1
|
Wang SP, Song P, Li HY, Ma KY, Xu JJ, Chen HY, Kang B. Spaser Nanoprobes Family for Narrow-Band Multiplexed Cell Imaging. J Am Chem Soc 2025; 147:12449-12459. [PMID: 40176553 DOI: 10.1021/jacs.4c15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Spaser nanoprobes, with their ultranarrow emission line widths and nanoscale sizes, are emerging as leading contenders for the next generation of biological luminescent probes. However, modulating spasing wavelengths across a broad spectral range remains a formidable challenge that constrains their application in multiplexed sensing and imaging. Here, we introduced a novel wavelength-tunable spaser system, successfully creating a nanoprobe family with 9 distinct spasing wavelengths. These nanoprobes exhibit ultranarrow emission line widths of 3-8 nm with a low pump threshold of 0.5 mJ cm-2. We further investigated the influences of energy matching between the gain medium and the cavity on the emission performance of the spaser nanoprobes and successfully realized narrow-band luminescence in both individual and aggregated spaser particles under commercial confocal instruments. Moreover, we demonstrated the multiplexed imaging capability of 6 distinct spaser nanoprobes in a single HeLa cell within an imaging window of 200 nm, free of spectral crosstalk. Our results address the long-standing issue of wavelength tunability in spaser nanoprobes and also clarify previous disputes on the luminescence origin of single nanoparticles, marking a significant advancement in their application for ultramultiplexed biological imaging and sensing.
Collapse
Affiliation(s)
- Shao-Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Hao-Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kuan-Yu Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Zhao Y, Zhang Y, Zhang Y, Zhang Y, Deng Z, Bai T, Zhang M, Zhang M, Song J. Biomimetic Nanoplatform-Mediated Protective Autophagy Blockage Enhancing Sonodynamic and Ca 2+-Overload Combined Therapy for Colon Cancer. SMALL METHODS 2025:e2402091. [PMID: 39865753 DOI: 10.1002/smtd.202402091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Indexed: 01/28/2025]
Abstract
The application of a multimodal combination therapy based on a targeted nanodelivery system has been demonstrated to be more valuable in the treatment of cancer. In this work, a hollow polydopamine delivery system (CCC@HP@M) was designed to achieve sonodynamic and calcium-overload combined therapy for colon cancer. The CCC@HP@M exhibits both homologous tumour-targeting ability and pH-responsive drug release properties, enabling the simultaneous targeted delivery of CaO2 nanoparticles/sonosensitizer Ce6/autophagy inhibitor CQ. The CaO2 nanoparticles as calcium agents capable of triggering Ca2+ overload in tumor cells. The oxidative stress produced by sonodynamic therapy is facilitated by the disruption of calcium homeostasis to enhance the effect of Ca2+ overload-induced apoptosis. Furthermore, the O2 produced by CaO2 augments the sensitization of sonodynamic therapy. The autophagy inhibitor CQ can inhibit protective cellular autophagy, which is activated by sonodynamic therapy and Ca2+ overload. Consequently, autophagy blockage can ensure the therapeutic effect of sonodynamic and Ca2+-overload combined therapy for colon cancer. The results of experiments in vitro and in vivo demonstrate that the stimulus-responsive targeted delivery system achieves autophagy blockage augmented sonodynamic and Ca2+-overload combined therapy of colon cancer. This work offers a promising theoretical basis for optimizing combined treatment strategies for tumors and clinical translational applications.
Collapse
Affiliation(s)
- Yuanru Zhao
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ting Bai
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710077, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| |
Collapse
|
3
|
Lv K, Wang H, Fu X, Chen S, Zhang R, Zhou Y, Feng J, Zhang H. An Integrated Nanoplatform via Dual Channel Excitation for Both Precise Fluorescence Imaging and Photodynamic Therapy of Orthotopic Breast Tumor in NIR-II Region. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404007. [PMID: 39140318 DOI: 10.1002/smll.202404007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Although research on photodynamic therapy (PDT) of malignant tumor has made considerable progress in recent years, it is a remaining challenge to extend PDT to the second near-infrared window (NIR-II) along with real-time and accurate NIR-II fluorescence imaging to determine drug enrichment status and achieve high treatment efficacy. In this work, lanthanide nanoparticles (Ln NPs)-based nanoplatform (LCR) equipped with photosensitizer Chlorin e6 (Ce6) and targeting molecular NH2-PEG1000-cRGDfK are developed, which can achieve NIR-II photodynamic therapy (PDT) and NIR-II fluorescence imaging by dual channel excitation. Under 808 nm excitation, Nd3+ in the outer layer can absorb the energy and transfer inward to emit strong NIR-II emissions (1064 and 1525 nm). Due to the low background noise of NIR-II light and the targeting effect of NH2-PEG1000-cRGDfK, LCR can recognize tiny tumor tissue (≈3 mm) and monitor drug distribution in vivo. Under 1530 nm excitation, internal Er3+ can be self-sensitized, generating intense upconversion emission (662 nm) that can effectively activate Ce6 for in vivo PDT due to the deep tissue penetration of NIR-II light. This study provides a paradigm of theranostic nanoplatform for both real-time fluorescence imaging and PDT of orthotopic breast tumor in NIR-II window.
Collapse
Affiliation(s)
- Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongli Wang
- College of Animal Science, Jilin University, Changchun, Jilin, 130062, P. R. China
| | - Xinyu Fu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shengzhe Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Xu W, Qian Y, Qiao L, Li L, Xie Y, Sun Q, Quan Z, Li C. "Three Musketeers" Enhances Photodynamic Effects by Reducing Tumor Reactive Oxygen Species Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26590-26603. [PMID: 38742307 DOI: 10.1021/acsami.4c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) has been widely used in the treatment of a variety of tumors. Compared with other therapeutic methods, this treatment has the advantages of high efficiency, strong penetration, and controllable treatment range. PDT kills tumors by generating a large amount of reactive oxygen species (ROS), which causes oxidative stress in the tumor. However, this killing effect is significantly inhibited by the tumor's own resistance to ROS. This is because tumors can either deplete ROS by high concentration of glutathione (GSH) or stimulate autophagy to eliminate ROS-generated damage. Furthermore, the tumor can also consume ROS through the lactic acid metabolic pathway, ultimately hindering therapeutic progress. To address this conundrum, we developed a UCNP-based nanocomposite for enhanced PDT by reducing tumor ROS resistance. First, Ce6-doped SiO2 encapsulated UCNPs to ensure the efficient energy transfer between UCNPs and Ce6. Then, the biodegradable tetrasulfide bond-bridged mesoporous organosilicon (MON) was coated on the outer layer to load chloroquine (CQ) and α-cyano4-hydroxycinnamic acid (CHCA). Finally, hyaluronic acid was utilized to modify the nanomaterials to realize an active-targeting ability. The obtained final product was abbreviated as UCNPs@MON@CQ/CHCA@HA. Under 980 nm laser irradiation, upconverted red light from UCNPs excited Ce6 to produce a large amount of singlet oxygen (1O2), thus achieving efficient PDT. The loaded CQ and CHCA in MON achieved multichannel enhancement of PDT. Specifically, CQ blocked the autophagy process of tumor cells, and CHCA inhibited the uptake of lactic acid by tumor cells. In addition, the coated MON consumed a high level of intracellular GSH. In this way, these three functions complemented each other, just as the "three musketeers" punctured ROS resistance in tumors from multiple angles, and both in vitro and in vivo experiments had demonstrated the elevated PDT efficacy of nanomaterials.
