials, we delve into specific examples of gel applications, highlighting their versatility and promising outcomes. This work serves as an indispensable resource for researchers interested in harnessing the transformative power of gels within these cutting-edge fields. The objective of this review is to raise awareness about the overlooked research potential of gels in optoelectronic materials, which have somewhat diminished in recent years.
Collapse
Affiliation(s)
- Josué M. Galindo
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02YN77 Dublin, Ireland;
| | - Carlos Tardío
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071 Ciudad Real, Spain;
| | - Basanta Saikia
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (S.V.C.)
| | - Stijn Van Cleuvenbergen
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (S.V.C.)
| | - Iván Torres-Moya
- Department of Organic Chemistry, Faculty of Chemical Sciences, Campus of Espinardo, University of Murcia, 30010 Murcia, Spain
| |
Collapse
|
19
|
Huang S, Villafranca SU, Mehta I, Yosfan O, Hong E, Wang A, Wu N, Wang Q, Rao S. A nanoscale inorganic coating strategy for stabilizing hydrogel neural probes in vivo. J Mater Chem B 2023; 11:7629-7640. [PMID: 37401386 PMCID: PMC10530439 DOI: 10.1039/d3tb00710c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Hydrogels with adaptable optical and mechanical characteristics show considerable promise for light delivery in vivo with neuroengineering applications. However, the unlinked amorphous polymer chains within hydrogels can cause volumetric swelling after water absorption under physiological conditions over time. Chemically cross-linked poly(vinyl alcohol) (PVA) hydrogels showcase fatigue-resistant attributes and promising biocompatibility for the manufacture of soft neural probes. However, possible swelling of the PVA hydrogel matrix could impact the structural stability of hydrogel-based bioelectronics and their long-term in vivo functionality. In this study, we utilized an atomic layer deposition (ALD) technique to generate an inorganic, silicon dioxide (SiO2) coating layer on chemically cross-linked PVA hydrogel fibers. To evaluate the stability of SiO2-coated PVA hydrogel fibers mimicking the in vivo environment, we conducted accelerated stability tests. SiO2-coated PVA hydrogel fibers showed improved stability over a one-week incubation period under a harsh environment, preventing swelling and preserving their mechanical and optical properties compared to uncoated fibers. These SiO2-coated PVA hydrogel fibers demonstrated nanoscale polymeric crystalline domains (6.5 ± 0.1 nm), an elastic modulus of 73.7 ± 31.7 MPa, a maximum elongation of 113.6 ± 24.2%, and minimal light transmission loss (1.9 ± 0.2 dB cm-1). Lastly, we applied these SiO2-coated PVA hydrogel fibers in vivo to optically activate the motor cortex of transgenic Thy1::ChR2 mice during locomotor behavioral tests. This mouse cohort was genetically modified to express the light-sensitive ion channel, channelrhodopsin-2 (ChR2), and implanted with hydrogel fibers to deliver light to the motor cortex area (M2). Light stimulation via hydrogel fibers resulted in optogenetically modulated mouse locomotor behaviors, including increased contralateral rotation, mobility speeds, and travel distances.
Collapse
Affiliation(s)
- Sizhe Huang
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | | | - Iyanah Mehta
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Omri Yosfan
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Eunji Hong
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Anyang Wang
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
20
|
Fujiwara E, Rosa LO, Oku H, Cordeiro CMB. Agar-based optical sensors for electric current measurements. Sci Rep 2023; 13:13517. [PMID: 37598288 PMCID: PMC10439927 DOI: 10.1038/s41598-023-40749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Biodegradable optical waveguides are breakthrough technologies to light delivery and sensing in biomedical and environmental applications. Agar emerges as an edible, soft, low-cost, and renewable alternative to traditional biopolymers, presenting remarkable optical and mechanical characteristics. Previous works introduced agar-made optical fibers for chemical measurements based on their inherent response to humidity and surrounding concentration. Therefore, we propose, for the first time, an all-optical, biodegradable electric current sensor. As flowing charges heat the agar matrix and modulate its refractive index, we connect the optical device to a DC voltage source using pin headers and excite the agar sample with coherent light to project spatiotemporally deviating speckle fields. Experiments proceeded with spheres and no-core fibers comprising 2 wt% agar/water. Once the increasing current stimulates the speckles' motion, we acquire such images with a camera and evaluate their correlation coefficients, yielding exponential decay-like functions whose time constants provide the input amperage. Furthermore, the light granules follow the polarization of the applied voltage drop, providing visual information about the current direction. The results indicate a maximum resolution of [Formula: see text]0.4 [Formula: see text]A for electrical stimuli [Formula: see text] 100 [Formula: see text]A, which fulfills the requirements for bioelectrical signal assessment.
