1
|
López-Laguna H, Tsimbouri PM, Jayawarna V, Rigou I, Serna N, Voltà-Durán E, Unzueta U, Salmeron-Sanchez M, Vázquez E, Dalby MJ, Villaverde A. Hybrid Micro-/Nanoprotein Platform Provides Endocrine-like and Extracellular Matrix-like Cell Delivery of Growth Factors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32930-32944. [PMID: 38888932 PMCID: PMC11231985 DOI: 10.1021/acsami.4c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Vineetha Jayawarna
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Ioanna Rigou
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Ugutz Unzueta
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| |
Collapse
|
2
|
Sánchez JM, López-Laguna H, Parladé E, Somma AD, Livieri AL, Álamo P, Mangues R, Unzueta U, Villaverde A, Vázquez E. Structural Stabilization of Clinically Oriented Oligomeric Proteins During their Transit through Synthetic Secretory Amyloids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309427. [PMID: 38501900 DOI: 10.1002/advs.202309427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Indexed: 03/20/2024]
Abstract
Developing time-sustained drug delivery systems is a main goal in innovative medicines. Inspired by the architecture of secretory granules from the mammalian endocrine system it has generated non-toxic microscale amyloid materials through the coordination between divalent metals and poly-histidine stretches. Like their natural counterparts that keep the functionalities of the assembled protein, those synthetic structures release biologically active proteins during a slow self-disintegration process occurring in vitro and upon in vivo administration. Being these granules formed by a single pure protein species and therefore, chemically homogenous, they act as highly promising time-sustained drug delivery systems. Despite their enormous clinical potential, the nature of the clustering process and the quality of the released protein have been so far neglected issues. By using diverse polypeptide species and their protein-only oligomeric nanoscale versions as convenient models, a conformational rearrangement and a stabilization of the building blocks during their transit through the secretory granules, being the released material structurally distinguishable from the original source is proved here. This fact indicates a dynamic nature of secretory amyloids that act as conformational arrangers rather than as plain, inert protein-recruiting/protein-releasing granular depots.
Collapse
Affiliation(s)
- Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC, Av. Velez Sarsfield 1611, Córdoba, X5016GCA, Argentina
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Angela Di Somma
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Department of Chemical Sciences, University of Naples "Federico II", Vicinale Cupa Cintia 26, Naples, 20126, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, Naples, 80131, Italy
| | - Andrea L Livieri
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
| | - Patricia Álamo
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, 08025, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, 08025, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| |
Collapse
|
3
|
Kaplan Ö, Gök MK, Pekmez M, Erden Tayhan S, Özgümüş S, Gökçe İ, Arda N. Development of recombinant protein-based nanoparticle systems for inducing tumor cell apoptosis: In vitro evaluation of their cytotoxic and apoptotic effects on cancer cells. J Drug Deliv Sci Technol 2024; 95:105565. [DOI: 10.1016/j.jddst.2024.105565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Voltà-Durán E, Alba-Castellón L, Serna N, Casanova I, López-Laguna H, Gallardo A, Sánchez-Chardi A, Villaverde A, Unzueta U, Vázquez E, Mangues R. High-precision targeting and destruction of cancer-associated PDGFR-β + stromal fibroblasts through self-assembling, protein-only nanoparticles. Acta Biomater 2023; 170:543-555. [PMID: 37683965 DOI: 10.1016/j.actbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The need for more effective and precision medicines for cancer has pushed the exploration of new materials appropriate for drug delivery and imaging, and alternative receptors for targeting. Among the most promising strategies, finding suitable cell surface receptors and targeting agents for cancer-associated platelet derived growth factor receptor β (PDGFR-β)+ stromal fibroblasts is highly appealing. As a neglected target, this cell type mechanically and biologically supports the growth, progression, and infiltration of solid tumors in non-small cell lung, breast, pancreatic, and colorectal cancers. We have developed a family of PDGFR-β-targeted nanoparticles based on biofabricated, self-assembling proteins, upon hierarchical and iterative selective processes starting from four initial candidates. The modular protein PDGFD-GFP-H6 is well produced in recombinant bacteria, resulting in structurally robust oligomeric particles that selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. Upon in vivo administration, these GFP-carrying protein nanoparticles precisely accumulate in tumor tissues and enlighten them for IVIS observation. When GFP is replaced by a microbial toxin, selective tumor tissue destruction is observed associated with a significant reduction in tumor volume growth. The presented data validate the PDGFR-β/PDGFD pair as a promising toolbox for targeted drug delivery in the tumor microenvironment and oligomeric protein nanoparticles as a powerful instrument to mediate highly selective biosafe targeting in cancer through non-cancer cells. STATEMENT OF SIGNIFICANCE: We have developed a transversal platform for nanoparticle-based drug delivery into cancer-associated fibroblasts. This is based on the engineered modular protein PDGFD-GFP-H6 that spontaneously self-assemble and selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. In vivo, these protein nanoparticles accumulate in tumor and when incorporating a microbial toxin, they destroy tumor tissues with a significant reduction in tumor volume, in absence of side toxicities. The data presented here validate the PDGFR-β/PDGFD pair as a fully versatile toolbox for targeted drug delivery in the tumor microenvironment intended as a synergistic treatment.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Lorena Alba-Castellón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain.
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Alberto Gallardo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain.
| |
Collapse
|
6
|
Dzuvor CKO, Shanbhag BK, Shen HH, Haritos VS, He L. An Ultrastable Self-Assembled Antibacterial Nanospears Made of Protein. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2302409. [PMID: 37120846 DOI: 10.1002/adma.202302409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Indexed: 06/15/2023]
Abstract
Protein-based nanomaterials have broad applications in the biomedical and bionanotechnological sectors owing to their outstanding properties such as high biocompatibility and biodegradability, structural stability, sophisticated functional versatility, and being environmentally benign. They have gained considerable attention in drug delivery, cancer therapeutics, vaccines, immunotherapies, biosensing, and biocatalysis. However, so far, in the battle against the increasing reports of antibiotic resistance and emerging drug-resistant bacteria, unique nanostructures of this kind are lacking, hindering their potential next-generation antibacterial agents. Here, the discovery of a class of supramolecular nanostructures with well-defined shapes, geometries, or architectures (termed "protein nanospears") based on engineered proteins, exhibiting exceptional broad-spectrum antibacterial activities, is reported. The protein nanospears are engineered via spontaneous cleavage-dependent or precisely tunable self-assembly routes using mild metal salt-ions (Mg2+ , Ca2+ , Na+ ) as a molecular trigger. The nanospears' dimensions collectively range from entire nano- to micrometer scale. The protein nanospears display exceptional thermal and chemical stability yet rapidly disassemble upon exposure to high concentrations of chaotropes (>1 mm sodium dodecyl sulfate (SDS)). Using a combination of biological assays and electron microscopy imaging, it is revealed that the nanospears spontaneously induce rapid and irreparable damage to bacterial morphology via a unique action mechanism provided by their nanostructure and enzymatic action, a feat inaccessible to traditional antibiotics. These protein-based nanospears show promise as a potent tool to combat the growing threats of resistant bacteria, inspiring a new way to engineer other antibacterial protein nanomaterials with diverse structural and dimensional architectures and functional properties.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Bhuvana K Shanbhag
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Hsin-Hui Shen
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Lizhong He
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
7
|
Corchero JL, Favaro MTP, Márquez-Martínez M, Lascorz J, Martínez-Torró C, Sánchez JM, López-Laguna H, de Souza Ferreira LC, Vázquez E, Ferrer-Miralles N, Villaverde A, Parladé E. Recombinant Proteins for Assembling as Nano- and Micro-Scale Materials for Drug Delivery: A Host Comparative Overview. Pharmaceutics 2023; 15:pharmaceutics15041197. [PMID: 37111682 PMCID: PMC10144854 DOI: 10.3390/pharmaceutics15041197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
By following simple protein engineering steps, recombinant proteins with promising applications in the field of drug delivery can be assembled in the form of functional materials of increasing complexity, either as nanoparticles or nanoparticle-leaking secretory microparticles. Among the suitable strategies for protein assembly, the use of histidine-rich tags in combination with coordinating divalent cations allows the construction of both categories of material out of pure polypeptide samples. Such molecular crosslinking results in chemically homogeneous protein particles with a defined composition, a fact that offers soft regulatory routes towards clinical applications for nanostructured protein-only drugs or for protein-based drug vehicles. Successes in the fabrication and final performance of these materials are expected, irrespective of the protein source. However, this fact has not yet been fully explored and confirmed. By taking the antigenic RBD domain of the SARS-CoV-2 spike glycoprotein as a model building block, we investigated the production of nanoparticles and secretory microparticles out of the versions of recombinant RBD produced by bacteria (Escherichia coli), insect cells (Sf9), and two different mammalian cell lines (namely HEK 293F and Expi293F). Although both functional nanoparticles and secretory microparticles were effectively generated in all cases, the technological and biological idiosyncrasy of each type of cell factory impacted the biophysical properties of the products. Therefore, the selection of a protein biofabrication platform is not irrelevant but instead is a significant factor in the upstream pipeline of protein assembly into supramolecular, complex, and functional materials.
