1
|
Guo Y, Liu Y, Zhang Z, Zhang X, Jin X, Zhang R, Chen G, Zhu L, Zhu M. Biopolymer based Fibrous Aggregate Materials for Diagnosis and Treatment: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414877. [PMID: 40351104 DOI: 10.1002/adma.202414877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Biopolymer-based fibrous aggregate materials (BFAMs) have gained increasing attention in biomedicine due to their excellent biocompatibility, processability, biodegradability, and multifunctionality. Especially, the medical applications of BFAMs demand advanced structure, performance, and function, which conventional trial-and-error methods struggle to provide. This necessitates the rational selection of materials and manufacturing methods to design BFAMs with various intended functions and structures. This review summarizes the current progress in raw material selection, structural and functional design, processing technology, and application of BFAMs. Additionally, the challenges encountered during the development of BFAMs are discussed, along with perspectives for future research offered.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yifan Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeqi Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaozhe Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Jin
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ruxu Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoyin Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
2
|
Xiao H, Lai X, Xiong X, Jiang Z, Jia YG, Liu H, Huang W, Wu G, Zhu XX. Double-Network Slide-Ring Topological Hydrogel Fibers: Fabrication and Sensor Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501558. [PMID: 40095448 DOI: 10.1002/smll.202501558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/08/2025] [Indexed: 03/19/2025]
Abstract
Stretchable conductive hydrogel fibers are crucial for flexible electronics, yet their continuous manufacturing and mechanical adaptability remain challenging, which hinders widespread application. In this work, coordination networks of sodium alginate and slide-ring topological networks have been combined to improve the spinnability and mechanical properties of double-network hydrogel fibers for wearable sensors. The coordination of crosslinked networks of sodium alginate with calcium ions not only helps in the in situ formation of spinning processes with tunable mechanical properties but also results in excellent conductivity of the hydrogel fibers. A slide-ring topological network has been introduced through a polymerizable pseudorotaxane between acrylated β-cyclodextrin and long-chain bile acid guest photopolymerized with acrylamide, improving tensile properties of the polymer. The hybrid crosslinked double-network ensures that the fibers have high dynamic mechanical stability with negligible hysteresis and creep. The fabricated hydrogel fibers show excellent ion conductivity (0.64 S m-1, 20 °C), transparency, and stretchability (>3000%). Accordingly, strain sensors made from hydrogel fibers accurately capture high-frequency (2 Hz) and high-speed (1.6 cm s-1) motion, exhibit little drift for 300 stretch-release cycles, and detect repetitive human body movements. This double-network slide-ring topological hydrogel fiber system may provide inspiration for the design of textile-based stretchable electronic devices.
Collapse
Affiliation(s)
- Hao Xiao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiangting Lai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xueru Xiong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhongtian Jiang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yong-Guang Jia
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519085, China
| | - Huan Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wen Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - X X Zhu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519085, China
| |
Collapse
|
3
|
Khan WU, Shen Z, Mugo SM, Wang H, Zhang Q. Implantable hydrogels as pioneering materials for next-generation brain-computer interfaces. Chem Soc Rev 2025; 54:2832-2880. [PMID: 40035554 DOI: 10.1039/d4cs01074d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Use of brain-computer interfaces (BCIs) is rapidly becoming a transformative approach for diagnosing and treating various brain disorders. By facilitating direct communication between the brain and external devices, BCIs have the potential to revolutionize neural activity monitoring, targeted neuromodulation strategies, and the restoration of brain functions. However, BCI technology faces significant challenges in achieving long-term, stable, high-quality recordings and accurately modulating neural activity. Traditional implantable electrodes, primarily made from rigid materials like metal, silicon, and carbon, provide excellent conductivity but encounter serious issues such as foreign body rejection, neural signal attenuation, and micromotion with brain tissue. To address these limitations, hydrogels are emerging as promising candidates for BCIs, given their mechanical and chemical similarities to brain tissues. These hydrogels are particularly suitable for implantable neural electrodes due to their three-dimensional water-rich structures, soft elastomeric properties, biocompatibility, and enhanced electrochemical characteristics. These exceptional features make them ideal for signal recording, neural modulation, and effective therapies for neurological conditions. This review highlights the current advancements in implantable hydrogel electrodes, focusing on their unique properties for neural signal recording and neuromodulation technologies, with the ultimate aim of treating brain disorders. A comprehensive overview is provided to encourage future progress in this field. Implantable hydrogel electrodes for BCIs have enormous potential to influence the broader scientific landscape and drive groundbreaking innovations across various sectors.
Collapse
Affiliation(s)
- Wasid Ullah Khan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- CAS Applied Chemistry Science & Technology Co., Ltd, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
4
|
Guo J, Tuo J, Sun J, Li Z, Guo X, Chen Y, Cai R, Zhong J, Xu L. Stretchable Multimodal Photonic Sensor for Wearable Multiparameter Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412322. [PMID: 39670687 DOI: 10.1002/adma.202412322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Stretchable sensors that can conformally interface with the skins for wearable and real-time monitoring of skin deformations, temperature, and sweat biomarkers offer critical insights for early disease prediction and diagnosis. Integration of multiple modalities in a single stretchable sensor to simultaneously detect these stimuli would provide a more comprehensive understanding of human physiology, which, however, has yet to be achieved. Here, this work reports, for the first time, a stretchable multimodal photonic sensor capable of simultaneously detecting and discriminating strain deformations, temperature, and sweat pH. The multimodal sensing abilities are enabled by realization of multiple sensing mechanisms in a hydrogel-coated polydimethylsiloxane (PDMS) optical fiber (HPOF), featured with high flexibility, stretchability, and biocompatibility. The integrated mechanisms are designed to operate at distinct wavelengths to facilitate stimuli decoupling and employ a ratiometric detection strategy for improved robustness and accuracy. To simplify sensor interrogation, spectrally-resolved multiband emissions are generated upon the excitation of a single-wavelength laser, utilizing upconversion luminescence (UCL) and radiative energy transfer (RET) processes. As proof of concept, this work demonstrates the feasibility of simultaneous monitoring of the heartbeat, respiration, body temperature, and sweat pH of a person in real-time, with only a single sensor.
Collapse
Affiliation(s)
- Jingjing Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
- Ministry of Education Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Beijing, 100191, China
| | - Jialin Tuo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jiangtao Sun
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Zhuozhou Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoyan Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Yanyan Chen
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Rong Cai
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jing Zhong
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
- Ministry of Education Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Beijing, 100191, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
- Ministry of Education Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Beijing, 100191, China
| |
Collapse
|
5
|
Yu J, Zhang C, Kong L, Deng Z. Recent Advances and Challenges in Metal Halide Perovskite Quantum Dot-Embedded Hydrogels for Biomedical Application. Molecules 2025; 30:643. [PMID: 39942747 PMCID: PMC11819677 DOI: 10.3390/molecules30030643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Metal halide perovskite quantum dots (MHP QDs), as a kind of fluorescent material, have attracted much attention due to their excellent photoluminescence (PL) quantum yield (QY), narrow full width at half maximum (FWHM), broad absorption, and tunable emission wavelength. However, the instability and biological incompatibility of MHP QDs greatly hinder their application in the field of biomedicine. Hydrogels are three-dimensional polymer networks that are widely used in biomedicine because of their high transparency and excellent biocompatibility. This review not only introduces the latest research progress in improving the mechanical and optical properties of hydrogels/MHP QDs but also combines it with the existing methods for enhancing the stability of MHP QDs in hydrogels, aiming to provide new ideas for researchers in material selection and methods for constructing MHP QD-embedded hydrogels. Finally, their application prospects and future challenges are introduced.
Collapse
Affiliation(s)
- Junyi Yu
- College of Chemistry, Jilin University, Changchun 130012, China;
| | - Chengran Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (C.Z.); (L.K.)
| | - Lijun Kong
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (C.Z.); (L.K.)