Collapse
Affiliation(s)
- Eric Fujiwara
- School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil.
| | - Lidia O Rosa
- School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil
| | - Hiromasa Oku
- Faculty of Informatics, Gunma University, Kiryu, 376-8518, Japan
| | | |
Collapse
|
21
|
Varela-Feijoo A, Djemia P, Narita T, Pignon F, Baeza-Squiban A, Sirri V, Ponton A. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility. SOFT MATTER 2023; 19:5942-5955. [PMID: 37490024 DOI: 10.1039/d3sm00159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In order to get better knowledge of mechanical properties from microscopic to macroscopic scale of biopolymers, viscoelastic bulk properties of aqueous solutions of sodium alginate were studied at different scales by combining macroscopic shear rheology (Hz), diffusing-wave spectroscopy microrheology (kHz-MHz) and Brillouin spectroscopy (GHz). Structural properties were also directly probed by small-angle X-ray scattering (SAXS). The results demonstrate a change from polyelectrolyte behavior to neutral polymer behavior by increasing polymer concentration with the determination of characteristic sizes (persistence length, correlation length). The viscoelastic properties probed at the phonon wavelength much higher than the ones obtained at low frequency reflect the variation of microscopic viscosity. First experiments obtained by metabolic activity assays with mouse embryonic fibroblasts showed biocompatibility of sodium alginate aqueous solutions in the studied range of concentrations (2.5-10 g L-1) and consequently their potential biomedical applications.
Collapse
Affiliation(s)
- Alberto Varela-Feijoo
- Laboratoire Matière et systèmes complexes (MSC), Université Paris Cité et CNRS, UMR 7057, 10 rue A. Domon et L. Duquet, 75013 Paris, France.
- Université Paris Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Philippe Djemia
- Laboratoire des Sciences des procédés et des matériaux (LSPM), UPR-CNRS 3407, 99 Avenue Jean-Baptiste Clément, 93530 Villetaneuse, France
| | - Tetsuharu Narita
- École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI), 10 Rue Vauquelin, 75005 Paris, France
| | - Frédéric Pignon
- Laboratoire rhéologie et procédés (LPG) Université Grenoble Alpes, CNRS, UMR 5520, Domaine Universitaire, BP 53, 38041 Grenoble Cedex 9, France
| | - Armelle Baeza-Squiban
- Unité de Biologie fonctionnelle et adaptative (BFA), Université Paris Cité et CNRS, UMR 8251, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75013 Paris, France
| | - Valentina Sirri
- Unité de Biologie fonctionnelle et adaptative (BFA), Université Paris Cité et CNRS, UMR 8251, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75013 Paris, France
| | - Alain Ponton
- Laboratoire Matière et systèmes complexes (MSC), Université Paris Cité et CNRS, UMR 7057, 10 rue A. Domon et L. Duquet, 75013 Paris, France.
| |
Collapse
|
22
|
Lan Z, Kar R, Chwatko M, Shoga E, Cosgriff-Hernandez E. High porosity PEG-based hydrogel foams with self-tuning moisture balance as chronic wound dressings. J Biomed Mater Res A 2023; 111:465-477. [PMID: 36606332 PMCID: PMC11542385 DOI: 10.1002/jbm.a.37498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
A major challenge in chronic wound treatment is maintaining an appropriate wound moisture balance throughout the healing process. Wound dehydration hinders wound healing due to impeded molecule transport and cell migration with associated tissue necrosis. In contrast, wounds that produce excess fluid contain high levels of reactive oxygen species and matrix metalloproteases that impede cell recruitment, extracellular matrix reconstruction, and angiogenesis. Dressings are currently selected based on the relative amount of wound exudate with no universal dressing available that can maintain appropriate wound moisture balance to enhance healing. This work aimed to develop a high porosity poly(ethylene glycol) diacrylate hydrogel foam that can both rapidly remove exudate and provide self-tuning moisture control to prevent wound dehydration. A custom foaming device was used to vary hydrogel foam porosity from 25% to 75% by adjusting the initial air-to-solution volume ratio. Hydrogel foams demonstrated substantial improvements in water uptake volume and rate as compared to bulk hydrogels while maintaining similar hydration benefits with slow dehydration rates. The hydrogel foam with the highest porosity (~75%) demonstrated the greatest water uptake and rate, which outperformed commercial dressing products, Curafoam® and Silvercel®, in water absorption, moisture retention, and exudate management. Investigation of the water vapor transmission rates of each dressing at varied hydration levels was characterized and demonstrated the dynamic moisture-controlling capability of the hydrogel foam dressing. Overall, the self-tuning moisture control of this hydrogel foam dressing holds great promise to improve healing outcomes for both dry and exudative chronic wounds.
