1
|
Bai H, Qiao R, Xiao F, Li J, Zu B, Cai Z. Recognition Site Density Regulation of Schiff Base Organic Porous Polymers for Ultrasensitive and Specific Fluorescence Sensing toward Gaseous DCP. Anal Chem 2025. [PMID: 40376770 DOI: 10.1021/acs.analchem.5c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Due to the severe interference from analogues such as hydrochloric acid, it is of great significance to establish a highly reliable technique to enhance the discrimination ability toward diethyl chlorophosphate (DCP). Here, based on the electrophilicity of DCP, a series of zero-background fluorescence Schiff base materials with different densities of C═N bonds as recognition sites were designed and synthesized by modulating the chain length. It is found that the increase of the C═N bond density and the specific surface area could improve the collision efficiency with DCP, thereby improving the response speed. When the density of C═N bonds is 3.86 × 1021/cm3 and the specific surface area is 128.5 m2/g, DFDBA-POP demonstrated a more superior sensing performance toward the target analyte, including the ability to detect gaseous DCP, a rapid response (1 s), and superior selectivity even in the presence of 15 kinds of interferents including the very similar hydrochloric acid. Moreover, the practicality of DFDBA-POP was further verified by a DFDBA-POP solid-state sensor, which is capable of specifically identifying gaseous DCP. The present nonfluorescent Schiff base materials design and modulation strategy would open up a new gate for the rational design of high-performance fluorescent materials to detect and discriminate trace hazardous substances with similar structures and properties.
Collapse
Affiliation(s)
- Huazangnaowu Bai
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ruiqi Qiao
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Fang Xiao
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiawen Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhenzhen Cai
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Mondal TK, Bangaru AVB, Williams SJ. A Review on AC-Dielectrophoresis of Nanoparticles. MICROMACHINES 2025; 16:453. [PMID: 40283328 PMCID: PMC12029287 DOI: 10.3390/mi16040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Dielectrophoresis at the nanoscale has gained significant attention in recent years as a low-cost, rapid, efficient, and label-free technique. This method holds great promise for various interdisciplinary applications related to micro- and nanoscience, including biosensors, microfluidics, and nanomachines. The innovation and development of such devices and platforms could promote wider applications in the field of nanotechnology. This review aims to provide an overview of recent developments and applications of nanoparticle dielectrophoresis, where at least one dimension of the geometry or the particles being manipulated is equal to or less than 100 nm. By offering a theoretical foundation to understand the processes and challenges that occur at the nanoscale-such as the need for high field gradients-this article presents a comprehensive overview of the advancements and applications of nanoparticle dielectrophoresis platforms over the past 15 years. This period has been characterized by significant progress, as well as persistent challenges in the manipulation and separation of nanoscale objects. As a foundation for future research, this review will help researchers explore new avenues and potential applications across various fields.
Collapse
Affiliation(s)
| | | | - Stuart J. Williams
- Department of Mechanical Engineering, University of Louisville, Louisville, KY 40208, USA; (T.K.M.); (A.V.B.B.)
| |
Collapse
|
3
|
Luo Y, Wu N, Niu L, Hao P, Sun X, Chen F, Zhao Y. Ionic Strength-Mediated "DNA Corona Defects" for Efficient Arrangement of Single-Walled Carbon Nanotubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308532. [PMID: 38233163 PMCID: PMC11022692 DOI: 10.1002/advs.202308532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Indexed: 01/19/2024]
Abstract
Single-stranded DNA oligonucleotides wrapping on the surface of single-walled carbon nanotubes (SWCNTs), described as DNA corona, are often used as a dispersing agent for SWCNTs. The uneven distribution of DNA corona along SWCNTs is related to the photoelectric properties and the surface activity of SWCNTs. An ionic strength-mediated "DNA corona defects" (DCDs) strategy is proposed to acquire an exposed surface of SWCNTs (accessible surface) as large as possible while maintaining good dispersibility via modulating the conformation of DNA corona. By adjusting the solution ionic strength, the DNA corona phase transitioned from an even-distributed and loose conformation to a locally compact conformation. The resulting enlarged exposed surface of SWCNTs is called DCDs, which provide active sites for molecular adsorption. This strategy is applied for the arrangement of SWCNTs on DNA origami. SWCNTs with ≈11 nm DCD, providing enough space for the adsorption of "capture ssDNA" (≈7 nm width required for 24-nt) extended from DNA origami structures are fabricated. The DCD strategy has potential applications in SWCNT-based optoelectronic devices.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Institute of Analytical Chemistry and Instrument for Life ScienceThe Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXianning West RoadXi'anShaanxi710049China
