1
|
Xu Z, Xu Y, Qiu Y, Cao Y, Gasilov S, Li G, Lu J, Wang X. Pressurized organic electrodes enable practical and extreme batteries. Nat Commun 2025; 16:4561. [PMID: 40379642 PMCID: PMC12084359 DOI: 10.1038/s41467-025-59892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/08/2025] [Indexed: 05/19/2025] Open
Abstract
While organic batteries hold promise for sustainable energy storage, a considerable gap persists between research and application concerning testing conditions and cell cost. Here, we report pressurized organic electrodes tailored for practical applications. Outperforming prior organic electrodes, pressurized organic electrodes excel under challenging/extreme condition including high mass loadings (50-150 mg cm-2), active material fraction (up to 95%), low N/P ratio (0.8-2), and lean electrolyte, delivering high areal/volumetric capacity in full cells. Moreover, pressurized organic electrodes exhibit broad applicability, thriving in diverse battery systems (Li+/NH4+/H+/Na+/Zn2+/Mg2+ ion batteries) and organic materials (molecule, polymer, salt), consistently demonstrating enhanced performance compared with unpressurized ones. The improved capacity, rate, and cycling performance of pressurized electrodes result from pressure-induced structural and property changes in organics including crystal orientation, enhanced π-π interaction, favorable electrode porosity/tortuosity, accelerated chemical reactivity, and boosted electronic conductivity. Along with simple, efficient, green, and cost-effective manufacturing features, pressurized organic electrodes offer a promising route towards organic battery application.
Collapse
Affiliation(s)
- Zhixiao Xu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yunkai Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunkun Qiu
- Advanced Institute for Soft Matter Science and Technology (AISMST), South China University of Technology, Guangzhou, China
| | - Yan Cao
- Advanced Institute for Soft Matter Science and Technology (AISMST), South China University of Technology, Guangzhou, China
| | | | - Ge Li
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Zhao Z, Zhang P, Zhao Y, Wang L, Zhang J, Bu F, Zhou W, Zhao R, Zhang X, Lv Z, Liu Y, Xia Y, Zhang W, Zhao T, Chao D, Li W, Zhao D. Versatile synthesis of uniform mesoporous superparticles from stable monomicelle units. Nat Protoc 2025; 20:1310-1351. [PMID: 39537994 DOI: 10.1038/s41596-024-01073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Superstructures with architectural complexity and unique functionalities are promising for a variety of practical applications in many fields, including mechanics, sensing, photonics, catalysis, drug delivery and energy storage/conversion. In the past five years, a number of attempts have been made to build superparticles based on amphiphilic polymeric micelle units, but most have failed owing to their inherent poor stability. Determining how to stabilize micelles and control their superassembly is critical to obtaining the desired mesoporous superparticles. Here we provide a detailed procedure for the preparation of ultrastable polymeric monomicelle building units, the creation of a library of ultrasmall organic-inorganic nanohybrids, the modular superassembly of monomicelles into hierarchical superstructures and creation of novel multilevel mesoporous superstructures. The protocol enables precise control of the number of monomicelle units and the derived mesopores for superparticles. We show that ultrafine nanohybrids display enhanced mechanical antipressure performance compared with pristine polymeric micelles, and describe the functional characterization of mesoporous superstructures that exhibit excellent oxygen reduction reactivity. Except for the time (4.5 d) needed for the preparation of the triblock polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) PS-PVP-PEO or the polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-PAA-PEO) copolymer, the synthesis of the ultrastable monomicelle, ultrafine organic-inorganic nanohybrids, hierarchical superstructures and mesoporous superparticles require ~6, 30, 8 and 24 h, respectively. The time needed for all characterizations and applications are 18 and 10 h, respectively.
Collapse
Affiliation(s)
- Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Lipeng Wang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Jie Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fanxing Bu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wanhai Zhou
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Ruizheng Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Xingmiao Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Zirui Lv
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Yupu Liu
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Yuan Xia
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, China
| | - Wei Zhang
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Tiancong Zhao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Dongliang Chao
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Wei Li
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Rui J, Wu T, Zhang Z, Lu W, Shi X, Liu Y, Han X, Dang M, Su X, Teng Z. Nucleus-Spike 3D Hierarchical Superstructures via a Lecithin-Mediated Biomineralization Approach. SMALL METHODS 2025; 9:e2401251. [PMID: 39375975 DOI: 10.1002/smtd.202401251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/22/2024] [Indexed: 10/09/2024]
Abstract
3D hierarchical superstructures (3DHSs) are key products of nature's evolution and have raised wide interest. However, the preparation of 3DHSs composed of building blocks with different structures is rarely reported, and regulating their structural parameters is challenging. Herein, a simple lecithin-mediated biomineralization approach is reported for the first time to prepare gold 3DHSs composed of 0D nucleus and 1D protruding dendritic spikes. It is demonstrated that a hydrophobic complex by coordination of disulfiram (DSF) with a share of chloroauric acid is the key to forming the 3DHSs. Under the lecithin mediation, chloroauric acid is first reduced to form the 0D nucleus, followed by the spike growth through the reduction of the hydrophobic complex. The prepared 3DHSs possess well-defined morphology with a spike length of ≈95 nm. Notably, the hierarchical spike density is systematically manipulated from 38.9% to 74.3% by controlling DSF concentrations. Moreover, the spike diameter is regulated from 9.2 to 12.9 nm by selecting different lecithin concentrations to tune the biomineralization process. Finite-difference time-domain (FDTD) simulations reveal that the spikes form "hot spots". The dense spike structure endows the 3DHSs with sound performance in surface-enhanced Raman scattering (SERS) applications.
Collapse
Affiliation(s)
- Jiaxin Rui
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| | - Tingting Wu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| | - Zhiwei Zhang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| | - Xuzhi Shi
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| | - Ying Liu
- School of Intelligent Manufacturing and Electronic, Engineering Wenzhou University of Technology, Wenzhou, 325025, P. R. China
| | - Xiaolin Han
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China
| |
Collapse
|
4
|
Liu Y, Pan Y, Zhang Y, Han S, Ni SQ, Wang Y, Boczkaj G, Kong L, Zhan J. Probing the Active Nitrogen Species in Nitrogen-Doped Carbon Nanozymes for Enhanced Oxidase-Like Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411273. [PMID: 39821597 DOI: 10.1002/smll.202411273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 01/19/2025]
Abstract
Nitrogen doping emerges as a potent approach to enhance the oxidase-like activity of carbon nanozymes. However, the unclear knowledge of the active nitrogen species within nitrogen-doped carbon nanozymes hinders the advancement of high-performance carbon nanozymes. Herein, a group of nitrogen-doped carbon (N/C) nanozymes with controllable nitrogen dopants are successfully synthesized via a dicyandiamide-assisted pyrolysis method. The intrinsic connection between different nitrogen configurations (pyridinic N, pyrrolic N, and graphitic N) in N/C nanozymes and the oxidase-like performance are experimentally investigated. The results confirm pyridinic N is the active nitrogen species in N/C nanozymes for enhanced oxidase-like activity. Theoretical calculations further reveal the potential regulatory mechanism is pyridinic N can increase the local charge density of neighboring carbon atoms and accelerate the adsorption and activation of molecular oxygen. Notably, the optimized N/C nanozyme with the highest pyridinic N ratio presents impressive oxidase-like performance, surpassing most of the previously reported oxidase-like materials. Moreover, the optimized N/C nanozyme exhibits excellent antibacterial properties and can be easily incorporated into common medical and hygiene products to give them spontaneous antibacterial properties. The work will facilitate the rational design of carbon nanozymes with high-performance oxidase-like activity for applications in the antibacterial field.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yue Pan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yunhang Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Site Han
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shou-Qing Ni
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yifeng Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, 80-222, Poland
- School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Lingshuai Kong
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jinhua Zhan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
5
|
Wang R, Cheng J, Teng W, Qin J, Xiao P, Wang C, Peng J, Liu H, Wang D. Locking Pd Nanoparticles in N-Doped Carbon Derived from Conjugated Microporous Polymer for Stable Lithium Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10570-10579. [PMID: 39932172 DOI: 10.1021/acsami.4c17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The uncontrollable growth of Li dendrites and large volume change during cycling limit the practical applications of Li metal anodes. Herein, the in situ-formed Pd nanoparticles locked in three-dimensional N-doped microporous carbon (Pd/NMC), which are derived from the catalyst for Buchwald-Hartwig (B-H) coupling polymerization, have been constructed to address these issues. The homogeneously distributed Pd nanoparticles effectively reduce the overpotential of Li nucleation through the reversible Li-Pd alloying reaction and boost Li+ diffusion by reducing the migration barrier. Furthermore, the Pd nanoparticles guide the Li selective nucleation and uniform growth in the 3D N-doped microporous carbon. Meanwhile, the spatial confinement effect alleviates the volume changes. As a result, the stable and reversible Li metal anode exhibits a high Coulombic efficiency of 98.7% over 1000 cycles at 1 mA cm-2. Full cells with LiFePO4 (LFP) as the cathode deliver a long lifespan of 600 cycles with 0.02% capacity decay per cycle at 2 C. This work provides a new polymerization-carbonization strategy to prepare a lithiophilic host for energy-dense Li metal batteries.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jinguo Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Wanming Teng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jinlei Qin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Pei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Che Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Junjun Peng
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
6
|
Song Z, Huang Q, Lv Y, Gan L, Liu M. Multi-N-Heterocycle Donor-Acceptor Conjugated Amphoteric Organic Superstructures for Superior Zinc Batteries. Angew Chem Int Ed Engl 2025; 64:e202418237. [PMID: 39496567 DOI: 10.1002/anie.202418237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Multiple redox-active amphoteric organics with more n-p fused electron transfer is an ongoing pursuit for superior zinc-organic batteries (ZOBs). Here we report multi-heterocycle-site donor-acceptor conjugated amphoteric organic superstructures (AOSs) by integrating three-electron-accepting n-type triazine motifs and dual-electron-donating p-type piperazine units via H-bonding and π-π stacking. AOSs expose flower-shaped N-heteromacrocyclic electron delocalization topologies to promise full accessibility of built-in n-p redox-active motifs with an ultralow activation energy, thus liberating superior capacity (465 mAh g-1) for Zn||AOSs battery. More importantly, the extended multiple donor-acceptor-fused conjugated AOSs feature satisfied discharge voltage and anti-dissolution in electrolytes, pushing both the energy density and cycle life of the ZOBs to a new level (412 Wh kg-1 and 70,000 cycles@10 A g-1). An anion-cation hybrid 18 e- charge storage mechanism is rationalized for heteromacrocyclic modules of AOSs cathode, entailing six tert-N motifs coupling with CF3SO3 - ions at high potential and twelve imine sites coordinating with Zn2+ ions at low potential. These findings constitute a major advance of amphoteric multielectron organic materials and stand for a good starting point for advanced ZOBs.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
7
|
Xia J, Wang T, Guo J, Jia D, Wu D. Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409655. [PMID: 39797478 DOI: 10.1002/smll.202409655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency. Notably, without the need for back-extraction, formaldehyde and tetraethyl orthosilicate are added to obtain phenolic resin, which can subsequently be directly carbonized to fabricate hydrangea-like porous carbon. The carbonization mechanism of the phenolic resin is studied, and the templating and activating roles of tetraethyl orthosilicate and zinc chloride assist in the formation of this unique structure. Furthermore, the flexible supercapacitor assembled using the prepared porous carbon and gel electrolyte achieves a high energy density of 31.0 Wh kg-1 and demonstrates broad temperature applicability ranging from -25 to 100 °C. This work directly converts the extracted phenolic compounds into phenolic resin and shows potential for fabricating porous carbon materials with diverse structures and enhanced capacitive performance.