Collapse
Affiliation(s)
- Ziyang Lan
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | - Malgorzata Chwatko
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Erik Shoga
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, 78712, USA
| | | |
Collapse
|
23
|
Liang Q, Shen Z, Sun X, Yu D, Liu K, Mugo SM, Chen W, Wang D, Zhang Q. Electron Conductive and Transparent Hydrogels for Recording Brain Neural Signals and Neuromodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211159. [PMID: 36563409 DOI: 10.1002/adma.202211159] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Recording brain neural signals and optogenetic neuromodulations open frontiers in decoding brain neural information and neurodegenerative disease therapeutics. Conventional implantable probes suffer from modulus mismatch with biological tissues and an irreconcilable tradeoff between transparency and electron conductivity. Herein, a strategy is proposed to address these tradeoffs, which generates conductive and transparent hydrogels with polypyrrole-decorated microgels as cross-linkers. The optical transparency of the electrodes can be attributed to the special structures that allow light waves to bypass the microgel particles and minimize their interaction. Demonstrated by probing the hippocampus of rat brains, the biomimetic electrode shows a prolonged capacity for simultaneous optogenetic neuromodulation and recording of brain neural signals. More importantly, an intriguing brain-machine interaction is realized, which involves signal input to the brain, brain neural signal generation, and controlling limb behaviors. This breakthrough work represents a significant scientific advancement toward decoding brain neural information and developing neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Quanduo Liang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiguang Sun
- Department of Hand Surgery, Public Research Platform, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Dehai Yu
- Department of Hand Surgery, Public Research Platform, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Kewei Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
24
|
Ju H, Zhang H, Hou LX, Zuo M, Du M, Huang F, Zheng Q, Wu ZL. Polymerization-Induced Crystallization of Dopant Molecules: An Efficient Strategy for Room-Temperature Phosphorescence of Hydrogels. J Am Chem Soc 2023; 145:3763-3773. [PMID: 36749032 DOI: 10.1021/jacs.2c13264] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional hydrogels such as polyacrylamide and polyacrylic acid ones seldom exhibit phosphorescences at ambient conditions, which limit their applications as optical materials. We propose and demonstrate here a facile strategy to afford these hydrogels with room-temperature phosphorescence by polymerization-induced crystallization of dopant molecules that results in segregation and confinement of the gel matrix with carbonyl groups and thus clusterization-induced phosphorescence. As a model system, crown ethers (CEs) are dissolved in an aqueous solution of concentrated acrylamide that greatly increases the solubility of CEs. During the polymerization process, CEs crystallize to form large spherulites in the polyacrylamide hydrogel. The crystallization arises from the drastically reduced solubility of CEs after the conversion of monomers to polymers during the gel synthesis. The resultant composite hydrogel with a water content of 67 wt % exhibits extraordinary phosphorescence behavior yet maintains good stretchability and resilience. We found that the partial gel matrix is squeezed and confined by in situ-formed crystals, leading to carbonyl clusters and thus phosphorescence emission. The composite gel shows green phosphorescence with an emission peak at 512 nm and a lifetime of 342 ms. The afterglow emission is detectable by the naked eye for several seconds. This strategy has good universality, as validated in other hydrogels with different polymeric matrices and dopant molecules. The development of hydrogels with good mechanical and phosphorescent properties should merit the design of multifunctional soft machines with applications in biomedical and engineering fields.
Collapse
Affiliation(s)
- Huaqiang Ju
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haoke Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Li Xin Hou
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Zuo
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feihe Huang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.,Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
25
|
C S A, Kandasubramanian B. Hydrogel as an advanced energy material for flexible batteries. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anju C S
- CIPET, Institute of Petrochemicals Technology (IPT), Kochi, India
| | | |
Collapse
|
26
|
Pons C, Galindo JM, Martín JC, Torres-Moya I, Merino S, Herrero MA, Vázquez E, Prieto P, Vallés JA. Propagation Losses Estimation in a Cationic-Network-Based Hydrogel Waveguide. MICROMACHINES 2022; 13:2253. [PMID: 36557552 PMCID: PMC9787014 DOI: 10.3390/mi13122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
A method based on the photographic recording of the power distribution laterally diffused by cationic-network (CN) hydrogel waveguides is first checked against the well-established cut-back method and then used to determine the different contributions to optical power attenuation along the hydrogel-based waveguide. Absorption and scattering loss coefficients are determined for 450 nm, 532 nm and 633 nm excitation. The excellent optical loss values obtained (0.32-1.95 dB/cm), similar to others previously described, indicate their potential application as waveguides in different fields, including soft robotic and light-based therapies.
Collapse
Affiliation(s)
- Carolina Pons
- Departamento de Física Aplicada-I3A, Facultad de Ciencias, Universidad de Zaragoza, C/P. Cerbuna 12, 50009 Zaragoza, Spain
| | - Josué M. Galindo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - Juan C. Martín
- Departamento de Física Aplicada-I3A, Facultad de Ciencias, Universidad de Zaragoza, C/P. Cerbuna 12, 50009 Zaragoza, Spain
| | - Iván Torres-Moya
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Sonia Merino
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - M. Antonia Herrero
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - Pilar Prieto
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Juan A. Vallés
- Departamento de Física Aplicada-I3A, Facultad de Ciencias, Universidad de Zaragoza, C/P. Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
27
|
Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat Commun 2022; 13:7789. [PMID: 36526631 PMCID: PMC9758120 DOI: 10.1038/s41467-022-35440-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Photomedicine has gained great attention due to its nontoxicity, good selectivity and small trauma. However, owing to the limited penetration of light and difficult monitoring of the photo-media therapies, it is challenging to apply photomedical treatment in deep tissue as they may damage normal tissues. Herein, a thermal regulated interventional photomedicine based on a temperature-adaptive hydrogel fiber-based optical waveguide (THFOW) is proposed, capable of eliminating deeply seated tumor cells while lowering risks of overtemperature (causes the death of healthy cells around the tumor). The THFOW is fabricated by an integrated homogeneous-dynamic-crosslinking-spinning method, and shows a remarkable soft tissue-affinity (low cytotoxicity, swelling stability, and soft tissue-like Young's modulus). Moreover, the THFOW shows an excellent light propagation property with different wavenumbers (especially -0.32 dB cm-1 with 915 nm laser light), and temperature-gated light propagation effect. The THFOW and relevant therapeutic strategy offer a promising application for intelligent photomedicine in deep issue.