| | - Na Wu
- Institute of Analytical Chemistry and Instrument for Life ScienceThe Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXianning West RoadXi'anShaanxi710049China
| | - Liqiong Niu
- Institute of Analytical Chemistry and Instrument for Life ScienceThe Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXianning West RoadXi'anShaanxi710049China
| | - Pengyan Hao
- Institute of Analytical Chemistry and Instrument for Life ScienceThe Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXianning West RoadXi'anShaanxi710049China
| | - Xiaoya Sun
- Institute of Analytical Chemistry and Instrument for Life ScienceThe Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXianning West RoadXi'anShaanxi710049China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life ScienceThe Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXianning West RoadXi'anShaanxi710049China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life ScienceThe Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXianning West RoadXi'anShaanxi710049China
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| |
Collapse
|
4
|
Barnes B, Wang Z, Alibrahim A, Lin Q, Wu X, Wang Y. Direct Writing of Aligned Carbon Nanotubes across a Trench. ACS NANO 2023; 17:22701-22707. [PMID: 37966901 DOI: 10.1021/acsnano.3c07191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Aligned and suspended carbon nanotubes can outperform randomly oriented networks in electronic biosensing and thin-film electronics. However, carbon nanotubes tend to bundle and form random networks. Here, we show that carbon nanotubes spontaneously align in an ammonium deoxycholate surfactant gel even under low shear forces, allowing direct writing and printing of nanotubes into electrically conducting wires and aligned thin layers across trenches. To demonstrate its application potential, we directly printed arrays of disposable electrical biosensors, which show femtomolar sensitivity in the detection of DNA and SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Benjamin Barnes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Material Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ziyi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ayman Alibrahim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Qinglin Lin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Roy A, Ta BQ, Azadmehr M, Aasmundtveit KE. Post-CMOS processing challenges and design developments of CMOS-MEMS microheaters for local CNT synthesis. MICROSYSTEMS & NANOENGINEERING 2023; 9:136. [PMID: 37937184 PMCID: PMC10625928 DOI: 10.1038/s41378-023-00598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 11/09/2023]
Abstract
Carbon nanotubes (CNTs) can be locally grown on custom-designed CMOS microheaters by a thermal chemical vapour deposition (CVD) process to utilize the sensing capabilities of CNTs in emerging micro- and nanotechnology applications. For such a direct CMOS-CNT integration, a key requirement is the development of necessary post-processing steps on CMOS chips for fabricating CMOS-MEMS polysilicon heaters that can locally generate the required CNT synthesis temperatures (~650-900 °C). In our post-CMOS processing, a subtractive fabrication technique is used for micromachining the polysilicon heaters, where the passivation layers in CMOS are used as masks to protect the electronics. For dielectric etching, it is necessary to achieve high selectivity, uniform etching and a good etch rate to fully expose the polysilicon layers without causing damage. We achieved successful post-CMOS processing by developing two-step reactive ion etching (RIE) of the SiO2 dielectric layer and making design improvements to a second-generation CMOS chip. After the dry etching process, CMOS-MEMS microheaters are partially suspended by SiO2 wet etching with minimum damage to the exposed aluminium layers, to obtain high thermal isolation. The fabricated microheaters are then successfully utilized for synthesizing CNTs by a local thermal CVD process. The CMOS post-processing challenges and design aspects to fabricate CMOS-MEMS polysilicon microheaters for such high-temperature applications are detailed in this article. Our developed process for heterogeneous monolithic integration of CMOS-CNT shows promise for wafer-level manufacturing of CNT-based sensors by incorporating additional steps in an already existing foundry CMOS process.