Collapse
Affiliation(s)
- Jianchao Xia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Jia Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
8
|
Kim DW, Wrede P, Estrada H, Yildiz E, Lazovic J, Bhargava A, Razansky D, Sitti M. Hierarchical Nanostructures as Acoustically Manipulatable Multifunctional Agents in Dynamic Fluid Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404514. [PMID: 39400967 PMCID: PMC11636169 DOI: 10.1002/adma.202404514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Acoustic waves provide a biocompatible and deep-tissue-penetrating tool suitable for contactless manipulation in in vivo environments. Despite the prevalence of dynamic fluids within the body, previous studies have primarily focused on static fluids, and manipulatable agents in dynamic fluids are limited to gaseous core-shell particles. However, these gas-filled particles face challenges in fast-flow manipulation, complex setups, design versatility, and practical medical imaging, underscoring the need for effective alternatives. In this study, flower-like hierarchical nanostructures (HNS) into microparticles (MPs) are incorporated, and demonstrated that various materials fabricated as HNS-MPs exhibit effective and reproducible acoustic trapping within high-velocity fluid flows. Through simulations, it is validated that the HNS-MPs are drawn to the focal point by acoustic streaming and form a trap through secondary acoustic streaming at the tips of the nanosheets comprising the HNS-MPs. Furthermore, the wide range of materials and modification options for HNS, combined with their high surface area and biocompatibility, enable them to serve as acoustically manipulatable multimodal imaging contrast agents and microrobots. They can perform intravascular multi-trap maneuvering with real-time imaging, purification of wastewater flow, and highly-loaded drug delivery. Given the diverse HNS materials developed to date, this study extends their applications to acoustofluidic and biomedical fields.
Collapse
Affiliation(s)
- Dong Wook Kim
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Paul Wrede
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Hector Estrada
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Erdost Yildiz
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Jelena Lazovic
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Aarushi Bhargava
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
9
|
Yi Y, Hu S, Liu C, Yan Y, Lei L, Hou Y. Self-templating synthesis strategy of oxygen-doped carbon from unique wasted pulping liquid directly as a cathode material for high-performance zinc ion hybrid capacitors. J Colloid Interface Sci 2024; 675:569-579. [PMID: 38986330 DOI: 10.1016/j.jcis.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Affinity and storage capacity for zinc ions of the electrode materials are crucial factors on the properties of zinc ion hybrid capacitors (ZHICs). Wasted pulping liquor with abundant carbohydrates, lignin and inorganic matter served as a unique precursor to produce embedded oxygen-doped hierarchical porous carbon directly through a one-step carbonization process in this investigation. In carbonization process, lignin can serve effectively as the carbon framework, carbohydrates not only act as sacrificial templates but also offer a plentiful oxygen source which can increase the affinity for Zn2+, and sodium-containing inorganic substances plays a role as hard templates to optimize the pore structure. The resulting porous carbon under carbonization temperature of 800 °C shows a high specifical area of 2186 m2g-1 with oxygen content of 4.8 %, which can reduce the adsorption energy of Zn2+ from -0.16 eV to -0.32 eV through electrochemical techniques and density functional theory (DFT) calculations, the incorporation of oxygen was demonstrated to enhance the adsorption and desorption kinetics of Zn2+, suggesting a bright future for application in the domain of energy storage. The resulting ZIHC assembly showcases a notable energy density of 84.6 Wh kg-1 at a power density of 359 W kg-1. Remarkably, even after 10,000 charge and discharge cycles, it exhibits exceptional cycle stability with retaining 86.56 % of its capacity. Consequently, this approach provides fresh insights for exploring the facile and commercial fabrication of biomass-derived cathodes for ZIHCs, thereby propelling the progress of eco-friendly energy storage devices.
Collapse
Affiliation(s)
- Yanjie Yi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songqing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Technical Center, Henan Cigarette Industry Tobacco Sheet Co., Ltd., Xuchang, Henan Province 461100, China
| | - Lirong Lei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
10
|
Wei M, Liu K, Wang Y, Zhang G, Liu Q, Zhang Q, Zhang B. Hierarchical Magnetic Carbon Nanoflowers for Ultra-Efficient Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402632. [PMID: 39012068 DOI: 10.1002/smll.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Porous carbon nanomaterials are widely applied in the electromagnetic wave absorption (EMWA) field. Among them, an emerging flower-like carbon nanomaterial, termed carbon nanoflowers (CNFs), has attracted tremendous research attention due to their unique hierarchical flower-like structure. However, the design of flower-like carbon nanomaterials with different magnetic cores for EMWA has rarely been reported. Herein, a general template method is proposed to achieve a set of high-quality magnetic CNFs, namely Co@Void@CNFs, CoNi@CNFs, and Ni@CNFs. The prepared magnetic CNFs have highly accessible surface area and internal space, rich heteroatom content, multi-scale pore system, and uniform and highly dispersed magnetic nanoparticles, as a result, deliver superior EMWA performance. Specifically, when the thickness is 2.6 mm, the Co@Void@CNFs exhibit a maximum refection loss (RLmax) of -56.6 dB and an effective absorption bandwidth (EAB) from 8.0 to 12.1 GHz covering the whole X band. The CoNi@CNFs have an RLmax of up to -57.6 dB and a wide EAB of 5.6 GHz at just 1.9 mm. For the Ni@CNFs, possess an ultra-broad EAB of 6.1 GHz, covering the entire Ku band at 2.0 mm. Overall, the hierarchical magnetic carbon nanoflowers proposed here offer new insights toward realizing multifunctional integrated carbon nanomaterials for EMWA.
Collapse
Affiliation(s)
- Mengmeng Wei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kai Liu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yunhao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guoxian Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an, 710072, China
| |
Collapse
|
11
|
Huang Q, Hu C, Qin Y, Jin Y, Huang L, Sun Y, Song Z, Xie F. Designing Heterodiatomic Carbon Hydrangea Superstructures via Machine Learning-Regulated Solvent-Precursor Interactions for Superior Zinc Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405940. [PMID: 39180267 DOI: 10.1002/smll.202405940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Carbon superstructures with exquisite morphologies and functionalities show appealing prospects in energy realms, but the systematic tailoring of their microstructures remains a perplexing topic. Here, hydrangea-shaped heterodiatomic carbon superstructures (CHS) are designed using a solution phase manufacturing route, wherein machine learning workflow is applied to screen precursor-matched solvent for optimizing solvent-precursor interaction. Based on the established solubility parameter model and molecular growth kinetics simulation, ethanol as the optimal solvent stimulates thermodynamic solubilization and growth of polymeric intermediates to evoke CHS. Featured with surface-active motifs and consecutive charge transfer paths, CHS allows high accessibility of zincophilic sites and fast ion migration with low energy barriers. A anion-cation hybrid charge storage mechanism of CHS cathode is disclosed, which entails physical alternate uptake of Zn2+/CF3SO3 - ions at electroactive sites and chemical bipedal redox of Zn2+ ions with carbonyl/pyridine motifs. Such a beneficial electrochemistry contributes to all-round improvement in Zn-ion storage, involving excellent capacities (231 mAh g-1 at 0.5 A g-1; 132 mAh g-1 at 50 A g-1), high energy density (152 Wh kg-1), and long-lasting cyclability (100 000 cycles). This work expands the design versatilities of superstructure materials and will accelerate experimental procedures during carbon manufacturing through machine learning in the future.