Collapse
Affiliation(s)
- José Luis Corchero
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marianna T P Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Merce Márquez-Martínez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jara Lascorz
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Carlos Martínez-Torró
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Julieta M Sánchez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Neus Ferrer-Miralles
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eloi Parladé
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
8
|
Zhao Z, Huang Y, Wang J, Lin H, Cao F, Li S, Li Y, Li Z, Liu X. A self-assembling CXCR4-targeted pyroptosis nanotoxin for melanoma therapy. Biomater Sci 2023; 11:2200-2210. [PMID: 36745434 DOI: 10.1039/d2bm02026b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While immunotherapy has emerged as a promising strategy to treat melanoma, the limited availability of immunotherapeutic agents in tumors due to the immunosuppressive tumor microenvironment dampens its efficacy. Pyroptosis is a gasdermin-mediated programmed necrosis that triggers the inflammatory tumor microenvironment and enhances the efficacy of tumor immunotherapy. Here, we prove that the CXCR4 antagonist T22 peptide specially targeted and became internalized into CXCR4+ melanoma cells. Then we report a self-assembling nanotoxin that can be used to spatiotemporally target CXCR4-expression melanoma cells and enable tunable cellular pyroptosis. Specific activation of caspase 3 signal transduction triggers gasdermin-E-mediated pyroptosis. This nanotoxin induces pyroptotic cell death resulting in enhanced antitumor efficacy and minimized systemic side effects toward melanoma in vivo. This study offers new insights into how to engineer nanotoxins with tunable pyroptosis activity through specifically targeting CXCR4 for biomedical applications.
Collapse
Affiliation(s)
- Zheng Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Yingbin Huang
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Hongsheng Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Fei Cao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Shuxin Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Yin Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Ziqian Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| | - Xuekui Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China.
| |
Collapse
|
9
|
Dzuvor CKO, Shanbhag BK, Younas T, Shen HH, Haritos VS, He L. Engineering Self-Assembled Endolysin Nanoparticles against Antibiotic-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:4993-5003. [PMID: 36194892 DOI: 10.1021/acsabm.2c00741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance represents a serious global health concern and has stimulated the development of antimicrobial nanomaterials to combat resistant bacteria. Protein-based nanoparticles combining characteristics of both proteins and nanoparticles offer advantages including high biocompatibility, attractive biodegradability, enhanced bioavailability and functional versatility. They have played an increasing role as promising candidates for broad applications ranging from biocatalysts and drug delivery to vaccine development to cancer therapeutics. However, their application as antibacterial biomaterials to address challenging antibiotic-resistance problems has not been explicitly pursued. Herein, we describe engineering protein-only nanoparticles against resistant Gram-positive bacteria. A self-assembling peptide (P114) enables the assembly of a phage lytic enzyme (P128) into nanoparticles in response to pH reduction. Compared to native P128 and monomeric P114-P128, P128 nanoparticles (P128NANO) demonstrated a stronger bactericidal ability with high potency at lower concentrations (2-3-fold lower), particularly for methicillin-resistant Staphylococcus aureus strains. In addition, P128NANO showed an enhanced thermal (up to 65 °C) and storage stability and elicited extensive damages to bacterial cell walls. These remarkable antibacterial abilities are likely due to the P128NANO nanostructure, mediating multivalent interactions with bacterial cell walls at increased local concentrations of endolysin. The engineered endolysin nanoparticles offer a promising antimicrobial alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Bhuvana K Shanbhag
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tayyaba Younas
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton, Victoria 3800, Australia
| | - Victoria S Haritos
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lizhong He
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Sala R, Rioja-Blanco E, Serna N, Sánchez-García L, Álamo P, Alba-Castellón L, Casanova I, López-Pousa A, Unzueta U, Céspedes MV, Vázquez E, Villaverde A, Mangues R. GSDMD-dependent pyroptotic induction by a multivalent CXCR4-targeted nanotoxin blocks colorectal cancer metastases. Drug Deliv 2022; 29:1384-1397. [PMID: 35532120 PMCID: PMC9090371 DOI: 10.1080/10717544.2022.2069302] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) remains the third cause of cancer-related mortality in Western countries, metastases are the main cause of death. CRC treatment remains limited by systemic toxicity and chemotherapy resistance. Therefore, nanoparticle-mediated delivery of cytotoxic agents selectively to cancer cells represents an efficient strategy to increase the therapeutic index and overcome drug resistance. We have developed the T22-PE24-H6 therapeutic protein-only nanoparticle that incorporates the exotoxin A from Pseudomonas aeruginosa to selectively target CRC cells because of its multivalent ligand display that triggers a high selectivity interaction with the CXCR4 receptor overexpressed on the surface of CRC stem cells. We here observed a CXCR4-dependent cytotoxic effect for T22-PE24-H6, which was not mediated by apoptosis, but instead capable of inducing a time-dependent and sequential activation of pyroptotic markers in CRC cells in vitro. Next, we demonstrated that repeated doses of T22-PE24-H6 inhibit tumor growth in a subcutaneous CXCR4+ CRC model, also through pyroptotic activation. Most importantly, this nanoparticle also blocked the development of lymphatic and hematogenous metastases, in a highly aggressive CXCR4+ SW1417 orthotopic CRC model, in the absence of systemic toxicity. This targeted drug delivery approach supports for the first time the clinical relevance of inducing GSDMD-dependent pyroptosis, a cell death mechanism alternative to apoptosis, in CRC models, leading to the selective elimination of CXCR4+ cancer stem cells, which are associated with resistance, metastases and anti-apoptotic upregulation.
Collapse
Affiliation(s)
- Rita Sala
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Josep Carreras Research Institute, Barcelona, Spain
| | - Elisa Rioja-Blanco
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Josep Carreras Research Institute, Barcelona, Spain
| | - Naroa Serna
- CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia I de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica I de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Sánchez-García
- CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia I de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica I de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Josep Carreras Research Institute, Barcelona, Spain
| | - Lorena Alba-Castellón
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Josep Carreras Research Institute, Barcelona, Spain
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Josep Carreras Research Institute, Barcelona, Spain
| | - Antonio López-Pousa
- CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Department of Medical Oncology, Hospital de la Santa Creu I Sant Pau, Barcelon, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Josep Carreras Research Institute, Barcelona, Spain
| | | | - Esther Vázquez
- CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia I de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica I de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio Villaverde
- CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia I de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica I de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain.,CIBER en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain.,Josep Carreras Research Institute, Barcelona, Spain
| |
Collapse
|
11
|
Sánchez JM, Carratalá JV, Serna N, Unzueta U, Nolan V, Sánchez-Chardi A, Voltà-Durán E, López-Laguna H, Ferrer-Miralles N, Villaverde A, Vazquez E. The Poly-Histidine Tag H6 Mediates Structural and Functional Properties of Disintegrating, Protein-Releasing Inclusion Bodies. Pharmaceutics 2022; 14:pharmaceutics14030602. [PMID: 35335976 PMCID: PMC8955739 DOI: 10.3390/pharmaceutics14030602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The coordination between histidine-rich peptides and divalent cations supports the formation of nano- and micro-scale protein biomaterials, including toxic and non-toxic functional amyloids, which can be adapted as drug delivery systems. Among them, inclusion bodies (IBs) formed in recombinant bacteria have shown promise as protein depots for time-sustained protein release. We have demonstrated here that the hexahistidine (H6) tag, fused to recombinant proteins, impacts both on the formation of bacterial IBs and on the conformation of the IB-forming protein, which shows a higher content of cross-beta intermolecular interactions in H6-tagged versions. Additionally, the addition of EDTA during the spontaneous disintegration of isolated IBs largely affects the protein leakage rate, again protein release being stimulated in His-tagged materials. This event depends on the number of His residues but irrespective of the location of the tag in the protein, as it occurs in either C-tagged or N-tagged proteins. The architectonic role of H6 in the formation of bacterial IBs, probably through coordination with divalent cations, offers an easy approach to manipulate protein leakage and to tailor the applicability of this material as a secretory amyloidal depot in different biomedical interfaces. In addition, the findings also offer a model to finely investigate, in a simple set-up, the mechanics of protein release from functional secretory amyloids.
Collapse
Affiliation(s)
- Julieta María Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - José Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
| | - Verónica Nolan
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| |
Collapse
|
12
|
Serna N, Pallarès V, Unzueta U, Garcia-Leon A, Voltà-Durán E, Sánchez-Chardi A, Parladé E, Rueda A, Casanova I, Falgàs A, Alba-Castellón L, Sierra J, Villaverde A, Vázquez E, Mangues R. Engineering non-antibody human proteins as efficient scaffolds for selective, receptor-targeted drug delivery. J Control Release 2022; 343:277-287. [PMID: 35051493 DOI: 10.1016/j.jconrel.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Self-assembling non-immunoglobulin scaffold proteins are a promising class of nanoscale carriers for drug delivery and interesting alternatives to antibody-based carriers that are not sufficiently efficient in systemic administration. To exploit their potentialities in clinics, protein scaffolds need to be further tailored to confer appropriate targeting and to overcome their potential immunogenicity, short half-life in plasma and proteolytic degradation. We have here engineered three human scaffold proteins as drug carrier nanoparticles to target the cytokine receptor CXCR4, a tumoral cell surface marker of high clinical relevance. The capability of these scaffolds for the selective delivery of Monomethyl auristatin E has been comparatively evaluated in a disseminated mouse model of human, CXCR4+ acute myeloid leukemia. Monomethyl auristatin E is an ultra-potent anti-mitotic drug used against a range of hematological neoplasias, which because of its high toxicity is not currently administered as a free drug but as payload in antibody-drug conjugates. The protein nanoconjugates generated here offer a collective strength of simple manufacturing process, high proteolytic and structural stability and multivalent ligand receptor interactions that result in a highly efficient and selective delivery of the payload drug and in a potent anticancer effect. The approach shown here stresses this class of human scaffold proteins as promising alternatives to antibodies for targeted drug delivery in the rapidly evolving drug development landscape.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Present address: Nanoligent SL. Edifici Eureka, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Victor Pallarès
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain.
