1
|
Wu Y, Li J, Chen Y, Liu X, Zhang Y, Xiao C, Li Z, Song YY, Shen T, Li X. Engineering- nanochannels with pH-responsive gates for direct detection of glucose in human blood serum. Anal Chim Acta 2025; 1354:343973. [PMID: 40253058 DOI: 10.1016/j.aca.2025.343973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND An abnormal blood glucose (Glu) level is a key signal of diabetes. The gluconic acid produced by Glu catalytic oxidation can cause changes in pH value. RESULTS Inspired by nature, in which organisms use pH as a chemical gate to regulate ion transport through cell membranes, we report a pH-gated electrochemical luminescence (ECL) sensing system for Glu detection based on the relationship between Glu metabolism and pH. The pH gate was designed on a TiO2 nanochannel membrane (NM) by modifying the channel entrance with polystyrene-b-poly(4-vinylpyridine) (P4VP) chains that convert from a hydrophobic into a hydrophilic state via a pH-responsive conformational switching at pKa 5.2. Due to the nanoconfinement effect of zeolite imidazolate (ZIF-8) frameworks and TiO2 nanochannels, the glucose oxidase (GOD) embedded in ZIF-8 exhibits enhanced catalytic efficiency for Glu oxidation, enabling the acidic product to regulate the hydrophilicity of the P4VP-based pH-responsive gate. The ECL luminophore Ru(dcbpy)32+ subsequently passes through the hydrophilic gate to reach the detection cell. This pH-gated Glu-responsive NM can effectively separate biological matrices from the detection cell, allowing direct sensing of Glu in complex biomatrices. SIGNIFICANCE The ECL technology, combined with the pH-triggered gate design enables straightforward Glu determination in undiluted serum, demonstrating an alternative ECL device for pretreatment-free clinical analysis.
Collapse
Affiliation(s)
- Yinde Wu
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jialun Li
- School of Oral Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Yunzhou Chen
- School of First Clinical, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuancheng Liu
- School of First Clinical, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Yueyang Zhang
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Chongxuan Xiao
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zihao Li
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Tian Shen
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Xiaona Li
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
2
|
Lei D, Wang Y, Zhang Q, Wang S, Jiang L, Zhang Z. High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites. Nat Commun 2025; 16:754. [PMID: 39819979 PMCID: PMC11739393 DOI: 10.1038/s41467-025-56228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects. Density functional theory calculations reveal that the reversible formation and disruption of humidity-induced water bridges within the frameworks facilitates the switching of proton transport mode from the adsorption site hopping to the Grotthuss mechanism. This transition, coupled with the introduction of bacterial cellulose to enhance desorption/adsorption of water clusters, enables us to achieve a superior proton gating ratio of up to 5740, surpassing state-of-the-art solid-state gating devices. Moreover, the developed membrane operates entirely on solid-state principles, rendering it highly versatile for a myriad of applications from environmental detection to human health monitoring. This study offers perspectives for the design of efficient proton gating systems.
Collapse
Affiliation(s)
- Dandan Lei
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Yixiang Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Qixiang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuqi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Lei Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Ishizaki-Betchaku Y, Kumakura N, Yamamoto S, Nagano S, Mitsuishi M. Ultrathin Ionic Diodes with Electrostatically Heterogeneous Hybrid Interfaces of Nanoporous SiO 2 Nanofilms and Polymer Layer-by-Layer Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404306. [PMID: 38958070 DOI: 10.1002/smll.202404306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 07/04/2024]
Abstract
Nanofluidic ionic diodes have attracted much attention due to their unique functions as unidirectional ion transportation ability and promising applications from molecular sensing, and energy harvesting to emerging neuromorphic devices. However, it remains a challenge to fabricate diode-like nanofluidic systems with ultrathin film thickness <100 nm. Herein the formation of ultrathin ionic diodes from hybrid nanoassemblies of nanoporous (NP) SiO2 nanofilms and polyelectrolyte layer-by-layer (LbL) multilayers is described. Ultrathin ionic diodes are prepared by integrating polyelectrolyte multilayers onto photo-oxidized NP SiO2 nanofilms obtained from silsesquioxane-containing block copolymer thin films as a template. The obtained ultrathin ionic diodes exhibit ion current rectification (ICR) properties with high ICR factor = ≈20 under low ionic strength and asymmetric pH conditions. It is concluded that this ICR behavior arises from effective ion accumulation and depletion at the interface of NP SiO2 nanofilms and LbL multilayers attributed to high ion selectivity by combining the experimental data and theoretical calculations using finite element methods. These results demonstrate that the hybrid nano assemblies of NP SiO2 nanofilms and polyelectrolyte LbL multilayers have potential applications for (bio)sensing materials and integrated ionic circuits for seamless connection of human-machine interfaces.
Collapse
Affiliation(s)
- Yuya Ishizaki-Betchaku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan
| | - Narumi Kumakura
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
4
|
Zeng H, Zhou S, Zhang X, Liang Q, Yan M, Xu Y, Guo Y, Hu X, Jiang L, Kong B. Super-assembled periodic mesoporous organosilica membranes with hierarchical channels for efficient glutathione sensing. Analyst 2024; 149:3522-3529. [PMID: 38787653 DOI: 10.1039/d4an00559g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioinspired nanochannel-based sensors have elicited significant interest because of their excellent sensing performance, and robust mechanical and tunable chemical properties. However, the existing designs face limitations due to material constraints, which hamper broader application possibilities. Herein, a heteromembrane system composed of a periodic mesoporous organosilica (PMO) layer with three-dimensional (3D) network nanochannels is constructed for glutathione (GSH) detection. The unique hierarchical pore architecture provides a large surface area, abundant reaction sites and plentiful interconnected pathways for rapid ionic transport, contributing to efficient and sensitive detection. Moreover, the thioether groups in nanochannels can be selectively cleaved by GSH to generate hydrophilic thiol groups. Benefiting from the increased hydrophilic surface, the proposed sensor achieves efficient GSH detection with a detection limit of 1.2 μM by monitoring the transmembrane ionic current and shows good recovery ranges in fetal bovine serum sample detection. This work paves an avenue for designing and fabricating nanofluidic sensing systems for practical and biosensing applications.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yeqing Xu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Yaxin Guo
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Xiaomeng Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong 250103, P. R. China
| |
Collapse
|
5
|
Huang D, Zou K, Wu Y, Li K, Zhang Z, Liu T, Chen W, Yan Z, Zhou S, Kong XY, Jiang L, Wen L. TRPM4-Inspired Polymeric Nanochannels with Preferential Cation Transport for High-Efficiency Salinity-Gradient Energy Conversion. J Am Chem Soc 2024. [PMID: 38842082 DOI: 10.1021/jacs.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cation-π interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl- selectivity via ionic and cation-π interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl- selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m-2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kehan Zou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianchi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| |
Collapse
|
6
|
Nekoubin N, Hardt S, Sadeghi A. Improved ionic current rectification utilizing cylindrical nanochannels coated with polyelectrolyte layers of non-uniform thickness. SOFT MATTER 2024; 20:3641-3652. [PMID: 38623003 DOI: 10.1039/d4sm00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Conical nanochannels employed to create ionic current rectification (ICR) in nanofluidic devices are prone to clogging due to the contraction at one end. As an alternative approach for creating ICR, a cylindrical nanochannel covered with a polyelectrolyte layer (PEL) of variable thickness is proposed in the present study. The efficacy of the proposed design is studied by numerically solving the governing equations including the Poisson, Nernst-Planck, and Stokes-Brinkman equations. Furthermore, the fundamental mechanism behind ICR is explained using a simplified one-dimensional model. The effects of the nanochannel radius, concentration of PEL fixed charges, and bulk ionic concentration on the rectification factor are then investigated in detail. It is shown that the proposed nanochannel provides larger rectification factors as compared to conical nanochannels over wide ranges of the fixed charge concentration and bulk ionic concentration. Such a performance can be achieved even at channel radii much larger than the tip radius of conical nanochannels, indicating not only the better performance of the proposed nanochannel but also its likely longer service life, because of reducing the probability of total ionic current blockage. This means that the proposed nanochannel could find widespread use in fluidic devices, as a replacement for conical nanofluidic diodes.