Collapse
Affiliation(s)
- Wencheng Xu
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yanrong Qian
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Qianqian Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
5
|
Sun G, Huang S, Wang S, Li Y. Nanomaterial-based drug-delivery system as an aid to antimicrobial photodynamic therapy in treating oral biofilm. Future Microbiol 2024; 19:741-759. [PMID: 38683167 PMCID: PMC11259068 DOI: 10.2217/fmb-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Diverse microorganisms live as biofilm in the mouth accounts for oral diseases and treatment failure. For decades, the prevention and treatment of oral biofilm is a global challenge. Antimicrobial photodynamic therapy (aPDT) holds promise for oral biofilm elimination due to its several traits, including broad-spectrum antimicrobial capacity, lower possibility of resistance and low cytotoxicity. However, the physicochemical properties of photosensitizers and the biological barrier of oral biofilm have limited the efficiency of aPDT. Nanomaterials has been used to fabricate nanocarriers to improve photosensitizer properties and thus enhance antimicrobial effect. In this review, we have discussed the challenges of aPDT used in dentistry, categorized the nanomaterial-delivery system and listed the possible mechanisms involved in nanomaterials when enhancing aPDT effect.
Collapse
Affiliation(s)
- Guanwen Sun
- Department of stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Shan Huang
- Department of stomatology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Shaofeng Wang
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
- Xiamen Key Laboratory of Stomatological Disease Diagnosis & Treatment, Xiamen, China
| |
Collapse
|
6
|
Zhao RM, Zhang QF, Tian XL, Chen JJ, Yu XQ, Zhang J. ROS-Responsive Bola-Lipid Nanoparticles as a Codelivery System for Gene/Photodynamic Combination Therapy. Mol Pharm 2024; 21:2012-2024. [PMID: 38497779 DOI: 10.1021/acs.molpharmaceut.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The nonviral delivery systems that combine genes with photosensitizers for multimodal tumor gene/photodynamic therapy (PDT) have attracted much attention. In this study, a series of ROS-sensitive cationic bola-lipids were applied for the gene/photosensitizer codelivery. Zn-DPA was introduced as a cationic headgroup to enhance DNA binding, while the hydrophobic linking chains may facilitate the formation of lipid nanoparticles (LNP) and the encapsulation of photosensitizer Ce6. The length of the hydrophobic chain played an important role in the gene transfection process, and 14-TDZn containing the longest chains showed better DNA condensation, gene transfection, and cellular uptake. 14-TDZn LNPs could well load photosensitizer Ce6 to form 14-TDC without a loss of gene delivery efficiency. 14-TDC was used for codelivery of p53 and Ce6 to achieve enhanced therapeutic effects on the tumor cell proliferation inhibition and apoptosis. Results showed that the codelivery system was more effective in the inhibition of tumor cell proliferation than individual p53 or Ce6 monotherapy. Mechanism studies showed that the production of ROS after Ce6 irradiation could increase the accumulation of p53 protein in tumor cells, thereby promoting caspase-3 activation and inducing apoptosis, indicating some synergistic effect. These results demonstrated that 14-TDC may serve as a promising nanocarrier for gene/PDT combination therapy.
Collapse
Affiliation(s)
- Rui-Mo Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Qin-Fang Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Li Tian
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Jia-Jia Chen
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Qi Yu
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Ji Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
7
|
Jiang J, Lv X, Cheng H, Yang D, Xu W, Hu Y, Song Y, Zeng G. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives. Acta Biomater 2024; 177:1-19. [PMID: 38336269 DOI: 10.1016/j.actbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The emergence of drug-resistant bacteria has significantly diminished the efficacy of existing antibiotics in the treatment of bacterial infections. Consequently, the need for finding a strategy capable of effectively combating bacterial infections has become increasingly urgent. Photodynamic therapy (PDT) is considered one of the most promising emerging antibacterial strategies due to its non-invasiveness, low adverse effect, and the fact that it does not lead to the development of drug resistance. However, bacteria at the infection sites often exist in the form of biofilm instead of the planktonic form, resulting in a hypoxic microenvironment. This phenomenon compromises the treatment outcome of oxygen-dependent type-II PDT. Compared to type-II PDT, type-I PDT is not constrained by the oxygen concentration in the infected tissues. Therefore, in the treatment of bacterial infections, type-I PDT exhibits significant advantages over type-II PDT. In this review, we first introduce the fundamental principles of type-I PDT in details, including its physicochemical properties and how it generates reactive oxygen species (ROS). Next, we explore several specific antimicrobial mechanisms utilized by type-I PDT and summarize the recent applications of type-I PDT in antimicrobial treatment. Finally, the limitations and future development directions of type-I photosensitizers are discussed. STATEMENT OF SIGNIFICANCE: The misuse and overuse of antibiotics have accelerated the development of bacterial resistance. To achieve the effective eradication of resistant bacteria, pathfinders have devised various treatment strategies. Among these strategies, type I photodynamic therapy has garnered considerable attention owing to its non-oxygen dependence. The utilization of non-oxygen-dependent photodynamic therapy not only enables the effective elimination of drug-resistant bacteria but also facilitates the successful eradication of hypoxic biofilms, which exhibits promising prospects for treating biofilm-associated infections. Based on the current research status, we anticipate that the novel type I photodynamic therapy agent can surmount the biofilm barrier, enabling efficient treatment of hypoxic biofilm infections.
Collapse
Affiliation(s)
- Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Huijuan Cheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wenjia Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China.
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Guisheng Zeng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648.
| |
Collapse
|
8
|
Chen M, Han Q, Zhang M, Liu Y, Wang L, Yang F, Li Q, Cao Z, Fan C, Liu J. Upconversion dual-photosensitizer-expressing bacteria for near-infrared monochromatically excitable synergistic phototherapy. SCIENCE ADVANCES 2024; 10:eadk9485. [PMID: 38446879 PMCID: PMC11326044 DOI: 10.1126/sciadv.adk9485] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Synergistic phototherapy stands for superior treatment prospects than a single phototherapeutic modality. However, the combined photosensitizers often suffer from incompatible excitation mode, limited irradiation penetration depth, and lack of specificity. We describe the development of upconversion dual-photosensitizer-expressing bacteria (UDPB) for near-infrared monochromatically excitable combination phototherapy. UDPB are prepared by integrating genetic engineering and surface modification, in which bacteria are encoded to simultaneously express photothermal melanin and phototoxic KillerRed protein and the surface primary amino groups are derived to free thiols for biorthogonal conjugation of upconversion nanoparticles. UDPB exhibit a near-infrared monochromatic irradiation-mediated dual-activation characteristic as the photothermal conversion of melanin can be initiated directly, while the photodynamic effect of KillerRed can be stimulated indirectly by upconverted visible light emission. UDPB also show living features to colonize hypoxic lesion sites and inhibit pathogens via bacterial community competition. In two murine models of solid tumor and skin wound infection, UDPB separately induce robust antitumor response and a rapid wound healing effect.