| | - Annabel Garcia-Leon
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ariana Rueda
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Lorena Alba-Castellón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Jorge Sierra
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain; Departament d'Hematologia, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| |
Collapse
|
13
|
Serna N, Falgàs A, García-León A, Unzueta U, Núñez Y, Sánchez-Chardi A, Martínez-Torró C, Mangues R, Vazquez E, Casanova I, Villaverde A. Time-Prolonged Release of Tumor-Targeted Protein-MMAE Nanoconjugates from Implantable Hybrid Materials. Pharmaceutics 2022; 14:pharmaceutics14010192. [PMID: 35057088 PMCID: PMC8777625 DOI: 10.3390/pharmaceutics14010192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
The sustained release of small, tumor-targeted cytotoxic drugs is an unmet need in cancer therapies, which usually rely on punctual administration regimens of non-targeted drugs. Here, we have developed a novel concept of protein–drug nanoconjugates, which are packaged as slow-releasing chemically hybrid depots and sustain a prolonged secretion of the therapeutic agent. For this, we covalently attached hydrophobic molecules (including the antitumoral drug Monomethyl Auristatin E) to a protein targeting a tumoral cell surface marker abundant in several human neoplasias, namely the cytokine receptor CXCR4. By this, a controlled aggregation of the complex is achieved, resulting in mechanically stable protein–drug microparticles. These materials, which are mimetics of bacterial inclusion bodies and of mammalian secretory granules, allow the slow leakage of fully functional conjugates at the nanoscale, both in vitro and in vivo. Upon subcutaneous administration in a mouse model of human CXCR4+ lymphoma, the protein–drug depots release nanoconjugates for at least 10 days, which accumulate in the tumor with a potent antitumoral effect. The modification of scaffold cell-targeted proteins by hydrophobic drug conjugation is then shown as a novel transversal platform for the design of slow releasing protein–drug depots, with potential application in a broad spectrum of clinical settings.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.S.); (C.M.-T.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Annabel García-León
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Yáiza Núñez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.S.); (C.M.-T.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.S.); (C.M.-T.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
- Correspondence: (I.C.); (A.V.)
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.S.); (C.M.-T.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Correspondence: (I.C.); (A.V.)
| |
Collapse
|
14
|
Serna N, Carratalá JV, Conchillo-Solé O, Martínez-Torró C, Unzueta U, Mangues R, Ferrer-Miralles N, Daura X, Vázquez E, Villaverde A. Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4. Pharmaceutics 2021; 13:1922. [PMID: 34834337 PMCID: PMC8621837 DOI: 10.3390/pharmaceutics13111922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
CXCR4 is a cytokine receptor used by HIV during cell attachment and infection. Overexpressed in the cancer stem cells of more than 20 human neoplasias, CXCR4 is a convenient antitumoral drug target. T22 is a polyphemusin-derived peptide and an effective CXCR4 ligand. Its highly selective CXCR4 binding can be exploited as an agent for the cell-targeted delivery and internalization of associated antitumor drugs. Sharing chemical and structural traits with antimicrobial peptides (AMPs), the capability of T22 as an antibacterial agent remains unexplored. Here, we have detected T22-associated antimicrobial activity and biofilm formation inhibition over Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, in a spectrum broader than the reference AMP GWH1. In contrast to GWH1, T22 shows neither cytotoxicity over mammalian cells nor hemolytic activity and is active when displayed on protein-only nanoparticles through genetic fusion. Under the pushing need for novel antimicrobial agents, the discovery of T22 as an AMP is particularly appealing, not only as its mere addition to the expanding catalogue of antibacterial drugs. The recognized clinical uses of T22 might allow its combined and multivalent application in complex clinical conditions, such as colorectal cancer, that might benefit from the synchronous destruction of cancer stem cells and local bacterial biofilms.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - José Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, 08916 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, 08916 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| |
Collapse
|
15
|
Álamo P, Parladé E, López-Laguna H, Voltà-Durán E, Unzueta U, Vazquez E, Mangues R, Villaverde A. Ion-dependent slow protein release from in vivo disintegrating micro-granules. Drug Deliv 2021; 28:2383-2391. [PMID: 34747685 PMCID: PMC8584089 DOI: 10.1080/10717544.2021.1998249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Through the controlled addition of divalent cations, polyhistidine-tagged proteins can be clustered in form of chemically pure and mechanically stable micron-scale particles. Under physiological conditions, these materials act as self-disintegrating protein depots for the progressive release of the forming polypeptide, with potential applications in protein drug delivery, diagnosis, or theragnosis. Here we have explored the in vivo disintegration pattern of a set of such depots, upon subcutaneous administration in mice. These microparticles were fabricated with cationic forms of either Zn, Ca, Mg, or Mn, which abound in the mammalian body. By using a CXCR4-targeted fluorescent protein as a reporter building block we categorized those cations regarding their ability to persist in the administration site and to sustain a slow release of functional protein. Ca2+ and specially Zn2+ have been observed as particularly good promoters of time-prolonged protein leakage. The released polypeptides result is available for selective molecular interactions, such as specific fluorescent labeling of tumor tissues, in which the protein reaches nearly steady levels.
Collapse
Affiliation(s)
- Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Eloi Parladé
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eric Voltà-Durán
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
16
|
López-Laguna H, Sánchez JM, Carratalá JV, Rojas-Peña M, Sánchez-García L, Parladé E, Sánchez-Chardi A, Voltà-Durán E, Serna N, Cano-Garrido O, Flores S, Ferrer-Miralles N, Nolan V, de Marco A, Roher N, Unzueta U, Vazquez E, Villaverde A. Biofabrication of functional protein nanoparticles through simple His-tag engineering. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:12341-12354. [PMID: 34603855 PMCID: PMC8483566 DOI: 10.1021/acssuschemeng.1c04256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 05/03/2023]
Abstract
We have developed a simple, robust, and fully transversal approach for the a-la-carte fabrication of functional multimeric nanoparticles with potential biomedical applications, validated here by a set of diverse and unrelated polypeptides. The proposed concept is based on the controlled coordination between Zn2+ ions and His residues in His-tagged proteins. This approach results in a spontaneous and reproducible protein assembly as nanoscale oligomers that keep the original functionalities of the protein building blocks. The assembly of these materials is not linked to particular polypeptide features, and it is based on an environmentally friendly and sustainable approach. The resulting nanoparticles, with dimensions ranging between 10 and 15 nm, are regular in size, are architecturally stable, are fully functional, and serve as intermediates in a more complex assembly process, resulting in the formation of microscale protein materials. Since most of the recombinant proteins produced by biochemical and biotechnological industries and intended for biomedical research are His-tagged, the green biofabrication procedure proposed here can be straightforwardly applied to a huge spectrum of protein species for their conversion into their respective nanostructured formats.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Julieta M. Sánchez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - José Vicente Carratalá
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Mauricio Rojas-Peña
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Laura Sánchez-García
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Eloi Parladé
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Alejandro Sánchez-Chardi
- Servei de
Microscòpia, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat
de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Eric Voltà-Durán
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Naroa Serna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Olivia Cano-Garrido
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Sandra Flores
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - Neus Ferrer-Miralles
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Verónica Nolan
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - Ario de Marco
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica, Nova Gorica 5000, Slovenia
| | - Nerea Roher
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
- Departament
de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Ugutz Unzueta
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
- Biomedical
Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, Barcelona 08025, Spain
| | - Esther Vazquez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Antonio Villaverde
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| |
Collapse
|
17
|
Álamo P, Cedano J, Conchillo-Sole O, Cano-Garrido O, Alba-Castellon L, Serna N, Aviñó A, Carrasco-Diaz LM, Sánchez-Chardi A, Martinez-Torró C, Gallardo A, Cano M, Eritja R, Villaverde A, Mangues R, Vazquez E, Unzueta U. Rational engineering of a human GFP-like protein scaffold for humanized targeted nanomedicines. Acta Biomater 2021; 130:211-222. [PMID: 34116228 DOI: 10.1016/j.actbio.2021.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023]
Abstract
Green fluorescent protein (GFP) is a widely used scaffold for protein-based targeted nanomedicines because of its high biocompatibility, biological neutrality and outstanding structural stability. However, being immunogenicity a major concern in the development of drug carriers, the use of exogenous proteins such as GFP in clinics might be inadequate. Here we report a human nidogen-derived protein (HSNBT), rationally designed to mimic the structural and functional properties of GFP as a scaffold for nanomedicine. For that, a GFP-like β-barrel, containing the G2 domain of the human nidogen, has been rationally engineered to obtain a biologically neutral protein that self-assembles as 10nm-nanoparticles. This scaffold is the basis of a humanized nanoconjugate, where GFP, from the well-characterized protein T22-GFP-H6, has been substituted by the nidogen-derived GFP-like HSNBT protein. The resulting construct T22-HSNBT-H6, is a humanized CXCR4-targeted nanoparticle that selectively delivers conjugated genotoxic Floxuridine into cancer CXCR4+ cells. Indeed, the administration of T22-HSNBT-H6-FdU in a CXCR4-overexpressing colorectal cancer mouse model results in an even more efficient selective antitumoral effect than that shown by its GFP-counterpart, in absence of systemic toxicity. Therefore, the newly developed GFP-like protein scaffold appears as an ideal candidate for the development of humanized protein nanomaterials and successfully supports the tumor-targeted nanoscale drug T22-HSNBT-H6-FdU. STATEMENT OF SIGNIFICANCE: Targeted nanomedicine seeks for humanized and biologically neutral protein carriers as alternative of widely used but immunogenic exogenous protein scaffolds such as green fluorescent protein (GFP). This work reports for the first time the rational engineering of a human homolog of the GFP based in the human nidogen (named HSNBT) that shows full potential to be used in humanized protein-based targeted nanomedicines. This has been demonstrated in T22-HSNBT-H6-FdU, a humanized CXCR4-targeted protein nanoconjugate able to selectively deliver its genotoxic load into cancer cells.