Collapse
Affiliation(s)
- Avisek Roy
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Bao Q. Ta
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Mehdi Azadmehr
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| | - Knut E. Aasmundtveit
- Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
| |
Collapse
|
6
|
Soikkeli M, Murros A, Rantala A, Txoperena O, Kilpi OP, Kainlauri M, Sovanto K, Maestre A, Centeno A, Tukkiniemi K, Gomes Martins D, Zurutuza A, Arpiainen S, Prunnila M. Wafer-Scale Graphene Field-Effect Transistor Biosensor Arrays with Monolithic CMOS Readout. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:4925-4932. [PMID: 37779890 PMCID: PMC10536967 DOI: 10.1021/acsaelm.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
The reliability of analysis is becoming increasingly important as point-of-care diagnostics are transitioning from single-analyte detection toward multiplexed multianalyte detection. Multianalyte detection benefits greatly from complementary metal-oxide semiconductor (CMOS) integrated sensing solutions, offering miniaturized multiplexed sensing arrays with integrated readout electronics and extremely large sensor counts. The development of CMOS back end of line integration compatible graphene field-effect transistor (GFET)-based biosensing has been rapid during the past few years, in terms of both the fabrication scale-up and functionalization toward biorecognition from real sample matrices. The next steps in industrialization relate to improving reliability and require increased statistics. Regarding functionalization toward truly quantitative sensors, on-chip bioassays with improved statistics require sensor arrays with reduced variability in functionalization. Such multiplexed bioassays, whether based on graphene or on other sensitive nanomaterials, are among the most promising technologies for label-free electrical biosensing. As an important step toward that, we report wafer-scale fabrication of CMOS-integrated GFET arrays with high yield and uniformity, designed especially for biosensing applications. We demonstrate the operation of the sensing platform array with 512 GFETs in simultaneous detection for the sodium chloride concentration series. This platform offers a truly statistical approach on GFET-based biosensing and further to quantitative and multianalyte sensing. The reported techniques can also be applied to other fields relying on functionalized GFETs, such as gas or chemical sensing or infrared imaging.
Collapse
Affiliation(s)
- Miika Soikkeli
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Anton Murros
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Arto Rantala
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Oihana Txoperena
- Graphenea
Semiconductor SLU, Paseo Mikeletegi 83, 20009-San Sebastian, Spain
| | - Olli-Pekka Kilpi
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Markku Kainlauri
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Kuura Sovanto
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Arantxa Maestre
- Graphenea
Semiconductor SLU, Paseo Mikeletegi 83, 20009-San Sebastian, Spain
| | - Alba Centeno
- Graphenea
Semiconductor SLU, Paseo Mikeletegi 83, 20009-San Sebastian, Spain
| | - Kari Tukkiniemi
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - David Gomes Martins
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Amaia Zurutuza
- Graphenea
Semiconductor SLU, Paseo Mikeletegi 83, 20009-San Sebastian, Spain
| | - Sanna Arpiainen
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Mika Prunnila
- VTT
Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
7
|
Abdulhameed A, Halim MM, Halin IA. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. NANOTECHNOLOGY 2023; 34:242001. [PMID: 36921341 DOI: 10.1088/1361-6528/acc46c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
Collapse
Affiliation(s)
| | - Mohd Mahadi Halim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
8
|
Sessi V, Ibarlucea B, Seichepine F, Klinghammer S, Ibrahim I, Heinzig A, Szabo N, Mikolajick T, Hierlemann A, Frey U, Weber WM, Baraban L, Cuniberti G. Multisite Dopamine Sensing With Femtomolar Resolution Using a CMOS Enabled Aptasensor Chip. Front Neurosci 2022; 16:875656. [PMID: 35720700 PMCID: PMC9204155 DOI: 10.3389/fnins.2022.875656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
Many biomarkers including neurotransmitters are found in external body fluids, such as sweat or saliva, but at lower titration levels than they are present in blood. Efficient detection of such biomarkers thus requires, on the one hand, to use techniques offering high sensitivity, and, on the other hand, to use a miniaturized format to carry out diagnostics in a minimally invasive way. Here, we present the hybrid integration of bottom-up silicon-nanowire Schottky-junction FETs (SiNW SJ-FETs) with complementary-metal–oxide–semiconductor (CMOS) readout and amplification electronics to establish a robust biosensing platform with 32 × 32 aptasensor measurement sites at a 100 μm pitch. The applied hetero-junctions yield a selective biomolecular detection down to femtomolar concentrations. Selective and multi-site detection of dopamine is demonstrated at an outstanding sensitivity of ∼1 V/fM. The integrated platform offers great potential for detecting biomarkers at high dilution levels and could be applied, for example, to diagnosing neurodegenerative diseases or monitoring therapy progress based on patient samples, such as tear liquid, saliva, or eccrine sweat.