Collapse
Affiliation(s)
- Mian Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuju Han
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
9
|
Gültekin HE, Yaşayan G, Bal-Öztürk A, Bigham A, Simchi AA, Zarepour A, Iravani S, Zarrabi A. Advancements and applications of upconversion nanoparticles in wound dressings. MATERIALS HORIZONS 2024; 11:363-387. [PMID: 37955196 DOI: 10.1039/d3mh01330h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Istanbul, Turkey
- Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, Istinye University, 34010 Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Abdolreza Arash Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
10
|
Liu X, Wu S, Wu H, Zhang T, Qin H, Lin Y, Li B, Jiang X, Zheng X. Fully Active Delivery of Nanodrugs In Vivo via Remote Optical Manipulation. SMALL METHODS 2024; 8:e2301112. [PMID: 37880897 DOI: 10.1002/smtd.202301112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Indexed: 10/27/2023]
Abstract
The active delivery of nanodrugs has been a bottleneck problem in nanomedicine. While modification of nanodrugs with targeting agents can enhance their retention at the lesion location, the transportation of nanodrugs in the circulation system is still a passive process. The navigation of nanodrugs with external forces such as magnetic field has been shown to be effective for active delivery, but the existing techniques are limited to specific materials like magnetic nanoparticles. In this study, an alternative actuation method is proposed based on optical manipulation for remote navigation of nanodrugs in vivo, which is compatible with most of the common drug carriers and exhibits significantly higher manipulation precision. By the programmable scanning of the laser beam, the motion trajectory and velocity of the nanodrugs can be precisely controlled in real time, making it possible for intelligent drug delivery, such as inverse-flow transportation, selective entry into specific vascular branch, and dynamic circumvention across obstacles. In addition, the controlled mass delivery of nanodrugs can be realized through indirect actuation by the microflow field. The developed optical manipulation method provides a new solution for the active delivery of nanodrugs, with promising potential for the treatment of blood diseases such as leukemia and thrombosis.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Shuai Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Huaying Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Tiange Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yufeng Lin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiqun Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
11
|
Li W, Liang M, Qi J, Ding D. Semiconducting Polymers for Cancer Immunotherapy. Macromol Rapid Commun 2023; 44:e2300496. [PMID: 37712920 DOI: 10.1002/marc.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Indexed: 09/16/2023]
Abstract
As a monumental breakthrough in cancer treatment, immunotherapy has attracted tremendous attention in recent years. However, one challenge faced by immunotherapy is the low response rate and the immune-related adverse events (irAEs). Therefore, it is important to explore new therapeutic strategies and platforms for boosting therapeutic benefits and decreasing the side effects of immunotherapy. In recent years, semiconducting polymer (SP), a category of organic materials with π-conjugated aromatic backbone, has been attracting considerable attention because of their outstanding characteristics such as excellent photophysical features, good biosafety, adjustable chemical flexibility, easy fabrication, and high stability. With these distinct advantages, SP is extensively explored for bioimaging and photo- or ultrasound-activated tumor therapy. Here, the recent advancements in SP-based nanomedicines are summarized for enhanced tumor immunotherapy. According to the photophysical properties of SPs, the cancer immunotherapies enabled by SPs with the photothermal, photodynamic, or sonodynamic functions are highlighted in detail, with a particular focus on the construction of combination immunotherapy and activatable nanoplatforms to maximize the benefits of cancer immunotherapy. Herein, new guidance and comprehensive insights are provided for the design of SPs with desired photophysical properties to realize maximized effectiveness of required biomedical applications.
Collapse
Affiliation(s)
- Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| |
Collapse
|
12
|
Ren F, Huang H, Yang H, Xia B, Ma Z, Zhang Y, Wu F, Li C, He T, Wang Q. Tailoring Near-Infrared-IIb Fluorescence of Thulium(III) by Nanocrystal Structure Engineering. NANO LETTERS 2023; 23:10058-10065. [PMID: 37877757 DOI: 10.1021/acs.nanolett.3c03543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Currently, mainstream lanthanide probes with fluorescence located in the second near-infrared subwindow of 1500-1700 nm (NIR-IIb) are predominantly Er(III)-based nanoparticles (NPs). Here we report a newly developed NIR-IIb fluorescent nanoprobe, α-Tm NP (cubic-phase NaYF4@NaYF4:Tm@NaYF4), with an emission at 1630 nm. We activate the 1630 nm emission of Tm(III) in α-Tm NP through the large spread of the Stark split sublevels induced by the crystal-field effect of the α-NaYF4 host. Further, we systematically investigated the effect of crystalline structure of the host NaYF4 NP (cubic phase (α) or hexagonal phase (β)), the type and concentrations of dopants (Yb(III), Tm(III), and Ca(II) ions) in the α-phase host, and the thicknesses of the interlayer and inert shell on the NIR-IIb fluorescence of Tm(III). The ultimate nanostructure presents a significant enhancement factor of the NIR-IIb photoluminescence intensity of Tm(III) up to ∼315. With this bright NIR-IIb fluorescent nanoprobe, we demonstrate high-spatial-resolution time-coursing imaging of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Feng Ren
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haoying Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiwei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
13
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Naskar A, Kim KS. Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections. Pharmaceutics 2023; 15:1116. [PMID: 37111601 PMCID: PMC10146283 DOI: 10.3390/pharmaceutics15041116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are rapidly emerging, coupled with the failure of current antibiotic therapy; thus, new alternatives for effectively treating infections caused by MDR bacteria are required. Hyperthermia-mediated photothermal therapy (PTT) and reactive oxygen species (ROS)-mediated photodynamic therapy (PDT) have attracted extensive attention as antibacterial therapies owing to advantages such as low invasiveness, low toxicity, and low likelihood of causing bacterial resistance. However, both strategies have notable drawbacks, including the high temperature requirements of PTT and the weak ability of PDT-derived ROS to penetrate target cells. To overcome these limitations, a combination of PTT and PDT has been used against MDR bacteria. In this review, we discuss the unique benefits and limitations of PTT and PDT against MDR bacteria. The mechanisms underlying the synergistic effects of the PTT-PDT combination are also discussed. Furthermore, we introduced advancements in antibacterial methods using nano-based PTT and PDT agents to treat infections caused by MDR bacteria. Finally, we highlight the existing challenges and future perspectives of synergistic PTT-PDT combination therapy against infections caused by MDR bacteria. We believe that this review will encourage synergistic PTT- and PDT-based antibacterial research and can be referenced for future clinical applications.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
15
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
16
|
Chu Z, Tian T, Tao Z, Yang J, Chen B, Chen H, Wang W, Yin P, Xia X, Wang H, Qian H. Upconversion nanoparticles@AgBiS 2 core-shell nanoparticles with cancer-cell-specific cytotoxicity for combined photothermal and photodynamic therapy of cancers. Bioact Mater 2022; 17:71-80. [PMID: 35386437 PMCID: PMC8958283 DOI: 10.1016/j.bioactmat.2022.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
UCNPs@AgBiS2 core-shell nanoparticles that AgBiS2 coated on the surface of upconversion nanoparticles (UCNPs) was successfully prepared through an ion exchange reaction. The photothermal conversion efficiency of AgBiS2 can be improved from 14.7% to 45% due to the cross relaxation between Nd ions and AgBiS2. The doping concentration of Nd ions played a critical role in the production of reactive oxygen species (ROS) and enhanced the photothermal conversion efficiency. The NaYF4:Yb/Er/Nd@NaYF4:Nd nanoparticles endows strong upconversion emissions when the doped concentration of Nd ions is 1% in the inner core, which excites the AgBiS2 shell to produce ROS for photodynamic therapy (PDT) of cancer cells. As a result, the as-prepared NaYF4:Yb/Er/Nd@NaYF4:Nd@AgBiS2 core-shell nanoparticles showed combined photothermal/photodynamic therapy (PTT/PDT) against malignant tumors. This work provides an alternative near-infrared light-active multimodal nanostructures for applications such as fighting against cancers.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Tian Tian
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Zhenchao Tao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Juan Yang
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Benjin Chen
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Hao Chen
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Wanni Wang
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Peiqun Yin
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Xiaoping Xia
- Department of Obstetrics and Gynecology, Children's Hospital of Anhui Medical University, Anhui Provincial Children's Hospital, Hefei, Anhui, 230051, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Haisheng Qian
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| |
Collapse
|
17
|