Collapse
|
18
|
Sánchez-García L, Voltà-Durán E, Parladé E, Mazzega E, Sánchez-Chardi A, Serna N, López-Laguna H, Mitstorfer M, Unzueta U, Vázquez E, Villaverde A, de Marco A. Self-Assembled Nanobodies as Selectively Targeted, Nanostructured, and Multivalent Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29406-29415. [PMID: 34129336 PMCID: PMC9262252 DOI: 10.1021/acsami.1c08092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanobodies represent valuable tools in advanced therapeutic strategies but their small size (∼2.5 × ∼ 4 nm) and limited valence for interactions might pose restrictions for in vivo applications, especially regarding their modest capacity for multivalent and cooperative interaction. In this work, modular protein constructs have been designed, in which nanobodies are fused to protein domains to provide further functionalities and to favor oligomerization into stable self-assembled nanoparticles. The nanobody specificity for their targets is maintained in such supramolecular complexes. Also, their diameter around 70 nm and multivalent interactivity should favor binding and penetrability into target cells via solvent-exposed receptor. These concepts have been supported by unrelated nanobodies directed against the ricin toxin (A3C8) and the Her2 receptor (EM1), respectively, that were modified with the addition of a reporter protein and a hexa-histidine tag at the C-terminus that promotes self-assembling. The A3C8-based nanoparticles neutralize the ricin toxin efficiently, whereas the EM1-based nanoparticles enable to selective imaging Her2-positive cells. These findings support the excellent extracellular and intracellular functionality of nanobodies organized in form of oligomeric nanoscale assemblies.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Eloi Parladé
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Elisa Mazzega
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica Nova Gorica 5000, Slovenia
| | - Alejandro Sánchez-Chardi
- Servei
de Microscòpia, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat
de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Naroa Serna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Hèctor López-Laguna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Mara Mitstorfer
- University
of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, 1190 Vienna, Austria
| | - Ugutz Unzueta
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
- Biomedical
Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Ma̲ Claret 167, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Antonio Villaverde
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Ario de Marco
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica Nova Gorica 5000, Slovenia
| |
Collapse
|
19
|
Voltà-Durán E, Serna N, Sánchez-García L, Aviñó A, Sánchez JM, López-Laguna H, Cano-Garrido O, Casanova I, Mangues R, Eritja R, Vázquez E, Villaverde A, Unzueta U. Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomater 2021; 119:312-322. [PMID: 33189955 DOI: 10.1016/j.actbio.2020.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
The possibility to conjugate tumor-targeted cytotoxic nanoparticles and conventional antitumoral drugs in single pharmacological entities would open a wide spectrum of opportunities in nanomedical oncology. This principle has been explored here by using CXCR4-targeted self-assembling protein nanoparticles based on two potent microbial toxins, the exotoxin A from Pseudomonas aeruginosa and the diphtheria toxin from Corynebacterium diphtheriae, to which oligo-floxuridine and monomethyl auristatin E respectively have been chemically coupled. The resulting multifunctional hybrid nanoconjugates, with a hydrodynamic size of around 50 nm, are stable and internalize target cells with a biological impact. Although the chemical conjugation minimizes the cytotoxic activity of the protein partner in the complexes, the concept of drug combination proposed here is fully feasible and highly promising when considering multiple drug treatments aimed to higher effectiveness or when facing the therapy of cancers with acquired resistance to classical drugs.
Collapse
|
20
|
Serna N, Carratalá JV, Parladé E, Sánchez-Chardi A, Aviñó A, Unzueta U, Mangues R, Eritja R, Ferrer-Miralles N, Vazquez E, Villaverde A. Developing Protein-Antitumoral Drug Nanoconjugates as Bifunctional Antimicrobial Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57746-57756. [PMID: 33325705 DOI: 10.1021/acsami.0c18317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel concept about bifunctional antimicrobial drugs, based on self-assembling protein nanoparticles, has been evaluated here over two biofilm-forming pathogens, namely Pseudomonas aeruginosa and Staphylococcus aureus. Two structurally different antimicrobial peptides (GWH1 and PaDBS1R1) were engineered to form regular nanoparticles of around 35 nm, to which the small molecular weight drug Floxuridine was covalently conjugated. Both the assembled peptides and the chemical, a conventional cytotoxic drug used in oncotherapy, showed potent antimicrobial activities that were enhanced by the combination of both molecules in single pharmacological entities. Therefore, the resulting prototypes show promises as innovative nanomedicines, being potential alternatives to conventional antibiotics. The biological performance and easy fabrication of these materials fully support the design of protein-based hybrid constructs for combined molecular therapies, expected to have broad applicability beyond antimicrobial medicines. In addition, the approach taken here validates the functional exploration and repurposing of antitumoral drugs, which at low concentrations perform well as unexpected biofilm-inhibiting agents.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Anna Aviñó
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, 08034 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ramón Eritja
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, 08034 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
21
|
Álamo P, Pallarès V, Céspedes MV, Falgàs A, Sanchez JM, Serna N, Sánchez-García L, Voltà-Duràn E, Morris GA, Sánchez-Chardi A, Casanova I, Mangues R, Vazquez E, Villaverde A, Unzueta U. Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12111004. [PMID: 33105866 PMCID: PMC7690626 DOI: 10.3390/pharmaceutics12111004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fluorescent dye labeling is a common strategy to analyze the fate of administered nanoparticles in living organisms. However, to which extent the labeling processes can alter the original nanoparticle biodistribution has been so far neglected. In this work, two widely used fluorescent dye molecules, namely, ATTO488 (ATTO) and Sulfo-Cy5 (S-Cy5), have been covalently attached to a well-characterized CXCR4-targeted self-assembling protein nanoparticle (known as T22-GFP-H6). The biodistribution of labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles has been then compared to that of the non-labeled nanoparticle in different CXCR4+ tumor mouse models. We observed that while parental T22-GFP-H6 nanoparticles accumulated mostly and specifically in CXCR4+ tumor cells, labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles showed a dramatic change in the biodistribution pattern, accumulating in non-target organs such as liver or kidney while reducing tumor targeting capacity. Therefore, the use of such labeling molecules should be avoided in target and non-target tissue uptake studies during the design and development of targeted nanoscale drug delivery systems, since their effect over the fate of the nanomaterial can lead to considerable miss-interpretations of the actual nanoparticle biodistribution.
Collapse
Affiliation(s)
- Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - María Virtudes Céspedes
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
| | - Aïda Falgàs
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Julieta M. Sanchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICTA & Cátedra de Química Biológica, Departamento de Química, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET—Universidad Nacional de Córdoba), FCEFyN, UNC. Av. Velez Sarsfield 1611, X 5016GCA Córdoba, Argentina
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eric Voltà-Duràn
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Gordon A. Morris
- Department of Chemical Sciences, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| |
Collapse
|
22
|
López-Laguna H, Sánchez J, Unzueta U, Mangues R, Vázquez E, Villaverde A. Divalent Cations: A Molecular Glue for Protein Materials. Trends Biochem Sci 2020; 45:992-1003. [PMID: 32891514 DOI: 10.1016/j.tibs.2020.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Among inorganic materials, divalent cations modulate thousands of physiological processes that support life. Their roles in protein assembly and aggregation are less known, although they are progressively being brought to light. We review the structural roles of divalent cations here, as well as the novel protein materials that are under development, in which they are used as glue-like agents. More specifically, we discuss how mechanically stable nanoparticles, fibers, matrices, and hydrogels are generated through their coordination with histidine-rich proteins. We also describe how the rational use of divalent cations combined with simple protein engineering offers unexpected and very simple biochemical approaches to biomaterial design that might address unmet clinical needs in precision medicine.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Julieta Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, X 5016GCA, Córdoba, Argentina
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Josep Carreras Research Institute, 08041 Barcelona, Spain.
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Josep Carreras Research Institute, 08041 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
23
|
Sánchez-García L, Sala R, Serna N, Álamo P, Parladé E, Alba-Castellón L, Voltà-Durán E, Sánchez-Chardi A, Unzueta U, Vázquez E, Mangues R, Villaverde A. A refined cocktailing of pro-apoptotic nanoparticles boosts anti-tumor activity. Acta Biomater 2020; 113:584-596. [PMID: 32603867 DOI: 10.1016/j.actbio.2020.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
A functional 29 amino acid-segment of the helix α5 from the human BAX protein has been engineered for production in recombinant bacteria as self-assembling, GFP-containing fluorescent nanoparticles, which are targeted to the tumoral marker CXCR4. These nanoparticles, of around 34 nm in diameter, show a moderate tumor biodistribution and limited antitumoral effect when systemically administered to mouse models of human CXCR4+ colorectal cancer (at 300 μg dose). However, if such BAX nanoparticles are co-administered in cocktail with equivalent nanoparticulate versions of BAK and PUMA proteins at the same total protein dose (300 μg), protein biodistribution and stability in tumor is largely improved, as determined by fluorescence profiles. This fact leads to a potent and faster destruction of tumor tissues when compared to individual pro-apoptotic factors. The analysis and interpretation of the boosted effect, from both the structural and functional sides, offers clues for the design of more efficient nanomedicines and theragnostic agents in oncology based on precise cocktails of human proteins. STATEMENT OF SIGNIFICANCE: Several human pro-apoptotic peptides (namely BAK, BAX and PUMA) have been engineered as self-assembling protein nanoparticles targeted to the tumoral marker CXCR4. The systemic administration of the same final amounts of those materials as single drugs, or as combinations of two or three of them, shows disparate intensities of antitumoral effects in a mouse model of human colorectal cancer, which are boosted in the triple combination on a non-additive basis. The superiority of the combined administration of pro-apoptotic agents, acting at different levels of the apoptotic cascade, opens a plethora of possibilities for the development of effective and selective cancer therapies based on the precise cocktailing of pro-apoptotic nanoparticulate agents.