Collapse
|
28
|
Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials 2022; 291:121875. [PMID: 36335717 DOI: 10.1016/j.biomaterials.2022.121875] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2022]
Abstract
Photodynamic therapy (PDT) is a promising localized cancer treatment modality. It has been used successfully to treat a range of dermatological conditions with comparable efficacy to conventional treatments. However, some drawbacks limit the clinical utility of PDT in treating deep-seated tumors. Notably, the penetration limitation of UV and visible light, commonly applied to activate photosensitizers, makes PDT incompetent in treating deep-seated tumors. Development in light delivery technologies, especially fiber optics, led to improved clinical strategies for accessing deep tissues for irradiation. However, PDT efficacy issues remained partly due to light penetration limitations. In this review, we first summarized the current PDT applications for deep-seated tumor treatment. Then, the most recent progress in advanced techniques to overcome the light penetration limitation in PDT, including using functional nanomaterials that can either self-illuminate or be activated by near-infrared (NIR) light and X-rays as transducers, and implantable light delivery devices were discussed. Finally, current challenges and future opportunities of these technologies were discussed, which we hope may inspire the development of more effective techniques to enhance PDT efficacy against deep-seated tumors.
Collapse
|
29
|
Xie Y, Kollampally SCR, Jorgensen M, Zhang X. Alginate microfibers as therapeutic delivery scaffolds and tissue mimics. Exp Biol Med (Maywood) 2022; 247:2103-2118. [PMID: 36000165 PMCID: PMC9837301 DOI: 10.1177/15353702221112905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alginate, a naturally occurring polysaccharide, has been widely used in cell encapsulation, 3D culture, cell therapy, tissue engineering, and regenerative medicine. Alginate's frequent use comes from its biocompatibility and ability to easily form hydrogel in a variety of forms (e.g. microcapsules, microfibers, and porous scaffolds), which can provide immunoprotection for cell therapy and mimic the extracellular matrix for tissue engineering. During the past 15 years, alginate hydrogel microfibers have attracted more and more attention due to its continuous thin tubular structures (diameter or shell thickness ⩽ 200 µm), high-density cell growth, high handleability and retrievability, and scalability. This review article provides a concise overview of alginate and its resultant hydrogel microfibers for the purpose of promoting multidisciplinary, collaborative, and convergent research in the field. It starts with a historical review of alginate as biomaterials and provides basics about alginate structure, properties, and mechanisms of hydrogel formation, followed by current challenges in effective cell delivery and functional tissue engineering. In particular, this work discusses how alginate microfiber technology could provide solutions to unmet needs with a focus on the current state of the art of alginate microfiber technology and its applications in 3D cell culture, cell delivery, and tissue engineering. At last, we discuss future directions in the perspective of alginate-based advanced technology development in biology and medicine.
Collapse
Affiliation(s)
- Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | | | - Matthew Jorgensen
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Xulang Zhang
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
30
|
Liu T, Ding H, Huang J, Zhan C, Wang S. Liquid-Core Hydrogel Optical Fiber Fluorescence Probes. ACS Sens 2022; 7:3298-3307. [PMID: 36283762 DOI: 10.1021/acssensors.2c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This paper first reports a liquid-core hydrogel optical fiber fluorescence probe. It is composed of a liquid core, a high-refractive-index hydrogel fiber core, and a low-refractive-index hydrogel fiber cladding, which is completely different from many existing optical fiber fluorescence probes. The sensing solution with sensitive materials is sealed as a liquid core, and it can sufficiently react with small-molecule targets penetrating through the hydrogel fiber cladding and core, thus inducing variations in the fluorescence signals. These fluorescence signals can be localized and transmitted within the probe and finally collected and quantified for target detection. This proposed probe can be simply and rapidly fabricated and reused, and it was proven to have high sensitivity, accuracy, and selectivity in practical applications. Therefore, this liquid-core hydrogel optical fiber fluorescence probe will enable a novel sensing platform for small-molecule analyte detection that faces on-site detection challenges.
Collapse
Affiliation(s)
- Ting Liu
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - He Ding
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jianwei Huang
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Chengsen Zhan
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shouyu Wang
- OptiX+ Laboratory, Wuxi, Jiangsu 214122, China
| |
Collapse
|
31
|
Pei M, Zhu D, Yang J, Yang K, Yang H, Gu S, Li W, Xu W, Xiao P, Zhou Y. Multi-crosslinked Flexible Nanocomposite Hydrogel Fibers with Excellent Strength and Knittability. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
32
|
Mo C, Yin R, Raney JR. Direct ink writing of tough, stretchable silicone composites. SOFT MATTER 2022; 18:7341-7347. [PMID: 36124868 DOI: 10.1039/d2sm00923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we report 3D printable soft composites that are simultaneously stretchable and tough. The matrix of the composite consists of polydimethylsiloxane containing octuple hydrogen bonding sites, resulting in a material significantly tougher than conventional polydimethylsiloxane. Short glass fibers are also added to the material. Prior to solvent evaporation, the material possesses a viscoelastic yield stress making it suitable for printing via direct ink writing. We mechanically characterize the printed composite, including fracture tests. We observe robust crack deflection and delay of catastrophic failure, leading to measured toughness values up to 2 00 000 J m-2 for specimens with 5 vol% glass fibers. The printed composites exhibit an unprecedented combination of stiffness, stretchability, and toughness.