Collapse
Affiliation(s)
- Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Chengmin Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yang Qin
- Department of Mechanical Engineering, College of Engineering and Applied Science, University of Wisconsin Milwaukee, Milwaukee, WI, 53211, USA
| | - Yaowei Jin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lu Huang
- Department of Stomatology, Hangzhou Ninth People's Hospital, Hangzhou, 311225, P. R. China
| | - Yaojie Sun
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
12
|
Wang Z, Hu J, Wang H. Hierarchical Polyimide Microparticles with Controllable Morphology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400487. [PMID: 38537118 DOI: 10.1002/smll.202400487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Indexed: 08/17/2024]
Abstract
Hierarchical polyimides (PIs) not only show outstanding thermal stability and high mechanical strength but also have great advantages in terms of microstructure and surface area, which makes them highly valuable in various fields such as aerospace, microelectronics, adsorption, catalysis, and energy storage. However, great challenges still remain in the synthesis of hierarchical PIs with well-defined microstructure. Herein, polyamide acid salts (PAAS) with tunable ionization degree are synthesized first via the polymerization of dianhydride and diamine monomers in deionized water with 1,2-dimethylimidazole (DMIZ). Then cationic cetyltrimethylammonium chloride (CTAC) is added to the PAAS aqueous solution to induce the formation of polyelectrolyte-surfactant complexes based on electrostatic interaction. After a typical hydrothermal reaction (HTR) procedure, hierarchical PIs with different microstructures such as urchin-like PI microparticles, flower-like PI microparticles, and lamellar PI petals can be fabricated simply by changing the additive amount of DMIZ and CTAC. The nanostructure self-assemblies of PAAS are dominated by the charges on macromolecular chains and the formation of hierarchical structures of polymers is ascribed to a geometrical selection process during crystal growth. This work provides valuable insights into the self-assembly behaviors of polyelectrolyte systems for synthesizing well-defined hierarchical polymers.
Collapse
Affiliation(s)
- Zhichao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Liu P, Song Z, Miao L, Lv Y, Gan L, Liu M. Boosting Spatial Charge Storage in Ion-Compatible Pores of Carbon Superstructures for Advanced Zinc-Ion Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400774. [PMID: 38616778 DOI: 10.1002/smll.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Capacitive carbon cathodes deliver great potential for zinc-ion hybrid capacitors (ZHCs) due to their resource abundance and structural versatility. However, the dimension mismatch between the micropores of carbons and hydrated Zn2+ ions often results in unsatisfactory charge storage capability. Here well-arranged heterodiatomic carbon superstructures are reported with compatible pore dimensions for activating Zn2+ ions, initiated by the supramolecular self-assembly of 1,3,5-triazine-2,4,6-triamine and cyanuric acid via in-plane hydrogen-bonds and out-of-plane π-π interactions. Flower-shaped carbon superstructures expose more surface-active motifs, continuous charge-transport routes, and more importantly, well-developed pores. The primary subnanopores of 0.82 nm are size-exclusively accessible for solvated Zn2+ ions (0.86 nm) to maximize spatial charge storage, while rich mesopores (1-3 nm) allow for high-kinetics ion migration with a low activation energy. Such favorable superstructure cathodes contribute to all-round performance improvement for ZHCs, including high energy density (158 Wh kg-1), fast-charging ability (50 A g-1), and excellent cyclic lifespan (100 000 cycles). An anion-cation hybrid charge storage mechanism is elucidated for superstructure cathode, which entails alternate physical uptake of Zn2+/CF3SO3 - at electroactive pores and bipedal chemical binding of Zn2+ to electronegative carbonyl/pyridine motifs. This work expands the design landscape of carbon superstructures for advanced energy storage.
Collapse
Affiliation(s)
- Pingxuan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
14
|
Lv J, Liu J, Liu J, Huang Z, Li Y, Zhang H, Li T, Zhang S. Laser Additive Manufacturing of Three-Dimensional Ti/TiN Nanotube Arrays with Hierarchical Pore Structures and Promoted Supercapacitor Performances. NANO LETTERS 2024; 24:8327-8334. [PMID: 38942742 DOI: 10.1021/acs.nanolett.4c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Titanium-based composites hold great promise in versatile functional application fields, including supercapacitors. However, conventional subtractive methods for preparing complex-shaped titanium-based composites generally suffer from several significant shortcomings, including low efficiency, strictly simple geometry, low specific surface area, and poor electrochemical performance of the products. Herein, three-dimensional composites of Ti/TiN nanotube arrays with hierarchically porous structures were prepared using the additive manufacturing method of selective laser melting combined with anodic oxidation and nitridation. The resultant Ti/TiN nanotube array composites exhibit good electrical conductivity, ultrahigh specific surface areas, and outstanding supercapacitor performances featuring the unique combination of a large specific capacitance of 134.4 mF/cm2 and a high power density of 4.1 mW/cm2, which was remarkably superior to that of their counterparts. This work is anticipated to provide new insights into the facile and efficient preparation of high-performance structural and functional devices with arbitrarily complex geometries and good overall performances.
Collapse
Affiliation(s)
- Junyi Lv
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jie Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jianghao Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yage Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tao Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K
| |
Collapse
|
15
|
Li Y, Fan L, Xu X, Sun Y, Wang W, Li B, Veroneau SS, Ji P. Hierarchical organic microspheres from diverse molecular building blocks. Nat Commun 2024; 15:5041. [PMID: 38871694 DOI: 10.1038/s41467-024-49379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Microspherical structures find broad application in chemistry and materials science, including in separations and purifications, energy storage and conversion, organic and biocatalysis, and as artificial and bioactive scaffolds. Despite this utility, the systematic diversification of their morphology and function remains hindered by the limited range of their molecular building blocks. Drawing upon the design principles of reticular synthesis, where diverse organic molecules generate varied porous frameworks, we show herein how analogous microspherical structures can be generated under mild conditions. The assembly of simple organic molecules into microspherical structures with advanced morphologies represents a grand challenge. Beginning with a partially condensed Schiff base which self-assembles into a hierarchical organic microsphere, we systematically synthesized sixteen microspheres from diverse molecular building blocks. We subsequently explicate the mechanism of hierarchical assembly through which these hierarchical organic microspheres are produced, isolating the initial monomer, intermediate substructures, and eventual microspheres. Furthermore, the open cavities present on the surfaces of these constructs provided distinctive adsorptive properties, which we harnessed for the immobilization of enzymes and bacteriophages. Holistically, these hierarchical organic microspheres provide an approach for designing multi-functional superstructures with advanced morphologies derived from simple organic molecules, revealing an extended length scale for reticular synthesis.
Collapse
Affiliation(s)
- Yintao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Longlong Fan
- Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyan Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yang Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Samuel S Veroneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Pengfei Ji
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Liu Y, Ni S, Wang W, Rong M, Cai H, Xing H, Yang L. Functionalized hydrogen-bonded organic superstructures via molecular self-assembly for enhanced uranium extraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133002. [PMID: 37988939 DOI: 10.1016/j.jhazmat.2023.133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Effective uranium extraction from water is essential for the development of nuclear power industry and the protection of human health and environment. Nevertheless, it still remains challenging to realize efficient and cost-effective uranium extraction. Herein, a fast and simple method for the direct fabrication of novel functionalized hydrogen-bonded organic superstructures via molecular self-assembly is reported. The as-constructed flower-like superstructures (MCP-5) can allow the exposure of adsorption sites and facilitate the transport of uranyl ions, while synergism between amino and phosphate groups can realize selective uranium extraction. Consequently, MCP-5 possesses excellent uranium adsorption ability with a high saturated adsorption capacity of 950.52 mg g-1, high utilization rate of adsorption sites and adsorption equilibrium time of simply 5 min in uranium-spiked aqueous solution. Furthermore, MCP-5 offers selective uranium adsorption over a broad range of metal ions. The facile synthesis and low-cost raw materials make it have promising potential for uranium capture. Simultaneously, this study opens a design avenue of functionalized hydrogen-bonded organic material for efficient uranium extraction.