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (C.Z.); (L.K.)
| |
Collapse
|
6
|
Wang X, Li R, Jiang Z, He M. Self-Healing Flexible Fiber Optic Sensors for Safe Underwater Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4067-4074. [PMID: 39762157 DOI: 10.1021/acsami.4c20647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The advancement of underwater monitoring technologies has been significantly hampered by the limitations of traditional electrical sensors, particularly in the presence of electromagnetic interference and safety concerns in aquatic environments. Fiber optic sensors are therefore nowadays widely applied to underwater monitoring devices. However, silicon- and polymer-based optical fibers often face challenges, such as rigidity, susceptibility to environmental stress, and limited operational flexibility. Here, we propose an ingenious flexible step-index fiber construction strategy for the preparation of core-cladding poly(polymerizable deep eutectic solvent (PDES)) optical fiber (CPOF) by in situ light curing of the functional PDES monomer in a commercial silicone tube. The liquid-free poly(PDES) fiber core not only possesses high transparency (>90%), excellent flexibility, and wide temperature range tolerance (from -27 to 156 °C), but the supramolecular network of it also provides self-adhesion and optical self-healing, which ensures the bonding stability of the core-cladding interface as well as the lifetime of the optical device. On the other hand, the hydrophobic fiber cladding allows CPOF to stably transmit optical signals under water, and the application potential of CPOF for underwater sensing devices was verified by underwater motion monitoring.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Ren'ai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zihan Jiang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
7
|
Li T, Wang Q, Cao Z, Zhu J, Wang N, Li R, Meng W, Liu Q, Yu S, Liao X, Song A, Tan Y, Zhou Z. Nerve-Inspired Optical Waveguide Stretchable Sensor Fusing Wireless Transmission and AI Enabling Smart Tele-Healthcare. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410395. [PMID: 39630936 PMCID: PMC11789582 DOI: 10.1002/advs.202410395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Flexible strain monitoring of hand and joint muscle movement is recognized as an effective method for the diagnosis and rehabilitation of neurological diseases such as stroke and Parkinson's disease. However, balancing high sensitivity and large strain, improving wearing comfort, and solving the separation of diagnosis and treatment are important challenges for further building tele-healthcare systems. Herein, a hydrogel-based optical waveguide stretchable (HOWS) sensor is proposed in this paper. A double network structure is adopted to allow the HOWS sensor to exhibit high stretchability of the tensile strain up to 600% and sensitivity of 0.685 mV %-1. Additionally, the flexible smart bionic fabric embedding the HOWS sensor, produced through the warp and weft knitting, significantly enhances wearing comfort. A small circuit board is prepared to enable wireless signal transmission of the designed sensor, thereby improving the daily portability. A speech recognition and human-machine interaction system, based on sensor signal acquisition, is constructed, and the convolutional neural network algorithm is integrated for disease assessment. By integrating sensing, wireless transmission, and artificial intelligence (AI), a smart tele-healthcare system based on HOWS sensors is demonstrated to hold great potential for early warning and rehabilitation monitoring of neurological diseases.
Collapse
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Qian'ao Wang
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Zichun Cao
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Jianglin Zhu
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Nian Wang
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Run Li
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Wei Meng
- School of InformationWuhan University of TechnologyWuhanHubei430070China
| | - Quan Liu
- School of InformationWuhan University of TechnologyWuhanHubei430070China
| | - Shifan Yu
- School of Electronic Science and EngineeringXiamen UniversityXiamenFujian361005China
| | - Xinqin Liao
- School of Electronic Science and EngineeringXiamen UniversityXiamenFujian361005China
| | - Aiguo Song
- School of Instrument Science and EngineeringSoutheast UniversityNanjingJiangsu210096China
| | - Yuegang Tan
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| | - Zude Zhou
- School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanHubei430070China
| |
Collapse
|
8
|
Chen X, Feng Y, Zhang P, Ni Z, Xue Y, Liu J. Hydrogel Fibers-Based Biointerfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413476. [PMID: 39578344 DOI: 10.1002/adma.202413476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The unique 1D structure of fibers offers intriguing attributes, including a high length-to-diameter ratio, miniatured size, light-weight, and flexibility, making them suitable for various biomedical applications, such as health monitoring, disease treatment, and minimally invasive surgeries. However, traditional fiber devices, typically composed of rigid, dry, and non-living materials, are intrinsically different from the soft, wet, and living essence of biological tissues, thereby posing grand challenges for long-term, reliable, and seamless interfacing with biological systems. Hydrogel fibers have recently emerged as a promising candidate, in light of their similarity to biological tissues in mechanical, chemical and biological aspects, as well as distinct fiber geometry. In this review, a comprehensive overview of recent progress in hydrogel fibers-based biointerfacing technology is provided. It thoroughly summarizes the manufacturing strategy and functional design, especially for hydrogel fibers with distinct optical and electron conductive performance, as well as responsiveness to triggers including thermal, magnetic field and ultrasonic wave, etc. Such unique attributes enable various biomedical applications, which are also examined in detail. Future challenges and potential directions, including biosafety, long-term reliability, sterilization, multi-modalities integration and intelligent therapeutic systems, are raised. This review will serve as a valuable resource for further advancement and implementation as next-generation biointerfacing technology.
Collapse
Affiliation(s)
- Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Yang B, Wang C, Yu Q, Ma P, Zhao Q, Wu Y, Ma K, Tan S. Strong Acid Enabled Comprehensive Training of Poly (Sodium Acrylate) Hydrogel Networks. Angew Chem Int Ed Engl 2024; 63:e202406407. [PMID: 38862386 DOI: 10.1002/anie.202406407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The design of admirable hydrogel networks is of both practical and fundamental importance for diverse applications of hydrogels. Herein a general strategy of acid-assisted training is designed to enable multiple improvements of conventional poly (sodium acrylate) networks for hydrogels. Hydrophobic homogeneous crosslinked poly (sodium acrylate) hydrogels are prepared to verify the strategy. The multiple improvements of poly (sodium acrylate) networks are simply achieved by immersing the hydrogel networks into 4 M H2SO4 solutions. The introduced acids would induce transformation of poly (sodium acrylate) into poly (acrylic acid) at hydrogel surface, which constructs dynamic hydrogen bonding interactions to tighten the network. The acid-containing poly (sodium acrylate) hydrogels newly generate anti-swelling and self-healing performance, and show mechanical improvement. The internal poly (sodium acrylate) of the pristine acid-containing hydrogels is further fully transformed via acid-infiltration after following cyclic stretch/release training to significantly improve the mechanical performance. The Young's modulus, stress, and toughness of the fully-trained hydrogels are 187.6 times, 35.6 times, and 5.4 times enhanced, respectively. The polymeric networks retain isotropic in fully-trained hydrogels to ensure superior stretchability of 8.6. The acid-assisted training performance of the hydrogels can be reversibly recovered by NaOH neutralization. The acid-assisted training strategy here is general for poly (sodium acrylate) hydrogels.
Collapse
Affiliation(s)
- Baibin Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Qiannan Yu
- College of Energy and Power Engineering, Guangdong University of Petrochemical Technology, No.139, 2nd Guandu Road, Maoming, 525000, China
| | - Peipei Ma
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Qiang Zhao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Kui Ma
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
10
|
Chekkaramkodi D, Ahmed I, Jacob L, Butt H. 3D printed UV-sensing optical fiber probes: manufacturing, properties, and performance. Sci Rep 2024; 14:19001. [PMID: 39152177 PMCID: PMC11329506 DOI: 10.1038/s41598-024-69872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
UV sensing 3D printed optical fiber hydrogels provide a flexible and precise method of remotely of detecting exposure to UV radiations. The optical fibers were created using digital light processing 3D printing technique with hydrogel composites, including micro-sized photochromic dyes (pink, blue and their combination). When exposed to ultraviolet (UV) radiation, these dyes exhibited specific absorption characteristics, resulting in significant decreases in both reflection and transmittance mode spectra at 560 nm, 620 nm, and 590 nm. Optical fibers of lengths 1, 2, and 3 cm were manufactured in two orientations: vertical and horizontal. Scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were utilized to characterize the printed fiber probes. The optical performance of the fibers was tested using customized measurement setups. The reflection and transmission of the printed fibers reduced as the length increased due to optical losses. Reflection and transmisson loss of 20-40% can be observed when the length is increased from 1 to 3 cm. The maximum loss in reflection is observed for pink fiber in the presence of UV irradiation. Also, the type of powder used impacted the response and retraction time, whereas the mixed fiber showed the highest response time of 12-20 s under various conditions. The pink dye added fiber probes shows quick response to UV radiation. An increase in the response time is observed with increasing fiber length. The impact of printing orientation on the transmission and reflectance mode operations of optical fibers was assessed. In addition, the stability of the fiber probes are assesed using a green laser having wavelength 532 nm. This work comprehensively examines the optical properties, manufacturing procedures, and sensing capacities of UV-sensitive photochromic optical fiber sensors.