Collapse
|
24
|
Zou Q, Chang R, Yan X. Self-Assembling Proteins for Design of Anticancer Nanodrugs. Chem Asian J 2020; 15:1405-1419. [PMID: 32147947 DOI: 10.1002/asia.202000135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Inspired by the diverse protein-based structures and materials in organisms, proteins have been expected as promising biological components for constructing nanomaterials toward various applications. In numerous studies protein-based nanomaterials have been constructed with the merits of abundant bioactivity and good biocompatibility. However, self-assembly of proteins as a dominant approach in constructing anticancer nanodrugs has not been reviewed. Here, we provide a comprehensive account of the role of protein self-assembly in fabrication, regulation, and application of anticancer nanodrugs. The supramolecular strategies, building blocks, and molecular interactions of protein self-assembly as well as the properties, functions, and applications of the resulting nanodrugs are discussed. The applications in chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, gene therapy, and combination therapy are included. Especially, manipulation of molecular interactions for realizing cancer-specific response and cancer theranostics are emphasized. By expounding the impact of molecular interactions on therapeutic activity, rational design of highly efficient protein-based nanodrugs for precision anticancer therapy can be envisioned. Also, the challenges and perspectives in constructing nanodrugs based on protein self-assembly are presented to advance clinical translation of protein-based nanodrugs and next-generation nanomedicine.
Collapse
Affiliation(s)
- Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Pesarrodona M, Sánchez-García L, Seras-Franzoso J, Sánchez-Chardi A, Baltá-Foix R, Cámara-Sánchez P, Gener P, Jara JJ, Pulido D, Serna N, Schwartz S, Royo M, Villaverde A, Abasolo I, Vazquez E. Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5381-5388. [PMID: 31840972 DOI: 10.1021/acsami.9b15803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Five peptide ligands of four different cell surface receptors (nucleolin, CXCR1, CMKLR1, and CD44v6) have been evaluated as targeting moieties for triple-negative human breast cancers. Among them, the peptide F3, derived from phage display, promotes the fast and efficient internalization of a genetically fused green fluorescent protein (GFP) inside MDA-MB-231 cancer stem cells in a specific receptor-dependent fashion. The further engineering of this protein into the modular construct F3-RK-GFP-H6 and the subsequent construct F3-RK-PE24-H6 resulted in self-assembling polypeptides that organize as discrete and regular nanoparticles. These materials, 15-20 nm in size, show enhanced nucleolin-dependent cell penetrability. We show that the F3-RK-PE24-H6, based on the Pseudomonas aeruginosa exotoxin A (PE24) as a core functional domain, is highly cytotoxic over target cells. The combination of F3, the cationic peptide (RK)n, and the toxin domain PE24 in such unusual presentation appears as a promising approach to cell-targeted drug carriers in breast cancers and addresses selective drug delivery in otherwise difficult-to-treat triple-negative breast cancers.
Collapse
Affiliation(s)
- Mireia Pesarrodona
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | | | | | | | - Patricia Cámara-Sánchez
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Petra Gener
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - José Juan Jara
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Daniel Pulido
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
- Multivalent Systems for Nanomedicine , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Barcelona , 08034 , Spain
| | - Naroa Serna
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Simó Schwartz
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Miriam Royo
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
- Multivalent Systems for Nanomedicine , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Barcelona , 08034 , Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Ibane Abasolo
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Esther Vazquez
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| |
Collapse
|
26
|
Sánchez JM, López‐Laguna H, Álamo P, Serna N, Sánchez‐Chardi A, Nolan V, Cano‐Garrido O, Casanova I, Unzueta U, Vazquez E, Mangues R, Villaverde A. Artificial Inclusion Bodies for Clinical Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902420. [PMID: 32042562 PMCID: PMC7001620 DOI: 10.1002/advs.201902420] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Bacterial inclusion bodies (IBs) are mechanically stable protein particles in the microscale, which behave as robust, slow-protein-releasing amyloids. Upon exposure to cultured cells or upon subcutaneous or intratumor injection, these protein materials secrete functional IB polypeptides, functionally mimicking the endocrine release of peptide hormones from secretory amyloid granules. Being appealing as delivery systems for prolonged protein drug release, the development of IBs toward clinical applications is, however, severely constrained by their bacterial origin and by the undefined and protein-to-protein, batch-to-batch variable composition. In this context, the de novo fabrication of artificial IBs (ArtIBs) by simple, cell-free physicochemical methods, using pure components at defined amounts is proposed here. By this, the resulting functional protein microparticles are intriguing, chemically defined biomimetic materials that replicate relevant functionalities of natural IBs, including mammalian cell penetration and local or remote release of functional ArtIB-forming protein. In default of severe regulatory issues, the concept of ArtIBs is proposed as a novel exploitable category of biomaterials for biotechnological and biomedical applications, resulting from simple fabrication and envisaging soft developmental routes to clinics.
Collapse
Affiliation(s)
- Julieta M. Sánchez
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET‐Universidad Nacional de Córdoba)ICTA & Cátedra de Química BiológicaDepartamento de QuímicaFCEFyN, UNC. Av. Velez Sarsfield 1611X 5016GCACórdobaArgentina
| | - Hèctor López‐Laguna
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
| | - Patricia Álamo
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau) and Josep Carreras Research InstituteHospital de la Santa Creu i Sant Pau08041BarcelonaSpain
| | - Naroa Serna
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
| | | | - Verónica Nolan
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET‐Universidad Nacional de Córdoba)ICTA & Cátedra de Química BiológicaDepartamento de QuímicaFCEFyN, UNC. Av. Velez Sarsfield 1611X 5016GCACórdobaArgentina
| | - Olivia Cano‐Garrido
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Present address:
Nanoligent SLEdifici EurekaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Isolda Casanova
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau) and Josep Carreras Research InstituteHospital de la Santa Creu i Sant Pau08041BarcelonaSpain
| | - Ugutz Unzueta
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau) and Josep Carreras Research InstituteHospital de la Santa Creu i Sant Pau08041BarcelonaSpain
| | - Esther Vazquez
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
| | - Ramon Mangues
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau) and Josep Carreras Research InstituteHospital de la Santa Creu i Sant Pau08041BarcelonaSpain
| | - Antonio Villaverde
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
| |
Collapse
|
27
|
Unzueta U, Roldán M, Pesarrodona M, Benitez R, Sánchez-Chardi A, Conchillo-Solé O, Mangues R, Villaverde A, Vázquez E. Self-assembling as regular nanoparticles dramatically minimizes photobleaching of tumour-targeted GFP. Acta Biomater 2020; 103:272-280. [PMID: 31812843 DOI: 10.1016/j.actbio.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
Fluorescent proteins are useful imaging and theranostic agents, but their potential superiority over alternative dyes is weakened by substantial photobleaching under irradiation. Enhancing protein photostability has been attempted through diverse strategies, with irregular results and limited applicability. In this context, we wondered if the controlled oligomerization of Green Fluorescent Protein (GFP) as nanoscale supramolecular complexes could stabilize the fluorophore through the newly formed protein-protein contacts, and thus, enhance its global photostability. For that, we have here analyzed the photobleaching profile of several GFP versions, engineered to self-assemble as tumour-homing nanoparticles with different targeting, size and structural stability. This has been done under prolonged irradiation in confocal laser scanning microscopy and by small-angle X-ray scattering. The results show that the oligomerization of GFP at the nanoscale enhances, by more than seven-fold, the stability of fluorescence emission. Interestingly, GFP nanoparticles are much more resistant to X-ray damage than the building block counterparts, indicating that the gained photostability is linked to enhanced structural resistance to radiation. Therefore, the controlled oligomerization of self-assembling fluorescent proteins as protein nanoparticles is a simple, versatile and powerful method to enhance their photostability for uses in precision imaging and therapy. STATEMENT OF SIGNIFICANCE: Fluorescent protein assembly into regular and highly symmetric nanoscale structures has been identified to confer enhanced structural stability against radiation stresses dramatically reducing their photobleaching. Being this the main bottleneck in the use of fluorescent proteins for imaging and theranostics, this protein architecture engineering principle appears as a powerful method to enhance their photostability for a broad applicability in precision imaging, drug delivery and theranostics.