Collapse
Affiliation(s)
- Nader Nekoubin
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Steffen Hardt
- Institute for Nano- and Microfluidics, TU Darmstadt, 64287 Darmstadt, Germany
| | - Arman Sadeghi
- Department of Mechanical Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran.
| |
Collapse
|
7
|
Fu C, Zhou J, Lu X, Feng H, Zhang Y, Shang K, Jiang Z, Yao Y, He Q, Yang T. A Long Life Moisture-Enabled Electric Generator Based on Ionic Diode Rectification and Electrode Chemistry Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305530. [PMID: 38353337 PMCID: PMC11022712 DOI: 10.1002/advs.202305530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Indexed: 04/18/2024]
Abstract
Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl-. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm-2. Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.
Collapse
Affiliation(s)
- Chunqiao Fu
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Jian Zhou
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Xulei Lu
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Haochen Feng
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Yong Zhang
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Kedong Shang
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Zhongbao Jiang
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Yuming Yao
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Qi‐Chang He
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
- Univ Gustave EiffelMSMECNRS UMR 8208Marne‐la‐ValléeF‐77454France
| | - Tingting Yang
- Tribology Research InstituteSchool of Mechanical EngineeringSouthwest Jiaotong UniversityChengdu610031P. R. China
| |
Collapse
|
8
|
Wang J, Zhao J, Yang M, Xu H, Gao Z, Guo J, Song YY. Target-modulated mineralization of wood channels as enzyme-free electrochemical sensors for detecting amyloid-β species. Anal Chim Acta 2023; 1279:341759. [PMID: 37827662 DOI: 10.1016/j.aca.2023.341759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder, which has been found to be associated with neurotoxic amyloid-β oligomers (AβO). The early diagnosis of AD is still a great challenge. Herein, inspired by the hierarchical channel structure of natural wood, we design and demonstrate a low-cost and sensitive wood channel-based fluidic membrane for electrochemical sensing of AβO1-42. In this design, Zn/Cu-2-methylimidazole (Zn/Cu-Hmim) with artificial peroxidase (POD)-like activity was asymmetrically fabricated at one side of the wood channels by biomimetic mineralization and a subsequent ion exchange reaction. The strong affinity between Cu(II) and AβO1-42 enables Cu(II) species in Zn/Cu-Hmim to be extracted by AβO1-42, thus suppressing the POD-like performance via Zn/Cu-Hmim disassembly. Using Zn/Cu-Hmim to catalyze the oxidation reaction of 2,2'-diazo-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) by H2O2, the current-voltage (I-V) properties of wood channels are influenced by the generated oxidation product (ABTS•+), thus providing information useful for the quantitative analysis of AβO1-42. Importantly, the three aggregation states of Aβ1-42 (AβM1-42, AβO1-42, and AβF1-42) can also be identified, owing to the affinity difference and available reaction sites. The proposed wood membrane provides a novel, assessable, and scalable channel device to develop sensitive electrochemical sensors; moreover, the sustainable wood materials represent alternative candidates for developing channel-structured sensing platforms.
Collapse
Affiliation(s)
- Jinfeng Wang
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Mei Yang
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Huijie Xu
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Junli Guo
- College of Science, Northeastern University, Shenyang, 110819, China.
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
9
|
Heydari A, Khatibi M, Ashrafizadeh SN. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Phys Chem Chem Phys 2023; 25:26716-26736. [PMID: 37779455 DOI: 10.1039/d3cp03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This research explores ion transport behavior and functionality in a hybrid nanochannel that consists of two conical and cylindrical parts. The numerical investigation focuses on analyzing the length of each part in the nanochannel. The nanochannels are hybrid cavities embedded in a membrane, where the size of the conical part varies as equal to, larger than, or smaller than the cylindrical part. The nanochannel is coated with a polyelectrolyte layer that exhibits a dense charge density distribution. The charge density of the soft layer is described using the soft step distribution function. We study the electroosmotic flow, ionic current, rectification, and selectivity of the nanochannel versus bulk electrolyte concentration, the charge density of the polyelectrolyte layer, and decay length, while considering the effect of ionic partitioning. The steady-state Poisson-Nernst-Planck and Navier-Stokes equations are solved using the finite element method. The findings reveal that the nanochannel with a more extensive conical section demonstrates increased rectification, with the rectification factor rising from 1.4 to 2 at a bulk concentration of 100 mM. Additionally, the nanochannel with a longer cylindrical part exhibits improved selectivity under negative voltage conditions, while positive voltage introduces a different situation. The nanochannel with equal cylindrical and conical parts significantly affects conductivity by modifying the charge density in the soft layer, resulting in a 3.125-fold increase in conductivity under positive voltage when the charge density in the polyelectrolyte layer is raised from 25 to 100 mol m-3. This research focuses on creating intelligent nanochannels by controlling mass concentration, charge density, and collapse length, improving system performance, and optimizing properties. It also offers valuable insights into ion transport mechanisms in nanochannel systems, advancing our understanding in this field.
Collapse
Affiliation(s)
- Amirhossein Heydari
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
10
|
Yu W, Wei C, Zhang K, Zhang J, Ge Z, Liang X, Guiver MD, Ge X, Wu L, Xu T. Host-Guest Recognition Boosts Biomimetic Mono/Multivalent Cation Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5861-5871. [PMID: 36988386 DOI: 10.1021/acs.est.2c09733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biomimetic ion permselective membranes with ultrahigh ion permeability and selectivity represent a research frontier in ion separation, yet the successful fabrication of such membranes remains a formidable challenge. Here, we demonstrate a 4-sulfocalix[4]arene (4-SCA)-modified graphene oxide (GO) membrane that shows extraordinary performance in separating mono-from multivalent cations, as well as having reversible pH-responsiveness. The resulting 4-SCA-modified GO (SCA-GO) membrane preferentially transports potassium ions (K+) over radionuclide cations (Co2+, UO22+, La3+, Eu3+, and Th4+). The ion selectivities are an order of magnitude higher than that of the unmodified GO membrane. Theoretical calculations and experimental investigations demonstrate that the much-improved ion selectivity arises from the specific recognition between 4-SCA and radionuclide cations. The transport of multivalent radionuclides is impeded by a binding-obstructing mechanism from the host-guest interactions. Interestingly, the host-guest interactions are responsive to the protonation/deprotonation transformation of the 4-SCA. Therefore, the SCA-GO membrane mimics pH-regulated ion selective behavior found in biological ion channels. Our strategy of designing a biomimetic permselective GO membrane may allow efficient nuclear wastewater treatment and, more importantly, deepen our understanding of biomimetic ion transport mechanisms.