Wang Q, Ye J, Wang J, Liu M, Li C, Lv W, Liu S, Niu N, Xu J, Fu Y. Tumor-responsive nanomedicine based on Ce 3+-modulated up-/downconversion dual-mode emission for NIR-II imaging-guided dynamic therapy. J Mater Chem B 2022; 10:3824-3833. [PMID: 35502611 DOI: 10.1039/d2tb00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodynamic therapy (CDT) and photodynamic therapy (PDT) based on intratumoral generation of reactive oxygen species (ROS) have been playing crucial roles in conquering tumors. However, the above therapeutic methods are still constrained by the overexpressed tumor glutathione (GSH) and intrinsic tumor resistance to conventional organic photosensitizers. Herein, lanthanide-doped nanoparticles (LDNPs) were coated with inorganic bimetallic copper and manganese silicate nanospheres (CMSNs) and modified with sodium alginate (SA) for second near-infrared (NIR-II, 1000-1700 nm) imaging-guided CDT and PDT. Interestingly, cross-relaxation (CR) pathways between Ce3+ and Ho3+ and CR between Ce3+ and Er3+ are fully exploited to enable dual-mode upconversion (UC) and NIR-II downconversion (DC) emissions of LDNPs under 980 nm laser excitation. UC emission can induce CMSNs to produce toxic singlet oxygen (1O2) for PDT, and the released Mn2+ and Cu+ ions caused by GSH-induced degradation of CMSNs can react with endogenous H2O2 to produce hydroxyl radical (˙OH) for CDT. Significantly, the ultrabright NIR-II DC emission endows the systems with exceptional optical imaging capabilities. All results affirm the potency of such an "all in one" theranostic nanomedicine integrating PDT, CDT and remarkable NIR-II imaging abilities accompanied by the function of modulating tumor microenvironment in cancer theranostics.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jikun Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Wubin Lv
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Na Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China. .,Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China. .,Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China.,Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
18
|
Arnau Del Valle C, Hirsch T, Marin M. Recent Advances in Near Infrared Upconverting Nanomaterials for Targeted Photodynamic Therapy of Cancer. Methods Appl Fluoresc 2022; 10. [PMID: 35447614 DOI: 10.1088/2050-6120/ac6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV-Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser (PS) drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (ie. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, Regensburg, 93040, GERMANY
| | - Maria Marin
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
19
|
Yan J, Wang G, Xie L, Tian H, Li J, Li B, Sang W, Li W, Zhang Z, Dai Y. Engineering Radiosensitizer-Based Metal-Phenolic Networks Potentiate STING Pathway Activation for Advanced Radiotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105783. [PMID: 34964997 DOI: 10.1002/adma.202105783] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Radiotherapy, a mainstay of first-line cancer treatment, suffers from its high-dose radiation-induced systemic toxicity and radioresistance caused by the immunosuppressive tumor microenvironment. The synergy between radiosensitization and immunomodulation may overcome these obstacles for advanced radiotherapy. Here, the authors propose a radiosensitization cooperated with stimulator of interferon genes (STING) pathway activation strategy by fabricating a novel lanthanide-doped radiosensitizer-based metal-phenolic network, NaGdF4 :Nd@NaLuF4 @PEG-polyphenol/Mn (DSPM). The amphiphilic PEG-polyphenol successfully coordinates with NaGdF4 :Nd@NaLuF4 (radiosensitizer) and Mn2+ via robust metal-phenolic coordination. After cell internalization, the pH-responsive disassembly of DSPM triggers the release of their payloads, wherein radiosensitizer sensitizes cancer cells to X-ray and Mn2+ promote STING pathway activation. This radiosensitizer-based DSPM remarkably benefits dendritic cell maturation, anticancer therapeutics in primary tumors, accompanied by robust systemic immune therapeutic performance against metastatic tumors. Therefore, a powerful radiosensitization with STING pathway activation mediated immunostimulation strategy is highlighted here to optimize cancer radiotherapy.
Collapse
Affiliation(s)
- Jie Yan
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Guohao Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Lisi Xie
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Hao Tian
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Jie Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Wei Sang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Wenxi Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
20
|
Xie Y, Chen Q, Wang M, Chen W, Quan Z, Li C. Highly doped NaErF4-based nanocrystals for multi-tasking application. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Dye Sensitization for Ultraviolet Upconversion Enhancement. NANOMATERIALS 2021; 11:nano11113114. [PMID: 34835876 PMCID: PMC8623389 DOI: 10.3390/nano11113114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Upconversion nanocrystals that converted near-infrared radiation into emission in the ultraviolet spectral region offer many exciting opportunities for drug release, photocatalysis, photodynamic therapy, and solid-state lasing. However, a key challenge is the development of lanthanide-doped nanocrystals with efficient ultraviolet emission, due to low conversion efficiency. Here, we develop a dye-sensitized, heterogeneous core–multishelled lanthanide nanoparticle for ultraviolet upconversion enhancement. We systematically study the main influencing factors on ultraviolet upconversion emission, including dye concentration, excitation wavelength, and dye-sensitizer distance. Interestingly, our experimental results demonstrate a largely promoted multiphoton upconversion. The underlying mechanism and detailed energy transfer pathway are illustrated. These findings offer insights into future developments of highly ultraviolet-emissive nanohybrids and provide more opportunities for applications in photo-catalysis, biomedicine, and environmental science.
Collapse
|
22
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 792] [Impact Index Per Article: 198.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
23
|
Munjal T, Dutta S. Biocompatible nanoreactors of catalase and nanozymes for anticancer therapeutics. NANO SELECT 2021. [DOI: 10.1002/nano.202100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Tanya Munjal
- Biological & Molecular Science Laboratory Amity Institute of Click Chemistry Research & Studies Amity University Noida Uttar Pradesh India
| | - Saikat Dutta
- Biological & Molecular Science Laboratory Amity Institute of Click Chemistry Research & Studies Amity University Noida Uttar Pradesh India
| |
Collapse
|
24
|
Piorecka K, Kurjata J, Stanczyk WA. Nanoarchitectonics: Complexes and Conjugates of Platinum Drugs with Silicon Containing Nanocarriers. An Overview. Int J Mol Sci 2021; 22:9264. [PMID: 34502173 PMCID: PMC8430569 DOI: 10.3390/ijms22179264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022] Open
Abstract
The development in the area of novel anticancer prodrugs (conjugates and complexes) has attracted growing attention from many research groups. The dangerous side effects of currently used anticancer drugs, including cisplatin and other platinum based drugs, as well their systemic toxicity is a driving force for intensive search and presents a safer way in delivery platform of active molecules. Silicon based nanocarriers play an important role in achieving the goal of synthesis of the more effective prodrugs. It is worth to underline that silicon based platform including silica and silsesquioxane nanocarriers offers higher stability, biocompatibility of such the materials and pro-longed release of active platinum drugs. Silicon nanomaterials themselves are well-known for improving drug delivery, being themselves non-toxic, and versatile, and tailored surface chemistry. This review summarizes the current state-of-the-art within constructs of silicon-containing nano-carriers conjugated and complexed with platinum based drugs. Contrary to a number of other reviews, it stresses the role of nano-chemistry as a primary tool in the development of novel prodrugs.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (J.K.); (W.A.S.)
| | | | | |
Collapse
|
25
|
Jiang M, Deng Z, Zeng S, Hao J. Recent progress on lanthanide scintillators for soft X‐ray‐triggered bioimaging and deep‐tissue theranostics. VIEW 2021. [DOI: 10.1002/viw.20200122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mingyang Jiang
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Zhiming Deng
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application Key Laboratory of Low‐dimensional Quantum Structures and Quantum Control of Ministry of Education Key Laboratory for Matter Microstructure and Function of Hunan Province School of Physics and Electronics Hunan Normal University Changsha P. R. China
| | - Jianhua Hao
- Department of Applied Physics The Hong Kong Polytechnic University Kowloon Hong Kong P. R. China
| |
Collapse
|
26
|
Rong Y, Ali S, Ouyang Q, Wang L, Wang B, Chen Q. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition. Food Chem 2021; 351:129215. [DOI: 10.1016/j.foodchem.2021.129215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
|
27
|
Min SH, Quan YJ, Park SY, Lee GY, Ahn SH. Interoperable Nanoparticle Sensor Capable of Strain and Vibration Measurement for Rotor Blade Monitoring. SENSORS 2021; 21:s21113648. [PMID: 34073896 PMCID: PMC8197258 DOI: 10.3390/s21113648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Recent advances in nanomaterials technology create the new possibility to fabricate high performance sensors. However, there has been limitations in terms of multivariate measurable and interoperable sensors. In this study, we fabricated an interoperable silver nanoparticle sensor fabricated by an aerodynamically focused nanomaterial (AFN) printing system which is a direct printing technique for inorganic nanomaterials onto a flexible substrate. The printed sensor exhibited the maximum measurable frequency of 850 Hz, and a gauge factor of 290.62. Using a fabricated sensor, we evaluated the sensing performance and demonstrated the measurement independency of strain and vibration sensing. Furthermore, using the proposed signal separation algorithm based on the Kalman filter, strain and vibration were each measured in real time. Finally, we applied the printed sensor to quadrotor condition monitoring to predict the motion of a quadrotor.
Collapse
Affiliation(s)
- Soo-Hong Min
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea; (S.-H.M.); (S.-Y.P.)
| | - Ying-Jun Quan
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea;
| | - Su-Young Park
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea; (S.-H.M.); (S.-Y.P.)
| | - Gil-Yong Lee
- Department of Mechanical Engineering, Kumoh National Institute of Technology, Gyeongbuk, Gumi 39177, Korea;
| | - Sung-Hoon Ahn
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea; (S.-H.M.); (S.-Y.P.)