Collapse
|
28
|
Sala R, Sánchez-García L, Serna N, Céspedes MV, Casanova I, Roldán M, Sánchez-Chardi A, Unzueta U, Vázquez E, Mangues R, Villaverde A. Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4 + colorectal cancer. Acta Biomater 2019; 99:426-432. [PMID: 31494293 DOI: 10.1016/j.actbio.2019.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
By the appropriate selection of functional peptides and proper accommodation sites, we have generated a set of multifunctional proteins that combine selectivity for CXCR4+ cell binding and relevant endosomal escape capabilities linked to the viral peptide HA2. In particular, the construct T22-GFP-HA2-H6 forms nanoparticles that upon administration in mouse models of human, CXCR4+ colorectal cancer, accumulates in primary tumor at levels significantly higher than the parental T22-GFP-H6 HA2-lacking version. The in vivo application of a CXCR4 antagonist has confirmed the prevalence of the CXCR4+ tumor tissue selectivity over unspecific cell penetration, upon systemic administration of the material. Such specificity is combined with improved endosomal escape, what overall results in a precise and highly efficient tumor biodistribution. These data strongly support the functional recruitment as a convenient approach to generate protein materials for clinical applications. More precisely, they also support the unexpected concept that enhancing the unspecific membrane activity of a protein material does not necessarily compromise, but it can even improve, the selective cell targeting offered by an accompanying functional module. STATEMENT OF SIGNIFICANCE: We have shown here that the combination of cell-penetrating and tumor cell-targeting peptides dramatically enhances precise tumor accumulation of protein-only nanoparticles intended for selective drug delivery, in mouse models of human colorectal cancer. This fact is a step forward for the rational design of multifunctional protein nanomaterials for improved cancer therapies.
Collapse
Affiliation(s)
- Rita Sala
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal, Servei d'Anatomia Patològica, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
29
|
Céspedes MV, Unzueta U, Aviñó A, Gallardo A, Álamo P, Sala R, Sánchez-Chardi A, Casanova I, Mangues MA, Lopez-Pousa A, Eritja R, Villaverde A, Vázquez E, Mangues R. Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Mol Med 2019; 10:emmm.201708772. [PMID: 30190334 PMCID: PMC6180303 DOI: 10.15252/emmm.201708772] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective elimination of metastatic stem cells (MetSCs) promises to block metastatic dissemination. Colorectal cancer (CRC) cells overexpressing CXCR4 display trafficking functions and metastasis‐initiating capacity. We assessed the antimetastatic activity of a nanoconjugate (T22‐GFP‐H6‐FdU) that selectively delivers Floxuridine to CXCR4+ cells. In contrast to free oligo‐FdU, intravenous T22‐GFP‐H6‐FdU selectively accumulates and internalizes in CXCR4+ cancer cells, triggering DNA damage and apoptosis, which leads to their selective elimination and to reduced tumor re‐initiation capacity. Repeated T22‐GFP‐H6‐FdU administration in cell line and patient‐derived CRC models blocks intravasation and completely prevents metastases development in 38–83% of mice, while showing CXCR4 expression‐dependent and site‐dependent reduction in foci number and size in liver, peritoneal, or lung metastases in the rest of mice, compared to free oligo‐FdU. T22‐GFP‐H6‐FdU induces also higher regression of established metastases than free oligo‐FdU, with negligible distribution or toxicity in normal tissues. This targeted drug delivery approach yields potent antimetastatic effect, through selective depletion of metastatic CXCR4+ cancer cells, and validates metastatic stem cells (MetSCs) as targets for clinical therapy.
Collapse
Affiliation(s)
- María Virtudes Céspedes
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Ugutz Unzueta
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Anna Aviñó
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.,Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
| | - Alberto Gallardo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.,Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Patricia Álamo
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Rita Sala
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | | | - Isolda Casanova
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - María Antònia Mangues
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.,Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antonio Lopez-Pousa
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.,Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ramón Eritja
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.,Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain .,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón Mangues
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Santa Creu i Sant Pau, Barcelona, Spain .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| |
Collapse
|
30
|
Serna N, Sánchez JM, Unzueta U, Sánchez-García L, Sánchez-Chardi A, Mangues R, Vázquez E, Villaverde A. Recruiting potent membrane penetrability in tumor cell-targeted protein-only nanoparticles. NANOTECHNOLOGY 2019; 30:115101. [PMID: 30561375 DOI: 10.1088/1361-6528/aaf959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The membrane pore-forming activities of the antimicrobial peptide GWH1 have been evaluated in combination with the CXCR4-binding properties of the peptide T22, in self-assembling protein nanoparticles with high clinical potential. The resulting materials, of 25 nm in size and with regular morphologies, show a dramatically improved cell penetrability into CXCR4+ cells (more than 10-fold) and enhanced endosomal escape (the lysosomal degradation dropping from 90% to 50%), when compared with equivalent protein nanoparticles lacking GWH1. These data reveal that GWH1 retains its potent membrane activity in form of nanostructured protein complexes. On the other hand, the specificity of T22 in the CXCR4 receptor binding is subsequently minimized but, unexpectedly, not abolished by the presence of the antimicrobial peptide. The functional combination T22-GWH1 results in 30% of the nanoparticles entering cells via CXCR4 while also exploiting pore-based uptake. Such functional materials are capable to selectively deliver highly potent cytotoxic drugs upon chemical conjugation, promoting CXCR4-dependent cell death. These data support the further development of GWH1-empowered cell-targeted proteins as nanoscale drug carriers for precision medicines. This is a very promising approach to overcome lysosomal degradation of protein nanostructured materials with therapeutic value.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain. Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, E-08193 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
32
|
Assembly of histidine-rich protein materials controlled through divalent cations. Acta Biomater 2019; 83:257-264. [PMID: 30366134 DOI: 10.1016/j.actbio.2018.10.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/29/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Nanostructured protein materials show exciting biomedical applications, since both structure and function can be genetically programmed. In particular, self-assembling histidine-rich proteins benefit from functional plasticity that allows the generation of protein-only nanoparticles for cell targeted drug delivery. However, the rational development of constructs with improved functions is limited by a poor control of the oligomerization process. By exploring cross-interactions between histidine-tagged building blocks, we have identified a critical architectonic role of divalent cations. The obtained data instruct about how histidine-rich protein materials can be assembled, disassembled and reassembled within the nanoscale through the stoichiometric manipulation of divalent ions, in a biochemical approach to biomaterials design. STATEMENT OF SIGNIFICANCE: Divalent metal and non-metal cations such as Ni2+, Cu2+ Ca2+ and Zn2+ have been identified as unexpected molecular tools to control the assembling, disassembling and reassembling of histidine-rich protein materials at the nanoscale. Their stoichiometric manipulation allows generating defined protein-protein cross-molecular contacts between building blocks, for a powerful nano-biochemical manipulation of the material's architecture.
Collapse
|
33
|
Espinoza EM, Clark JA, Derr JB, Bao D, Georgieva B, Quina FH, Vullev VI. How Do Amides Affect the Electronic Properties of Pyrene? ACS OMEGA 2018; 3:12857-12867. [PMID: 31458010 PMCID: PMC6644773 DOI: 10.1021/acsomega.8b01581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 05/12/2023]
Abstract
The electronic properties of amide linkers, which are intricate components of biomolecules, offer a wealth of unexplored possibilities. Herein, we demonstrate how the different modes of attaching an amide to a pyrene chromophore affect the electrochemical and optical properties of the chromophore. Thus, although they cause minimal spectral shifts, amide substituents can improve either the electron-accepting or electron-donating capabilities of pyrene. Specifically, inversion of the amide orientation shifts the reduction potentials by 200 mV. These trends indicate that, although amides affect to a similar extent the energies of the ground and singlet excited states of pyrene, the effects on the doublet states of its radical ions are distinctly different. This behavior reflects the unusually strong orientation dependence of the resonance effects of amide substituents, which should extend to amide substituents on other types of chromophores in general. These results represent an example where the Hammett sigma constants fail to predict substituent effects on electrochemical properties. On the other hand, Swain-Lupton parameters are found to be in good agreement with the observed trends. Examination of the frontier orbitals of the pyrene derivatives and their components reveals the underlying reason for the observed amide effects on the electronic properties of this polycyclic aromatic hydrocarbon and points to key molecular-design strategies for electronic and energy-conversion systems.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
- Instituto
de Química, Universidade de São
Paulo, Avenida Lineu
Prestes 748, Cidade Universitária, São
Paulo 05508-000, Brazil
| | - John A. Clark
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - James B. Derr
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Duoduo Bao
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Boriana Georgieva
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Frank H. Quina
- Instituto
de Química, Universidade de São
Paulo, Avenida Lineu
Prestes 748, Cidade Universitária, São
Paulo 05508-000, Brazil
- E-mail: (F.H.Q.)
| | - Valentine I. Vullev
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
- E-mail: (V.I.V.)
| |
Collapse
|
34
|
Sánchez JM, Sánchez-García L, Pesarrodona M, Serna N, Sánchez-Chardi A, Unzueta U, Mangues R, Vázquez E, Villaverde A. Conformational Conversion during Controlled Oligomerization into Nonamylogenic Protein Nanoparticles. Biomacromolecules 2018; 19:3788-3797. [PMID: 30052033 DOI: 10.1021/acs.biomac.8b00924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein materials are rapidly gaining interest in materials sciences and nanomedicine because of their intrinsic biocompatibility and full biodegradability. The controlled construction of supramolecular entities relies on the controlled oligomerization of individual polypeptides, achievable through different strategies. Because of the potential toxicity of amyloids, those based on alternative molecular organizations are particularly appealing, but the structural bases on nonamylogenic oligomerization remain poorly studied. We have applied spectrofluorimetry and spectropolarimetry to identify the conformational conversion during the oligomerization of His-tagged cationic stretches into regular nanoparticles ranging around 11 nm, useful for tumor-targeted drug delivery. We demonstrate that the novel conformation acquired by the proteins, as building blocks of these supramolecular assemblies, shows different extents of compactness and results in a beta structure enrichment that enhances their structural stability. The conformational profiling presented here offers clear clues for understanding and tailoring the process of nanoparticle formation through the use of cationic and histidine rich stretches in the context of protein materials usable in advanced nanomedical strategies.