Collapse
Affiliation(s)
- Violetta Sessi
- Institute of Semiconductor and Microsystems, TU Dresden, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
| | - Bergoi Ibarlucea
- Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
- Max Bergman Center of Biomaterials Dresden and Institute for Materials Science, TU Dresden, Dresden, Germany
- Bergoi Ibarlucea,
| | - Florent Seichepine
- RIKEN Quantitative Biological Center, Kobe, Japan
- Imperial College London, London, United Kingdom
| | - Stephanie Klinghammer
- Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
- Max Bergman Center of Biomaterials Dresden and Institute for Materials Science, TU Dresden, Dresden, Germany
| | - Imad Ibrahim
- Institute of Semiconductor and Microsystems, TU Dresden, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
| | - André Heinzig
- Institute of Semiconductor and Microsystems, TU Dresden, Dresden, Germany
| | | | - Thomas Mikolajick
- Institute of Semiconductor and Microsystems, TU Dresden, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
- NaMLab gGmbH, Dresden, Germany
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, Bio Engineering Laboratory, ETH Zürich, Basel, Switzerland
| | - Urs Frey
- RIKEN Quantitative Biological Center, Kobe, Japan
- Department of Biosystems Science and Engineering, Bio Engineering Laboratory, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Basel, Switzerland
| | - Walter M. Weber
- Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
- NaMLab gGmbH, Dresden, Germany
- Institute of Solid State Electronics, TU Wien, Vienna, Austria
- Walter Weber,
| | - Larysa Baraban
- Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
- Max Bergman Center of Biomaterials Dresden and Institute for Materials Science, TU Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- *Correspondence: Larysa Baraban,
| | - Gianaurelio Cuniberti
- Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
- Max Bergman Center of Biomaterials Dresden and Institute for Materials Science, TU Dresden, Dresden, Germany
- Gianaurelio Cuniberti,
| |
Collapse
|
9
|
Sarno B, Heineck D, Heller MJ, Ibsen SD. Dielectrophoresis: Developments and applications from 2010 to 2020. Electrophoresis 2021; 42:539-564. [PMID: 33191521 PMCID: PMC7986072 DOI: 10.1002/elps.202000156] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
The 20th century has seen tremendous innovation of dielectrophoresis (DEP) technologies, with applications being developed in areas ranging from industrial processing to micro- and nanoscale biotechnology. From 2010 to present day, there have been 981 publications about DEP. Of over 2600 DEP patents held by the United States Patent and Trademark Office, 106 were filed in 2019 alone. This review focuses on DEP-based technologies and application developments between 2010 and 2020, with an aim to highlight the progress and to identify potential areas for future research. A major trend over the last 10 years has been the use of DEP techniques for biological and clinical applications. It has been used in various forms on a diverse array of biologically derived molecules and particles to manipulate and study them including proteins, exosomes, bacteria, yeast, stem cells, cancer cells, and blood cells. DEP has also been used to manipulate nano- and micron-sized particles in order to fabricate different structures. The next 10 years are likely to see the increase in DEP-related patent applications begin to result in a greater level of technology commercialization. Also during this time, innovations in DEP technology will likely be leveraged to continue the existing trend to further biological and medical-focused applications as well as applications in microfabrication. As a tool leveraged by engineering and imaginative scientific design, DEP offers unique capabilities to manipulate small particles in precise ways that can help solve problems and enable scientific inquiry that cannot be addressed using conventional methods.
Collapse
Affiliation(s)
- Benjamin Sarno
- Oregon Health and Science University–The Knight Cancer Institute's Cancer Early Detection Advanced Research CenterPortlandORUSA
- University of California San Diego–NanoengineeringLa JollaCAUSA
| | - Daniel Heineck
- Oregon Health and Science University–The Knight Cancer Institute's Cancer Early Detection Advanced Research CenterPortlandORUSA
| | - Michael J. Heller
- Oregon Health and Science University–The Knight Cancer Institute's Cancer Early Detection Advanced Research CenterPortlandORUSA
- University of California San Diego–NanoengineeringLa JollaCAUSA
| | - Stuart D. Ibsen
- Oregon Health and Science University–The Knight Cancer Institute's Cancer Early Detection Advanced Research CenterPortlandORUSA
- Oregon Health and Science University–Biomedical EngineeringPortlandORUSA
| |
Collapse
|
10
|
Chemical-free and scalable process for the fabrication of a uniform array of liquid-gated CNTFET, evaluated by KCl electrolyte. Sci Rep 2021; 11:3979. [PMID: 33597616 PMCID: PMC7889891 DOI: 10.1038/s41598-021-83451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Biosensors based on liquid-gated carbon nanotubes field-effect transistors (LG-CNTFETs) have attracted considerable attention, as they offer high sensitivity and selectivity; quick response and label-free detection. However, their practical applications are limited due to the numerous fabrication challenges including resist-based lithography, in which after the lithography process, the resist leaves trace level contaminations over the CNTs that affect the performance of the fabricated biosensors. Here, we report the realization of LG-CNTFET devices using silicon shadow mask-based chemical-free lithography process on a 3-in. silicon wafer, yielding 21 sensor chips. Each sensor chip consists of 3 × 3 array of LG-CNTFET devices. Field emission scanning electron microscope (FESEM) and Raman mapping confirm the isolation of devices within the array chip having 9 individual devices. A reference electrode (Ag/AgCl) is used to demonstrate the uniformity of sensing performances among the fabricated LG-CNTFET devices in an array using different KCl molar solutions. The average threshold voltage (Vth) for all 9 devices varies from 0.46 to 0.19 V for 0.1 mM to 1 M KCl concentration range. This developed chemical-free process of LG-CNTFET array fabrication is simple, inexpensive, rapid having a commercial scope and thus opens a new realm of scalable realization of various biosensors.