Collapse
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Chengpeng Wei
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Jianjun Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Hou Y, Ling Y, Wang Y, Wang M, Chen Y, Li X, Hou X. Learning from the Brain: Bioinspired Nanofluidics. J Phys Chem Lett 2023; 14:2891-2900. [PMID: 36927003 DOI: 10.1021/acs.jpclett.2c03930] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The human brain completes intelligent behaviors such as the generation, transmission, and storage of neural signals by regulating the ionic conductivity of ion channels in neuron cells, which provides new inspiration for the development of ion-based brain-like intelligence. Against the backdrop of the gradual maturity of neuroscience, computer science, and micronano materials science, bioinspired nanofluidic iontronics, as an emerging interdisciplinary subject that focuses on the regulation of ionic conductivity of nanofluidic systems to realize brain-like functionalities, has attracted the attention of many researchers. This Perspective provides brief background information and the state-of-the-art progress of nanofluidic intelligent systems. Two main categories are included: nanofluidic transistors and nanofluidic memristors. The prospects of nanofluidic iontronics' interdisciplinary progress in future artificial intelligence fields such as neuromorphic computing or brain-computer interfaces are discussed. This Perspective aims to give readers a clear understanding of the concepts and prospects of this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Yaqi Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Yixin Ling
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanqiong Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Miao Wang
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Yeyun Chen
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Xipeng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Binzhou Institute of Technology, Binzhou, 256600, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
12
|
Uras IS, Karsli B, Konuklugil B, Ocsoy I, Demirbas A. Organic–Inorganic Nanocomposites of Aspergillus terreus Extract and Its Compounds with Antimicrobial Properties. SUSTAINABILITY 2023; 15:4638. [DOI: 10.3390/su15054638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Due to its distinct, atypical features and possible applications, three-dimensional (3D) hierarchical nanoflowers have sparked considerable interest. Copper (II) ions were employed as inorganic components in this study, whereas various extracts from Aspergillus terreus and their extracted main components were used as organic components. Extracts from A. terreus and its isolated principal component molecules can first form complexes with copper ions, and these complexes subsequently become nucleation sites for primary copper phosphate crystals, showing interactions using an easy and successful self-assembly template synthesis technique. Therefore, the process results in the formation of 3D nanoflowers among the A. terreus extract and its remoted important additives in addition to copper ions, ensuing in a completely unique round flower-like shape containing loads of nanopetals under the most excellent conditions along with pH, attention of organic–inorganic additives, temperature, and the quantity of copper nitrate on nanoflower formation. Furthermore, A. terreus and its isolated major components, Cu3(PO4)2 nanoflowers, seemed to have a remarkable antibacterial effect. Our findings highlight the benefits of nanoflowers made with A. terreus and its isolated secondary metabolites of inorganic structures, which could be used in industrial biocatalysts, biosensors, and environmental chemistry.
Collapse
Affiliation(s)
- Ibrahim Seyda Uras
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Department of Pharmacognosy, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri 04100, Turkey
| | - Baris Karsli
- Department of Seafood Processing Technology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize 53100, Turkey
| | - Belma Konuklugil
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, Ankara 06510, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ayse Demirbas
- Department of Seafood Processing Technology, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize 53100, Turkey
| |
Collapse
|
13
|
Xie L, Zhou S, Li X, Zhang X, Zeng H, He Y, Zeng J, Liang K, Jiang L, Kong B. Engineering 2D Aligned Nanowires Assembled Porous Hetero-Membrane for Smart Ion Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206878. [PMID: 36539264 DOI: 10.1002/smll.202206878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Engineering 2D nanosheets with well-defined porous structures and their assembled heterostructure membrane is a promising method to improve osmotic energy conversion. However, it is still a great challenge to directly fabricate 2D nanosheets with regular parallel nanochannels in aqueous media. Here, the desired functional nanosheets and heterostructure membrane device are successfully prepared through a simple interfacial assembly strategy. In this method, monolayer cylindrical monomicelles closely arrange and assemble on the surfaces of graphene oxide, and the resulting nanosheets with monolayered aligned nanowire polymer arrays parallel to the substrate surfaces are then obtained. Subsequently, a heterostructured membrane is constructed by assembling these 2D nanosheets on macroporous alumina. The nanofluidic membrane device with asymmetric geometry and charge polarity exhibits smart ion transport properties, and the output osmotic power density is ≈1.22 and 1.63 times over the reported pure 2D graphene oxide and biomass-derived membranes, respectively. In addition, theoretical calculations are carried out to reveal the mechanisms for ion selectivity and salinity gradient energy conversion. This monolayered interfacial assembly approach can open up new avenues for the synthesis of functional porous low-dimensional nanomaterials and membrane devices, and expand the palette of materials selection for many applications.
Collapse
Affiliation(s)
- Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yanjun He
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, P. R. China
| |
Collapse
|
14
|
Khosravikia M. Quantitative model for predicting the electroosmotic flow in dual-pole nanochannels. Electrophoresis 2023; 44:733-743. [PMID: 36808619 DOI: 10.1002/elps.202300006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/20/2023]
Abstract
Developing and assessing nanofluidic systems is time-consuming and costly owing to the method's novelty; hence, modeling is essential to determine the optimal areas for implementation and to grasp its workings. In this work, we examined the influence of dual-pole surface and nanopore configuration on ion transfer simultaneously. To achieve this, the two trumpet and cigarette configuration were coated with a dual-pole soft surface so that the negative charge could be positioned in the nanopore's small aperture. Subsequently, the Poisson-Nernst-Planck and Navier-Stokes equations were simultaneously solved under steady-state circumstances using varied values physicochemical properties for the soft surface and electrolyte. The pore's selectivity was S Trumpet > S Cigarette ${S}_{{\rm{Trumpet}}} > {S}_{{\rm{Cigarette}}}$ , and the rectification factor, on the other hand, was R f Cigarette < R f Trumpet ${R}_{{f}_{{\rm{Cigarette}}}} < {R}_{{f}_{{\rm{Trumpet}}}}$ , when the overall concentration was very low. When the ion partitioning effect is taken into account, we clearly show that the rectifying variables for the cigarette configuration and the trumpet configuration can reach values of 45 and 49.2, when the charge density and mass concentration were 100 mol/m3 and 1 mM, respectively. By using dual-pole surfaces, the controllability of nanopores' rectifying behavior may be modified to produce superior separation performance.
Collapse
Affiliation(s)
- Mohammad Khosravikia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Sh Yalishev V, Abbasi NA, Iqbal M, Alnaser AS. Comparing Water Transport Properties of Janus Membranes Fabricated from Copper Mesh and Foam Using a Femtosecond Laser. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1815-1825. [PMID: 36695534 DOI: 10.1021/acs.langmuir.2c02697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One of the important aspects of manipulating and controlling liquid transport is the design of membrane surfaces. Janus membranes with opposite wettability characteristics can be manufactured for efficient directional water transfer. In this work, two types of materials were used to fabricate membranes with an asymmetric wettability behavior: copper foam and copper mesh. One side of the membranes was treated by scanning with a femtosecond laser beam, as a result of which it was converted to a superhydrophilic state, while the untreated side remained hydrophobic. Both membranes demonstrated excellent properties of a water diode through which water droplets could easily pass from the hydrophobic side to the hydrophilic side, but not vice versa. This behavior was achieved by finding the optimal laser scanning speed. This type of Janus membrane has found applications in collecting water droplets from fog; therefore, the samples obtained were also tested in terms of harvesting micro-droplets. The Janus mesh-based structure has demonstrated a higher water collection efficiency (3.9 g/cm2 h) compared to the foam-based membrane (2.5 g/cm2 h). Since the fog-water conversion efficiency decreased over time (to 0.5 g/cm2 h in 2 weeks) due to the absorbance of organic pollutants, a coating of titanium oxide was applied to the laser-treated side of the Janus membranes. As a result, the effective function of the systems became distinctly long-lasting and was well maintained for at least 60 days. Moreover, the fabricated systems were protected from further degradation by simply placing them under sunlight for several hours. Our results prove to be useful in developing asymmetric hydrophobic-superhydrophilic membranes, which have potential applications in high-precision drop control and in harvesting water from arid environments.