Collapse
Affiliation(s)
- Chengyang Mo
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Rui Yin
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jordan R Raney
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Zhuo X, Zhou L, Bian Y, Shen H. Efficient taper optical hydrogel fiber coupler drawn from suspended photocuring 3D printing. OPTICS LETTERS 2022; 47:4853-4856. [PMID: 36181134 DOI: 10.1364/ol.470543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Integrating bio-friendly optical hydrogel fibers (HFs) with solid-state fibers (SFs) could expand the horizons of fiber-optic technology for bio-photonics. However, methods for coupling HF and SF-based systems are inefficient due to the mode field mismatch. Here, a hydrogel fiber coupler with a taper core-cladding structure is demonstrated for efficiently coupling HF to SF and fabricated through suspended photocuring 3D printing. Coupling efficiencies of 8.3 and 9.4 dB are obtained at 632 and 473 nm, respectively, which are 22% better than those of conventional couplers. The working bandwidth covers visible wavelengths, satisfying bioengineering requirements. This research removes obstacles to optical fiber applications in bioscience.
Collapse
|
34
|
Lim J, Lee S. Influence of Light-Intensity-Dependent Droplet Directionality on Dimensions of Structures Constructed Using an In Situ Light-Guided 3D Printing Method. Polymers (Basel) 2022; 14:3839. [PMID: 36145989 PMCID: PMC9502263 DOI: 10.3390/polym14183839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
As an alternative to conventional 3D printing methods that require supports, a new 3D printing strategy that utilizes guided light in situ has been developed for fabricating freestanding overhanging structures without supports. Light intensity has been found to be a crucial factor in modifying the dimensions of structures printed using this method; however, the underlying mechanism has not been clearly identified. Therefore, the light-intensity-dependent changes in the structure dimensions were analyzed in this study to elucidate the associated mechanism. Essentially, the entire process of deposition was monitored by assessing the behavior of photocurable droplets prior to their collision with the structure using imaging analysis tools such as a high-speed camera and MATLAB®. With increasing light intensity, the instability of the ejected falling droplets increased, and the droplet directionality deteriorated. This increased the dispersion of the droplet midpoints, which caused the average midpoints of the deposited single layers to shift further away from the center of the structure. Consequently, the diameter of the structure formed by successive stacking of single layers increased, and the layer thickness per droplet decreased. These led to light-intensity-dependent differences in the diameter and height of structures that were created from the same number of droplets.
Collapse
Affiliation(s)
- Jongkyeong Lim
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Sangmin Lee
- Division of Mechanical, Automotive and Robot Component Engineering, Dong-Eui University, Busan 47340, Korea
| |
Collapse
|
35
|
Synthesis of Carbon Nanodots from Sugarcane Syrup, and Their Incorporation into a Hydrogel-Based Composite to Fabricate Innovative Fluorescent Microstructured Polymer Optical Fibers. Gels 2022; 8:gels8090553. [PMID: 36135265 PMCID: PMC9498784 DOI: 10.3390/gels8090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Carbon nanodots (CNDs) are interesting materials due to their intrinsic fluorescence, electron-transfer properties, and low toxicity. Here, we report a sustainable, cheap, and scalable methodology to obtain CNDs from sugarcane syrup using a domestic microwave oven. The CNDs were characterized by infrared spectroscopy, dynamic light scattering, atomic force microscopy, absorption, and emission spectroscopies. The CNDs have 3 nm in diameter with low polydispersity and are fluorescent. A fluorescent hydrogel–CNDs composite was obtained using gelatin polypeptide as the polymeric matrix. The new hydrogel–CNDs composite was incorporated in the cavities of a double-clad optical fiber using an innovative approach that resulted in a microstructured polymer optical fiber with intrinsic fluorescence. This work shows a promising alternative for the fabrication of fluorescent materials since the CNDs synthesis is sustainable and environmentally friendly. These CNDs might substitute the rare-earth and other heavy metals of high cost and toxicity, which are usually incorporated in double-clad fibers for applications on lasers, amplifiers, and spectroscopy.
Collapse
|
36
|
Abstract
Spatial variations in fiber alignment (and, therefore, in mechanical anisotropy) play a central role in the excellent toughness and fatigue characteristics of many biological materials. In this work, we examine the effect of fiber alignment in soft composites, including both "in-plane" and "out-of-plane" fiber arrangements. We take inspiration from the spatial variations of fiber alignment found in the aorta to three-dimensionally (3D) print soft, tough silicone composites with an excellent combination of stiffness, toughness, and fatigue threshold, regardless of the direction of loading. These aorta-inspired composites exhibit mechanical properties comparable to skin, with excellent combinations of stiffness and toughness not previously observed in synthetic soft materials.
Collapse
|
37
|
Seung Lee J, Kim J, Ye YS, Kim TI. Materials and device design for advanced phototherapy systems. Adv Drug Deliv Rev 2022; 186:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
Phototherapy has recently emerged as a promising solution for cancer treatment due to its multifunctionality and minimal invasiveness. Notwithstanding the limited penetration depth of light through skin, the ability of photopharmaceutical device systems to deliver light to desired lesions is important. The device system deploys advanced biocompatible materials and fabrication technologies for electronics, and eventually enables more efficient phototherapy. In this review, we focus on diverse optical electronics to illuminate the lesion site with light. Then, moving on to the phototherapy, we highlight photo-thermal therapy with light absorbing materials, photo-activated chemotherapy with light sensitive materials, and photo-dynamic therapy using photosensitizers. Furthermore, we introduce a drug delivery system that can deliver these photopharmaceutical agents spatiotemporally to the tumor site. To this end, we provide a general overview of materials and devices for phototherapy and discuss critical issues and pending limitations of such phototherapy.