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea;
- Correspondence:
| |
Collapse
|
28
|
Liu JL, Zhao X, Chen LJ, Pan LM, Yan XP. Dual-Emissive Persistent Luminescence Nanoparticle-Based Charge-Reversible Intelligent Nanoprobe for Persistent Luminescence-Ratio Bioimaging along with Chemo-Photothermal Synergic Therapy. Anal Chem 2021; 93:7348-7354. [DOI: 10.1021/acs.analchem.1c01220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Lin Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People’s Republic of China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People’s Republic of China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Lu-Ming Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Xiu-Ping Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People’s Republic of China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
| |
Collapse
|
29
|
Zhang Y, Zhu X, Zhang J, Wu Y, Liu J, Zhang Y. Synergistic upconversion photodynamic and photothermal therapy under cold near-infrared excitation. J Colloid Interface Sci 2021; 600:513-529. [PMID: 34034118 DOI: 10.1016/j.jcis.2021.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have been extensively investigated due to their unique capabilities of upconverting near-infrared light (NIR) to visible/ultraviolet emission. However, use of conventional Yb-based UCNPs under 980 nm excitation for biomedical applications is limited due to the overheating caused by the strong light absorption by water at this wavelength. Although this could be improved by using Nd3+-Yb3+ codoped UCNPs and changing the excitation wavelength to 808 nm, the amount of Nd3+ doping is usually below 20 mol% due to the lattice strain in highly Nd-doped core-shell structures. In this study, we report Nd3+-sensitized NaYF4:Yb,Er@NaLuF4:Nd@NaLuF4 UCNPs, in which the NaLuF4 in the intermediate shell can accommodate more structural changes caused by the Nd3+ doping, and allow for high concentration of Nd3+ doping (up to 50 mol%). Due to such high Nd3+ doping in the nanostructure, the red and green upconversion emissions of as-synthesized UCNPs are significantly increased upon 808 nm excitation, which are used to activate two photosensitizer drugs, MC540 (merocyanine 540) and FePc (iron phthalocyanine), for the dual photodynamic and photothermal therapy. The results show that the generation of reactive oxygen species (ROS) upon 808 nm light excitation is substantially boosted due to the synergistic therapeutic effect, which significantly prohibits the growth of cancer cells. It is believed that the nanoplatform specially developed in this study can solve the overheating issue associated with the 980 nm light excitation and the combined photodynamic and photothermal therapy can significantly improve the cancer therapy efficacy.
Collapse
Affiliation(s)
- Yuehong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 20044, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 20044, China.
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 20044, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 20044, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 20044, China
| | - Yong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 20044, China; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117583 Singapore, Singapore.
| |
Collapse
|
30
|
Jin G, Gao Z, Liu Y, Zhao J, Ou H, Xu F, Ding D. Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. Adv Healthc Mater 2021; 10:e2001550. [PMID: 33314793 DOI: 10.1002/adhm.202001550] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The shortened Abstract is as follows: Therapeutic gas nitric oxide (NO) has demonstrated the unique advances in biomedical applications due to its prominent role in regulating physiological/pathophysiological activities in terms of vasodilation, angiogenesis, chemosensitizing effect, and bactericidal effect. However, it is challenging to deliver NO, due to its short half-life (<5 s) and short diffusion distances (20-160 µm). To address these, various polymeric NO delivery nanoplatforms (PNODNPs) have been developed for cancer therapy, antimicrobial and cardiovascular therapeutics, because of the important advantages of polymeric delivery nanoplatforms in terms of controlled release of therapeutics and the extremely versatile nature. This reviews highlights the recent significant advances made in PNODNPs for NO storing and targeting delivery. The ideal and unique criteria that are required for PNODNPs for treating cancer, cardiovascular diseases and infection, respectively, are summarized. Hopefully, effective storage and targeted delivery of NO in a controlled manner using PNODNPs could pave the way for NO-sensitized synergistic therapy in clinical practice for treating the leading death-causing diseases.
Collapse
Affiliation(s)
- Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Zhiyuan Gao
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yangjing Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Jing Zhao
- Shaanxi Key Lab Degradable Biomedical Materials School of Chemical Engineering Northwest University 229 North Taibai North Road Xi'an 710069 China
| | - Hanlin Ou
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| |
Collapse
|
31
|
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi M. Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Adv Healthc Mater 2021; 10:e2001571. [PMID: 33274841 DOI: 10.1002/adhm.202001571] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Indexed: 01/16/2023]
Abstract
The complexity of hard-to-treat diseases strongly undermines the therapeutic potential of available treatment options. Therefore, a paradigm shift from monotherapy toward combination therapy has been observed in clinical research to improve the efficiency of available treatment options. The advantages of combination therapy include the possibility of synchronous alteration of different biological pathways, reducing the required effective therapeutic dose, reducing drug resistance, and lowering the overall costs of treatment. The tunable physical properties, excellent biocompatibility, facile preparation, and ease of administration with minimal invasiveness of injectable hydrogels (IHs) have made them excellent candidates to solve the clinical and pharmacological limitations of present systems for multitherapy by direct delivery of therapeutic payloads and improving therapeutic responses through the formation of depots containing drugs, genes, cells, or a combination of them in the body after a single injection. In this review, currently available methods for the design and fabrication of IHs are systematically discussed in the first section. Next, as a step toward establishing IHs for future multimodal synergistic therapies, recent advances in cancer combination therapy, wound healing, and tissue engineering are addressed in detail in the following sections. Finally, opportunities and challenges associated with IHs for multitherapy are listed and further discussed.
Collapse
Affiliation(s)
- Fatemeh Poustchi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Nanotechnology University of Guilan Rasht Guilan 41996‐13765 Iran
| | - Hamed Amani
- Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology Iran University of Medical Science Tehran 14496‐14535 Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz 71987‐54361 Iran
| | - Soraya Mehrabi
- Faculty of Medicine, Department of Physiology Iran University of Medical Sciences Tehran 14496‐14535 Iran
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|
32
|
Zhao J, Hu H, Liu W, Wang X. Multifunctional NaYF 4:Nd/NaDyF 4 nanocrystals as a multimodal platform for NIR-II fluorescence and magnetic resonance imaging. NANOSCALE ADVANCES 2021; 3:463-470. [PMID: 36131748 PMCID: PMC9417576 DOI: 10.1039/d0na00846j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/01/2020] [Indexed: 05/30/2023]
Abstract
Recently, multimodal imaging nanoprobes based on the complementary advantages of various imaging methods have attracted considerable attention due to their potential application in the biomedical field. As important bioimaging nanoprobes, lanthanide-doped nanocrystals (NCs) would be expected to improve the related biophotonic technology through integrated multimodal bioimaging. Herein, water-soluble and biocompatible NaYF4:Nd/NaDyF4 NCs were prepared by a solvothermal method combined with hydrophobic interaction with phospholipids as a capping agent. The NaYF4:Nd/NaDyF4 NCs exhibit excellent colloidal stability under physiological conditions. Compared with the bare NaYF4:Nd3+ NCs, the second near-infrared (NIR-II, 1000-1700 nm) fluorescence intensities of Nd3+ ions in the NaYF4:Nd/NaDyF4 core-shell NCs at the emissions of 1058 nm and 1332 nm are enhanced by 3.46- and 1.75-fold, respectively. Moreover, the r 2 value of NaYF4:Nd/NaDyF4 NCs as T 2-weighted contrast agents is calculated to be 44.0 mM-1 s-1. As a novel multimodal imaging nanoprobe, the NaYF4:Nd/NaDyF4 NCs can be employed for both NIR-II fluorescence and magnetic resonance imaging (MRI). The phospholipid-modified NaYF4:Nd/NaDyF4 NCs demonstrate in vitro and in vivo multimodal NIR-II fluorescence imaging and MRI of HeLa cells and tumors, respectively. This study provides an effective strategy for the development of novel multimodal probes for the medical application of nanomaterials.