Collapse
Affiliation(s)
- Dileep Chekkaramkodi
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.
| | - Israr Ahmed
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Liya Jacob
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Haider Butt
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
11
|
Patrakka J, Hynninen V, Lahtinen M, Hokkanen A, Orelma H, Sun Z, Nonappa. Mechanically Robust Biopolymer Optical Fibers with Enhanced Performance in the Near-Infrared Region. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42704-42716. [PMID: 39083595 PMCID: PMC11332404 DOI: 10.1021/acsami.4c08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Polymer optical fibers (POFs) are lightweight, fatigue-tolerant, and suitable for local area networks, automobiles, aerospace, smart textiles, supercomputers, and servers. However, commercially available POFs are exclusively fabricated using synthetic polymers derived from nonrenewable resources. Recently, attempts have been made to fabricate biocompatible and biopolymeric optical fibers. However, their limitations in mechanical performance, thermal stability, and optical properties foil practical applications in waveguiding. Here, we report a comprehensive study of the preparation of biopolymer optical fibers with tailored mechanical strength, thermal properties, and their short-distance applications. Specifically, we use alginate as one of the key components with methylcelluloses to promote readily scalable wet spinning at ambient conditions to fabricate 21 combinations of composite fibers. The fibers display high maximum strain (up to 58%), Young's modulus (up to 11 GPa), modulus of toughness (up to 63 MJ/m3), and a high strength (up to 195 MPa), depending on the composition and fabrication conditions. The modulus of toughness is comparable to that of glass optical fibers, while the maximum strain is nearly 15 times higher. The mechanically robust fibers with high thermal stability allow rapid humidity, touch sensing, and complex shapes such as serpentine, coil, or twisted structures without losing their light transmission properties. More importantly, the fibers display enhanced optical performance and sensitivity in the near-infrared (NIR) region, making them suitable for advanced biomedical applications. Our work suggests that biobased materials offer innovative solutions to create short-distance optical fibers from fossil fuel-free resources with novel functionalities.
Collapse
Affiliation(s)
- Jani Patrakka
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| | - Ville Hynninen
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| | - Manu Lahtinen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Ari Hokkanen
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Hannes Orelma
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Zhipei Sun
- Department
of Electronics and Nanoengineering, Aalto
University, Maarintie
13, 02150 Espoo, Finland
| | - Nonappa
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| |
Collapse
|
12
|
López-Díaz A, Vázquez AS, Vázquez E. Hydrogels in Soft Robotics: Past, Present, and Future. ACS NANO 2024; 18:20817-20826. [PMID: 39099317 PMCID: PMC11328171 DOI: 10.1021/acsnano.3c12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The rise of soft robotics in recent years has motivated significant developments in smart materials (and vice versa), as these materials allow for more compact robotic designs thanks to the embodied intelligence that they provide. Hydrogels have long been postulated as one of the potential candidates to be used in soft robotics due to their softness, elasticity, and smart properties that can be tuned with nanomaterials. However, nowadays they represent only a small percentage of the materials used in the field. In this perspective, the drawbacks that have hindered their utilization so far are analyzed as well as the current state of hydrogel-based soft actuators, sensors, and manufacturing possibilities. The future improvements that need to be made to achieve a real application of hydrogels in soft robotics are also discussed.
Collapse
Affiliation(s)
- Antonio López-Díaz
- Escuela Técnica Superior de Ingeniería Industrial, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Andrés S Vázquez
- Escuela Técnica Superior de Ingeniería Industrial, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
13
|
Nordin N, Zairul Azman ZA, Adnan NA, Majid SR. On the dual crosslinking for functionality enhancement of poly (acrylamide-co-acrylic acid)/chitosan-aluminum (III) ions and its characterization and sensory hydrogel fibers. Int J Biol Macromol 2024; 274:133383. [PMID: 38914395 DOI: 10.1016/j.ijbiomac.2024.133383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
In this report, we present a dual crosslinking hydrogel fiber made from polyamine saccharides chitosan (CS), synthesized through UV polymerization. This process utilizes Irgacure 2959 and N,N'-Methylenebisacrylamide (MBAA) as initiators, followed by immersion in an aluminum chloride (AlCl3) solution. The resulting hydrogel incorporates a dual crosslinking mechanism, quantitatively studied via Nuclear Magnetic Resonance (NMR) spectroscopy. This mechanism involves chemical crosslinking through radical graft polymerization of acrylamide and acrylic acid onto CS in the presence of MBAA, and physical crosslinking through hydrogen bonding interactions between P(AAm-co-AA) and a metal coordination bond. The mechanical properties of the hydrogel fiber enable it to withstand stresses up to 656 kPa and strains exceeding 300 %. Additionally, the hydrogel fiber exhibits conductivity at 1.96 Scm-1. Serving as a multifunctional material, it acts as a strain sensor and finds utility in optics. Remarkably, it demonstrates the capability to detect human motions such as finger bending and minor deformations like vibrations of the vocal cords. Furthermore, its ability to guide dynamic light makes it promising for optical applications. Consequently, this multifunctional hydrogel fiber emerges as a highly promising candidate for diverse applications in fields such as bioengineering and electronics.
Collapse
Affiliation(s)
- Nurdiana Nordin
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, MALAYSIA.
| | | | - Nuradwa Afrina Adnan
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, MALAYSIA
| | - S R Majid
- Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, MALAYSIA.
| |
Collapse
|
14
|
Kim AR, Mitra S, Shyam S, Zhao B, Mitra SK. Flexible hydrogels connecting adhesion and wetting. SOFT MATTER 2024; 20:5516-5526. [PMID: 38651874 DOI: 10.1039/d4sm00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Raindrops falling on window-panes spread upon contact, whereas hail can cause dents or scratches on the same glass window upon contact. While the former phenomenon resembles classical wetting, the latter is dictated by contact and adhesion theories. The classical Young-Dupre law applies to the wetting of pure liquids on rigid solids, whereas conventional contact mechanics theories account for rigid-on-soft or soft-on-rigid contacts with small deformations in the elastic limit. However, the crossover between adhesion and wetting is yet to be fully resolved. The key lies in the study of soft-on-soft interactions with material properties intermediate between liquids and solids. In this work, we translate adhesion to wetting by experimentally probing the static signature of hydrogels in contact with soft PDMS of varying elasticity of both the components. Consequently, we probe this transition across six orders of magnitude in terms of the characteristic elasto-adhesive parameter of the system. In doing so, we reveal previously unknown phenomenology and a theoretical model which smoothly bridges adhesion of glass spheres with total wetting of pure liquids on any given substrate.
Collapse
Affiliation(s)
- A-Reum Kim
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Surjyasish Mitra
- Department of Mechanical & Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Sudip Shyam
- Department of Mechanical & Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Boxin Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Sushanta K Mitra
- Department of Mechanical & Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
15
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Wan Z, Ma P, Yu P, Wu J, Geng L, Peng X. Continuous dual-network alginate hydrogel fibers with superior mechanical and electrical performance for flexible multi-functional sensors. Int J Biol Macromol 2024; 273:133151. [PMID: 38880440 DOI: 10.1016/j.ijbiomac.2024.133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Hydrogel fibers play a crucial role in the design and manufacturing of flexible electronic devices. However, continuous production of hydrogel fibers with high strength, toughness, and conductivity remains a significant challenge. In this study, ion-conductive sodium alginate/polyvinyl alcohol composite hydrogel fibers with an interlocked dual network structure were prepared through continuous wet spinning based on the pH-responsive dynamic borate ester bonds. Owing to the interlocked dual network structure, the resulting hydrogel fibers integrated superior performance of strength (4.31 MPa), elongation-at-break (>1500 %), ion conductivity (17.98 S m-1) and response sensitivity to strain (GF = 3.051). Benefiting from the excellent performance, the composite hydrogel fiber could be applied as motion-detecting sensors, including high-frequency, high-speed reciprocating mechanical motion, and human motion. Furthermore, the superior compatibility for human-computer interaction of the hydrogel fiber was also demonstrated, which a manipulator could be controlled to perform different actions, by a smart glove equipped with the hydrogel fiber sensors.
Collapse
Affiliation(s)
- Zhihao Wan
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Pinchuan Ma
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Peng Yu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianming Wu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Lihong Geng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Xiangfang Peng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
17
|
Zhang Z, Li K, Li Y, Zhang Q, Wang H, Hou C. Dual-Function Wearable Hydrogel Optical Fiber for Monitoring Posture and Sweat pH. ACS Sens 2024; 9:3413-3422. [PMID: 38887933 DOI: 10.1021/acssensors.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, wearable devices have been widely used for human health monitoring. Such monitoring predominantly relies on the principles of optics and electronics. However, electronic detection is susceptible to electromagnetic interference, and traditional optical fiber detection is limited in functionality and unable to simultaneously detect both physical and chemical signals. Hence, a wearable, embedded asymmetric color-blocked optical fiber sensor based on a hydrogel has been developed. Its sensing principle is grounded in the total internal reflection within the optical fiber. The method for posture sensing involves changes in the light path due to fiber bending with color blocks providing wavelength-selective modulation by absorption changes. Sweat pH sensing is facilitated by variations in fluorescence intensity triggered by sweat-induced conformational changes in Rhodamine B. With just one fiber, it achieves both physical and chemical signal detection. Fabricated using a molding technique, this fiber boasts excellent biocompatibility and can accurately discern single and multiple bending points, with a recognition range of 0-90° for a single segment, a detection limit of 0.02 mm-1 and a sweat pH sensing linear regression R2 of 0.993, alongside great light propagation properties (-0.6 dB·cm-1). With its extensive capabilities, it holds promise for applications in medical monitoring.