Collapse
|
38
|
Chen M, Aluunmani R, Bolognesi G, Vladisavljević GT. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device. Molecules 2022; 27:molecules27134013. [PMID: 35807255 PMCID: PMC9268728 DOI: 10.3390/molecules27134013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) microgels with tuneable size and porosity find applications as extracellular matrix mimics for tissue-engineering scaffolds, biosensors, and drug carriers. Monodispersed PEGDA microgels were produced by modular droplet microfluidics using the dispersed phase with 49–99 wt% PEGDA, 1 wt% Darocur 2959, and 0–50 wt% water, while the continuous phase was 3.5 wt% silicone-based surfactant dissolved in silicone oil. Pure PEGDA droplets were fully cured within 60 s at the UV light intensity of 75 mW/cm2. The droplets with higher water content required more time for curing. Due to oxygen inhibition, the polymerisation started in the droplet centre and advanced towards the edge, leading to a temporary solid core/liquid shell morphology, confirmed by tracking the Brownian motion of fluorescent latex nanoparticles within a droplet. A volumetric shrinkage during polymerisation was 1–4% for pure PEGDA droplets and 20–32% for the droplets containing 10–40 wt% water. The particle volume increased by 36–50% after swelling in deionised water. The surface smoothness and sphericity of the particles decreased with increasing water content in the dispersed phase. The porosity of swollen particles was controlled from 29.7% to 41.6% by changing the water content in the dispersed phase from 10 wt% to 40 wt%.
Collapse
|
39
|
Arief I, Zimmermann P, Hait S, Park H, Ghosh AK, Janke A, Chattopadhyay S, Nagel J, Heinrich G, Wießner S, Das A. Elastomeric microwell-based triboelectric nanogenerators by in situ simultaneous transfer-printing. MATERIALS HORIZONS 2022; 9:1468-1478. [PMID: 35244665 DOI: 10.1039/d2mh00074a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-powered tactile module-based electronic skins incorporating triboelectric nanogenerator (TENG) appears to be a worthwhile alternative for smart monitoring devices in terms of sustainable energy harvesting. On top of it, ultra-stretchability and detection sensitivity are imperative to mimic human skin. We report, for the first time, a metal-free single electrode TENG-based self-powered tactile module comprising of microwells (diameters 2 μm and 200 nm, respectively) on fluoroelastomer (FKM) and laser induced graphene (LIG) electrodes by in situ simultaneous transfer printing method. Direct imprinting of both the active surface and LIG electrode on a tribonegative FKM has not been attempted before. The resulting triboelectric module exhibits impressive maximum power density of 715 mW m-2, open circuit voltage and maximum output current of 148 V and 9.6 μA respectively for a matching load of 10 MΩ. Moreover, the TENG unit is very robust and sustained high electrical output even at 200% elongation. A dielectric-to-dielectric TENG-based tactile sensor is also constructed using FKM (negative tribolayer) and TiO2 deposited micropatterned PDMS. Resulting tribo-sensor demonstrates remarkable motion and force sensitivity. It can also distinguish subtle human contact force that can simulate skin with high sensitivity and therefore, can be utilized for potential e-skin/bionic skin applications in health and human-machine interfaces.
Collapse
Affiliation(s)
- Injamamul Arief
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
| | - Philipp Zimmermann
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
| | - Sakrit Hait
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
| | - Hyeyoung Park
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
| | - Anik Kumar Ghosh
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
| | - Santanu Chattopadhyay
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Jürgen Nagel
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
| | - Gert Heinrich
- Technische Universität Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, Hohe Straße 6, D-01069 Dresden, Germany
| | - Sven Wießner
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
- Technische Universität Dresden, Institut für Werkstoffwissenschaft, Helmholtzstraße 7a, D-01069 Dresden, Germany
| | - Amit Das
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany.
| |
Collapse
|
40
|
Chemically triggered life control of “smart” hydrogels through click and declick reactions. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Gong X, Qiao Z, Liao Y, Zhu S, Shi L, Kim M, Chen YC. Enzyme-Programmable Microgel Lasers for Information Encoding and Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107809. [PMID: 34918404 DOI: 10.1002/adma.202107809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.
Collapse
Affiliation(s)
- Xuerui Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhen Qiao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Shi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Munho Kim
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
42
|
Zhang G, Tran TN, Huang L, Deng E, Blevins A, Guo W, Ding Y, Lin H. Thin-film composite membranes based on hyperbranched poly(ethylene oxide) for CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Sun H, He Y, Wang Z, Liang Q. An Insight into Skeletal Networks Analysis for Smart Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202108489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractHydrogels are 3D cross‐linked polymer networks. Benefiting from the flexible designs and reasonable constructions of these networks, a large number of smart hydrogels with response characteristics to specific stimuli have received widespread attention and developed rapidly. The skeletal networks composed of the skeletal polymer chains and effectual cross‐links are the soul of such soft materials, and the response behaviors fundamentally depend on the dynamic characteristics of skeletal networks. Herein, the novel concepts of skeletal networks analysis to describe, understand, and guide the advanced designs and applications of smart hydrogels are proposed. Representative glucose‐sensitive hydrogels and DNA‐based smart hydrogels are reviewed to demonstrate the principle of skeletal networks analysis and clarify its practical guidance. Summarizing and classifying the characterizations and conversions of skeletal networks dynamics based on different response mechanisms provides a realistic solution. On this basis, advanced applications of smart hydrogels guided by skeletal networks dynamics including biochemical detection, cell mechanics sensing, drug delivery systems, and dynamic complex soft materials are typically reviewed. The skeletal networks analysis for smart hydrogels is of great significance for understanding the microstructures of hydrogels and guiding the designs of soft materials and their smart applications in the fields of analytical science and advanced materials.