Collapse
Affiliation(s)
- Vadim Sh Yalishev
- Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah 26666, UAE
| | - Naveed A Abbasi
- Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah 26666, UAE
| | - Mazhar Iqbal
- Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah 26666, UAE
| | - Ali S Alnaser
- Department of Physics, American University of Sharjah, P.O. Box 26666, Sharjah 26666, UAE
| |
Collapse
|
16
|
Zhou S, Xie L, Zhang X, Yan M, Zeng H, Liang K, Jiang L, Kong B. Super-Assembled Multi-Level Asymmetric Mesochannels for Coupled Accelerated Dual-Ion Selective Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208903. [PMID: 36434817 DOI: 10.1002/adma.202208903] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Asymmetric nanofluidic devices hold great potential in energy conversion applications. However, most of the existing asymmetric nanofluidic devices remain a single-level asymmetric structure and a single-ion selective layer, which results in weak ion selectivity and limited energy conversion efficiency. Herein, a multi-level asymmetric mesoporous carbon/anodized aluminum/mesoporous silica (MC/AAO/MS) nanofluidic device with abundant and ordered mesochannels is constructed from super-assembly strategy. The resultant MC/AAO/MS exhibits diode-like ion transport and outstanding ion storage-release performance. Importantly, MC/AAO/MS couples the MC and MS dual-ion selective layers, which ensures a high ionic conductance and evidently enhances the cation selectivity. Thereby, the MC/AAO/MS demonstrates ascendant salinity gradient energy conversion performance. The power density and conversion efficiency can reach up to 5.37 W m-2 and 32.79%, respectively. Noteworthy, a good energy conversion performance of 63 mW m-2 can still be achieved upon high working area, outperforming 300% of the performance of MC/AAO and MS/AAO single-level asymmetric nanochannels. Theoretical calculation further verifies that the multi-level asymmetric structure and dual-ion selective transport are the reason for the enhanced cation selectivity and energy conversion efficiency. This work opens a new avenue for constructing multi-level asymmetric structured nanofluidic devices for various applications.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Hui Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
- Yiwu Research Institute, Fudan University, Yiwu, Zhejiang, 322000, P. R. China
| |
Collapse
|
17
|
Li J, Zhang K, Li D. pH-Regulated Ionic Diode Based on an Asymmetric Shaped Multiple-Layer Polymer Membrane. Anal Chem 2023; 95:1419-1427. [PMID: 36534674 DOI: 10.1021/acs.analchem.2c04369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Smart artificial ion channels with tunable properties have wide applications in many fields to achieve ion transport manipulation. Most reported artificial ions are constructed with vertical structures, limiting the further integration of ionic diodes into complex iontronic systems. Inspired by the asymmetric concentration polarization induced by the asymmetric geometry of nanochannels, a novel method is developed to construct horizontally arranged and pH-regulated ionic diodes in nanofluidic chips by self-assembling pH-responsive polymers. The effects of the fabrication and operation parameters on the performance of the ionic diode are systematically investigated. The current rectification ratio of the ionic diode can be modulated flexibly by regulating the pH conditions of the working fluid. An ionic diode bridge circuit for rectifying alternating current signals is built in a single nanofluidic chip and demonstrated, highlighting the feasibility of the ionic diode for complex iontronic system integration. The method presented in this paper provides a promising platform for the development of smart nanofluidic iontronic devices with widespread applicability in biological analysis, sensing, and logic computing.
Collapse
Affiliation(s)
- Jun Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Kaiping Zhang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
18
|
Liu TJ, Hsu JP. Electrokinetic behavior of conical nanopores functionalized with two polyelectrolyte layers: effect of pH gradient. SOFT MATTER 2022; 18:8427-8435. [PMID: 36301179 DOI: 10.1039/d2sm01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The behavior of ionic current rectification of a conical nanopore functionalized with two polyelectrolyte (PE) layers via layer-by-layer deposition subject to an extra applied pH gradient is investigated theoretically. The applied pH, the electric potential, the half-cone angle of the conical nanopore, and the fixed charge densities of the PE layers are examined in detail for their influence on the ionic current rectification (ICR) behavior of the nanopore. We found that this behavior depends highly on the direction of the pH gradient, which arises because the associated electroosmotic flow plays a significant role. The mechanisms of ionic transport in the present pH asymmetric system are discussed. The results gathered reveal that the ICR behavior of a nanopore can be tuned effectively by applying an extra pH gradient. We also examine the case where two PE layers are uniformly merged into one layer. In this case, both the fixed charge density and the concentration profile are quite different from those when two PE layers are present.
Collapse
Affiliation(s)
- Tien Juin Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
19
|
Zhu Q, Liu Y, Zuo P, Dong Y, Yang Z, Xu T. An isoporous ion exchange membrane for selective Na+ transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Zhang Q, Li K, Li Y, Li Y, Zhang X, Du Y, Tian D. Gradient monolayered porous membrane for liquid manipulation: from fabrication to application. NANOSCALE ADVANCES 2022; 4:3495-3503. [PMID: 36134360 PMCID: PMC9400516 DOI: 10.1039/d2na00421f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
The controlled transport of liquid on a smart material surface has important applications in the fields of microreactors, mass and heat transfer, water collection, microfluidic devices and so on. Porous membranes with special wettability have attracted extensive attention due to their unique unidirectional transport behavior, that is, liquid can easily penetrate in one direction while reverse transport is prevented, which shows great potential in functional textiles, fog collection, oil/water separation, sensors, etc. However, many porous membranes are synthesized from multilayer structural materials with poor mechanical properties and are currently prone to delamination, which limits their stability. While a monolayered porous membrane, especially for gradient structure, is an efficient, stable and durable material owing to its good durability and difficult stratification. Therefore, it is of great significance to fabricate a monolayered porous membrane for controllable liquid manipulation. In this minireview, we briefly introduce the classification and fabrication of typical monolayered porous membranes. And the applications of monolayered porous membranes in unidirectional penetration, selective separation and intelligent response are further emphasized and discussed. Finally, the controllable preparation and potential applications of porous membranes are featured and their prospects discussed on the basis of their current development.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing Beijing 100083 P. R. China
| | - Yi Du
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China
| |
Collapse
|
21
|
Zhang J, Liu W, Dai J, Xiao K. Nanoionics from Biological to Artificial Systems: An Alternative Beyond Nanoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200534. [PMID: 35723422 PMCID: PMC9376752 DOI: 10.1002/advs.202200534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ion transport under nanoconfined spaces is a ubiquitous phenomenon in nature and plays an important role in the energy conversion and signal transduction processes of both biological and artificial systems. Unlike the free diffusion in continuum media, anomalous behaviors of ions are often observed in nanostructured systems, which is governed by the complex interplay between various interfacial interactions. Conventionally, nanoionics mainly refers to the study of ion transport in solid-state nanosystems. In this review, to extent this concept is proposed and a new framework to understand the phenomena, mechanism, methodology, and application associated with ion transport at the nanoscale is put forward. Specifically, here nanoionics is summarized into three categories, i.e., biological, artificial, and hybrid, and discussed the characteristics of each system. Compared with nanoelectronics, nanoionics is an emerging research field with many theoretical and practical challenges. With this forward-looking perspective, it is hoped that nanoionics can attract increasing attention and find wide range of applications as nanoelectronics.
Collapse
Affiliation(s)
- Jianrui Zhang
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Wenchao Liu
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Jiqing Dai
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Kai Xiao
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| |
Collapse
|
22
|
Engineering highly efficient Li+ responsive nanochannels via host–guest interaction and photochemistry regulation. J Colloid Interface Sci 2022; 615:674-684. [DOI: 10.1016/j.jcis.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
|
23
|
Chen Y, Fang M, Ding S, Liu Y, Wang X, Guo Y, Sun X, Zhu Y. Bioinspired Ultrastable MXene/PEDOT:PSS Layered Membrane for Effective Salinity Gradient Energy Harvesting from Organic Solvents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23527-23535. [PMID: 35543622 DOI: 10.1021/acsami.2c04307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The waste organic solvents containing inorganic salts have been considered sustainable resources, which can effectively capture salinity gradient energy using ion-selective membranes. However, it still remains a great challenge to fabricate the ion-selective membranes with high conversion efficiency and stability in an organic system. Here, the bioinspired nacre-like layered MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) (MP) composite membranes for capturing salinity gradient energy from an organic solvent are fabricated via filtration method, in which PEDOT:PSS molecules are introduced into MXene interlayers. Accordingly, the MP membrane exhibits high mechanical property and wonderful stability in common organic solvents. As expected, the power generation of the MP membrane reaches up to 3216 ± 603 nW in a 2/0.001 M methanol (Met)-LiCl solution and a record high power generation of 6926 ± 959 nW after adding NaOH into the Met-LiCl solution, which is superior to the previous report. Both experimental and theoretical studies confirm that the MP membrane has excellent cation selectivity and fast ion transport performance. The results are attributable to an increased interlayer spacing between MXene layers and an improved cation selectivity due to the insertion of PEDOT:PSS chains and the enhanced dissociation of negative charges by NaOH. The ultrastable two-dimensional (2D) nanochannel membrane provides practical application for harvesting energy from waste organic solvents.