Collapse
Affiliation(s)
- Zhihui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
18
|
Gao Z, Han K, Hua X, Liu W, Jia S. hydroSIM: super-resolution speckle illumination microscopy with a hydrogel diffuser. BIOMEDICAL OPTICS EXPRESS 2024; 15:3574-3585. [PMID: 38867780 PMCID: PMC11166422 DOI: 10.1364/boe.521521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Super-resolution microscopy has emerged as an indispensable methodology for probing the intricacies of cellular biology. Structured illumination microscopy (SIM), in particular, offers an advantageous balance of spatial and temporal resolution, allowing for visualizing cellular processes with minimal disruption to biological specimens. However, the broader adoption of SIM remains hampered by the complexity of instrumentation and alignment. Here, we introduce speckle-illumination super-resolution microscopy using hydrogel diffusers (hydroSIM). The study utilizes the high scattering and optical transmissive properties of hydrogel materials and realizes a remarkably simplified approach to plug-in super-resolution imaging via a common epi-fluorescence platform. We demonstrate the hydroSIM system using various phantom and biological samples, and the results exhibited effective 3D resolution doubling, optical sectioning, and high contrast. We foresee hydroSIM, a cost-effective, biocompatible, and user-accessible super-resolution methodology, to significantly advance a wide range of biomedical imaging and applications.
Collapse
Affiliation(s)
- Zijun Gao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
19
|
Qi M, Liu Y, Wang Z, Yuan S, Li K, Zhang Q, Chen M, Wei L. Self-Healable Multifunctional Fibers via Thermal Drawing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400785. [PMID: 38682447 PMCID: PMC11200011 DOI: 10.1002/advs.202400785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Indexed: 05/01/2024]
Abstract
The development of soft electronics and soft fiber devices has significantly advanced flexible and wearable technology. However, they still face the risk of damage when exposed to sharp objects in real-life applications. Taking inspiration from nature, self-healable materials that can restore their physical properties after external damage offer a solution to this problem. Nevertheless, large-scale production of self-healable fibers is currently constrained. To address this limitation, this study leverages the thermal drawing technique to create elastic and stretchable self-healable thermoplastic polyurethane (STPU) fibers, enabling cost-effective mass production of such functional fibers. Furthermore, despite substantial research into the mechanisms of self-healable materials, quantifying their healing speed and time poses a persistent challenge. Thus, transmission spectra are employed as a monitoring tool to observe the real-time self-healing process, facilitating an in-depth investigation into the healing kinetics and efficiency. The versatility of the fabricated self-healable fiber extends to its ability to be doped with a wide range of functional materials, including dye molecules and magnetic microparticles, which enables modular assembly to develop distributed strain sensors and soft actuators. These achievements highlight the potential applications of self-healable fibers that seamlessly integrate with daily lives and open up new possibilities in various industries.
Collapse
Affiliation(s)
- Miao Qi
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhou310027China
- Zhejiang LabHangzhou311100China
| | - Yanting Liu
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Zhe Wang
- Key Laboratory of Bionic Engineering of Ministry of EducationJilin UniversityChangchun130022China
| | - Shixing Yuan
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Kaiwei Li
- Key Laboratory of Bionic Engineering of Ministry of EducationJilin UniversityChangchun130022China
| | - Qichong Zhang
- Suzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Mengxiao Chen
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhou310027China
- Zhejiang LabHangzhou311100China
| | - Lei Wei
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
20
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
21
|
Huang S, Liu X, Lin S, Glynn C, Felix K, Sahasrabudhe A, Maley C, Xu J, Chen W, Hong E, Crosby AJ, Wang Q, Rao S. Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics. Nat Commun 2024; 15:3525. [PMID: 38664445 PMCID: PMC11045824 DOI: 10.1038/s41467-024-47988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.
Collapse
Affiliation(s)
- Sizhe Huang
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Xinyue Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher Glynn
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Kayla Felix
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Collin Maley
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Jingyi Xu
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Eunji Hong
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
22
|
Lu H, Zhang Y, Zhu M, Li S, Liang H, Bi P, Wang S, Wang H, Gan L, Wu XE, Zhang Y. Intelligent perceptual textiles based on ionic-conductive and strong silk fibers. Nat Commun 2024; 15:3289. [PMID: 38632231 PMCID: PMC11024123 DOI: 10.1038/s41467-024-47665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Huarun Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Peng Bi
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Shuai Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Linli Gan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Xun-En Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
23
|
Liu Y, Lo JHY, Nunes JK, Stone HA, Shum HC. High-throughput measurement of elastic moduli of microfibers by rope coiling. Proc Natl Acad Sci U S A 2024; 121:e2303679121. [PMID: 38478687 PMCID: PMC10962939 DOI: 10.1073/pnas.2303679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024] Open
Abstract
There are many fields where it is of interest to measure the elastic moduli of tiny fragile fibers, such as filamentous bacteria, actin filaments, DNA, carbon nanotubes, and functional microfibers. The elastic modulus is typically deduced from a sophisticated tensile test under a microscope, but the throughput is low and limited by the time-consuming and skill-intensive sample loading/unloading. Here, we demonstrate a simple microfluidic method enabling the high-throughput measurement of the elastic moduli of microfibers by rope coiling using a localized compression, where sample loading/unloading are not needed between consecutive measurements. The rope coiling phenomenon occurs spontaneously when a microfiber flows from a small channel into a wide channel. The elastic modulus is determined by measuring either the buckling length or the coiling radius. The throughput of this method, currently 3,300 fibers per hour, is a thousand times higher than that of a tensile tester. We demonstrate the feasibility of the method by testing a nonuniform fiber with axially varying elastic modulus. We also demonstrate its capability for in situ inline measurement in a microfluidic production line. We envisage that high-throughput measurements may facilitate potential applications such as screening or sorting by mechanical properties and real-time control during production of microfibers.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China
| | - Jack H. Y. Lo
- Center for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran31261, Saudi Arabia
| | - Janine K. Nunes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
Paul P, Saha S, Biradha K. Differentiating aliphatic and aromatic alcohols using triazine-based supramolecular organogelators: end group-specific selective gelation with chain length of alcohols. SOFT MATTER 2024; 20:2568-2574. [PMID: 38411472 DOI: 10.1039/d4sm00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Supramolecular gels have an extensive range of potential applications, out of which stimuli-responsive materials are a topic of contemporary research. Gels being kinetically entrapped materials can be tuned to different forms using external chemical stimuli. In this context, three different triazine gelators, each containing a unique end group, were examined for gelation in various solvent systems. Nevertheless, the gelation was limited to only alcoholic solvents, suggesting that the hydrogen bonds between the gelating solvent and gelator play a crucial role in gelation. Further, it was found that these gelators could gelate only with aliphatic alcohols, which could be degelled easily using aromatic alcohols. The three gelators exhibited distinct gelation of aliphatic alcohols based on their end groups. The gelator with the polar-aromatic end group (C5H4N) was found to gelate with lighter alcohols, whereas that with the nonpolar aromatic end group (C6H5) was found to prefer higher alcohols. The MGC and Tgel values were also found to depend on the alkyl chain length/branching of the alcohols. The crystal structure of one of the gelators provides insights into the model structure of the gels. Cyclohexanol was the only solvent that could produce gels with all three of the as-synthesised gelators. The process of degelation by aromatic alcohols was monitored at different points of the disassembly process by rheological and morphological measurements to understand the extent of controlled degelation. These gels have great potential for use in controlled drug delivery and chemical sensing, among other areas.
Collapse
Affiliation(s)
- Priya Paul
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India.
| | - Subhajit Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India.
| | - Kumar Biradha
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
25
|
Fang K, Wan Y, Wei J, Chen T. Hydrogel-Based Sensors for Human-Machine Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16975-16985. [PMID: 37994525 DOI: 10.1021/acs.langmuir.3c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In the past decades, remarkable progress has been made in the field of human-machine interaction. The need for accurate sensing devices with satisfactory user experiences has propelled the development of flexible, stretchable, biocompatible, and imperceptible hydrogel-based interfaces. These innovative interfaces facilitate direct interactions between humans and machines while receiving detected input signals from sensors and giving output commands to controllers, thus motivating accurate real-time responsiveness. This Perspective discusses the sensing mechanisms for the two categories of hydrogel-based sensors and summarizes the recent progress in the development of different representations of human-machine interactions, including intelligent identification, information secrecy, interactive control, and virtual reality and augmented reality technologies. The advantages of hydrogel-based systems over conventionally used rigid electrical components are explicitly discussed. The conclusion provides a perspective on current challenges and outlines a future roadmap for the realization of state-of-the-art hydrogel-based smart systems.