Collapse
Affiliation(s)
- Yafeng Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Ni
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wenjie Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Rong
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Cai
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Xing
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangrong Yang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Ma Z, Duan Y, Liu Y, Han Y, Wang X, Sun G, Li Y. Synergistic effects of hierarchical porous structures and ultra-high pyridine nitrogen doping enhance the oxygen reduction reaction electrocatalytic performance of metal-free laminated lignin-based carbon. Int J Biol Macromol 2024; 256:128292. [PMID: 37995779 DOI: 10.1016/j.ijbiomac.2023.128292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Construction of non-metallic biomass-carbon based catalysts for fuel cell air cathode applications has attracted great attention in recent years. In this work, a convenient and clean technique was developed to fabrication nitrogen-doped lignin-based hierarchical porous lamellar carbon (N-LHPC) via lignin as the carbon precursor, melamine/urea as the nitrogen source and ZnC2O4.2H2O as the chemical activator. The N-LHPC has a high specific surface area (491.5 m2 g-1) and macroporous/mesoporous/microporous structures. The nitrogen doping of N-LHPC can reach 16.37 wt%, with a high pyridinic nitrogen content of 41.39 at.%. N-LHPC exhibits a high half-wave potential (0.87 V) and a large limiting current density (5.75 mA cm-2) in 0.1 mol KOH media which is comparable to the commercial Pt/C catalysts. Furthermore, N-LHPC was assembled as air cathode catalyst for Zn-air batteries to evaluate its practical catalytic performance, and the power density was as high as 191 mW cm-2, which was superior to the 20 wt% Pt/C electrocatalyst. This research demonstrates that lignin is a promising carbon source for the fabrication of high catalytic activity and economical electrocatalysts for energy storage systems.
Collapse
Affiliation(s)
- Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yukai Duan
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Guangwei Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
18
|
Pan Y, Xin Y, Li Y, Xu Z, Tang C, Liu X, Yin Y, Zhang J, Xu F, Li C, Mai Y. Nitrogen-Doped Carbon Cubosomes as an Efficient Electrocatalyst with High Accessibility of Internal Active Sites. ACS NANO 2023. [PMID: 38009536 DOI: 10.1021/acsnano.3c07963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Porous carbon particles (PCPs) present considerable potential for applications across a wide range of fields, particularly within the realms of energy and catalysis. The control of their overall morphologies and pore structures has remained a big challenge. Here, using metal-organic frameworks (MOFs) as the precursor and polymer cubosomes (PCs) as the template, nitrogen-doped carbon cubosomes (SP-NCs) with a single primitive bicontinuous architecture are prepared. SP-NCs inherit the high porosity of MOFs, generating a high specific surface area of 825 m2 g-1 and uniformly distributed active sites with a 5.9 at % nitrogen content. Thanks to the presence of three-dimensional continuous mesochannels that enable much higher accessibility of internal active sites over those of their porous counterparts' lack of continuous channels, SP-NCs exhibit superior electrocatalytic performance for oxygen reduction reaction with a half-wave potential of 0.87 V, situating them in the leading level of the reported carbon electrocatalysts. Serving as an air cathode catalyst of the Zn-air battery, SP-NCs exhibit excellent performance, outperforming the commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yupeng Xin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yucheng Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
19
|
Ban M, Lee J, Kim J, Shin SJ, Kim T, Jo C, Hwang J, Kim S, Lee J. Hierarchically Superstructured Anisotropic Carbon Particles by Multiscale Assembly Driven by Spinodal Decomposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306154. [PMID: 37967353 DOI: 10.1002/smll.202306154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Hierarchical superstructures have novel shape-dependent properties, but well-defined anisotropic carbon superstructures with controllable size, shape, and building block dimensionality have rarely been accomplished thus far. Here, a hierarchical assembly technique is presented that uses spinodal decomposition (SD) to synthesize anisotropic oblate particles of mesoporous carbon superstructure (o-MCS) with nanorod arrays by integrating block-copolymer (BCP) self-assembly and polymer-polymer interface behaviors in binary blends. The interaction of major and minor phases in binary polymer blends leads to the formation of an anisotropic oblate particle, and the BCP-rich phase enables ordered packing and unidirectional alignment of carbon nanorods. Consequently, this approach enables precise control over particles' size, shape, and over the dimensionality of their components. Exploiting this functional superstructure, o-MCS are used as an anode material in potassium-ion batteries, and achieve a notable specific capacity of 156 mA h g-1 at a current density of 2 A g-1 , and long-term stability for 3000 cycles. This work presents a significant advancement in the field of hierarchical superstructures, providing a promising strategy for the design and synthesis of anisotropic carbon materials with controlled properties, offering promising applications in energy storage and beyond.
Collapse
Affiliation(s)
- Minkyeong Ban
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jisung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jioh Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seung-Jae Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Taesoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Changshin Jo
- Graduate Institute of Ferrous & Energy Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Chengam-Ro, Nam-gu, Pohang, 37673, South Korea
| | - Jongkook Hwang
- Department of Chemical Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Seongseop Kim
- School of Chemical Engineering, Clean Energy Research Center Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 93 Changpo-gil, Deokjin-gu, Jeonju, 54896, South Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
20
|
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. NANOSCALE ADVANCES 2023; 5:5165-5213. [PMID: 37767032 PMCID: PMC10521310 DOI: 10.1039/d3na00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023]
Abstract
In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University Seoul 01897 Korea
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
21
|
Sánchez-Loredo MG, Palomares-Sánchez SA, Labrada-Delgado GJ, Helbig T, Chekhonin P, Ebert D, Möckel R, Owusu Afriyie J, Kelly N. Preparation of Volborthite by a Facile Synthetic Chemical Solvent Extraction Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1977. [PMID: 37446493 DOI: 10.3390/nano13131977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
In this work, the extraction of vanadium (V) ions from an alkaline solution using a commercial quaternary ammonium salt and the production of metal vanadates through precipitation stripping were carried out. The crystallization of copper vanadates from the extracts was performed using a solution containing a copper(II) source in concentrated chloride media as a stripping agent. In an attempt to control growth, a stabilizing polymer (polyvinylpyrrolidone, PVP) was added to the stripping solution. The structural characteristics of the crystallized products, mainly copper pyrovanadate (volborthite, Cu3V2O7(OH)2·(H2O)2) nanoflakes and nanoflowers and the experimental parameter influencing the efficiency of the stripping process were studied. From the results, the synthesis of nanostructured vanadates is a simple and versatile method for the fabrication of valuable three-dimensional structures providing abundant active zones for energy and catalytic applications.
Collapse
Affiliation(s)
- María Guadalupe Sánchez-Loredo
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie, Chemnitzer Str. 40, 09599 Freiberg, Germany
- Instituto de Metalurgia, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí 78210, Mexico
| | | | - Gladis Judith Labrada-Delgado
- Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, San Luis Potosí 78216, Mexico
| | - Toni Helbig
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie, Chemnitzer Str. 40, 09599 Freiberg, Germany
| | - Paul Chekhonin
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institut für Ressourcenökologie, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Doreen Ebert
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie, Chemnitzer Str. 40, 09599 Freiberg, Germany
| | - Robert Möckel
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie, Chemnitzer Str. 40, 09599 Freiberg, Germany
| | - Jones Owusu Afriyie
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie, Chemnitzer Str. 40, 09599 Freiberg, Germany
| | - Norman Kelly
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie, Chemnitzer Str. 40, 09599 Freiberg, Germany
| |
Collapse
|
22
|
Wang Z, Li G, Hou W, Guo H, Wang L, Wu M. Insights into the Use of Te-O Pairs as Active Centers of Carbon Nanosheets for Efficient Electrochemical Oxygen Reduction. ACS NANO 2023; 17:8671-8679. [PMID: 37067477 DOI: 10.1021/acsnano.3c01662] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Previous theoretical calculations have predicted that the incorporation of tellurium (Te) into carbon materials can significantly enhance their catalytic activity. Nevertheless, the experimental realization of efficient Te-doped carbon materials remains challenging. Here, we employed theoretical calculations to deduce the possible structure of Te-doped carbon materials. Our findings unveil that the formation of Te-O pairs in carbon materials with a relatively low oxygen coordination microenvironment can impart strong electron-donating capabilities, thereby boosting the electrocatalytic activity of oxygen reduction reaction (ORR). To verify our theoretical predictions, we synthesized Te-O pair-doped carbon materials using a tandem hydrothermal dehydration-pyrolysis strategy. This approach enabled efficient infiltration of Te into carbon materials. Our unconventional Te-O pair-doped carbon materials exhibit expanded interlayer distances and graphene-like nanosheet architectures, which provide enlarged active areas. These structural features contribute to the enhanced ORR catalytic performance of the as-prepared carbon catalyst. Our findings provide molecular-level insights into the design of various carbon-based electrocatalysts with binary-heteroatom-doped active sites.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Gao Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Weidong Hou
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Minghong Wu
- Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
23
|
Cui P, Zhao L, Long Y, Dai L, Hu C. Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202218269. [PMID: 36645824 DOI: 10.1002/anie.202218269] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Pengbo Cui
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liming Dai
- ARC Centre of Excellence for Carbon Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
24
|
Song Z, Miao L, Ruhlmann L, Lv Y, Li L, Gan L, Liu M. Proton-Conductive Supramolecular Hydrogen-Bonded Organic Superstructures for High-Performance Zinc-Organic Batteries. Angew Chem Int Ed Engl 2023; 62:e202219136. [PMID: 36695445 DOI: 10.1002/anie.202219136] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