Collapse
Affiliation(s)
- Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina, CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba, Argentina , Av. Velez Sarsfield 1611 , X5016GCA Córdoba , Argentina
| | - Laura Sánchez-García
- Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | | | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau , 08025 Barcelona , Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau , 08025 Barcelona , Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| |
Collapse
|
35
|
Wei DX, Dao JW, Chen GQ. A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802273. [PMID: 29920804 DOI: 10.1002/adma.201802273] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/29/2018] [Indexed: 05/22/2023]
Abstract
To avoid large open surgery using scaffold transplants, small-sized cell carriers are employed to repair complexly shaped tissue defects. However, most cell carriers show poor cell adherences and viability. Therefore, polyhydroxyalkanoate (PHA), a natural biopolymer, is used to prepare highly open porous microspheres (OPMs) of 300-360 µm in diameter, combining the advantages of microspheres and scaffolds to serve as injectable carriers harboring proliferating stem cells. In addition to the convenient injection to a defected tissue, and in contrast to poor performances of OPMs made of polylactides (PLA OPMs) and traditional less porous hollow microspheres (PHA HMs), PHA OPMs present suitable surface pores of 10-60 µm and interconnected passages with an average size of 8.8 µm, leading to a high in vitro cell adhesion of 93.4%, continuous proliferation for 10 d and improved differentiation of human bone marrow mesenchymal stem cells (hMSCs). PHA OPMs also support stronger osteoblast-regeneration compared with traditional PHA HMs, PLA OPMs, commercial hyaluronic acid hydrogels, and carrier-free hMSCs in an ectopic bone-formation mouse model. PHA OPMs protect cells against stresses during injection, allowing more living cells to proliferate and migrate to damaged tissues. They function like a micro-Noah's Ark to safely transport cells to a defect tissue.
Collapse
Affiliation(s)
- Dai-Xu Wei
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Wei Dao
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Nano and Micro Mechanics, Beijing Key Laboratory of Protein Therapeutics, Center for Synthetic and Systems Biology Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1777-1786. [DOI: 10.1016/j.nano.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/25/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
|
37
|
Díaz R, Pallarès V, Cano-Garrido O, Serna N, Sánchez-García L, Falgàs A, Pesarrodona M, Unzueta U, Sánchez-Chardi A, Sánchez JM, Casanova I, Vázquez E, Mangues R, Villaverde A. Selective CXCR4 + Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800665. [PMID: 29845742 DOI: 10.1002/smll.201800665] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/24/2018] [Indexed: 05/14/2023]
Abstract
Under the unmet need of efficient tumor-targeting drugs for oncology, a recombinant version of the plant toxin ricin (the modular protein T22-mRTA-H6) is engineered to self-assemble as protein-only, CXCR4-targeted nanoparticles. The soluble version of the construct self-organizes as regular 11 nm planar entities that are highly cytotoxic in cultured CXCR4+ cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of magnitude. The chemical inhibition of CXCR4 binding sites in exposed cells results in a dramatic reduction of the cytotoxic potency, proving the receptor-dependent mechanism of cytotoxicity. The insoluble version of T22-mRTA-H6 is, contrarily, moderately active, indicating that free, nanostructured protein is the optimal drug form. In animal models of acute myeloid leukemia, T22-mRTA-H6 nanoparticles show an impressive and highly selective therapeutic effect, dramatically reducing the leukemia cells affectation of clinically relevant organs. Functionalized T22-mRTA-H6 nanoparticles are then promising prototypes of chemically homogeneous, highly potent antitumor nanostructured toxins for precise oncotherapies based on self-mediated intracellular drug delivery.
Collapse
Affiliation(s)
- Raquel Díaz
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | | | - Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA and Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC, Av. Velez Sarsfield 1611, X 5016GCA, Córdoba, Argentina
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
38
|
Unzueta U, Cespedes MV, Sala R, Alamo P, Sánchez-Chardi A, Pesarrodona M, Sánchez-García L, Cano-Garrido O, Villaverde A, Vázquez E, Mangues R, Seras-Franzoso J. Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach. J Control Release 2018; 279:29-39. [PMID: 29641987 DOI: 10.1016/j.jconrel.2018.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/07/2023]
Abstract
Sustained release of drug delivery systems (DDS) has the capacity to increase cancer treatment efficiency in terms of drug dosage reduction and subsequent decrease of deleterious side effects. In this regard, many biomaterials are being investigated but none offers morphometric and functional plasticity and versatility comparable to protein-based nanoparticles (pNPs). Here we describe a new DDS by which pNPs are fabricated as bacterial inclusion bodies (IB), that can be easily isolated, subcutaneously injected and used as reservoirs for the sustained release of targeted pNPs. Our approach combines the high performance of pNP, regarding specific cell targeting and biodistribution with the IB supramolecular organization, stability and cost effectiveness. This renders a platform able to provide a sustained source of CXCR4-targeted pNPs that selectively accumulate in tumor cells in a CXCR4+ colorectal cancer xenograft model. In addition, the proposed system could be potentially adapted to any other protein construct offering a plethora of possible new therapeutic applications in nanomedicine.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - María Virtudes Cespedes
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-SantPau), Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Rita Sala
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-SantPau), Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Patricia Alamo
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-SantPau), Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | | | - Mireia Pesarrodona
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Laura Sánchez-García
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Olivia Cano-Garrido
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Esther Vázquez
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain.
| | - Ramón Mangues
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-SantPau), Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
| | - Joaquin Seras-Franzoso
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
39
|
de Pinho Favaro MT, Sánchez-García L, Sánchez-Chardi A, Roldán M, Unzueta U, Serna N, Cano-Garrido O, Azzoni AR, Ferrer-Miralles N, Villaverde A, Vázquez E. Protein nanoparticles are nontoxic, tuneable cell stressors. Nanomedicine (Lond) 2018; 13:255-268. [DOI: 10.2217/nnm-2017-0294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Nanoparticle–cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. Results: By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. Conclusion: The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av Candido Rondon, 400, 13083–875 Campinas, SP, Brazil
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | | | - Mónica Roldán
- Unitat de Microscòpia Confocal, IPER, Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Adriano Rodrigues Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, No. 380, 05508-900, São Paulo, SP, Brazil
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
40
|
Sánchez-García L, Serna N, Álamo P, Sala R, Céspedes MV, Roldan M, Sánchez-Chardi A, Unzueta U, Casanova I, Mangues R, Vázquez E, Villaverde A. Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs. J Control Release 2018; 274:81-92. [PMID: 29408658 DOI: 10.1016/j.jconrel.2018.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
Loading capacity and drug leakage from vehicles during circulation in blood is a major concern when developing nanoparticle-based cell-targeted cytotoxics. To circumvent this potential issue it would be convenient the engineering of drugs as self-delivered nanoscale entities, devoid of any heterologous carriers. In this context, we have here engineered potent protein toxins, namely segments of the diphtheria toxin and the Pseudomonas aeruginosa exotoxin as self-assembling, self-delivered therapeutic materials targeted to CXCR4+ cancer stem cells. The systemic administration of both nanostructured drugs in a colorectal cancer xenograft mouse model promotes efficient and specific local destruction of target tumor tissues and a significant reduction of the tumor volume. This observation strongly supports the concept of intrinsically functional protein nanoparticles, which having a dual role as drug and carrier, are designed to be administered without the assistance of heterologous vehicles.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rita Sala
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Mònica Roldan
- Unitat de Microscòpia Confocal, Servei d'Anatomia Patològica, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Edifici Consultes Externes, Passeig Sant Joan de Déu, 2, Planta 0, 08950, Esplugues de Llobregat, Barcelona, Spain
| | | | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
41
|
Cano-Garrido O, Garcia-Fruitós E, Villaverde A, Sánchez-Chardi A. Improving Biomaterials Imaging for Nanotechnology: Rapid Methods for Protein Localization at Ultrastructural Level. Biotechnol J 2018; 13:e1700388. [PMID: 29271611 DOI: 10.1002/biot.201700388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/07/2017] [Indexed: 11/06/2022]
Abstract
The preparation of biological samples for electron microscopy is material- and time-consuming because it is often based on long protocols that also may produce artifacts. Protein labeling for transmission electron microscopy (TEM) is such an example, taking several days. However, for protein-based nanotechnology, high resolution imaging techniques are unique and crucial tools for studying the spatial distribution of these molecules, either alone or as components of biomaterials. In this paper, we tested two new short methods of immunolocalization for TEM, and compared them with a standard protocol in qualitative and quantitative approaches by using four protein-based nanoparticles. We reported a significant increase of labeling per area of nanoparticle in both new methodologies (H = 19.811; p < 0.001) with all the model antigens tested: GFP (H = 22.115; p < 0.001), MMP-2 (H = 19.579; p < 0.001), MMP-9 (H = 7.567; p < 0.023), and IFN-γ (H = 62.110; p < 0.001). We also found that the most suitable protocol for labeling depends on the nanoparticle's tendency to aggregate. Moreover, the shorter methods reduce artifacts, time (by 30%), residues, and reagents hindering, losing, or altering antigens, and obtaining a significant increase of protein localization (of about 200%). Overall, this study makes a step forward in the development of optimized protocols for the nanoscale localization of peptides and proteins within new biomaterials.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08320, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08320, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Elena Garcia-Fruitós
- Departament de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui 08140, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08320, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08320, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08320, Spain