Collapse
Affiliation(s)
- Junwei Zhao
- Materials Science and Engineering School, Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology Luoyang 471023 P. R. China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215125 P. R. China
| | - Huishan Hu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215125 P. R. China
| | - Wenquan Liu
- Henan Key Laboratory of Photovoltaic Materials, Henan University Kaifeng 475004 P. R. China
| | - Xin Wang
- Henan Key Laboratory of Photovoltaic Materials, Henan University Kaifeng 475004 P. R. China
| |
Collapse
|
33
|
Gulzar A, He F, Gulzar A, Kuang Y, Zhang F, Gai S, Yang P, Wang C. In situ oxygenating and 808 nm light-sensitized nanocomposite for multimodal imaging and mitochondria-assisted cancer therapy. J Mater Chem B 2021; 9:131-146. [PMID: 33226055 DOI: 10.1039/d0tb01967d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficiency of photodynamic therapy (PDT) is severely constrained due to the innate hypoxic environment, besides the elevated level of glutathione (GSH). To get rid of the hypoxic environment and higher concentrations of GSH in the solid tumors, we propose an approach of oxygen self-sufficient multimodal imaging-guided nanocomposite CaO2-MnO2-UCNPs-Ce6/DOX (abbreviated as CaMn-NUC), in which CaO2 nanoparticles in the hydrophobic layer were seated on the hydrophilic MnO2 sheet and conjugated with chlorin e6 (Ce6) loaded upconversion nanoparticles (UCNPs-Ce6) via the click chemistry approach. CaMn-NUC was presented to overcome hypoxia and GSH-associated photodynamic resistance due to in situ oxygen generation and GSH reduction of MnO2 upon endocytosis, and a bulk amount of Mn2+ ions generated in the process under acidic tumor environment acts as the MRI contrast agent. Moreover, the MnO2 sheet protects Ce6 from self-degradation under irradiation; thus, it can be used to switch control of cellular imaging. Afterwards, in a regulated and targeted manner, the chemotherapeutic drug (doxorubicin hydrochloride, DOX) can be released with the degradation of CaMn-NUC in the acidic tumor microenvironment (TME). Thus, we testify a competent nanoplatform employing 808 nm-excited UCNPs-Ce6 for concurrent imaging and PDT in consideration of the large anti-Stokes shifts, deep penetration into biological tissues, narrow emission bands, and high spatial-temporal resolution of the UCNPs. Thus, our proposed nanoplatform postulates a strategy to efficiently kill cancer cells in a concentration- and time-dependent manner via the in situ oxygenation of solid tumor hypoxia to enhance the efficiency of multimodal imaging-guided chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang W, Dang G, Dong J, Li Y, Jiao P, Yang M, Zou X, Cao Y, Ji H, Dong L. A multifunctional nanoplatform based on graphitic carbon nitride quantum dots for imaging-guided and tumor-targeted chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2021; 199:111549. [PMID: 33388720 DOI: 10.1016/j.colsurfb.2020.111549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/29/2022]
Abstract
Graphitic carbon nitride quantum dots (g-CNQDs) have shown great potential in imaging, drug delivery and photodynamic therapy (PDT). However, relevant research on g-CNQDs for PDT or drug delivery has been conducted separately. Herein, we develop a g-CNQDs-based nanoplatform (g-CPFD) to achieve simultaneously imaging and chemo-photodynamic combination therapy in one system. A g-CNQDs-based nanocarrier (g-CPF) is first prepared by successively introducing carboxyamino-terminated oligomeric polyethylene glycol and folic acid onto the surface of g-CNQDs via two-step amidation. The resultant g-CPF possesses good physiological stability, strong blue fluorescence, desirable biocompatibility, and visible light-stimulated reactive oxygen species generating ability. Further non-covalently loaded doxorubicin enables the system with chemotherapy function. Compared with free doxorubicin, g-CPFD expresses more efficient chemotherapy to HeLa cells due to improved folate receptor-mediated cellular uptake and intracellular pH-triggered drug release. Furthermore, g-CPFD under visible light irradiation shows enhanced inhibition on the growth of cancer cells compared to sole chemotherapy or PDT. Thus, g-CPFD exhibits exceptional anti-tumor efficiency due to folate receptor-mediated targeting ability, intracellular pH-triggered drug release and a combined treatment effect arising from PDT and chemotherapy. Moreover, this nanoplatform benefits imaging-guided drug delivery because of inherent fluorescent properties of doxorubicin and g-CPF, hence achieving the goal of imaging-guided chemo-photodynamic combination treatments.
Collapse
Affiliation(s)
- Wenxian Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Guangyao Dang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
| | - Yanyan Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Peng Jiao
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Xianwen Zou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Yutao Cao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Haiwei Ji
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Lifeng Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
| |
Collapse
|
35
|
Fu H, Ma Y, Liu Y, Hong M. Local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for biological applications. Chem Commun (Camb) 2021; 57:2970-2981. [DOI: 10.1039/d0cc07699f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This feature article overviews the recent advances in the local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for various biological applications.
Collapse
Affiliation(s)
- Huhui Fu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yuhan Ma
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
36
|
Nosrati H, Baghdadchi Y, Abbasi R, Barsbay M, Ghaffarlou M, Abhari F, Mohammadi A, Kavetskyy T, Bochani S, Rezaeejam H, Davaran S, Danafar H. Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. J Mater Chem B 2021; 9:4510-4522. [PMID: 34027529 DOI: 10.1039/d0tb02561e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of highly integrated multifunctional nanomaterials with a superadditive therapeutic effect and good safety is an urgent but challenging task in cancer therapy research. The present study aims to design a nanoplatform that offers the opportunity to enhance antitumor activity while minimizing side effects. Given the Au-mediated X-ray radiation enhancement and the ability of Fe-based nanomaterials to create reactive oxygen species (ROS) and DNA damage, we anticipated that bimetallic Fe3O4-Au heterodimer would bring strong radiosensitizing capacity. Fe3O4-Au heterodimer surface was covered with bovine serum albumin (BSA) to achieve good surface functionality, stability and prolonged blood circulation. Folic acid (FA) moieties were added to the nanoformulation to increase tumor-homing, specificity and uptake. Finally, curcumin (CUR) was incorporated into the nanoparticle to function as a natural anticancer agent. The integration of all these components has yielded a single nanoplatform, Fe3O4-Au-BSA-FA-CUR, capable of successfully fulfilling the mission of superadditive cancer therapy to avoid the risks of organ removal surgery. The efficacy of the proposed nanoplatform was investigated in vitro and in vivo. High radiosensitizing ability, X-ray-induced ROS generation and DNA damage, and good biocompatibility were demonstrated through in vitro experiments. Also, the administration of Fe3O4-Au-BSA-FA-CUR with X-ray irradiation completely eradicated the tumor without any mortality and toxicity in healthy tissues in vivo. Our results highlight the potential of CUR-loaded Fe3O4-Au-BSA-FA heteronanostructure to enable synergistic localized radiochemotherapy and open up a new door to attractive possibilities that warrant further exploration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran. and Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan and Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Yasamin Baghdadchi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Reza Abbasi
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | | | - Fatemeh Abhari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Mohammadi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan and Department of Surface Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland and Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Shayesteh Bochani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran
| | - Hossein Danafar
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran. and Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan and Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
37
|
Du K, Zhao S, Feng J, Gao X, Liu K, Wang X, Zhang M, Li Y, Lu Y, Zhang H. Engineering Cu2−xS-conjugated upconverting nanocomposites for NIR-II light-induced enhanced chemodynamic/photothermal therapy of cancer. J Mater Chem B 2021; 9:7216-7228. [DOI: 10.1039/d1tb00337b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cu2−xS-conjugated upconverting nanocomposites with an outstanding photothermal killing effect and a PT-enhanced CDT effect for NIR-II light-induced enhanced chemodynamic/photothermal therapy of cancer.