Collapse
Affiliation(s)
- Yalan Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Mingwei Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Shaosong Ding
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - You Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xingpu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yumeng Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiang Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
24
|
Dey S, Dorey A, Abraham L, Xing Y, Zhang I, Zhang F, Howorka S, Yan H. A reversibly gated protein-transporting membrane channel made of DNA. Nat Commun 2022; 13:2271. [PMID: 35484117 PMCID: PMC9051096 DOI: 10.1038/s41467-022-28522-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/14/2022] [Indexed: 01/14/2023] Open
Abstract
Controlled transport of biomolecules across lipid bilayer membranes is of profound significance in biological processes. In cells, cargo exchange is mediated by dedicated channels that respond to triggers, undergo a nanomechanical change to reversibly open, and thus regulate cargo flux. Replicating these processes with simple yet programmable chemical means is of fundamental scientific interest. Artificial systems that go beyond nature's remit in transport control and cargo are also of considerable interest for biotechnological applications but challenging to build. Here, we describe a synthetic channel that allows precisely timed, stimulus-controlled transport of folded and functional proteins across bilayer membranes. The channel is made via DNA nanotechnology design principles and features a 416 nm2 opening cross-section and a nanomechanical lid which can be controllably closed and re-opened via a lock-and-key mechanism. We envision that the functional DNA device may be used in highly sensitive biosensing, drug delivery of proteins, and the creation of artificial cell networks.
Collapse
Affiliation(s)
- Swarup Dey
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Leeza Abraham
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yongzheng Xing
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Irene Zhang
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
25
|
Kan X, Wu C, Wen L, Jiang L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. SMALL METHODS 2022; 6:e2101255. [PMID: 35218163 DOI: 10.1002/smtd.202101255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biological nanochannels which can regulate ionic transport across cell membranes intelligently play a significant role in physiological functions. Inspired by these nanochannels, numerous artificial nanochannels have been developed during recent years. The exploration of smart solid-state nanochannels can lay a solid foundation, not only for fundamental studies of biological systems but also practical applications in various fields. The basic fabrication principles, functional materials, and diverse applications based on artificial nanochannels are summarized in this review. In addition, theoretical insights into transport mechanisms and structure-function relationships are discussed. Meanwhile, it is believed that improvements will be made via computer-guided strategy in designing more efficient devices with upgrading accuracy. Finally, some remaining challenges and perspectives for developments in both novel conceptions and technology of this inspiring research field are stated.
Collapse
Affiliation(s)
- Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
26
|
Chen X, Pu J, Hu X, Yao Y, Dou Y, Jiang J, Zhang W. Janus Hollow Nanofiber with Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200578. [PMID: 35304814 DOI: 10.1002/smll.202200578] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Zn-air battery technologies have received increasing attention, while the application is hindered by the sluggish kinetics of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). In order to explore an efficient method to fabricate a high-performance electrocatalyst via modification of advanced nanostructure, a coaxial electrospinning method with in-situ synthesis and subsequent carbonization to construct 3D flexible Janus-like electrocatalysts is developed. The resulting Janus nanofibers have a unique core-shell hollow fiber structure, where NiFe alloy electrocatalysts supported by N-doped carbon nanobelt are located on the inner wall of the carbon layer, and leaf-like Co-N nanosheets are anchored on the outer wall of the carbon layer. As a result, the electrocatalyst exhibits excellent bifunctional catalytic performance for ORR and OER, demonstrating the small potential gap value of 0.73 V between the ORR half-wave potential and the OER potential at 10 mA cm-2 , which is even comparable to the mixed commercial noble catalyst with 20% Pt/C and RuO2 . The rechargeable Zn-air battery is constructed and displays a large open-circuit voltage of 1.44 V, high power density (130 mW cm-2 ) and energy density (874 Wh kg-1 ). This study provides a concept to synthesize and construct high performance bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Xing Chen
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, Kgs. Lyngby, 2800, Denmark
| | - Jie Pu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuhui Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuechao Yao
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, Kgs. Lyngby, 2800, Denmark
| | - Yibo Dou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianjun Jiang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
27
|
Hu L, Wang J, Wang Z, Li F, She J, Zhou Y, Zhang Y, Liu Y. Mechanical response of surface wettability of Janus porous membrane and its application in oil-water separation. NANOTECHNOLOGY 2022; 33:245704. [PMID: 35272272 DOI: 10.1088/1361-6528/ac5ca7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Smart surfaces with switchable wettability are widely studied for environmental application. Although a large number of stimulation routes provide broad prospects for the development of smart surfaces, achieving high sensitivity, fast response and recovery, simple operation, security and good stability is still challenging. Herein, a Janus membrane via electrospinning, chemical bath deposition and heat treatment is constructed. By using the hydrophilic ZIF-L nanosheet to functionalize the hydrophobic thermoplastic polyurethane (TPU) substrate, a smart surface utilizes the ZIF-L crack induced by strain in the hydrophilic layer to control surface wettability is obtained. In the range of 0%-100% strain, the wettability of the smart surface presents an obvious change with stretching, and water contact angle of the surface shows a monotonic increase with a maximum tuning range from 47° to 114°. Due to local fusion of the TPU microfibers and good binding between the ZIF-L layer and the TPU substrate after heat treatment, the prepared Janus membrane exhibits consistent and symmetrical hydrophilic-hydrophobic-hydrophilic transition curves in 50 stretching-releasing cycles. Thanks to the porous and asymmetric architecture, the membrane shows good oil-water separation performance, and the separation flux increases with the increase of strain, while the separation efficiency is always higher than 98%. Because of the excellent structural stability, the robust membrane with 100% strain maintains its oil-water separation property for 50 stretching-releasing cycles. This study provides a new perspective for the development of smart material with stimuli responsive surface for oily wastewater purification.
Collapse
Affiliation(s)
- Luyang Hu
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
- Institute for Nano- and Microfluidics, Technische Universität (TU) Darmstadt, Darmstadt, D-64287, Germany
| | - Jingming Wang
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Zhidan Wang
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Fabing Li
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Jing She
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| | - Yufeng Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin, 150001, People's Republic of China
| | - Yumin Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin, 150001, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, People's Republic of China
| |
Collapse
|
28
|
Quan A, Zhu J, Ma J, Guan K, Yang C, Wang H, Jiang Y, Zhou S, Chen J, Wang C, Hu S. Cation-Gated Ion Transport at Nanometer Scale for Tunable Power Generation. J Phys Chem Lett 2022; 13:2625-2631. [PMID: 35297247 DOI: 10.1021/acs.jpclett.2c00156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gated ion channels in biological cell membranes allow efficient tuning of cross-membrane ion transport with enhanced permeation and selectivity, converting ionic signals into various forms of electrical signals and energies on demands, which functionalities though are still difficult to achieve in artificial membranes. Here, we report cation-gated ion transport through synthesized porous aromatic films containing nanometer-scale ionic channels together with -NH2 groups at interiors. Ion selectivity and permeability is greatly tuned by gating cations, up to 2 orders of magnitude, and as a consequence, the membrane efficiently produces switchable electricity output from salinity gradients. The results are attributed to positively charged cations binding at -NH2 groups, which screens the intrinsic negative surface charge at channels' interiors and inverts charge polarity there. Our work adds understanding to ion gating effects at nanoscale and offers strategies of developing smart membranes and their heterostructures for separation, energy conversion, cell membrane mimics, and related technologies.
Collapse
Affiliation(s)
- Anchang Quan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jieyu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiaojiao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - KaiWen Guan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chongyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiawei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
29
|
Xia M, Pan N, Zhang C, Zhang C, Fan W, Xia Y, Wang Z, Sui K. Self-Powered Multifunction Ionic Skins Based on Gradient Polyelectrolyte Hydrogels. ACS NANO 2022; 16:4714-4725. [PMID: 35188364 DOI: 10.1021/acsnano.1c11505] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human skin is the largest organ, and it can transform multiple external stimuli into the biopotential signals by virtue of ions as information carriers. Ionic skins (i-skins) that can mimic human skin have been extensively explored; however, the limited sensing capacities as well as the need of an extra power supply significantly restrict their broad applications. Herein, we develop self-powered humanlike i-skins based on gradient polyelectrolyte membranes (GPMs) that can directly and accurately perceive multiple stimuli. Prepared by a hydrogel-assisted reaction-diffusion method, the GPMs exhibit gradient-distributed charged groups across polymer networks, enabling one to generate a thickness-dependent and thermoresponsive self-induced potential in a hydrated situation and in a humidity-sensitive self-induced potential in a dehydrated/dried situation, respectively. Consequently, the GPM-based i-skins can precisely detect pressure, temperature, and humidity in a self-powered manner. The coupling of mechano-electric and thermo-electric effects inherent in GPMs provides a general strategy for developing innovative self-powered ion-based perception systems.