| |
Collapse
|
42
|
Unzueta U, Serna N, Sánchez-García L, Roldán M, Sánchez-Chardi A, Mangues R, Villaverde A, Vázquez E. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks. NANOTECHNOLOGY 2017; 28:505102. [PMID: 29072576 DOI: 10.1088/1361-6528/aa963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, E-08025 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Serna N, Sánchez-García L, Unzueta U, Díaz R, Vázquez E, Mangues R, Villaverde A. Protein-Based Therapeutic Killing for Cancer Therapies. Trends Biotechnol 2017; 36:318-335. [PMID: 29246477 DOI: 10.1016/j.tibtech.2017.11.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
Abstract
The treatment of some high-incidence human diseases is based on therapeutic cell killing. In cancer this is mainly achieved by chemical drugs that are systemically administered to reach effective toxic doses. As an innovative alternative, cytotoxic proteins identified in nature can be adapted as precise therapeutic agents. For example, individual toxins and venom components, proapoptotic factors, and antimicrobial peptides from bacteria, animals, plants, and humans have been engineered as highly potent drugs. In addition to the intrinsic cytotoxic activities of these constructs, their biological fabrication by DNA recombination allows the recruitment, in single pharmacological entities, of diverse functions of clinical interest such as specific cell-surface receptor binding, self-activation, and self-assembling as nanoparticulate materials, with wide applicability in cell-targeted oncotherapy and theragnosis.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Ugutz Unzueta
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Raquel Díaz
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Ramón Mangues
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
44
|
Serna N, Sánchez-García L, Sánchez-Chardi A, Unzueta U, Roldán M, Mangues R, Vázquez E, Villaverde A. Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity. Acta Biomater 2017; 60:256-263. [PMID: 28735028 DOI: 10.1016/j.actbio.2017.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022]
Abstract
The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics. STATEMENT OF SIGNIFICANCE The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Mónica Roldán
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
45
|
Pesarrodona M, Crosas E, Cubarsi R, Sánchez-Chardi A, Saccardo P, Unzueta U, Rueda F, Sanchez-García L, Serna N, Mangues R, Ferrer-Miralles N, Vázquez E, Villaverde A. Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. NANOSCALE 2017; 9:6427-6435. [PMID: 28463351 DOI: 10.1039/c6nr09182b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembling proteins are gaining attention as building blocks for application-tailored nanoscale materials. This is mostly due to the biocompatibility, biodegradability, and functional versatility of peptide chains. Such a potential for adaptability is particularly high in the case of recombinant proteins, which are produced in living cells and are suitable for genetic engineering. However, how the cell factory itself and the particular protein folding machinery influence the architecture and function of the final material is still poorly explored. In this study we have used diverse analytical approaches, including small-angle X-ray scattering (SAXS) and field emission scanning electron microscopy (FESEM) to determine the fine architecture and geometry of recombinant, tumor-targeted protein nanoparticles of interest as drug carriers, constructed on a GFP-based modular scheme. A set of related oligomers were produced in alternative Escherichia coli strains with variant protein folding networks. This resulted in highly regular populations of morphometric types, ranging from 2.4 to 28 nm and from spherical- to rod-shaped materials. These differential geometric species, whose relative proportions were determined by the features of the producing strain, were found associated with particular fluorescence emission, cell penetrability and receptor specificity profiles. Then, nanoparticles with optimal properties could be analytically identified and further isolated from producing cells for use. The cell's protein folding machinery greatly modulates the final geometry reached by the constructs, which in turn defines the key parameters and biological performance of the material.
Collapse
Affiliation(s)
- Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eva Crosas
- ALBA Synchrotron, Carrer de la llum, 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Rafael Cubarsi
- Department of Mathematics, Campus Diagonal Sud, Edifici U, Universitat Politècnica de Catalunya, Carrer de Pau Gargallo, 5, 08028 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain and Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Leukemia Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Fabian Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Laura Sanchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain and Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Leukemia Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
46
|
Unzueta U, Seras-Franzoso J, Céspedes MV, Saccardo P, Cortés F, Rueda F, Garcia-Fruitós E, Ferrer-Miralles N, Mangues R, Vázquez E, Villaverde A. Engineering tumor cell targeting in nanoscale amyloidal materials. NANOTECHNOLOGY 2017; 28:015102. [PMID: 27893441 DOI: 10.1088/0957-4484/28/1/015102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sánchez-García L, Serna N, Mattanovich M, Cazzanelli P, Sánchez-Chardi A, Conchillo-Solé O, Cortés F, Daura X, Unzueta U, Mangues R, Villaverde A, Vázquez E. The fusogenic peptide HA2 impairs selectivity of CXCR4-targeted protein nanoparticles. Chem Commun (Camb) 2017; 53:4565-4568. [DOI: 10.1039/c6cc09900a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate here that the genetic incorporation of the fusogenic peptide HA2 to a CXCR4-targeted protein nanoparticle dramatically reduces the specificity of the interaction between nanoparticles and cell receptor.
Collapse
|
48
|
Sun Y, Zhang Y, Tian L, Zhao Y, Wu D, Xue W, Ramakrishna S, Wu W, He L. Self-assembly behaviors of molecular designer functional RADA16-I peptides: influence of motifs, pH, and assembly time. ACTA ACUST UNITED AC 2016; 12:015007. [PMID: 27934778 DOI: 10.1088/1748-605x/12/1/015007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the current study, we present three designer self-assembling peptides (SAPs) by appending RADA 16-I with epitopes IKVAV, RGD, and YIGSR, which have different net charges and amphiphilic properties at neutral pH. The self-assembly of the designer SAPs is intensively investigated as a function of pH, canion type, and assembly time. The morphologies of the designer SAPs were studied by atomic force microscope. The secondary structure was investigated by circular dichroism. The dynamic viscoelasticity of designer SAP solutions was examined during titration with different alkaline reagents. Our study indicated that both electrostatic and hydrophilic/hydrophobic interactions of the motifs exhibited influences on the self-assembly, consequentially affecting the fiber morphologies and rheological properties. Moreover, NaOH induced a quicker assembly/reassembly of the designer SAPs than Tris because of its strong ionic strength. Therefore, our study gained comprehensive insight into the self-assembling mechanism as references for developing RADA 16-I-based functional SAPs.
Collapse
Affiliation(s)
- Yuqiao Sun
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China. Contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rueda F, Gasser B, Sánchez-Chardi A, Roldán M, Villegas S, Puxbaum V, Ferrer-Miralles N, Unzueta U, Vázquez E, Garcia-Fruitós E, Mattanovich D, Villaverde A. Functional inclusion bodies produced in the yeast Pichia pastoris. Microb Cell Fact 2016; 15:166. [PMID: 27716225 PMCID: PMC5045588 DOI: 10.1186/s12934-016-0565-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bacterial inclusion bodies (IBs) are non-toxic protein aggregates commonly produced in recombinant bacteria. They are formed by a mixture of highly stable amyloid-like fibrils and releasable protein species with a significant extent of secondary structure, and are often functional. As nano structured materials, they are gaining biomedical interest because of the combination of submicron size, mechanical stability and biological activity, together with their ability to interact with mammalian cell membranes for subsequent cell penetration in absence of toxicity. Since essentially any protein species can be obtained as IBs, these entities, as well as related protein clusters (e.g., aggresomes), are being explored in biocatalysis and in biomedicine as mechanically stable sources of functional protein. One of the major bottlenecks for uses of IBs in biological interfaces is their potential contamination with endotoxins from producing bacteria. RESULTS To overcome this hurdle, we have explored here the controlled production of functional IBs in the yeast Pichia pastoris (Komagataella spp.), an endotoxin-free host system for recombinant protein production, and determined the main physicochemical and biological traits of these materials. Quantitative and qualitative approaches clearly indicate the formation of IBs inside yeast, similar in morphology, size and biological activity to those produced in E. coli, that once purified, interact with mammalian cell membranes and penetrate cultured mammalian cells in absence of toxicity. CONCLUSIONS Structurally and functionally similar from those produced in E. coli, the controlled production of IBs in P. pastoris demonstrates that yeasts can be used as convenient platforms for the biological fabrication of self-organizing protein materials in absence of potential endotoxin contamination and with additional advantages regarding, among others, post-translational modifications often required for protein functionality.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Roldán
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Verena Puxbaum
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, C/Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
50
|
Cano-Garrido O, Céspedes MV, Unzueta U, Saccardo P, Roldán M, Sánchez-Chardi A, Cubarsi R, Vázquez E, Mangues R, García-Fruitós E, Villaverde A. CXCR4(+)-targeted protein nanoparticles produced in the food-grade bacterium Lactococcus lactis. Nanomedicine (Lond) 2016; 11:2387-98. [PMID: 27529439 DOI: 10.2217/nnm-2016-0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Lactococcus lactis is a Gram-positive (endotoxin-free) food-grade bacteria exploited as alternative to Escherichia coli for recombinant protein production. We have explored here for the first time the ability of this platform as producer of complex, self-assembling protein materials. MATERIALS & METHODS Biophysical properties, cell penetrability and in vivo biodistribution upon systemic administration of tumor-targeted protein nanoparticles produced in L. lactis have been compared with the equivalent material produced in E. coli. RESULTS Protein nanoparticles have been efficiently produced in L. lactis, showing the desired size, internalization properties and biodistribution. CONCLUSION In vitro and in vivo data confirm the potential and robustness of the production platform, pointing out L. lactis as a fascinating cell factory for the biofabrication of protein materials intended for therapeutic applications.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Roldán
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rafael Cubarsi
- Departament de Matemàtica Aplicada IV. Universitat Politècnica de Catalunya. Jordi Girona 1-3. 08034 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Elena García-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|