With fast (de)coordination kinetics, the smallest and the lightest proton stands out as the most ideal charge carrier for aqueous Zn-organic batteries (ZOBs). Hydrogen-bonding networks with rapid Grotthuss proton conduction is particularly suitable for organic cathodes, yet not reported. We report the supramolecular self-assembly of cyanuric acid and 1,3,5-triazine-2,4,6-triamine into organic superstructures through in-plane H-bonds and out-of-plane π-π interaction. The supramolecular superstructures exhibit highly stable lock-and-key H-bonding networks with an ultralow activation energy for protonation (0.09 eV vs. 0.25 eV of zincification). Then, high-kinetics H+ coordination is prior to Zn2+ into protophilic C=O sites via a two-step nine-electron reaction. The assembled ZOBs show high-rate capability (135 mAh g-1 at 150 A g-1 ), high energy density (267 Wh kg-1 cathode ) and ultra-long life (50 000 cycles at 10 A g-1 ), becoming the state-of-the-art ZOBs in comprehensive performances.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Laurent Ruhlmann
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Yaokang Lv
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
25
|
Lv N, Li Q, Zhu H, Mu S, Luo X, Ren X, Liu X, Li S, Cheng C, Ma T. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206239. [PMID: 36599650 PMCID: PMC9982586 DOI: 10.1002/advs.202206239] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Indexed: 05/05/2023]
Abstract
Metal-porphyrins or metal-phthalocyanines-based organic frameworks (POFs), an emerging family of metal-N-C materials, have attracted widespread interest for application in electrocatalysis due to their unique metal-N4 coordination structure, high conjugated π-electron system, tunable components, and chemical stability. The key challenges of POFs as high-performance electrocatalysts are the need for rational design for porphyrins/phthalocyanines building blocks and an in-depth understanding of structure-activity relationships. Herein, the synthesis methods, the catalytic activity modulation principles, and the electrocatalytic behaviors of 2D/3D POFs are summarized. Notably, detailed pathways are given for modulating the intrinsic activity of the M-N4 site by the microenvironments, including central metal ions, substituent groups, and heteroatom dopants. Meanwhile, the topology tuning and hybrid system, which affect the conjugation network or conductivity of POFs, are also considered. Furthermore, the representative electrocatalytic applications of structured POFs in efficient and environmental-friendly energy conversion areas, such as carbon dioxide reduction reaction, oxygen reduction reaction, and water splitting are briefly discussed. Overall, this comprehensive review focusing on the frontier will provide multidisciplinary and multi-perspective guidance for the subsequent experimental and theoretical progress of POFs and reveal their key challenges and application prospects in future electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Ning Lv
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Huang Zhu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Med‐X Center for MaterialsSichuan UniversityChengdu610041P. R. China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
26
|
Huang N, Dong W, Feng Y, Liu W, Guo L, Xu J, Sun X. Using dopamine interlayers to construct Fe/Fe 3C@FeNC microspheres of high N-content for bifunctional oxygen electrocatalysts of Zn-air batteries. Dalton Trans 2023; 52:2373-2383. [PMID: 36723112 DOI: 10.1039/d2dt03522g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
High activity bifunctional oxygen electrocatalysts are crucial for the development of high performing Zn-air batteries. Fe-N-C systems decorated with Fe/Fe3C nanoparticles have been identified as prospective candidates in which almost all the active sites need the presence of N. To anchor more N, an Fe2O3 microsphere template was covered by a thin layer of polymerized dopamine (PDA) before it was mixed with a high N-content source of g-C3N4. The PDA interlayer not only provides a part of C and N but also serves as a buffer agent to hinder fast reactions between Fe2O3 and g-C3N4 during pyrolysis to avoid the destruction of the microsphere template. The prepared Fe/Fe3C@FeNC catalyst showed superior electrochemical performance, achieving a high half-wave potential of 0.825 V for ORR and a low overpotential of 1.450 V at 10 mA cm-2 for OER. The rechargeable Zn-air battery assembled with the as-obtained Fe/Fe3C@FeNC catalyst as a cathode offered a high peak energy density of 134.6 mW cm-2, high specific capacity of 856.2 mA h gZn-1 and excellent stability over 180 h at 5 mA cm-2 (10 min per cycle) with a small charge/discharge voltage gap of ∼0.851 V. This work presents a practical strategy for constructing nitrogen-rich catalysts with stable 3D structures.
Collapse
Affiliation(s)
- Naibao Huang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Wenjing Dong
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yuan Feng
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Wei Liu
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Likui Guo
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Jingnan Xu
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Xiannian Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
27
|
Wu KL, Zhang WW, Jiang TB, Wu M, Liu W, Wang HM, Hou QX. Structure regulated 3D flower-like lignin-based anode material for lithium-ion batteries and its storage kinetics. Int J Biol Macromol 2023; 227:146-157. [PMID: 36529218 DOI: 10.1016/j.ijbiomac.2022.12.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
As a green sustainable material, lignin-derived porous carbon (LPC) exhibits great application potential when used as the anode material in lithium-ion batteries (LIBs), but the applications are limited by the heterogeneity of the lignin precursor. Therefore, it is crucial to reveal the relationship among lignin properties, porous carbon structure and the kinetics of lithium-ion storage. Herein, LPCs from fractionated lignin have been prepared by an eco-friendly and recyclable activator. The structure of the LPCs was regulated by adjusting the molecular weight, linkage abundance and glass transition temperature (Tg) of lignin macromolecules. As the anode material of LIBs, the prepared 3D flower-like LPCE70 could achieve a reversible capacity of 528 mAh g-1 at a current density of 0.2 A g-1 after 200 cycles, 63 % higher than that of commercial graphite. Furthermore, kinetic calculations of lithium-ion storage behavior of LPCs were firstly used to confirm the contribution ratio of diffusion-controlled behavior and capacitive effect. Lignin with a high linkage abundance could yield LPCE70 with the largest interlayer spacing and specific surface area to maximize lithium-ion storage from both diffusion-controlled and capacitive contributions of specific capacities. This work provides a green, facile and effective pathway for value-added utilization of lignin in LIBs.
Collapse
Affiliation(s)
- Kai-Li Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tong-Bao Jiang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ming Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Han-Min Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qing-Xi Hou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
28
|
Farid S, Mao Q, Ren S, Hao C, Dong X. Promoting the Oxygen Evolution Reaction via Morphological Manipulation of a Lamellar Nanorod-Assembled Ni(II)-Pyrazolate Superstructure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47775-47787. [PMID: 36240000 DOI: 10.1021/acsami.2c14192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoscale pyrazolate-based coordination polymers (CPs) are becoming increasingly popular as electrocatalysts owing to their customizable compositions and structures. However, using them for oxygen evolution reaction (OER) is highly challenging due to their unsatisfactory catalytic efficiency and relatively low stability. Herein, a simple one-step solvothermal process was employed for the fabrication of polycrystalline nickel-pyrazolate [Ni(Pz)] with an unusual lamellar nanorod-assembled microsphere morphology for the first time using ethanol as a green organic solvent via controlling other physical parameters. Meanwhile, the Ni(Pz) structure and morphology are investigated to derive its formation process following the different monomeric feed ratios relying on the metal/ligand interactions of CP. Shaping the Ni(Pz) electrocatalyst in well-oriented lamellar nanorod-assembled microspheres brings the advantage of porosity and high specific surface area, which expedites mass/charge transport and contact with the electrolyte as well as creates less tortuous pathways for charge distribution, thus improving the charge homogeneity. These high-class structural features and polycrystalline nature of Ni(Pz)-E-PVP facilitate amazing catalytic OER activity with a low overpotential of 290 mV at 10 mA cm-2 and a Tafel slope of only 94 mV dec-1 beyond the yardstick material (i.e., RuO2) in alkaline solution. A suite of measurements, entailing X-ray photoelectron spectroscopy and density functional theory calculations, suggest that the rich Ni-N4 moieties in Ni(Pz)-E-PVP are central species providing adsorption sites for OER intermediates. This facile protocol is prophesied to commence the imminent development of noble metal-free, effective, and low-priced electrocatalysts for OER.
Collapse
Affiliation(s)
- Sumbal Farid
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Qing Mao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Suzhen Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| | - Xufeng Dong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, Liaoning, China
| |
Collapse
|
29
|
Gong D, Kong D, Xu N, Hua Y, Liu B, Xu Z. Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Azoarenes to Hydrazoarenes with Ethanol. Org Lett 2022; 24:7339-7343. [DOI: 10.1021/acs.orglett.2c02866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dawei Gong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Degong Kong
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, P. R. China
| | - Na Xu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yuhui Hua
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, P. R. China
| | - Bo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Zhanlin Xu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| |
Collapse
|
30
|
Shao J, Li H, Fei H, Yang L, Wang G, Li M, Gao J, Liao H, Lu J. Fabrication of an S-Scheme AgBr–PI Heterojunction for Biphenyl A Degradation and Its Degradation Pathways and Mechanism. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junxia Shao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Heng Fei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Liujun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Guan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Miaomiao Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Huarong Liao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
31
|
Peng L, Peng H, Xu L, Wang B, Lan K, Zhao T, Che R, Li W, Zhao D. Anisotropic Self-Assembly of Asymmetric Mesoporous Hemispheres with Tunable Pore Structures at Liquid-Liquid Interfaces. J Am Chem Soc 2022; 144:15754-15763. [PMID: 35994568 DOI: 10.1021/jacs.2c06436] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asymmetric materials have attracted tremendous interest because of their intriguing physicochemical properties and promising applications, but endowing them with precisely controlled morphologies and porous structures remains a formidable challenge. Herein, a facile micelle anisotropic self-assembly approach on a droplet surface is demonstrated to fabricate asymmetric carbon hemispheres with a jellyfish-like shape and radial multilocular mesostructure. This facile synthesis follows an interface-energy-mediated nucleation and growth mechanism, which allows easy control of the micellar self-assembly behaviors from isotropic to anisotropic modes. Furthermore, the micelle structure can also be systematically manipulated by selecting different amphiphilic triblock copolymers as a template, resulting in diverse novel asymmetric nanostructures, including eggshell, lotus, jellyfish, and mushroom-shaped architectures. The unique jellyfish-like hemispheres possess large open mesopores (∼14 nm), a high surface area (∼684 m2 g-1), abundant nitrogen dopants (∼6.3 wt %), a core-shell mesostructure and, as a result, manifest excellent sodium-storage performance in both half and full-cell configurations. Overall, our approach provides new insights and inspirations for exploring sophisticated asymmetric nanostructures for many potential applications.