Collapse
Affiliation(s)
- Mingyang Xia
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Na Pan
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Chao Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Chengjing Zhang
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Wenxin Fan
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Yanzhi Xia
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
30
|
Gao Y, Qiu Z, Liu L, Li M, Xu B, Yu D, Qi D, Wu J. Multifunctional fibrous wound dressings for refractory wound healing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Zhiye Qiu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Mengmeng Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
31
|
Cao L, Liu X, Shinde DB, Chen C, Chen I, Li Z, Zhou Z, Yang Z, Han Y, Lai Z. Oriented Two‐Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li Cao
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Digambar B. Shinde
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Cailing Chen
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - I‐Chun Chen
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Zhen Li
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Zongyao Zhou
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry North Dakota State University Fargo ND 58102 USA
| | - Yu Han
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
32
|
Luo Y, Zeng C, Li B. Negative rectification and anomalous diffusion in nonlinear substrate potentials: Dynamical relaxation and information entropy. Phys Rev E 2022; 105:024204. [PMID: 35291109 DOI: 10.1103/physreve.105.024204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
We numerically investigate the rectification of the probability flux and dynamical relaxation of particles moving in a system with and without noise. The system, driven by two external forces, consists of two substrate potentials that have identical shapes and different potential barriers with different friction coefficients. The deterministic model exhibits the perfect rectification of the probability flux, ratchet effect, and the dependence of the unpredictability of the dynamics on basin of attraction. In contrast, the stochastic model displays that the rectification is sensitive to the temperature and an external bias. They can induce kinetic phase transitions between no transport and a finite net transport. These transitions lead to an unexpected phenomenon, called negative rectification. The results are analyzed through the corresponding time-dependent diffusion coefficient, information entropy (IE), etc. At a low temperature, anomalous diffusions occur in system. For the occurrence of the flux in certain parameter regimes, the larger the diffusion is, the smaller the corresponding IE is, and vice versa. We also present the selected parameter regimes for the emergence of the rectification and negative rectification. Additionally, we study the rectification of the interacting particles in the system and find that the flux may depend on the coupling strength and the number of the interacting particles, and that collective motions occur for the forward flux. Our work provides not only a way of the rectification for the transport of various particles (e.g., ions, electrons, photons, phonons, molecules, DNA chains, nanoswimmers, dust particles, etc.) in physics, chemistry, biology, and material science, but also a design of various circuits.
Collapse
Affiliation(s)
- Yuhui Luo
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
- School of Physics and Information Engineering, Zhaotong University, Zhaotong 657000, China
| | - Chunhua Zeng
- Faculty of Civil Engineering and Mechanics/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Baowen Li
- Paul M. Rady Department of Mechanical Engineering and Department of Physics, University of Colorado, Boulder, Colorado 80309-0427, USA
| |
Collapse
|
33
|
Chen F, Yang Z, Li JN, Jia F, Wang F, Zhao D, Peng RW, Wang M. Formation of magnetic nanowire arrays by cooperative lateral growth. SCIENCE ADVANCES 2022; 8:eabk0180. [PMID: 35089795 PMCID: PMC8797794 DOI: 10.1126/sciadv.abk0180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Nanowires typically grow along their longitudinal axis, and the long-range order among wires sustains only when a template exists. Here, we report an unprecedented electrochemical growth of ordered metallic nanowire arrays from an ultrathin electrolyte layer, which is achieved by solidifying the electrolyte solution below the freezing temperature. The thickness of the electrodeposit is instantaneously tunable by the applied electric pulses, leading to parallel ridges on webbed film without using any template. An array of metallic nanowires with desired separation and width determined by the applied pulses is formed on the substrate with arbitrary surface patterns by etching away the webbed film thereafter. This work demonstrates a previously unrecognized fabrication strategy that bridges the gap of top-down lithography and bottom-up self-organization in making ordered metallic nanowire arrays over a large area with low cost.
Collapse
Affiliation(s)
- Fei Chen
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zihao Yang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jing-Ning Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Fei Jia
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Fan Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Di Zhao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ru-Wen Peng
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Mu Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- American Physical Society, Ridge, NY 11961, USA
| |
Collapse
|
34
|
Chen J, Low ZX, Feng S, Zhong Z, Xing W, Wang H. Nanoarchitectonics for Electrospun Membranes with Asymmetric Wettability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60763-60788. [PMID: 34913668 DOI: 10.1021/acsami.1c16047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membranes with asymmetric wettability have attracted significant interest by virtue of their unique transport characteristics and functionalities arising from different wetting behaviors of each membrane surface. The cross-sectional wettability distinction enables a membrane to realize directional liquid transport or multifunction integration, resulting in rapid advance in applications, such as moisture management, fog collection, oil-water separation, and membrane distillation. Compared with traditional homogeneous membranes, these membranes possess enhanced transport performance and higher separation efficiency owing to the synergistic or individual effects of asymmetric wettability. This Review covers the recent progress in fabrication, transport mechanisms, and applications of electrospun membranes with asymmetric wettability and provides a perspective on future development in this important area.
Collapse
Affiliation(s)
- Jiwang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shasha Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
35
|
Zeng H, Zhou S, Xie L, Zhang X, Zeng J, Yan M, Liang Q, Liu T, Liang K, Zhang L, Chen P, Jiang L, Kong B. Interfacially Super-Assembled Tyramine-Modified Mesoporous Silica-Alumina Oxide Heterochannels for Label-Free Tyrosinase Detection. Anal Chem 2021; 94:2589-2596. [PMID: 34962369 DOI: 10.1021/acs.analchem.1c04825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosinase (TYR) is a multifunctional copper-containing enzyme that plays a critical role in the biosynthetic pathway of melanin. Thus, the detection of TYR activity possesses vast importance from clinical diagnosis to the food industry. However, most TYR detection methods are expensive, complicated, and time-consuming. Herein, a functional nanofluidic heterochannel composed of an ultrathin tyramine-modified mesoporous silica layer (Tyr-MS) and alumina oxide (AAO) arrays is constructed by an interfacial super-assembly method. The heterochannel with plenty of enzyme catalytic sites for TYR provides the response of the ion current signal against TYR concentrations. Introducing enzymatic reaction paves the way for the heterochannel to achieve label-free, selective, specific detection of TYR. Notably, a highly sensitive detection of TYR with a limit of 2 U mL-1 was obtained by optimizing the modified conditions. Detailed investigations and theoretical calculations further reveal the mechanism for the detection performance. This work provides a simple, low-cost, quick response, and label-free platform based on functional nanofluidic devices for enzyme-sensing technologies.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
36
|
Wang J, Zhou Y, Jiang L. Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS NANO 2021; 15:18974-19013. [PMID: 34846138 DOI: 10.1021/acsnano.1c08582] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bio-inspired polymeric nanochannel (also referred as nanopore)-based biosensors have attracted considerable attention on account of their controllable channel size and shape, multi-functional surface chemistry, unique ionic transport properties, and good robustness for applications. There are already very informative reviews on the latest developments in solid-state artificial nanochannel-based biosensors, however, which concentrated on the resistive-pulse sensing-based sensors for practical applications. The steady-state sensing-based nanochannel biosensors, in principle, have significant advantages over their counterparts in term of high sensitivity, fast response, target analytes with no size limit, and extensive suitable range. Furthermore, among the diverse materials, nanochannels based on polymeric materials perform outstandingly, due to flexible fabrication and wide application. This compressive Review summarizes the recent advances in bio-inspired polymeric nanochannels as sensing platforms for detection of important analytes in living organisms, to meet the high demand for high-performance biosensors for analysis of target analytes, and the potential for development of smart sensing devices. In the future, research efforts can be focused on transport mechanisms in the field of steady-state or resistive-pulse nanochannel-based sensors and on developing precisely size-controlled, robust, miniature and reusable, multi-functional, and high-throughput biosensors for practical applications. Future efforts should aim at a deeper understanding of the principles at the molecular level and incorporating these diverse pore architectures into homogeneous and defect-free multi-channel membrane systems. With the rapid advancement of nanoscience and biotechnology, we believe that many more achievements in nanochannel-based biosensors could be achieved in the near future, serving people in a better way.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yahong Zhou
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
37
|
Meyer N, Abrao-Nemeir I, Janot JM, Torrent J, Lepoitevin M, Balme S. Solid-state and polymer nanopores for protein sensing: A review. Adv Colloid Interface Sci 2021; 298:102561. [PMID: 34768135 DOI: 10.1016/j.cis.2021.102561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Abstract
In two decades, the solid state and polymer nanopores became attractive method for the protein sensing with high specificity and sensitivity. They also allow the characterization of conformational changes, unfolding, assembly and aggregation as well the following of enzymatic reaction. This review aims to provide an overview of the protein sensing regarding the technique of detection: the resistive pulse and ionic diodes. For each strategy, we report the most significant achievement regarding the detection of peptides and protein as well as the conformational change, protein-protein assembly and aggregation process. We discuss the limitations and the recent strategies to improve the nanopore resolution and accuracy. A focus is done about concomitant problematic such as protein adsorption and nanopore lifetime.