Collapse
Affiliation(s)
- Kecheng Fang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yan Wan
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
26
|
Wang C, Yang B, Xiang R, Ji J, Wu Y, Tan S. High-Saline-Enabled Hydrophobic Homogeneous Cross-Linking for Extremely Soft, Tough, and Stretchable Conductive Hydrogels as High-Sensitive Strain Sensors. ACS NANO 2023; 17:23194-23206. [PMID: 37926964 DOI: 10.1021/acsnano.3c09884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Design of admirable conductive hydrogels combining robust toughness, soft flexibility, desirable conductivity, and freezing resistance remains daunting challenges for meeting the customized and critical demands of flexible and wearable electronics. Herein, a promising and facile strategy to prepare hydrogels tailored to these anticipated demands is proposed, which is prepared in one step by homogeneous cross-linking of acrylamide using hydrophobic divinylbenzene stabilized by micelles under saturated high-saline solutions. The influence of high-saline environments on the hydrogel topology and mechanical performance is investigated. The high-saline environments suppress the size of hydrophobic cross-linkers in micelles during hydrogel polymerization, which weaken the dynamic hydrophobic associations to soften the hydrogels. Nevertheless, the homogeneous cross-linked networks ensure antifracture during ultralarge deformations. The obtained hydrogels show special mechanical performance combining extremely soft deformability and antifracture features (Young's modulus, 5 kPa; stretchability, 10200%; toughness, 134 kJ m-2; and excellent anticrack propagation). The saturated-saline environments also endow the hydrogels with desirable ion conductivity (106 mS cm-1) and freezing resistance (<20 °C). These comprehensive properties of the obtained hydrogels are quite suitable for flexible electronic applications, which is demonstrated by the high sensitivity and durability of the derived strain sensors.
Collapse
Affiliation(s)
- Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Baibin Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Ruihan Xiang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, People's Republic of China
| |
Collapse
|
27
|
Baines R, Zuliani F, Chennoufi N, Joshi S, Kramer-Bottiglio R, Paik J. Multi-modal deformation and temperature sensing for context-sensitive machines. Nat Commun 2023; 14:7499. [PMID: 37980333 PMCID: PMC10657382 DOI: 10.1038/s41467-023-42655-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023] Open
Abstract
Owing to the remarkable properties of the somatosensory system, human skin compactly perceives myriad forms of physical stimuli with high precision. Machines, conversely, are often equipped with sensory suites constituted of dozens of unique sensors, each made for detecting limited stimuli. Emerging high degree-of-freedom human-robot interfaces and soft robot applications are delimited by the lack of simple, cohesive, and information-dense sensing technologies. Stepping toward biological levels of proprioception, we present a sensing technology capable of decoding omnidirectional bending, compression, stretch, binary changes in temperature, and combinations thereof. This multi-modal deformation and temperature sensor harnesses chromaticity and intensity of light as it travels through patterned elastomer doped with functional dyes. Deformations and temperature shifts augment the light chromaticity and intensity, resulting in a one-to-one mapping between stimulus modes that are sequentially combined and the sensor output. We study the working principle of the sensor via a comprehensive opto-thermo-mechanical assay, and find that the information density provided by a single sensing element permits deciphering rich and diverse human-robot and robot-environmental interactions.
Collapse
Affiliation(s)
- Robert Baines
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06520, USA
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Fabio Zuliani
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Neil Chennoufi
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Sagar Joshi
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland
| | - Rebecca Kramer-Bottiglio
- School of Engineering & Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, CT, 06520, USA
| | - Jamie Paik
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IGM RRL MED 1 2313 Station 9, Vaud, 1025, Switzerland.
| |
Collapse
|
28
|
Galindo JM, Tardío C, Saikia B, Van Cleuvenbergen S, Torres-Moya I. Recent Insights about the Role of Gels in Organic Photonics and Electronics. Gels 2023; 9:875. [PMID: 37998965 PMCID: PMC10670943 DOI: 10.3390/gels9110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
This review article provides an in-depth exploration of the role of gels in the fields of organic electronics and photonics, focusing on their unique properties and applications. Despite their remarkable potential, gel-based innovations remain relatively uncharted in these domains. This brief review aims to bridge the knowledge gap by shedding light on the diverse roles that gels can fulfil in the enhancement of organic electronic and photonic devices. From flexible electronics to light-emitting materials, we delve into specific examples of gel applications, highlighting their versatility and promising outcomes. This work serves as an indispensable resource for researchers interested in harnessing the transformative power of gels within these cutting-edge fields. The objective of this review is to raise awareness about the overlooked research potential of gels in optoelectronic materials, which have somewhat diminished in recent years.
Collapse
Affiliation(s)
- Josué M. Galindo
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02YN77 Dublin, Ireland;
| | - Carlos Tardío
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071 Ciudad Real, Spain;
| | - Basanta Saikia
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (S.V.C.)
| | - Stijn Van Cleuvenbergen
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (S.V.C.)
| | - Iván Torres-Moya
- Department of Organic Chemistry, Faculty of Chemical Sciences, Campus of Espinardo, University of Murcia, 30010 Murcia, Spain
| |
Collapse
|
29
|
Liu X, Rao S, Chen W, Felix K, Ni J, Sahasrabudhe A, Lin S, Wang Q, Liu Y, He Z, Xu J, Huang S, Hong E, Yau T, Anikeeva P, Zhao X. Fatigue-resistant hydrogel optical fibers enable peripheral nerve optogenetics during locomotion. Nat Methods 2023; 20:1802-1809. [PMID: 37857906 PMCID: PMC11009937 DOI: 10.1038/s41592-023-02020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/21/2023] [Indexed: 10/21/2023]
Abstract
We develop soft and stretchable fatigue-resistant hydrogel optical fibers that enable optogenetic modulation of peripheral nerves in naturally behaving animals during persistent locomotion. The formation of polymeric nanocrystalline domains within the hydrogels yields fibers with low optical losses of 1.07 dB cm-1, Young's modulus of 1.6 MPa, stretchability of 200% and fatigue strength of 1.4 MPa against 30,000 stretch cycles. The hydrogel fibers permitted light delivery to the sciatic nerve, optogenetically activating hindlimb muscles in Thy1::ChR2 mice during 6-week voluntary wheel running assays while experiencing repeated deformation. The fibers additionally enabled optical inhibition of pain hypersensitivity in an inflammatory model in TRPV1::NpHR mice over an 8-week period. Our hydrogel fibers offer a motion-adaptable and robust solution to peripheral nerve optogenetics, facilitating the investigation of somatosensation.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA.
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kayla Felix
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jiahua Ni
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Yuanyuan Liu
- Somatosensation and Pain Unit, National Institute of Dental and Craniofacial Research, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Jingyi Xu
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sizhe Huang
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Eunji Hong
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Todd Yau
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
30
|
Luo Y, Sun C, Wei M, Ma H, Wu Y, Chen Z, Dai H, Jian J, Sun B, Zhong C, Li J, Richardson KA, Lin H, Li L. Integrated Flexible Microscale Mechanical Sensors Based on Cascaded Free Spectral Range-Free Cavities. NANO LETTERS 2023; 23:8898-8906. [PMID: 37676244 DOI: 10.1021/acs.nanolett.3c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Photonic mechanical sensors offer several advantages over their electronic counterparts, including immunity to electromagnetic interference, increased sensitivity, and measurement accuracy. Exploring flexible mechanical sensors on deformable substrates provides new opportunities for strain-optical coupling operations. Nevertheless, existing flexible photonics strategies often require cumbersome signal collection and analysis with bulky setups, limiting their portability and affordability. To address these challenges, we propose a waveguide-integrated flexible mechanical sensor based on cascaded photonic crystal microcavities with inherent deformation and biaxial tensile state analysis. Leveraging the advanced multiplexing capability of the sensor, for the first time, we successfully demonstrate 2D shape reconstruction and quasi-distributed strain sensing with 110 μm spatial resolution. Our microscale mechanical sensor also exhibits exceptional sensitivity with a detected force level as low as 13.6 μN in real-time measurements. This sensing platform has potential applications in various fields, including biomedical sensing, surgical catheters, aircraft and spacecraft engineering, and robotic photonic skin development.