Collapse
Affiliation(s)
- Liang Peng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Huarong Peng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Li Xu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Baixian Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Lan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Renchao Che
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
32
|
Chang H, Pan H, Wang F, Zhang Z, Kang Y, Min S. Ni single atoms supported on hierarchically porous carbonized wood with highly active Ni-N 4 sites as a self-supported electrode for superior CO 2 electroreduction. NANOSCALE 2022; 14:10003-10008. [PMID: 35792071 DOI: 10.1039/d2nr01992b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Powdery N-doped carbon-supported single-atom catalysts (SACs) can be prepared on a large scale and are highly selective in converting CO2 to CO, but their practical application is restricted by their powdery texture. Herein, we report Ni single atoms supported on hierarchically porous N-doped carbonized wood (Ni SAs-NCW) as a self-supported electrode for efficient and durable CO2 electroreduction. The porous NCW matrix possesses an abundance of open aligned microchannels that allow unimpeded CO2 diffusion and electrolyte transportation while the uniformly dispersed Ni SAs in the NCW matrix in the Ni-N4 configuration afford ample highly active sites for CO2 electroreduction. This Ni SAs-NCW electrode exhibits a high CO2-to-CO faradaic efficiency (FECO) of 92.1% and a CO partial current density (jCO) of 11.4 mA cm-2 at -0.46 V versus the reversible hydrogen electrode (RHE) and maintains a stable FECO and jCO over a period of 9 h of electrolysis. This work provides an effective strategy to develop efficient SACs with potential to be integrated into flow cell systems for large-scale CO2 reduction.
Collapse
Affiliation(s)
- Huaiyu Chang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- School of Electrical and Mechanical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Hui Pan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Fang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Yaming Kang
- School of Electrical and Mechanical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| |
Collapse
|
33
|
Sun F, Chen T, Li Q, Pang H. Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous Nickel-Zinc battery. J Colloid Interface Sci 2022; 627:483-491. [PMID: 35870401 DOI: 10.1016/j.jcis.2022.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022]
Abstract
Hierarchical superstructures in nano/microsize can provide improved transport of ions, large surface area, and highly robust structure for electrochemical applications. Herein, a facile solution precipitation method is presented for synthesizing a hierarchical nickel oxalate (Ni-OA) superstructure composed of 1D nanorods under the control of mixed solvent and surfactant of sodium dodecyl sulfate (SDS). The growth process of the hierarchical Ni-OA superstructure was studied and indicated that the product had good stability in mixed solvent. Owing to smaller size, shorter pathway of ion diffusion, and abundant interfacial contact with electrolytes, hierarchical Ni-OA superstructure (Ni-OA-3) showed higher specific capacity than aggregated micro-cuboids (Ni-OA-1) and self-assembled micro/nanorods (Ni-OA-2). Moreover, the assembled Ni-OA-3//Zn battery showed good cyclic stability in aqueous electrolytes, and achieved a maximum energy density of 0.42 mWh cm-2 (138.75 Wh kg-1), and a peak power density of 5.36 mW cm-2 (1.79 kW kg-1). This work may provide a new idea for the investigation of hierarchical nickel oxalate-based materials for electrochemical energy storage.
Collapse
Affiliation(s)
- Fancheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
34
|
Sun H, Zhou P, Tian Z, Ye X, Zhu Z, Ma C, Liang W, Li A. Non-Precious Metal-Doped Carbon Materials Derived From Porphyrin-Based Porous Organic Polymers for Oxygen Reduction Electrocatalysis. Chempluschem 2022; 87:e202200168. [PMID: 35789126 DOI: 10.1002/cplu.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Indexed: 11/10/2022]
Abstract
The cathodic oxygen reduction reaction (ORR) is important in the development of renewable energy devices, to produce novel and non-precious metal catalysts with high electrocatalytic activity to reduce the consumption of non-renewable platinum (Pt) catalyst. In this work, we developed N-doped and Fe/N dual-doped porous carbons as catalysts for ORR simply by high-temperature pyrolysis of porphyrin-based conjugated microporous polymers (CMPs). By combination of heteroatom doping, highly porous structure and tubular morphology, the as-prepared carbon samples exhibited high electrocatalytic activity with 4-electron transfer mechanism, nearly close to the commercial Pt/C catalyst. In particular, among these samples, the Fe/N-CMP-1000 displayed a higher onset potential (0.95 eV), positive half-wave potential (0.85 eV) and limiting current density value (5.1 mA cm-2 ) as well as good durability and better methanol tolerance contrasting with Pt/C catalyst, suggesting that the as-prepared metal-free catalysts from porphyrin-based CMPs show great potential for ORR.
Collapse
Affiliation(s)
- Hanxue Sun
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China
| | - Peilei Zhou
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China
| | - Zhuoyue Tian
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China
| | - Xingyun Ye
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China
| | - Zhaoqi Zhu
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China
| | - Chonghua Ma
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China
| | - Weidong Liang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China
| | - An Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, P. R. China
| |
Collapse
|
35
|
Du Y, Yan X, Chen Y, Wu Y, Qiu Q, Li Y, Wu D. Magnetic polyimide nanosheet microspheres for trace analysis of estrogens in aqueous samples by magnetic solid-phase extraction-gas chromatography–mass spectrometry. J Chromatogr A 2022; 1675:463184. [DOI: 10.1016/j.chroma.2022.463184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023]
|
36
|
Zhao Z, Duan L, Zhao Y, Wang L, Zhang J, Bu F, Sun Z, Zhang T, Liu M, Chen H, Yang Y, Lan K, Lv Z, Zu L, Zhang P, Che R, Tang Y, Chao D, Li W, Zhao D. Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly. J Am Chem Soc 2022; 144:11767-11777. [PMID: 35731994 DOI: 10.1021/jacs.2c03814] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Constructing hierarchical three-dimensional (3D) mesostructures with unique pore structure, controllable morphology, highly accessible surface area, and appealing functionality remains a great challenge in materials science. Here, we report a monomicelle interface confined assembly approach to fabricate an unprecedented type of 3D mesoporous N-doped carbon superstructure for the first time. In this hierarchical structure, a large hollow locates in the center (∼300 nm in diameter), and an ultrathin monolayer of spherical mesopores (∼22 nm) uniformly distributes on the hollow shells. Meanwhile, a small hole (4.0-4.5 nm) is also created on the interior surface of each small spherical mesopore, enabling the superstructure to be totally interconnected. Vitally, such interconnected porous supraparticles exhibit ultrahigh accessible surface area (685 m2 g-1) and good underwater aerophilicity due to the abundant spherical mesopores. Additionally, the number (70-150) of spherical mesopores, particle size (22 and 42 nm), and shell thickness (4.0-26 nm) of the supraparticles can all be accurately manipulated. Besides this spherical morphology, other configurations involving 3D hollow nanovesicles and 2D nanosheets were also obtained. Finally, we manifest the mesoporous carbon superstructure as an advanced electrocatalytic material with a half-wave potential of 0.82 V (vs RHE), equivalent to the value of the commercial Pt/C electrode, and notable durability for oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Zaiwang Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yujuan Zhao
- Centre for High-Resolution Electron Microscopy (ChEM), School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, P. R. China
| | - Lipeng Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Junye Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhihao Sun
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tengsheng Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Mengli Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hanxing Chen
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yi Yang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Lan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zirui Lv
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lianhai Zu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Pengfei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Renchao Che
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yun Tang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
37
|
Qiu G, Miao Z, Guo Y, Xu J, Jia W, Zhang Y, Guo F, Wu J. Bamboo-based hierarchical porous carbon for high-performance supercapacitors: the role of different components. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Sun J, Xue W, Zhang L, Dai L, Bi J, Yao F, Deng J, Xiong P, Fu Y, Zhu J. Gradient Supramolecular Preorganization Endows the Derived N/P Dual-Doped Carbon Nanosheets with Tunable Storage Performance toward Sodium-Ion Batteries. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenkang Xue
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Litong Zhang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Liming Dai
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiabao Bi
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fanglei Yao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyao Deng
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
39
|
Zhu D, Lu Y, Gui L, Wang W, Hu X, Chen S, Wang Y, Wang Y. Self-assembling, pH-responsive nanoflowers for inhibiting PAD4 and neutrophil extracellular trap formation and improving the tumor immune microenvironment. Acta Pharm Sin B 2022; 12:2592-2608. [PMID: 35646534 PMCID: PMC9136569 DOI: 10.1016/j.apsb.2021.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 10/10/2021] [Indexed: 12/25/2022] Open
Abstract