Collapse
Affiliation(s)
- Kaimin Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuang Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaozhen Wang
- The first hospital of Jilin University, Changchun 130021, China
| | - Manli Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yu Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
39
|
Li M, Xu Y, Zhao M, Li F, Feng W, Feng T, Liu S, Zhao Q. Rational Design of Near-Infrared-Absorbing Pt(II)-Chelated Azadipyrromethene Dyes as a New Generation of Photosensitizers for Synergistic Phototherapy. Inorg Chem 2020; 59:17826-17833. [PMID: 33296600 DOI: 10.1021/acs.inorgchem.0c02631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pt(II) photosensitizers are emerging as novel Pt anticancer agents for cancer photodynamic therapy (PDT) to avoid uncontrollable toxicity of cisplatin. However, the application of Pt(II) photosensitizers is limited by tumor hypoxia and the poor penetration depth of excitation light. To overcome these drawbacks, exploiting the next generation of Pt anticancer agents is of urgent need. According to theoretical calculations, novel near-infrared (NIR)-absorbing Pt(II)-chelated azadipyrromethene dyes (PtDP-X, where X = N, C, and S) were designed. Importantly, spin-orbit coupling of the Pt atom could promote the intersystem crossing of a singlet-to-triplet transition for converting oxygen to singlet oxygen (1O2), and the azadipyrromethene skeleton could provide a strong photothermal effect. As expected, PtDP-X exhibited intense NIR absorption and synergistic PDT and photothermal effects with low dark cytotoxicity. Furthermore, water-soluble and biocompatible PtDP-N nanoparticles (PtDP-N NPs) were prepared that achieved effective tumor cell elimination with low side effects under 730 nm light irradiation in vitro and in vivo. This pioneering work could push the exploitation of NIR-absorbing metal-chelated azadipyrromethene dyes, so as to promote the positive evolution of phototherapy agents.
Collapse
Affiliation(s)
- Mingdang Li
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yunjian Xu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Feng
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Teng Feng
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| |
Collapse
|
40
|
Gao D, Gao Y, Shen J, Wang Q. Modified nanoscale metal organic framework-based nanoplatforms in photodynamic therapy and further applications. Photodiagnosis Photodyn Ther 2020; 32:102026. [PMID: 32979544 DOI: 10.1016/j.pdpdt.2020.102026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a modality in cancer treatment because it is less invasive and highly selective compared with conventional chemotherapy and radiation therapy. Nanoscale metal organic frameworks (nMOFs) have exhibited great potential for use in constructing nanoplatforms for improved PDT because of their unique structural advantages such as large surface areas, high porosities, tunable compositions and various other modifications. The large majority of current nMOF-based systems employ specific modifying groups to overcome the deficiencies previously observed when using older nMOFs in PDT. In this review, we summarize modifications to these systems such as enhancing singlet oxygen generation by introducing photoactive agents, alleviating tumor hypoxia and engineering active targeting abilities. The applications of MOF-based nanoparticles in synergistic cancer therapies that include PDT, as well as in theranostics are also discussed. Finally, we discuss some of the challenges faced in this field and the future prospects for the use of nMOFs in PDT.
Collapse
Affiliation(s)
- Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China; College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou, 310027, PR China
| | - Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China.
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| |
Collapse
|
41
|
Gao L, Shan X, Xu X, Liu Y, Liu B, Li S, Wen S, Ma C, Jin D, Wang F. Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. NANOSCALE 2020; 12:18595-18599. [PMID: 32555904 DOI: 10.1039/d0nr03076g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Volumetric displays that create bright image points within a transparent bulk are one of the most attractive technologies in everyday life. Lanthanide ion doped upconversion nanoparticles (UCNPs) are promising luminescent nanomaterials for background free, full-colour volumetric displays of transparent bulk materials. However, video-rate display using UCNPs has been limited by their low emission intensity. Herein, we developed a video-rate upconversion display system with much enhanced brightness. The integral emission intensity of the single UCNPs was fully employed for video-rate display. It was maximized by optimizing the emitter concentration and, more importantly, by temporally synchronizing the scanning time of the excitation light to the the raised emission time of the single UCNPs. The excitation power dependent emission response and emission time decay curves were systematically characterized for the single UCNPs with various emitter concentrations from 0.5% to 6%. 1%Tm3+ doped UCNPs presented the highest integral emission intensity. By embedding this UCNPs into a polyvinyl acetate (PVA) film, we achieved a two-dimensional (2D) upconversion display with a frame rate of 29 Hz for 35 by 50 pixels. This work demonstrates that the temporal response as well as the integral emission intensity enable video-rate upconversion display.
Collapse
Affiliation(s)
- Laixu Gao
- School of Physical Science and Technology, Lingnan Normal University, Zhanjiang, 524048, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
43
|
Zhuang H, Zhao M, Ding S, Liu L, Yuan W, Jiang L, Han X, Jiang L, Yi T. Multifunctional Smart Yolk-Shell Nanostructure with Mesoporous MnO 2 Shell for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38906-38917. [PMID: 32805820 DOI: 10.1021/acsami.0c08389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manganese dioxide (MnO2) nanostructures have aroused great interest among analytical and biological medicine researchers as a unique type of tumor microenvironment (TME)-responsive nanomaterial. However, reliable approaches for synthesizing yolk-shell nanostructures (YSNs) with mesoporous MnO2 shell still remain exciting challenges. Herein, a YSN (size, ∼75 nm) containing a mesoporous MnO2 shell and Er3+-doped upconversion/downconversion nanoparticle (UCNP) core with a large cavity is demonstrated for the first time. This nanostructure not only integrates diverse functional components including MnO2, UCNPs, and YSNs into one system but also endows a size-controllable hollow cavity and thickness-tunable MnO2 layers, which can load various guest molecules like photosensitizers, methylene blue (MB), and the anticancer drugs doxorubicin (DOX). NIR-II fluorescence and photoacoustic (PA) imaging from UCNP and MB, respectively, can monitor the enrichment of the nanomaterials in the tumors for guiding chemo-photodynamic therapy (PDT) in vivo. In the TME, degradation of the mMnO2 shell by H2O2 and GSH not only generates Mn2+ for tumor-specific T1-MR imaging but also releases O2 and drugs for tumor-specific treatment. The result confirmed that imaging-guided enhanced chemo-PDT combination therapy that benefited from the unique structural features of YSNs could substantially improve the therapeutic effectiveness toward malignant tumors compared to monotherapy.