Collapse
Affiliation(s)
- Ye Luo
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Chunlei Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Maoliang Wei
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Yingchun Wu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zequn Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hao Dai
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Jialing Jian
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Boshu Sun
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chuyu Zhong
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Junying Li
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Kathleen A Richardson
- The College of Optics & Photonics, Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
31
|
Priyadarshini BS, Mitra R, Manju U. Titania Nanoparticle-Stimulated Ultralow Frequency Detection and High-Pass Filter Behavior of a Flexible Piezoelectric Nanogenerator: A Self-Sustaining Energy Harvester for Active Motion Tracking. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45812-45822. [PMID: 37733300 DOI: 10.1021/acsami.3c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
A significant driving force for the fabrication of IoT-compatible smart health gear integrated with multifunctional sensors is the growing trend in fitness and the overall wellness of the human body. In this work, we present an autonomous motion and activity-sensing device based on the efficacious nucleation of the polar β-phase in an electroactive polymer. Representatively, we investigate the nucleating effect of TiO2 nanoparticles on weight-modulated PVDF-HFP films (PT-5, PT-10, and PT-15) and subsequently prototype a sensing device with the film that demonstrates superior β-phase nucleation. The PT-10 film, with an optimal polar β-phase, shows the highest remnant polarization (2Pr) and energy density of 0.36 μC/cm2 and 22.3 mJ/cm3, respectively, at 60 kV/cm. The films mimic a high pass filter at frequencies above 10 KHz with very low impedance and high ac conductivity values. The frequency-dependent impedance studies reveal an effective interfacial polarization between TiO2 nanoparticles and PVDF-HFP, explicitly observed in the low-frequency region. Consequently, the sensor fabricated with PT-10 as the sensing layer exhibits ultralow frequency detection (25 Hz) resulting from the blood flow muscle oxygenation. The device successfully senses voluntary joint movements of the human body and actively tracks a range of motions, from brisk walking to running. Additionally, through repetitive human finger-tapping motion, the nanogenerator lights up multiple light-emitting diodes in series and charges capacitors of varying magnitudes under 50 s. The real-time human motion sensing and movement tracking modalities of the sensor hold promise in the arena of smart wearables, sports biomechanics, and contact-based medical devices.
Collapse
Affiliation(s)
- B Sheetal Priyadarshini
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rahul Mitra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Unnikrishnan Manju
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
32
|
Ye W, Zhao L, Luo X, Guo J, Liu X. Perceptual Soft End-Effectors for Future Unmanned Agriculture. SENSORS (BASEL, SWITZERLAND) 2023; 23:7905. [PMID: 37765962 PMCID: PMC10537409 DOI: 10.3390/s23187905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
As consumers demand ever-higher quality standards for agricultural products, the inspection of such goods has become an integral component of the agricultural production process. Unfortunately, traditional testing methods necessitate the deployment of numerous bulky machines and cannot accurately determine the quality of produce prior to harvest. In recent years, with the advancement of soft robot technology, stretchable electronic technology, and material science, integrating flexible plant wearable sensors on soft end-effectors has been considered an attractive solution to these problems. This paper critically reviews soft end-effectors, selecting the appropriate drive mode according to the challenges and application scenarios in agriculture: electrically driven, fluid power, and smart material actuators. In addition, a presentation of various sensors installed on soft end-effectors specifically designed for agricultural applications is provided. These sensors include strain, temperature, humidity, and chemical sensors. Lastly, an in-depth analysis is conducted on the significance of implementing soft end-effectors in agriculture as well as the potential opportunities and challenges that will arise in the future.
Collapse
Affiliation(s)
- Weikang Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.Y.)
| | - Lin Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.Y.)
| | - Xuan Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.Y.)
| | - Junxian Guo
- College of Mechanical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.Y.)
- College of Mechanical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
33
|
Huang S, Villafranca SU, Mehta I, Yosfan O, Hong E, Wang A, Wu N, Wang Q, Rao S. A nanoscale inorganic coating strategy for stabilizing hydrogel neural probes in vivo. J Mater Chem B 2023; 11:7629-7640. [PMID: 37401386 PMCID: PMC10530439 DOI: 10.1039/d3tb00710c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Hydrogels with adaptable optical and mechanical characteristics show considerable promise for light delivery in vivo with neuroengineering applications. However, the unlinked amorphous polymer chains within hydrogels can cause volumetric swelling after water absorption under physiological conditions over time. Chemically cross-linked poly(vinyl alcohol) (PVA) hydrogels showcase fatigue-resistant attributes and promising biocompatibility for the manufacture of soft neural probes. However, possible swelling of the PVA hydrogel matrix could impact the structural stability of hydrogel-based bioelectronics and their long-term in vivo functionality. In this study, we utilized an atomic layer deposition (ALD) technique to generate an inorganic, silicon dioxide (SiO2) coating layer on chemically cross-linked PVA hydrogel fibers. To evaluate the stability of SiO2-coated PVA hydrogel fibers mimicking the in vivo environment, we conducted accelerated stability tests. SiO2-coated PVA hydrogel fibers showed improved stability over a one-week incubation period under a harsh environment, preventing swelling and preserving their mechanical and optical properties compared to uncoated fibers. These SiO2-coated PVA hydrogel fibers demonstrated nanoscale polymeric crystalline domains (6.5 ± 0.1 nm), an elastic modulus of 73.7 ± 31.7 MPa, a maximum elongation of 113.6 ± 24.2%, and minimal light transmission loss (1.9 ± 0.2 dB cm-1). Lastly, we applied these SiO2-coated PVA hydrogel fibers in vivo to optically activate the motor cortex of transgenic Thy1::ChR2 mice during locomotor behavioral tests. This mouse cohort was genetically modified to express the light-sensitive ion channel, channelrhodopsin-2 (ChR2), and implanted with hydrogel fibers to deliver light to the motor cortex area (M2). Light stimulation via hydrogel fibers resulted in optogenetically modulated mouse locomotor behaviors, including increased contralateral rotation, mobility speeds, and travel distances.
Collapse
Affiliation(s)
- Sizhe Huang
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | | | - Iyanah Mehta
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Omri Yosfan
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Eunji Hong
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Anyang Wang
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
34
|
Tong R, Ma Z, Gu P, Yao R, Li T, Zeng M, Guo F, Liu L, Xu J. Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors. Int J Biol Macromol 2023; 246:125683. [PMID: 37419262 DOI: 10.1016/j.ijbiomac.2023.125683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Ionic conductive hydrogel fibers based on natural polymers provide an immense focus for a new generation of electronics due to their flexibility and knittability. The feasibility of utilizing pure natural polymer-based hydrogel fibers could be drastically improved if their mechanical and transparent performances satisfy the requirements of actual practice. Herein, we report a facile fabrication strategy for significantly stretchable and sensitive sodium alginate ionic hydrogel fibers (SAIFs), by glycerol initiating physical crosslinking and by CaCl2 inducing ionic crosslinking. The obtained ionic hydrogel fibers not only show significant stretchability (tensile strength of 1.55 MPa and fracture strain of ∼161 %), but also exhibit wide-range sensing, satisfactorily stable, rapidly responsive, and multiply sensitive abilities to external stimulus. In addition, the ionic hydrogel fibers have excellent transparency (over 90 % in a wide wavelength range), and good anti-evaporation and anti-freezing properties. Furthermore, the SAIFs have been easily knitted into a textile, and successfully applied as wearable sensors to recognize human motions, by observing the output electrical signals. Our methodology for fabrication intelligent SAIFs will shed light on artificial flexible electronics and other textile-based strain sensors.
Collapse
Affiliation(s)
- Ruiping Tong
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Zhihui Ma
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Ping Gu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Rui Yao
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Tengfei Li
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| | - Mingshun Zeng
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Fazhan Guo
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Linfeng Liu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China
| | - Junfei Xu
- Key Laboratory of Air-driven Equipment of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China.
| |
Collapse
|
35
|
Yang B, Wang C, Xiang R, Zhao Q, Wu Y, Tan S. An Anti-Fracture and Super Deformable Soft Hydrogel Network Insensitive to Extremely Harsh Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302342. [PMID: 37289105 PMCID: PMC10427395 DOI: 10.1002/advs.202302342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Design of hydrogels with superior flexible deformability, anti-fracture toughness, and reliable environment adaption is fundamentally and practically important for diverse hydrogel-based flexible devices. However, these features can hardly be compatible even in elaborately designed hydrogels. Herein soft hydrogel networks with superior anti-fracture and deformability are proposed, which show good adaption to extremely harsh saline or alkaline environments. The hydrogel network is one-step constructed via hydrophobic homogenous cross-linking of poly (sodium acrylate), which is expected to provide hydrophobic associations and homogeneous cross-linking for energy dissipation. The obtained hydrogels are quite soft and deformable (tensile modulus: ≈20 kPa, stretchability: 3700%), but show excellent anti-fracture toughness (10.6 kJ m-2 ). The energy dissipation mechanism can be further intensified under saline or alkaline environments. The mechanical performance of the hydrophobic cross-linking topology is inspired rather than weakened by extremely saline or alkaline environments (stretchability: 3900% and 5100%, toughness: 16.1 and 17.1 kJ m-2 under saturated NaCl and 6 mol L-1 NaOH environments, respectively). The hydrogel network also shows good performance in reversible deformations, ion conductivity, sensing strain, monitoring human motions, and freezing resistance under high-saline environments. The hydrogel network show unique mechanical performance and robust environment adaption, which is quite promising for diverse applications.