Collapse
|
38
|
Karimzadeh M, Seifollahi Z, Khatibi M, Ashrafizadeh SN. Impacts of the shape of soft nanochannels on their ion selectivity and current rectification. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Cao L, Liu X, Shinde DB, Chen C, Chen IC, Li Z, Zhou Z, Yang Z, Han Y, Lai Z. Oriented Two-Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angew Chem Int Ed Engl 2021; 61:e202113141. [PMID: 34816574 DOI: 10.1002/anie.202113141] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/09/2022]
Abstract
Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two-dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2-3 orders of magnitude higher ion flux compared with that of conventional single-channel nanofluidic devices. The surface-charge-governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH-responsivity of imine and phenol hydroxyl groups, the COF-DT membranes attained an actively modulable ion transport with a high pH-gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.
Collapse
Affiliation(s)
- Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Digambar B Shinde
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cailing Chen
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - I-Chun Chen
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhen Li
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zongyao Zhou
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Yu Han
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
40
|
Tang YJ, Zhang SJ, Zhong ZT, Su WM, Zhao YD. Controllable ion transport induced by pH gradient in a thermally crosslinked submicrochannel heterogeneous membrane. Analyst 2021; 146:6815-6821. [PMID: 34643194 DOI: 10.1039/d1an01522b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-state nanochannels have attracted considerable attention for their similar ion transport properties to biological ion channels. The construction of porous ion channels with good stability at the submicro/micrometer scale is very beneficial to develop large-area ion channel devices. In this manuscript, based on in-situ thermal crosslinking of a small organic molecule containing triphenylamine and styrene groups, we construct a heterogeneous membrane with asymmetrical charge and wettability on cylindrical anodic aluminum oxide (AAO) channels (D ≈ 319 nm). This heterogeneous membrane has typical ion current rectification characteristics with a high rectification ratio of 36.9 and good stability. This work provides an effective strategy for the construction of submicrochannel heterogeneous membranes and also broadens the application range of bionic ion channels.
Collapse
Affiliation(s)
- Yuan-Ju Tang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China. .,Department of Public Fundamental Courses, West Yunnan University of Applied Sciences, Dali 671000, Yunnan, P. R. China
| | - Shu-Jie Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Wen-Ming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China. .,Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
41
|
Zhou S, Xie L, Li X, Huang Y, Zhang L, Liang Q, Yan M, Zeng J, Qiu B, Liu T, Tang J, Wen L, Jiang L, Kong B. Interfacial Super‐Assembly of Ordered Mesoporous Carbon‐Silica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature‐ and pH‐Sensitive Smart Ion Transport. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shan Zhou
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Lei Xie
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Xiaofeng Li
- Department of Chemistry The University of Hong Kong Hong Kong 999077 China
| | - Yanan Huang
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Liping Zhang
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Qirui Liang
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Miao Yan
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Jie Zeng
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Beilei Qiu
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Tianyi Liu
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| | - Jinyao Tang
- Department of Chemistry The University of Hong Kong Hong Kong 999077 China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| | - Biao Kong
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
42
|
Zhou S, Xie L, Li X, Huang Y, Zhang L, Liang Q, Yan M, Zeng J, Qiu B, Liu T, Tang J, Wen L, Jiang L, Kong B. Interfacial Super-Assembly of Ordered Mesoporous Carbon-Silica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature- and pH-Sensitive Smart Ion Transport. Angew Chem Int Ed Engl 2021; 60:26167-26176. [PMID: 34605141 DOI: 10.1002/anie.202110731] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/10/2022]
Abstract
Nanofluidic devices have been widely used for diode-like ion transport and salinity gradients energy conversion. Emerging reverse electrodialysis (RED) nanofluidic systems based on nanochannel membrane display great superiority in salinity gradient energy harvesting. However, the imbalance between permeability and selectivity limits their practical application. Here, a new mesoporous carbon-silica/anodized aluminum (MCS/AAO) nanofluidic device with enhanced permselectivity for temperature- and pH-regulated energy generation was obtained by interfacial super-assembly method. A maximum power density of 5.04 W m-2 is achieved, and a higher performance can be obtained by regulating temperature and pH. Theoretical calculations are further implemented to reveal the mechanism for ion rectification, ion selectivity and energy conversion. Results show that the MCS/AAO hybrid membrane has great superiority in diode-like ion transport, temperature- and pH-regulated salinity gradient energy conversion.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Yanan Huang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Liping Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Beilei Qiu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
43
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
44
|
Wang Y, Chen H, Jiang J, Zhai J. "Ion Pool" Structural Ion Storage Device: A New Strategy to Collect Ions by Nanoconfinement Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102880. [PMID: 34405945 DOI: 10.1002/smll.202102880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Ion storage structure widely exists in organisms, which is used to harvesting energy in environment and converting it into ion concentration gradient to maintain complex life activities. The construction of ion storage structures relies on isolating the biological body fluids by biofilm systems, which can also be regarded as local ions confinement. Mimicking this ions storage process, an "ion pool" structural ion storage device is proposed in this research by artificial ion nanochannels, which can transform the electric power into ion concentration gradient. It is consisted of micrometer-sized ions reservoir and nanosized ions filters. Ions can be isolated within the "pool" and performed ultrahigh ions enrichment or depletion behavior deviated from bulk. Through numerical simulation by Poisson-Nernst-Planck equations, "ion pool" structural device achieves nearly 20 000 rectification ratio with low surface charge. An "ion pool" structural ions storage device is also constructed with block copolymer and polyethylene terephthalate composite membranes, a super high rectification ratio of 3184.0 is achieved from the experiment, which is the highest reported so far. The ion storage efficiency of the device reaches 14.90%, which is an order of magnitude better than non-"ion pool" structural nanofluid devices.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Smart Bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Huaxiang Chen
- Petrochemical Research Institute, China National Petroleum Corporation, Energy east road, Shahe Town, Changping District, Beijing, 102200, P. R. China
| | - Jiaqiao Jiang
- Key Laboratory of Smart Bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Smart Bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
45
|
Chen Y, Wang Z, Ji Y, He L, Wang X, Li S. Asymmetric Lipid Membranes under Shear Flows: A Dissipative Particle Dynamics Study. MEMBRANES 2021; 11:655. [PMID: 34564472 PMCID: PMC8465239 DOI: 10.3390/membranes11090655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022]
Abstract
We investigate the phase behavior of the asymmetric lipid membranes under shear flows, using the dissipative particle dynamics simulation. Two cases, the weak and strong shear flows, are considered for the asymmetric lipid microstructures. Three typical asymmetric structures, the membranes, tubes, and vesicle, are included in the phase diagrams, where the effect of two different types of lipid chain length on the formation of asymmetric membranes is evaluated. The dynamic processes are demonstrated for the asymmetric membranes by calculating the average radius of gyration and shape factor. The result indicates that different shear flows will affect the shape of the second type of lipid molecules; the shape of the first type of lipid molecules is more stable than that of the second type of lipid molecules. The mechanical properties are investigated for the asymmetric membranes by analyzing the interface tension. The results reveal an absolute pressure at the junctions of different types of particles under the weak shear flow; the other positions are almost in a state of no pressure; there is almost no pressure inside the asymmetric lipid membrane structure under the strong shear flow. The findings will help us to understand the potential applications of asymmetric lipid microstructures in the biological and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China; (Y.C.); (Z.W.); (Y.J.); (L.H.); (X.W.)