Self-assembling carrier-free nanodrugs are attractive agents because they accumulate at tumor by an enhanced permeability and retention (EPR) effect without introduction of inactive substances, and some nanodrugs can alter the immune environment. We synthesized a peptidyl arginine deiminase 4 (PAD4) molecular inhibitor, ZD-E-1M. It could self-assembled into nanodrug ZD-E-1. Using confocal laser scanning microscopy, we observed its cellular colocalization, PAD4 activity and neutrophil extracellular traps (NETs) formation. The populations of immune cells and expression of immune-related proteins were determined by single-cell mass cytometry. ZD-E-1 formed nanoflowers in an acidic environment, whereas it formed nanospheres at pH 7.4. Accumulation of ZD-E-1 at tumor was pH-responsive because of its pH-dependent differences in the size and shape. It could enter the nucleus and bind to PAD4 to prolong the intracellular retention time. In mice, ZD-E-1 inhibited tumor growth and metastasis by inhibiting PAD4 activity and NETs formation. Besides, ZD-E-1 could regulate the ratio of immune cells in LLC tumor-bearing mice. Immunosuppressive proteins like LAG3 were suppressed, while IFN-γ and TNF-α as stimulators of tumor immune response were upregulated. Overall, ZD-E-1 is a self-assembling carrier-free nanodrug that responds to pH, inhibits PAD4 activity, blocks neutrophil extracellular traps formation, and improves the tumor immune microenvironment.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Lin Gui
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xi Hu
- Quantum Design China Ltd., Universal Business Park, Beijing 100015, China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
40
|
Jiang B, Su Y, Liu R, Sun Z, Wu D. Calcium Based All-Organic Dual-Ion Batteries with Stable Low Temperature Operability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200049. [PMID: 35434917 DOI: 10.1002/smll.202200049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In response to the application requirements of secondary batteries at low temperature, an all-organic dual-ion battery with calcium perchlorate contained acetonitrile as the electrolyte (CAN-ODIB) is fabricated in this work. The electrochemical energy is stored in CAN-ODIB via the association and disassociation of calcium and perchlorate ions in perylene diimide-ethylene diamine/carbon black composite based anode and polytriphenylamine based cathode with highly reversible redox states. Benefiting from the energy storage mechanism, CAN-ODIB exhibits excellent electrochemical performances in tests with the temperature ranging from 25 to -50 °C. Especially, CAN-ODIB at -50 °C reserves ≈61% of the capacity at 25 °C (83.4 mA h g-1 ) with the current density of 0.2 A g-1 . CAN-ODIB also shows excellent cycling stability at low temperature by retaining 90.3% of the initial capacity at 1.0 A g-1 after 450 charge-discharge cycles at -30 °C. The impedance analysis of CAN-ODIB at different temperatures indicates that the low temperature performance of CAN-ODIB depends more on the electrode materials than the electrolyte, which provides the important guidance for the further design of secondary batteries operable at low temperatures.
Collapse
Affiliation(s)
- Biao Jiang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
| | - Ruili Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
| | - Zuobang Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, P. R. China
| |
Collapse
|
41
|
Jiang W, Wu Y, Zhang X, Chen D, Ma Y, Yang W. Novel Bismaleimide Porous Polymer Microsphere by Self-Stabilized Precipitation Polymerization and Its Application for Catalytic Microreactors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenxing Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingxue Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
42
|
Pan Z, Qian Y, Li Y, Lin N, Qian Y. Cation-Dependent Hydrogel Template-Activation Strategy: Constructing 3D Anode and High Specific Surface Cathode for Dual-Carbon Potassium-Ion Hybrid Capacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106712. [PMID: 35098640 DOI: 10.1002/smll.202106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Here, a universal template-activation strategy is proposed to prepare two different types of porous carbonaceous materials for potassium ion hybrid capacitor (PIHC) anode and cathode, which is realized by only changing the type of cation (Na+ and K+ ) in the polysilicic acid-organic mixed hydrogel precursor originating from adding organic acid into Na2 SiO3 and K2 SiO3 solution, respectively. TG-IR data demonstrate that K+ exhibits a stronger etching ability for activating carbonaceous materials during the annealing process. Accordingly, a 3D carbon anode obtained with the assistance of NaOH (NPC-500) exhibits abundant edge-N doping (8.14 at%), displaying a high K-storage capacity of 314.1 mA h g-1 at 0.2 A g-1 and a capacity of 219.3 mA h g-1 at 10 A g-1 after 10000 cycles. A porous carbon particles cathode prepared in the presence of KOH (KCP-800) shows a high specific surface area (1326.8 m2 g-1 ), contributing to high PF6- (de)adsorb capacity of 103.0 mA h g-1 at 1 A g-1 . Remarkably, the assembled NPC//KCP PIHC delivers a high energy density of 137.7 W h kg-1 at a power density of 275.4 W kg-1 even over 20 000 cycles.
Collapse
Affiliation(s)
- Zhen Pan
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yong Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Li
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ning Lin
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yitai Qian
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
43
|
Sun H, Li X, Jin K, Lai X, Du J. Highly porous nitrogen-doped carbon superstructures derived from the intramolecular cyclization-induced crystallization-driven self-assembly of poly(amic acid). NANOSCALE ADVANCES 2022; 4:1422-1430. [PMID: 36133680 PMCID: PMC9418133 DOI: 10.1039/d1na00853f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 06/16/2023]
Abstract
Hierarchically porous carbon nanomaterials have shown significant potential in electrochemical energy storage due to the promoted charge and mass transfer. Herein, a facile template-free method is proposed to prepare nitrogen-doped carbon superstructures (N-CSs) with multi-level pores by pyrolysis of polymeric precursors derived from the intramolecular cyclization-induced crystallization-driven self-assembly (ICI-CDSA) of poly(amic acid) (PAA). The excellent thermal stability of PAA enables the N-CSs to inherit the hierarchical structure of the precursors during pyrolysis, which facilitates the formation of meso- and macropores while the decomposition of the precursors promotes the creation of micropores. Electrochemical tests demonstrate the ultrahigh surface-area-normalized capacitance (76.5 μF cm-2) of the N-CSs facilitated by the hierarchically porous structure, promoting the charge and mass transfer, as well as the high utilization of pyridinic and pyrrolic nitrogen (12.9%) to provide significant pseudocapacitance contribution up to 40.6%. Considering the diversity of monomers of PAA, this ICI-CDSA strategy could be extended to prepare carbon nanomaterials with various morphologies, pore structures and chemical compositions.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Kai Jin
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiaoyong Lai
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Jianzhong Du
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| |
Collapse
|
44
|
Ai Y, Sun H, Wang C, Zheng W, Han Q, Liang Q. Tunable Assembly of Organic-Inorganic Molecules into Hierarchical Superstructures as Ligase Mimics for Enhancing Tumor Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105304. [PMID: 35032093 DOI: 10.1002/smll.202105304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The assembly of molecules into hierarchical superstructures is ubiquitous in the construction of novel geometrically complex hierarchical superstructures, attracting great attention. Herein, a metal-ligand cross-linking strategy is developed for the fabrication of ferric ion-dopamine coordination hierarchical superstructures. A range of superstructures with highly complex morphologies, such as flower-like, octopus-like, and hedgehog-like superstructures, are synthesized. The mechanism for formation of hierarchical superstructures involves the pre-cross-linking of ferric ion with dopamine molecules, the fabrication of iron-dopamine precursors aggregated into the spherical aggregates, the nanoscale aggregates sintering and ordering themselves upon equilibration, the nanodots polymerizing into nanorods, and finally the nanorods self-assembling into hierarchical superstructures. In-depth research illustrates that as the permittivity (ξ) of the reaction system increases, the resulting hierarchical superstructures tend to converge into spherical shape. As a proof of concept, the 0D nanospheres, 1D nanorods, and 3D hierarchical superstructures are fabricated through adjusting system permittivity. The hierarchical superstructure is utilized as peroxidase-like ligase mimics to enhance the effect of tumor photothermal treatment. Further in vitro and in vivo assays demonstrate that the hierarchical superstructure can effectively ablate tumor cells. This work opens new horizons in hierarchical superstructures with complex architectures, and has great potential in nanozymology, biomedical science, and catalysis.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chenlong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenchen Zheng
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
45
|
Fu H, Yang D, Qiu D, Yan CH, Cai R, Du Y, Tan W. Highly Stable 3D Supercuboids to 2D ZnSe Nanosheets: Formation for a High-Efficiency Catalysis System. J Phys Chem Lett 2022; 13:1855-1862. [PMID: 35175054 DOI: 10.1021/acs.jpclett.2c00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Assembling into desired and higher-ordered superstructures makes nanocrystals superior candidates in a wide range of applications. Herein, we report a facile but robust colloidal chemistry method to obtain three-dimensional (3D) supercuboids from two-dimensional (2D) ZnSe nanosheets. It is well-defined that the formation mechanism of the supercuboids is based on the interaction among ligands on the ZnSe nanosheets. The highly stable supercuboids are composed of nanosheets with thickness of approximately ∼1.4 nm, and the spacing between two nanosheets in the supercuboid is revealed as ∼1.2 nm. Importantly, 2D nanosheets are readily regained by an exfoliation process of 3D supercuboids in a high-temperature solvothermal process. Furthermore, the Au@ZnSe heteronanosheets could be obtained by Au nanoparticles (NPs) decorated on 2D nanosheets. As a proof-of-concept application, the ZnSe nanosheets are applied in the catalysis of the aldol condensation reaction, which shows the high isolated yield of chalcone up to 80%.