Collapse
Affiliation(s)
- Baibin Yang
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Caihong Wang
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Ruihan Xiang
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Qiang Zhao
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Yong Wu
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Shuai Tan
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| |
Collapse
|
36
|
Abstract
Owing to superior softness, wetness, responsiveness, and biocompatibility, bulk hydrogels are being intensively investigated for versatile functions in devices and machines including sensors, actuators, optics, and coatings. The one-dimensional (1D) hydrogel fibers possess the metrics from both the hydrogel materials and structural topology, endowing them with extraordinary mechanical, sensing, breathable and weavable properties. As no comprehensive review has been reported for this nascent field, this article aims to provide an overview of hydrogel fibers for soft electronics and actuators. We first introduce the basic properties and measurement methods of hydrogel fibers, including mechanical, electrical, adhesive, and biocompatible properties. Then, typical manufacturing methods for 1D hydrogel fibers and fibrous films are discussed. Next, the recent progress of wearable sensors (e.g., strain, temperature, pH, and humidity) and actuators made from hydrogel fibers is discussed. We conclude with future perspectives on next-generation hydrogel fibers and the remaining challenges. The development of hydrogel fibers will not only provide an unparalleled one-dimensional characteristic, but also translate fundamental understanding of hydrogels into new application boundaries.
Collapse
Affiliation(s)
- Jiaxuan Du
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qing Ma
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Litao Sun
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
37
|
Li T, Wang Q, Su Y, Qiao F, Pei Q, Li X, Tan Y, Zhou Z. AI-Assisted Disease Monitoring Using Stretchable Polymer-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319270 DOI: 10.1021/acsami.3c01970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible sensors have attracted significant attention for medical applications. Herein, an AI-assisted stretchable polymer-based (AISP) sensor has been developed based on the Beer-Lambert law for disease monitoring and telenursing. Benefiting from the use of superior polymer materials, the AISP sensor features a high tensile strain of up to 100%, durability of >10,000 tests, excellent waterproofness, and no effect of temperature (1.6-60.9 °C). Such advantages support the capability that the AISP can be flexibly pasted on the skin surface as a wearable device for real-time monitoring of multiple physiological parameters. An AISP sensor-based swallowing recognition technique has been proposed with a high accuracy of up to 88.89%. Likewise, it has been expanded to a remote nursing assistance system to meet critical patients' physiological requirements and daily care. The hands-free communication experiment and robot control applications have also been successfully conducted based on the constructed system. Such merits demonstrate its potential as a medical toolkit and indicate promise for intelligent healthcare.
Collapse
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qian'ao Wang
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yifei Su
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Feng Qiao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qingfeng Pei
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiong Li
- Tencent Robotics X Lab, Tencent Technology (Shenzhen) Company Ltd., Shenzhen 518064, China
| | - Yuegang Tan
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zude Zhou
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
38
|
Wu T, Huang S, Feng X, Liu X, James TD, Sun X, Qian X. Visualizing Drug Release from a Stimuli-Responsive Soft Material Based on Amine-Thiol Displacement. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22967-22976. [PMID: 37145981 DOI: 10.1021/acsami.3c02720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this research, we developed a photoluminescent platform using amine-coupled fluorophores, generated from a single conjugate acceptor containing bis-vinylogous thioesters. Based on the experimental and computational results, the fluorescence turn-on mechanism was proposed to be charge separated induced energy radiative transition for the amine-coupled fluorophore, while the sulfur-containing precursor was not fluorescent since the energy internal conversion occurred through vibrational 2RS- (R represents alkyl groups) as energy acceptor(s). Further utilizing the conjugate acceptor, we establish a new fluorogenic approach via a highly cross-linked soft material to selectively detect cysteine under neutral aqueous conditions. Turn-on fluorescence emission and macroscopic degradation occurred in the presence of cysteine as the stimuli, which can be visually tracked due to the generation of an optical indicator and the cleavage of linkers within the matrix. Furthermore, a novel drug delivery system was constructed, achieving controlled release of sulfhydryl drug (6-mercaptopurine) which was tracked by photoluminescence and high-performance liquid chromatography. The photoluminescent molecules developed herein are suitable for visualizing polymeric degradation, making them suitable for additional "smart" material applications.
Collapse
Affiliation(s)
- Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shiqing Huang
- Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Xing Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaogang Liu
- Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
39
|
Min J, Zhou Z, Fu H. A self‐healing electrostatic interaction crosslinked temperature sensitive conductive hydrogel for strain and temperature sensor. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Jinbiao Min
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou People's Republic of China
| | - Zhaoxi Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou People's Republic of China
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou People's Republic of China
| |
Collapse
|
40
|
Gu J, Li F, Zhu Y, Li D, Liu X, Wu B, Wu HA, Fan X, Ji X, Chen Y, Liang J. Extremely Robust and Multifunctional Nanocomposite Fibers for Strain-Unperturbed Textile Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209527. [PMID: 36661125 DOI: 10.1002/adma.202209527] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Textile electronics are needed that can achieve strain-unaltered performance when they undergo irregular and repeated strain deformation. Such strain-unaltered textile electronics require advanced fibers that simultaneously have high functionalities and extreme robustness as fabric materials. Current synthetic nanocomposite fibers based on inorganic matrix have remarkable functionalities but often suffer from low robustness and poor tolerance against crack formation. Here, we present a design for a high-performance multifunctional nanocomposite fiber that is mechanically and electrically robust, which was realized by crosslinking titanium carbide (MXene) nanosheets with a slide-ring polyrotaxane to form an internal mechanically-interlocked network. This inorganic matrix nanocomposite fiber featured distinct strain-hardening mechanical behavior and exceptional load-bearing capability (toughness approaching 60 MJ m-3 and ductility over 27%). It retained 100% of its ductility after cyclic strain loading. Moreover, the high electrical conductivity (>1.1 × 105 S m-1 ) and electrochemical performance (>360 F cm-3 ) of the nanocomposite fiber can be well retained after subjecting the fiber to extensive (>25% strain) and long-term repeated (10 000 cycles) dimensional changes. Such superior robustness allowed for the fabrication of the nanocomposite fibers into various robust wearable devices, such as textile-based electromechanical sensors with strain-unalterable sensing performance and fiber-shaped supercapacitors with invariant electrochemical performance for 10 000 strain loading cycles.
Collapse
Affiliation(s)
- Jianfeng Gu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Fengchao Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yinbo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Donghui Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xue Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Bao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Xiangqian Fan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xinyi Ji
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yongsheng Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Jiajie Liang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300350, P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
41
|
Jian N, Guo R, Zuo L, Sun Y, Xue Y, Liu J, Zhang K. Bioinspired Self-Growing Hydrogels by Harnessing Interfacial Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210609. [PMID: 36585822 DOI: 10.1002/adma.202210609] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The production of natural materials is achieved through a bottom-up approach, in which materials spontaneously grow and adapt to the external environment. Synthetic materials are specifically designed and fabricated as engineered materials; however, they are far away from these natural self-growing attributes. Thus, design and fabrication of synthetic material systems to replicate the self-growing characteristics of those natural prototypes (i.e., hairs and nails) remains challenging. Inspired by the self-growing behaviors of keratin proteins, here the fabrication of synthetic hydrogels (i.e., polyacrylamide (PAAm)) from the free radical polymerization at the interface between AAm precursor solution and liquid metals (i.e., eutectic gallium-indium (EGaIn)) is reported. The newly formed hydrogel materials at the EGaIn/AAm precursor interface gradually push the whole hydrogel upward, enabling the self-growing of these synthetic hydrogel materials. This work not only endows the fabrication of synthetic materials with unprecedented self-growing characters, but also broadens the potential applications of self-growing materials in actuation and soft robotics.
Collapse
Affiliation(s)
- Nannan Jian
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rui Guo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lei Zuo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yibo Sun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kai Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, P. R. China
| |
Collapse
|
42
|
Liu Q, Zhang J, Hou Y, Wang X, Li X, Chen T, Xu X. Tough and stretchable all-κ-carrageenan hydrogel based on the cooperative effects between chain conformation transition and stepwise mechanical training. Carbohydr Polym 2023; 313:120869. [PMID: 37182960 DOI: 10.1016/j.carbpol.2023.120869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
The traditional κ-carrageenan (κCG)-based hydrogel obtained from hot water can rupture easily under mechanical loading. To address this vulnerability, here we presented a robust all-κCG hydrogel without employing the second synthetic network. By simply regulating the polymer chains from random coil to stiff chain conformation in NaOH/urea solvent system via the freeze-thawing process, the as-prepared hydrogel with homogeneous structure can display an enhanced stretchability from 42.1 to 156 %, while maintaining the similar fracture stress. Moreover, upon the stepwise mechanical training and subsequent incubation in KCl aqueous solution, more helical segments of κCG were aligned and involved into the association domains, thus leading to the increment in both the crystallinity and anisotropy. Consequently, a fast self-strengthening behavior occurred, and a more stretchable (fracture strain up to 396 %), strong (stress ∼ 0.55 MPa) and tough (∼1.52 MJ m-3) κCG hydrogel was obtained. In comparison to the traditional one, the fracture strain and toughness are increased by 8.5 and 11.5 times, respectively. In addition, this κCG hydrogel can demonstrate good recovery and shape-memory behaviors under medium deformation. Hence, this tough all-κCG hydrogel is expected to be tailored into the biomaterials as the wearable device, artificial tendon, and cartilage in the future.