Collapse
Affiliation(s)
- Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Yan He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering Shandong Sino‐Japanese Center for Collaborative Research of Carbon Nanomaterials Qingdao University Qingdao 266071 China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
44
|
Tong A, Voronov R. A Minireview of Microfluidic Scaffold Materials in Tissue Engineering. Front Mol Biosci 2022; 8:783268. [PMID: 35087865 PMCID: PMC8787357 DOI: 10.3389/fmolb.2021.783268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
In 2020, nearly 107,000 people in the U.S needed a lifesaving organ transplant, but due to a limited number of donors, only ∼35% of them have actually received it. Thus, successful bio-manufacturing of artificial tissues and organs is central to satisfying the ever-growing demand for transplants. However, despite decades of tremendous investments in regenerative medicine research and development conventional scaffold technologies have failed to yield viable tissues and organs. Luckily, microfluidic scaffolds hold the promise of overcoming the major challenges associated with generating complex 3D cultures: 1) cell death due to poor metabolite distribution/clearing of waste in thick cultures; 2) sacrificial analysis due to inability to sample the culture non-invasively; 3) product variability due to lack of control over the cell action post-seeding, and 4) adoption barriers associated with having to learn a different culturing protocol for each new product. Namely, their active pore networks provide the ability to perform automated fluid and cell manipulations (e.g., seeding, feeding, probing, clearing waste, delivering drugs, etc.) at targeted locations in-situ. However, challenges remain in developing a biomaterial that would have the appropriate characteristics for such scaffolds. Specifically, it should ideally be: 1) biocompatible-to support cell attachment and growth, 2) biodegradable-to give way to newly formed tissue, 3) flexible-to create microfluidic valves, 4) photo-crosslinkable-to manufacture using light-based 3D printing and 5) transparent-for optical microscopy validation. To that end, this minireview summarizes the latest progress of the biomaterial design, and of the corresponding fabrication method development, for making the microfluidic scaffolds.
Collapse
Affiliation(s)
- Anh Tong
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Roman Voronov
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
45
|
Guimarães CF, Ahmed R, Mataji-Kojouri A, Soto F, Wang J, Liu S, Stoyanova T, Marques AP, Reis RL, Demirci U. Engineering Polysaccharide-Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105361. [PMID: 34617338 DOI: 10.1002/adma.202105361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Solid-state optics has been the pillar of modern digital age. Integrating soft hydrogel materials with micro/nanooptics could expand the horizons of photonics for bioengineering. Here, wet-spun multilayer hydrogel fibers are engineered through ionic-crosslinked natural polysaccharides that serve as multifunctional platforms. The resulting flexible hydrogel structure and reversible crosslinking provide tunable design properties such as adjustable refractive index and fusion splicing. Modulation of the optical readout via physical stimuli, including shape, compression, and multiple optical inputs/outputs is demonstrated. The unique permeability of the hydrogels is also combined with plasmonic nanoparticles for molecular detection of SARS-CoV-2 in fiber-coupled biomedical swabs. A tricoaxial 3D printing nozzle is then employed for the continuous fabrication of living optical fibers. Light interaction with living cells enables the quantification and digitalization of complex biological phenomena such as 3D cancer progression and drug susceptibility. These fibers pave the way for advances in biomaterial-based photonics and biosensing platforms.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Rajib Ahmed
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Amideddin Mataji-Kojouri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Shiqin Liu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Alexandra P Marques
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
46
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
47
|
Mohapatra S, Mirza MA, Hilles AR, Zakir F, Gomes AC, Ansari MJ, Iqbal Z, Mahmood S. Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels 2021; 7:207. [PMID: 34842705 PMCID: PMC8628667 DOI: 10.3390/gels7040207] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are known for their leading role in biomaterial systems involving pharmaceuticals that fascinate material scientists to work on the wide variety of biomedical applications. The physical and mechanical properties of hydrogels, along with their biodegradability and biocompatibility characteristics, have made them an attractive and flexible tool with various applications such as imaging, diagnosis and treatment. The water-cherishing nature of hydrogels and their capacity to swell-contingent upon a few ecological signals or the simple presence of water-is alluring for drug conveyance applications. Currently, there are several problems relating to drug delivery, to which hydrogel may provide a possible solution. Hence, it is pertinent to collate updates on hydrogels pertaining to biomedical applications. The primary objective of this review article is to garner information regarding classification, properties, methods of preparations, and of the polymers used with particular emphasis on injectable hydrogels. This review also covers the regulatory and other commerce specific information. Further, it enlists several patents and clinical trials of hydrogels with related indications and offers a consolidated resource for all facets associated with the biomedical hydrogels.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Ayah Rebhi Hilles
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia;
| | - Foziyah Zakir
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
48
|