| |
Collapse
|
46
|
Li J, Li D. A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel. J Colloid Interface Sci 2021; 596:54-63. [PMID: 33831750 DOI: 10.1016/j.jcis.2021.03.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Nanofluidic diodes have attracted intense attention recently. Commonly used materials to design these devices are membrane-based short nanopores and aligned Carbon nanotube bundles. It is highly desirable and very challenging to develop a nanofluidic diode based on a single PDMS nanochannel which is easier to be introduced into an integrated electronic system on a chip. Layer-by-layer (LBL) deposition of charged polyelectrolytes can change the size and surface properties of PDMS nanochannels that provides new possibilities to develop high-performance nanofluidic based on PDMS nanochannels. EXPERIMENTS A novel design of nanofluidic diode is presented by controlling the surface charges and sizes of single PDMS nanochannels by surface modification using polyelectrolytes. Polybrene (PB) and Dextran sulfate (DS) are used to reduce the PDMS nanochannel size to meet the requirement of ion gating by LBL method and generate opposite surface charges at the ends of nanochannels. The parameters of such a nanofluidic diode are investigated systematically. FINDINGS This nanofluidic diode developed in this work has high effective current rectification performance. The rectification ratio can be as high as 218 which is the best ever reported in PB/DS modified nanochannels. This rectification ratio reduces with high voltage frequency and ionic concentration whereas increases in shorter nanochannels.
Collapse
Affiliation(s)
- Jun Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
47
|
Li M, Cao Y, Zhang X, Wang D, Qian S, Li G, Zhang F, Xiong Y, Qing G. Biomimetic calcium-inactivated ion/molecular channel. Chem Commun (Camb) 2021; 57:7914-7917. [PMID: 34279527 DOI: 10.1039/d1cc03058b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A phosphopeptide-modified nanochannel was prepared based on a conical polymeric nanopore. It shows a reversible Ca2+-induced inactivation effect toward the ion flow and molecular transport, resulting from Ca2+ binding-caused surface charge neutralization and hydrophilicity reduction, and Ca2+ removal by the competitive binding.
Collapse
Affiliation(s)
- Minmin Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China. and CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yuchen Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xin Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Shengxu Qian
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guodong Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Fusheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yuting Xiong
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China. and CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
48
|
Peng R, Pan Y, Liu B, Li Z, Pan P, Zhang S, Qin Z, Wheeler AR, Tang XS, Liu X. Understanding Carbon Nanotube-Based Ionic Diodes: Design and Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100383. [PMID: 34171160 DOI: 10.1002/smll.202100383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The rectification of ion transport through biological ion channels has attracted much attention and inspired the thriving invention and applications of ionic diodes. However, the development of high-performance ionic diodes is still challenging, and the working mechanisms of ionic diodes constructed by 1D ionic nanochannels have not been fully understood. This work reports the systematic investigation of the design and mechanism of a new type of ionic diode constructed from horizontally aligned multi-walled carbon nanotubes (MWCNTs) with oppositely charged polyelectrolytes decorated at their two entrances. The major design and working parameters of the MWCNT-based ionic diode, including the ion channel size, the driven voltage, the properties of working fluids, and the quantity and length of charge modification, are extensively investigated through numerical simulations and/or experiments. An optimized ionic current rectification (ICR) ratio of 1481.5 is experimentally achieved on the MWCNT-based ionic diode. These results promise potential applications of the MWCNT-based ionic diode in biosensing and biocomputing. As a proof-of-concept, DNA detection and HIV-1 diagnosis is demonstrated on the ionic diode. This work provides a comprehensive understanding of the working principle of the MWCNT-based ionic diodes and will allow rational device design and optimization.
Collapse
Affiliation(s)
- Ran Peng
- Department of Marine Engineering, Dalian Maritime University, 1 Lingshui Road, Dalian, Liaoning, 116026, China
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yueyue Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Biwu Liu
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Zhi Li
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Shuailong Zhang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
49
|
Fu L, Wang Y, Jiang J, Lu B, Zhai J. Sandwich "Ion Pool"-Structured Power Gating for Salinity Gradient Generation Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35197-35206. [PMID: 34266231 DOI: 10.1021/acsami.1c10183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoconfinement ion transport, similar to that of biological ion channels, has attracted widespread research interest and offers prospects for broad applications in energy conversion and nanofluidic diodes. At present, various methods were adopted to improve the rectification performance of nanofluidic diodes including geometrical, chemical, and electrostatic asymmetries. However, contributions of the confinement effects within the channels were neglected, which can be a crucial factor for ion rectification behavior. In this research, we report an "ion pool"-structured nanofluidic diode to improve the confinement effect of the system, which was constructed based on an anodic aluminum oxide (AAO) nanoporous membrane sandwiched between zeolitic imidazolate framework 8 (ZIF-8) and tungsten oxide (WO3) thin membranes. A high rectification ratio of 192 is obtained through this nanofluidic system due to ions could be enriched or depleted sufficiently within the ion pool. Furthermore, this high-rectification-ratio ion pool-structured nanofluidic diode possessed pH-responsive and excellent ion selectivity. We developed it as a pH-responsive power gating for a salinity gradient harvesting device by controlling the surface charge density of the ion pool nanochannel narrow ends with different pH values, and hence, the ionic gate is switched between On and Off states, with a gating ratio of up to 27, which exhibited 8 times increase than ZIF-8-AAO and AAO-WO3 composite membranes. Significantly, the peculiar ion pool structure can generate high rectification ratios due to the confinement effect, which then achieves high gating ratios. Such ion pool-structured nanochannels created new avenues to design and optimize nanofluidic diodes and boosted their applications in energy conversion areas.
Collapse
Affiliation(s)
- Lulu Fu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yuting Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jiaqiao Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
50
|
Liu S, Tian J, Zhang W. Fabrication and application of nanoporous anodic aluminum oxide: a review. NANOTECHNOLOGY 2021; 32:222001. [PMID: 0 DOI: 10.1088/1361-6528/abe25f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Abstract
Due to the unique optical and electrochemical properties, large surface area, tunable properties, and high thermal stability, nanoporous anodic aluminum oxide (AAO) has become one of the most popular materials with a large potential to develop emerging applications in numerous areas, including biosensors, desalination, high-risk pollutants detection, capacitors, solar cell devices, photonic crystals, template-assisted fabrication of nanostructures, and so on. This review covers the mechanism of AAO formation, manufacturing technology, the relationship between the properties of AAO and fabrication conditions, and applications of AAO. Properties of AAO, like pore diameter, interpore distance, wall thickness, and anodized aluminum layer thickness, can be fully controlled by fabrication conditions, including electrolyte, applied voltage, anodizing and widening time. Generally speaking, the pore diameter of AAO will affect its specific application to a large extent. Moreover, manufacturing technology like one/two/multi step anodization, nanoimprint lithography anodization, and pulse/cyclic anodization also have a major impact on overall array arrangement. The review aims to provide a perspective overview of the relationship between applications and their corresponding AAO pore sizes, systematically. And the review also focuses on the strategies by which the structures and functions of AAO can be utilized.
Collapse
|