Collapse
|
43
|
Li Y, Luo S, Gui Y, Wang X, Tian Z, Yu H. Difunctional Hydrogel Optical Fiber Fluorescence Sensor for Continuous and Simultaneous Monitoring of Glucose and pH. BIOSENSORS 2023; 13:bios13020287. [PMID: 36832053 PMCID: PMC9954304 DOI: 10.3390/bios13020287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/12/2023]
Abstract
It is significant for people with diabetes to know their body's real-time glucose level, which can guide the diagnosis and treatment. Therefore, it is necessary to research continuous glucose monitoring (CGM) as it gives us real-time information about our health condition and its dynamic changes. Here, we report a novel hydrogel optical fiber fluorescence sensor segmentally functionalized with fluorescein derivative and CdTe QDs/3-APBA, which can continuously monitor pH and glucose simultaneously. In the glucose detection section, the complexation of PBA and glucose will expand the local hydrogel and decrease the fluorescence of the quantum dots. The fluorescence can be transmitted to the detector by the hydrogel optical fiber in real time. As the complexation reaction and the swelling-deswelling of the hydrogel are all reversible, the dynamic change of glucose concentration can be monitored. For pH detection, the fluorescein attached to another segment of the hydrogel exhibits different protolytic forms when pH changes and the fluorescence changes correspondingly. The significance of pH detection is compensation for pH errors in glucose detection because the reaction between PBA and glucose is sensitive to pH. The emission peaks of the two detection units are 517 nm and 594 nm, respectively, so there is no signal interference between them. The sensor can continuously monitor glucose in 0-20 mM and pH in 5.4-7.8. The advantages of this sensor are multi-parameter simultaneous detection, transmission-detection integration, real-time dynamic detection, and good biocompatibility.
Collapse
|
44
|
C S A, Kandasubramanian B. Hydrogel as an advanced energy material for flexible batteries. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anju C S
- CIPET, Institute of Petrochemicals Technology (IPT), Kochi, India
| | | |
Collapse
|
45
|
Lei Z, Xu W, Zhang G. Bio-inspired ionic skins for smart medicine. SMART MEDICINE 2023; 2:e20220026. [PMID: 39188555 PMCID: PMC11235715 DOI: 10.1002/smmd.20220026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 08/28/2024]
Abstract
Ionic skins are developed to mimic the mechanical properties and functions of natural skins. They have demonstrated substantial advantages to serve as the crucial interface to bridge the gap between humans and machines. The first-generation ionic skin is a stretchable capacitor comprising hydrogels as the ionic conductors and elastomers as the dielectrics, and realizes pressure and strain sensing through the measurement of the capacitance. Subsequent advances have been made to improve the mechanical properties of ionic skins and import diverse functions. For example, ultrahigh stretchability, strong interfacial adhesion, self-healing, moisturizing ability, and various sensing capabilities have been achieved separately or simultaneously. Most ionic skins are attached to natural skins to monitor bio-electrical signals continuously. Ionic skins have also been found with significant potential to serve as a smart drug-containing reservoir, which can release drugs spatially, temporally, and in a controllable way. Herein, this review focuses on the design and fabrication of ionic skins, and their applications related to smart medicine. Moreover, challenges and opportunities are also discussed. It is hoped that the development of bio-inspired ionic skins will provide a paradigm shift for self-diagnosis and healthcare.
Collapse
Affiliation(s)
- Zhouyue Lei
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Wentao Xu
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Guogao Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
46
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
47
|
Sun K, Wang Z, Liu Q, Chen H, Li W, Cui W. Data-driven multi-joint waveguide bending sensor based on time series neural network. OPTICS EXPRESS 2023; 31:2359-2372. [PMID: 36785251 DOI: 10.1364/oe.476889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/24/2022] [Indexed: 06/18/2023]
Abstract
Due to the bulky interrogation devices, traditional fiber optic sensing system is mainly connected by wire or equipped only for large facilities. However, the advancement in neural network algorithms and flexible materials has broadened its application scenarios to bionics. In this paper, a multi-joint waveguide bending sensor based on color dyed filters is designed to detect bending angles, directions and positions. The sensors are fabricated by casting method using soft silicone rubber. Besides, required optical properties of sensor materials are characterized to better understand principles of the sensor design. Time series neural networks are utilized to predict bending position and angle quantitatively. The results confirm that the waveguide sensor demodulated by the data-driven neural network algorithm performs well and can be used for engineering applications.
Collapse
|
48
|
Progression of Quantum Dots Confined Polymeric Systems for Sensorics. Polymers (Basel) 2023; 15:polym15020405. [PMID: 36679283 PMCID: PMC9863920 DOI: 10.3390/polym15020405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The substantial fluorescence (FL) capabilities, exceptional photophysical qualities, and long-term colloidal stability of quantum dots (QDs) have aroused a lot of interest in recent years. QDs have strong and wide optical absorption, good chemical stability, quick transfer characteristics, and facile customization. Adding polymeric materials to QDs improves their effectiveness. QDs/polymer hybrids have implications in sensors, photonics, transistors, pharmaceutical transport, and other domains. There are a great number of review articles available online discussing the creation of CDs and their many uses. There are certain review papers that can be found online that describe the creation of composites as well as their many different uses. For QDs/polymer hybrids, the emission spectra were nearly equal to those of QDs, indicating that the optical characteristics of QDs were substantially preserved. They performed well as biochemical and biophysical detectors/sensors for a variety of targets because of their FL quenching efficacy. This article concludes by discussing the difficulties that still need to be overcome as well as the outlook for the future of QDs/polymer hybrids.
Collapse
|
49
|
Xia J, Luo J, Chang B, Sun C, Li K, Zhang Q, Li Y, Wang H, Hou C. High-Performance Zwitterionic Organohydrogel Fiber in Bioelectronics for Monitoring Bioinformation. BIOSENSORS 2023; 13:115. [PMID: 36671950 PMCID: PMC9855821 DOI: 10.3390/bios13010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Bioinformation plays an imperative role in day-to-day life. Wearable bioelectronics are important for sensing bioinformation in real-time and conductive hydrogel fibers are a key component in next generation wearable bioelectronics. However, current conductive hydrogel fibers have remarkable disadvantages such as insufficient conductivity, stability, and bioinformation sensing ability. Here, we report the synthesis of a zwitterionic organohydrogel (ZOH) fiber by the combination of the mold method and solvent replacement strategy. The ZOH fiber shows transparency (92.1%), stretchability (905.8%), long-term stability, anti-freezing ability (-35-60 °C), and low light transmission loss (0.17 dB/cm). Then, we integrate the ZOH fiber into fabric for use as a bioinformation sensor, the results prove its capability as a bioinformation monitor, monitoring information such as motion and bioelectric signals. In addition, the potential of the ZOH fiber in optogenetic applications is also confirmed.
Collapse
Affiliation(s)
- Jun Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Boya Chang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chuanyue Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
50
|
Xu S, Zhou Z, Liu Z, Sharma P. Concurrent stiffening and softening in hydrogels under dehydration. SCIENCE ADVANCES 2023; 9:eade3240. [PMID: 36598986 PMCID: PMC9812377 DOI: 10.1126/sciadv.ade3240] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Hydrogels are an extraordinary soft matter system that serve as a laboratory for a rich plethora of multiphysical phenomena and find applications that range from biocompatible sensors to soft robots. Here, we report a peculiar experimental observation suggesting concurrent stiffening and softening in hydrogels during the dehydration process. Theories based on Flory's work fail to capture the scaling of mechanical behavior with water content, observed in our experiments. We perform coarse-grained molecular dynamics simulations to elucidate the mechanisms underpinning the odd softening-stiffening behavior during dehydration and propose a theoretical model to correctly represent the underlying physics and the divergence from Flory-based theories.
Collapse
Affiliation(s)
- Shuai Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zidi Zhou
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zishun Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
| | - Pradeep Sharma
- Departments of Physics, Materials Science and Engineering and Mechanical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|