Collapse
Affiliation(s)
- Hongjun Zhuang
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Mengyao Zhao
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Shenglong Ding
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Lingyan Liu
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Wei Yuan
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Liping Jiang
- Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Xuemin Han
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Tao Yi
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
44
|
Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Energy-converting biomaterials (ECBs)-mediated cancer-therapeutic modalities have been extensively explored, which have achieved remarkable benefits to overwhelm the obstacles of traditional cancer-treatment modalities. Energy-driven cancer-therapeutic modalities feature their distinctive merits, including noninvasiveness, low mammalian toxicity, adequate therapeutic outcome, and optimistical synergistic therapeutics. In this advanced review, the prevailing mainstream ECBs can be divided into two sections: Reactive oxygen species (ROS)-associated energy-converting biomaterials (ROS-ECBs) and hyperthermia-related energy-converting biomaterials (H-ECBs). On the one hand, ROS-ECBs can transfer exogenous or endogenous energy (such as light, radiation, ultrasound, or chemical) to generate and release highly toxic ROS for inducing tumor cell apoptosis/necrosis, including photo-driven ROS-ECBs for photodynamic therapy, radiation-driven ROS-ECBs for radiotherapy, ultrasound-driven ROS-ECBs for sonodynamic therapy, and chemical-driven ROS-ECBs for chemodynamic therapy. On the other hand, H-ECBs could translate the external energy (such as light and magnetic) into heat for killing tumor cells, including photo-converted H-ECBs for photothermal therapy and magnetic-converted H-ECBs for magnetic hyperthermia therapy. Additionally, the biosafety issues of ECBs are expounded preliminarily, guaranteeing the ever-stringent requirements of clinical translation. Finally, we discussed the prospects and facing challenges for constructing the new-generation ECBs for establishing intriguing energy-driven cancer-therapeutic modalities. This article is categorized under: Nanotechnology Approaches to Biology >Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lile Dong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenjuan Li
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
45
|
Ajlouni AW, AlAsiri AM, Adil SF, Shaik MR, Khan M, Assal ME, Kuniyil M, Al-Warthan A. Nanocomposites of gold nanoparticles with pregabalin: The future anti-seizure drug. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
46
|
Fu H, Liu C, Peng P, Jiang F, Liu Y, Hong M. Peasecod-Like Hollow Upconversion Nanocrystals with Excellent Optical Thermometric Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000731. [PMID: 32714767 PMCID: PMC7375223 DOI: 10.1002/advs.202000731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Trivalent lanthanide (Ln3+)-doped hollow upconversion nanocrystals (UCNCs) usually exhibit unique optical performance that cannot be realized in their solid counterparts, and thus have been receiving tremendous interest from their fundamentals to diverse applications. However, all currently available Ln3+-doped UCNCs are solid in appearance, the preparation of hollow UCNCs remains nearly untouched hitherto. Herein, a class of UCNCs based on Yb3+/Er3+-doped tetralithium zirconium octafluoride (Li4ZrF8:Yb/Er) featuring 2D layered crystal lattice is reported, which makes the fabrication of hollow UCNCs with a peasecod-like shape possible after Ln3+ doping. By employing the first-principle calculations, the unique peasecod-like hollow nanoarchitecture primarily associated with the hetero-valence Yb3+/Er3+ doping into the 2D layered crystal lattice of Li4ZrF8 matrix is revealed. Benefiting from this hollow nanoarchitecture, the resulting Li4ZrF8:Yb/Er UCNCs exhibit an abnormal green upconversion luminescence in terms of the population ratio between two thermally coupled states (2H11/2 and 4S3/2) of Er3+ relative to their solid Li2ZrF6:Yb/Er counterparts, thereby allowing to prepare the first family of hollow Ln3+-doped UCNCs as supersensitive luminescent nanothermometer with almost the widest temperature sensing range (123-800 K). These findings described here unambiguously pave a new way to fabricate hollow Ln3+-doped UCNCs for numerous applications.
Collapse
Affiliation(s)
- Huhui Fu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Caiping Liu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Pengfei Peng
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Feilong Jiang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Yongsheng Liu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Maochun Hong
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| |
Collapse
|
47
|
Liu M, Peng Y, Nie Y, Liu P, Hu S, Ding J, Zhou W. Co-delivery of doxorubicin and DNAzyme using ZnO@polydopamine core-shell nanocomposites for chemo/gene/photothermal therapy. Acta Biomater 2020; 110:242-253. [PMID: 32438113 DOI: 10.1016/j.actbio.2020.04.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Multi-modal nanomedicines that synergistically combine chemo-, gene-, and photothermal therapy have shown great potential for cancer treatment. In this study, a core-shell nanosystem-based on a zinc oxide (ZnO) nanocore and a polydopamine (PDA) shell was constructed to integrate chemo- (doxorubicin, DOX), gene- (DNAzyme, DZ), and photothermal (PDA layer) therapy in one system. Instead of small interfering RNAs, we employed DZ for tumor-related gene (survivin) regulation owing to its higher stability, biocompatibility, and predictable activity. DOX and amino-modified DZ were loaded onto the PDA shell via physisorption and covalent conjugation, respectively. Specifically, the ZnO nanocore was designed as a metal cofactor reservoir to release Zn2+ in response to intracellular stimuli, which triggered the activation of DZ for gene silencing after endocytosis into cells. Both in vitro and in vivo experiments demonstrated the enhanced anti-tumor efficacy of these multifunctional nanocomposites and highlighted the advantages of these nano-drug delivery systems to alleviate the side effects of DOX. This study provides a strategy for synergistic cancer therapy via chemo/gene/photothermal combination and offers a strategy to harness DZ as a gene-silencing tool for disease treatment in combination with other therapeutic modalities. STATEMENT OF SIGNIFICANCE: In this work, we constructed a core-shell nanosystem containing a zinc oxide (ZnO) nanocore and a polydopamine (PDA) outer layer, which integrated chemo- (doxorubicin, DOX), gene- (DNAzyme, DZ), and photothermal (PDA layer) therapies for multimodal cancer therapy. Specifically, the ZnO core was incorporated to solve the key issue of DZ for gene silencing applications, which acted as the metal cofactor reservoir to release Zn2+ inside cells for effective DZ activation. In addition, the PDA shell could detoxify the ZnO by scavenging the reactive oxygen species produced by ZnO, thus increasing the biocompatibility of the nanocarrier. This work solves the key issue of DZ for RNAi-based applications, offers a platform to combine DZ with other therapeutic modalities, and also provides a smart strategy to achieve triggered activation of biocatalytic reactions for therapeutic applications.
Collapse
|
48
|
Chen T, Gu T, Cheng L, Li X, Han G, Liu Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. Biomaterials 2020; 255:120202. [PMID: 32562941 DOI: 10.1016/j.biomaterials.2020.120202] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Overexpression of P-glycoprotein (P-gp), which is responsible for pumping chemotherapeutic drugs out of tumor cells, has been recognized as an important cause of drug resistance in conventional chemotherapy. Herein, porous platinum nanoparticles (pPt NPs) are developed to enable the combined electrodynamic therapy (EDT) with chemotherapy. With polyethylene glycol (PEG) coating, the obtained pPt-PEG NPs could be loaded with anticancer drug doxorubicin (DOX) by utilizing the porous structure of pPt NPs. Those pPt-PEG NPs are able to produce reactive oxygen species (ROS) by triggering water decomposition under electric field, independent of O2 and H2O2 contents in the tumor. Furthermore, the ROS generated during EDT could induce the inhibition of P-glycoprotein (P-gp), in turn enhancing the efficacy of chemotherapeutic agents by facilitating intracellular accumulation of drugs. As the results, excellent synergetic therapeutic effects were observed by combining chemotherapy with EDT using DOX-loaded pPt (DOX@pPt-PEG) NPs, as demonstrated by both in vitro and in vivo experiments. This study demonstrates a new concept of combinational cancer therapy with superior therapeutic efficacy.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
49
|
Wei Z, Liu X, Niu D, Qin L, Li Y. Upconversion Nanoparticle-Based Organosilica–Micellar Hybrid Nanoplatforms for Redox-Responsive Chemotherapy and NIR-Mediated Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:4655-4664. [DOI: 10.1021/acsabm.0c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhenyang Wei
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohang Liu
- Department of Radiology,Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Limei Qin
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
50
|
Cong TD, Wang Z, Hu M, Han Q, Xing B. Extraspecific Manifestation of Nanoheater's Position Effect on Distinctive Cellular Photothermal Responses. ACS NANO 2020; 14:5836-5844. [PMID: 32348106 DOI: 10.1021/acsnano.0c00951] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Subcellular localization of nanoparticles plays critical roles in precision medicine that can facilitate an in-depth understanding of disease etiology and achieve accurate theranostic regulation via responding to the aiding stimuli. The photothermal effect is an extensively employed strategy that converts light into heat stimulation to induce localized disease ablation. Despite diverse manipulations that have been investigated in photothermal nanotheranostics, influences of nanoheaters' subcellular distribution and their molecular mechanism on cellular heat response remain elusive. Herein, we disclose the biological basis of distinguishable thermal effects at subcellular resolution by localizing photothermal upconversion nanoparticles into specific locations of cell compartments. Upon 808 nm light excitation, the lysosomal cellular uptake initialized by poly(ethylenimine)-modified nanoheaters promoted mitochondria apoptosis through the activation of Bid protein, whereas the cell surface nanoheaters anchored via metabolic glycol biosynthesis triggered necrosis by direct perturbation of the membrane structure. Intriguingly, these two different thermolyses revealed similar levels of heat shock protein expression in live cells. This study stipulates insights underlying the different subcellular positions of nanoparticles for the selective thermal response, which provides valuable perspectives on optimal precision nanomedicine.
Collapse
Affiliation(s)
- Thang Do Cong
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Qinyu Han
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| |
Collapse
|