Collapse
Affiliation(s)
- Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Dan Yang
- RIMT University, Melbourne 3001, Australia
| | - Di Qiu
- Tianjin Normal University, Tianjin 300350, China
| | - Chun Hua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
46
|
Ban Q, Li Y, Qin Y, Zheng Y, Xie X, Yu Z, Kong J. Hierarchical engineering of Large-caliber carbon Nanotube/Mesoporous Carbon/Fe 3C nanoparticle hybrid nanocomposite towards Ultra-lightweight electromagnetic microwave absorber. J Colloid Interface Sci 2022; 616:618-630. [PMID: 35240440 DOI: 10.1016/j.jcis.2022.02.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
Abstract
The rational regulation of the magnetic-dielectric composition and microstructures of the absorber is considered an important approach to optimize both the impedance matching and the electromagnetic microwave attenuation ability. Along these lines, a novel architecture-controlled large-caliber carbon nanotube/mesoporous carbon/Fe3C nanoparticle-based hybrid nanocomposites (CNT/C/Fe3C), which were derived from the CNT/polyimide (PI) assemblies anchoring ferric oxide hydrate nanoprecipitates, are presented in this work. The proposed configurations were prepared by applying a cooperative co-assembly strategy and high-temperature pyrolysis procedure for the development of an ultra-lightweight electromagnetic microwave absorber. The employed hierarchically tubular heterogeneous architecture is composed of a highly graphited CNT supporting skeleton, polyimide assemblies-converted carbon interlayer with mesopores, and uniformly distributed magnetic Fe3C nanoparticles. This unique hierarchical structure can not only induce multiple reflection and scattering effects of the incident electromagnetic microwave but also trigger dipole/interfacial polarization, ferromagnetic resonance and eddy current loss that are beneficial for the synergistic dielectric and magnetic loss. Moreover, the large-caliber CNT and mesoporous carbon interlayer can endow the as-prepared absorber with lightweight characteristics. Hence, the proposed CNT/C-EDA/Fe3C-900 hybrid nanocomposite exhibits a minimum reflection loss (RL) of -48.4 dB at a matching thickness of 3.2 mm, and the effective absorption bandwidth (RL ≤ -10 dB) almost covers the whole X-band only with a 5 wt% filler loading. Undoubtedly, these encouraging outcomes will promote the development of hierarchical engineering techniques of novel magnetic-dielectric nanocomposite absorbers.
Collapse
Affiliation(s)
- Qingfu Ban
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China.
| | - Yan Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Yaochen Zheng
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Xiubo Xie
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Zhen Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
47
|
Jiang S, Li C, Zhang J, Li Q, Xu H, Xu F, Mai Y. Block Copolymer Self-Assembly Guided Synthesis of Mesoporous Carbons with In-Plane Holey Pores for Efficient Oxygen Reduction Reaction. Macromol Rapid Commun 2022; 43:e2100884. [PMID: 35170116 DOI: 10.1002/marc.202100884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Indexed: 11/09/2022]
Abstract
In this paper, we report a simple approach, using interfacial self-assembly of block copolymers (BCPs) on self-sacrificial templates, for preparing mesoporous carbons with in-plane holey pores, including nitrogen atom-doped carbon nanosheets and nanoflowers (denoted as NHCSs and NHCFs). The approach employed sheet- or flower-like layered double hydroxide as the templates, P123 copolymer as the pore-directing agent, and m-phenylenediamine as the carbon source. The holey mesopores may shorten the mass transfer distance to the internal active sites of stacked nanosheets, while the three-dimensional (3D) packing mode of nanosheets can reduce pore blockage caused by their tight stacking. Profiting from these structural advantages, acting as electrocatalysts for oxygen reduction reaction (ORR), both NHCSs and NHCFs show excellent catalytic performance better than that of carbon nanosheets without holey pores. Particularly, NHCFs exhibit a high half-wave-potential (0.82V) and a limiting current density (5.4 mA cm-2 ), close to those of commercial Pt/C catalysts. This study provides valuable clues on building mesoporous materials with in-plane holey pores as well as on the effect of pore structure and stacking mode of 2D materials on their electrocatalytic ORR performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Siqi Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haishan Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
48
|
Li R, Wu L, Chang G, Ke S, Wang Y, Yao Y, Zhang Y, Li J, Yang X, Chen B. Solvent-Mediated Synthesis of Hierarchical MOFs and Derived Urchin-Like Pd@SC/HfO 2 with High Catalytic Activity and Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5887-5896. [PMID: 35045705 DOI: 10.1021/acsami.1c22986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon materials with hierarchical morphologies, pores, and compositions have attracted extraordinary attention due to their unique structural advantages and widespread applications. However, their controllable synthesis remains a grand challenge. Herein, a solvent-mediated strategy was demonstrated for the preparation of an urchin-like superstructure via modulating the hydrothermal condition (acetic acid/water ratio) of metal-organic frameworks (MOFs). The direct pyrolysis of a hierarchical NUS-6 precursor produced a well-defined carbon-based composite consisting of sulfur-doped carbon (SC) and HfO2 with an urchin-like morphology and micro-/mesoporosity, while the doped S sites and oxygen vacancies of HfO2 can help to anchor and activate Pd nanoparticles (NPs) through the strong host-guest interaction, which was further confirmed by the calculated results of the binding energy and differential charge density through density functional theory (DFT). The synthesized Pd@SC/HfO2 composite exhibited extremely high catalytic activity and stability toward the water-phase hydrodeoxygenation of vanillin (conversion >99%, selectivity >99%), as well as good universality for the hydrogenation of a series of unsaturated hydrocarbons in an aqueous system. Remarkably, the catalytic activity and structural stability of Pd@SC/HfO2 were largely maintained even after successive 10 cycles.
Collapse
Affiliation(s)
- Ruidong Li
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Lu Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Shanchao Ke
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yilong Wang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yao Yao
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yuexing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Junsheng Li
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoyu Yang
- School of Chemistry, Chemical Engineering and Life Science & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-160, United States
| |
Collapse
|
49
|
Huang J, Chen H, Zhang G, Fan X, Liu J. The Effect of Silane Coupling Agent on the Texture and Properties of In Situ Synthesized PI/SiO2 Nanocomposite Film. NANOMATERIALS 2022; 12:nano12020286. [PMID: 35055302 PMCID: PMC8778991 DOI: 10.3390/nano12020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
PI/SiO2 composite films have been prepared by using in situ polymerization. The influences of the dosage of silane coupling agent (KH-560) on the structure and performance of PI/SiO2 composite film have been investigated. The results show that in the components without KH-560, the addition of SiO2 decreases the transmittance of the sample. Compared to the same SiO2 doping amount, the transmittance in the visible light range of the sample using KH-560 is higher than that of the sample without KH-560. After adding KH-560, the tensile strength, the elastic modulus the elongation at break of the sample have largely changed. The thermal stability and the ability to resist ultraviolet radiation of the composite film first increases and then decreases. Furthermore, the optimal dosage of KH-560 is 3%. Moreover, the addition of KH-560 has little effect on the transmittance of the PI/SiO2 composite films before and after UV irradiation.
Collapse
Affiliation(s)
- Jindong Huang
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; (J.H.); (H.C.); (G.Z.); (X.F.)
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
| | - Hong Chen
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; (J.H.); (H.C.); (G.Z.); (X.F.)
| | - Guanglu Zhang
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; (J.H.); (H.C.); (G.Z.); (X.F.)
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaowei Fan
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; (J.H.); (H.C.); (G.Z.); (X.F.)
- Tianjin SYP Engineering Glass Co., Ltd., Tianjin 300402, China
| | - Juncheng Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; (J.H.); (H.C.); (G.Z.); (X.F.)
- Correspondence: ; Tel.: +86-(0)-22-83-955-811
| |
Collapse
|
50
|
Zhang Y, Xiao W, Yin Y, Peng DZ, Wang H, Zhou M, Hou Z, Liu Y, He B. Fabricating 3D ultra-thin N-doped porous graphene-like catalysts based on polymerized amino acid metal chelates as an efficient oxygen electrocatalyst for Zn-air batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj02623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NPC-1050 has a unique hierarchical porous morphology, and optimized structure and composition, thus leading to a much improved ORR performance.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
- Guangxi Key Laboratory of Low Carbon Energy Material, Guangxi Normal University, Guilin 541004, China
| | - Wenhua Xiao
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Yuan Yin
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - De Zheng Peng
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Material, Guangxi Normal University, Guilin 541004, China
| | - Minjie Zhou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Zhaohui Hou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Yu Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Binhong He
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| |
Collapse
|