Puiggalí-Jou A, Babeli I, Roa JJ, Zoppe JO, Garcia-Amorós J, Ginebra MP, Alemán C, García-Torres J. Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42486-42501. [PMID: 34469100 PMCID: PMC8594865 DOI: 10.1021/acsami.1c12458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multifunctional hydrogels are a class of materials offering new opportunities for interfacing living organisms with machines due to their mechanical compliance, biocompatibility, and capacity to be triggered by external stimuli. Here, we report a dual magnetic- and electric-stimuli-responsive hydrogel with the capacity to be disassembled and reassembled up to three times through reversible cross-links. This allows its use as an electronic device (e.g., temperature sensor) in the cross-linked state and spatiotemporal control through narrow channels in the disassembled state via the application of magnetic fields, followed by reassembly. The hydrogel consists of an interpenetrated polymer network of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which imparts mechanical and electrical properties, respectively. In addition, the incorporation of magnetite nanoparticles (Fe3O4 NPs) endows the hydrogel with magnetic properties. After structural, (electro)chemical, and physical characterization, we successfully performed dynamic and continuous transport of the hydrogel through disassembly, transporting the polymer-Fe3O4 NP aggregates toward a target using magnetic fields and its final reassembly to recover the multifunctional hydrogel in the cross-linked state. We also successfully tested the PEDOT/Alg/Fe3O4 NP hydrogel for temperature sensing and magnetic hyperthermia after various disassembly/re-cross-linking cycles. The present methodology can pave the way to a new generation of soft electronic devices with the capacity to be remotely transported.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Ismael Babeli
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Joan Josep Roa
- CIEFMA
(Center for Research in Structural Integrity, Reliability and Micromechanics
of Materials)-Department of Materials Science and Engineering, EEBE, Universitat Politècnica de Catalunya-BarcelonaTech, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Justin O. Zoppe
- Department
of Materials Science and Engineering, Universitat
Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
| | - Jaume Garcia-Amorós
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Maria-Pau Ginebra
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Engineering, Universitat Politècnica
de Catalunya (UPC), 08019 Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jose García-Torres
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Biomaterials,
Biomechanics and Tissue Engineering Group, Department of Materials
Science and Engineering, Universitat Politècnica
de Catalunya (UPC), 08019 Barcelona, Spain
| |
Collapse
|
49
|
Binding Analysis of Functionalized Multimode Optical-Fiber Sandwich-like Structure with Organic Polymer and Its Sensing Application for Humidity and Breath Monitoring. BIOSENSORS-BASEL 2021; 11:bios11090324. [PMID: 34562914 PMCID: PMC8469905 DOI: 10.3390/bios11090324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
In recent years, the chemical modification of optical fibers (OFs) has facilitated the manufacture of sensors because OFs can identify several analytes present in aqueous solutions or gas phases. Nevertheless, it is imperative better to understand the chemical interactions in this molecular system to generate low-cost and efficient sensors. This work presents a theoretical and experimental study of organic polymeric functionalized OF structures and proposes a cost-effective alternative to monitor breathing and humidity. The device is based on silicon optical fibers functionalized with (3-Aminopropyl) triethoxysilane (APTES) and alginate. The theoretical analysis is carried out to validate the activation of the silicon dioxide fiber surface; moreover, the APTES–alginate layer is discussed. The computational simulation suggests that water can be absorbed by alginate, specifically by the calcium atom linked to the carboxylic acid group of the alginate. The analysis also demonstrates a higher electrostatic interaction between the water and the OF–APTES–alginate system; this interaction alters the optical fiber activated surface’s refractive index, resulting in transmission power variation. The humidity analysis shows a sensitivity of 3.1288 mV/RH, a time response close to 25 s, and a recovery time around 8 s. These results were achieved in the range of 50 to 95% RH. Moreover, the recovery and response time allow the human breath to be studied. The proposed mechanism or device is competitive with prior works, and the components involved made this sensor a cost-effective alternative for medical applications.
Collapse
|
50
|
Bakh NA, Gong X, Lee MA, Jin X, Koman VB, Park M, Nguyen FT, Strano MS. Transcutaneous Measurement of Essential Vitamins Using Near-Infrared Fluorescent Single-Walled Carbon Nanotube Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100540. [PMID: 34176216 DOI: 10.1002/smll.202100540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Vitamins such as riboflavin and ascorbic acid are frequently utilized in a range of biomedical applications as drug delivery targets, fluidic tracers, and pharmaceutical excipients. Sensing these biochemicals in the human body has the potential to significantly advance medical research and clinical applications. In this work, a nanosensor platform consisting of single-walled carbon nanotubes (SWCNTs) with nanoparticle corona phases engineered to allow for the selective molecular recognition of ascorbic acid and riboflavin, is developed. The study provides a methodological framework for the implementation of colloidal SWCNT nanosensors in an intraperitoneal SKH1-E murine model by addressing complications arising from tissue absorption and scattering, mechanical perturbations, as well as sensor diffusion and interactions with the biological environment. Nanosensors are encapsulated in a polyethylene glycol diacrylate hydrogel and a diffusion model is utilized to validate analyte transport and sensor responses to local concentrations at the boundary. Results are found to be reproducible and stable after exposure to 10% mouse serum even after three days of in vivo implantation. A geometrical encoding scheme is used to reference sensor pairs, correcting for in vivo optical and mechanical artifacts, resulting in an order of magnitude improvement of p-value from 0.084 to 0.003 during analyte sensing.
Collapse
Affiliation(s)
- Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|