Collapse
|
11
|
Liang Y, Xiao M, Wu D, Lin Y, Liu L, He J, Zhang G, Peng LM, Zhang Z. Wafer-Scale Uniform Carbon Nanotube Transistors for Ultrasensitive and Label-Free Detection of Disease Biomarkers. ACS NANO 2020; 14:8866-8874. [PMID: 32574035 DOI: 10.1021/acsnano.0c03523] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon nanotube (CNT) field-effect transistor (FET)-based biosensors have shown great potential for ultrasensitive biomarker detection, but challenges remain, which include unsatisfactory sensitivity, difficulty in stable functionalization, incompatibility with scalable fabrication, and nonuniform performance. Here, we describe ultrasensitive, label-free, and stable FET biosensors built on polymer-sorted high-purity semiconducting CNT films with wafer-scale fabrication and high uniformity. With a floating gate (FG) structure using an ultrathin Y2O3 high-κ dielectric layer, the CNT FET biosensors show amplified response and improved sensitivity compared with those sensors without Y2O3, which is attributed to the chemical gate-coupling effect dominating the sensor response. The CNT FG-FETs are modified to selectively detect specific disease biomarkers, namely, DNA sequences and microvesicles, with theoretical record detection limits as low as 60 aM and 6 particles/mL, respectively. Furthermore, the biosensors exhibit highly uniform performance over the 4 in. wafer as well as superior bias stress stability. The FG CNT FET biosensors could be extended as a universal biosensor platform for the ultrasensitive detection of multiple biological molecules and applied in highly integrated and multiplexed all CNT-FET-based sensor architectures.
Collapse
Affiliation(s)
- Yuqi Liang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Ding Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjia Lake West Road, Wuhan 430065, China
| | - Yanxia Lin
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Lijun Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Jianping He
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| | - Guojun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjia Lake West Road, Wuhan 430065, China
| | - Lian-Mao Peng
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Corletto A, Shapter JG. Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001778. [PMID: 33437571 PMCID: PMC7788638 DOI: 10.1002/advs.202001778] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Indexed: 05/09/2023]
Abstract
Carbon nanotube (CNT) devices and electronics are achieving maturity and directly competing or surpassing devices that use conventional materials. CNTs have demonstrated ballistic conduction, minimal scaling effects, high current capacity, low power requirements, and excellent optical/photonic properties; making them the ideal candidate for a new material to replace conventional materials in next-generation electronic and photonic systems. CNTs also demonstrate high stability and flexibility, allowing them to be used in flexible, printable, and/or biocompatible electronics. However, a major challenge to fully commercialize these devices is the scalable placement of CNTs into desired micro/nanopatterns and architectures to translate the superior properties of CNTs into macroscale devices. Precise and high throughput patterning becomes increasingly difficult at nanoscale resolution, but it is essential to fully realize the benefits of CNTs. The relatively long, high aspect ratio structures of CNTs must be preserved to maintain their functionalities, consequently making them more difficult to pattern than conventional materials like metals and polymers. This review comprehensively explores the recent development of innovative CNT patterning techniques with nanoscale lateral resolution. Each technique is critically analyzed and applications for the nanoscale-resolution approaches are demonstrated. Promising techniques and the challenges ahead for future devices and applications are discussed.
Collapse
Affiliation(s)
- Alexander Corletto
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Joseph G. Shapter
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
13
|
Roy A, Azadmehr M, Ta BQ, Häfliger P, Aasmundtveit KE. Design and Fabrication of CMOS Microstructures to Locally Synthesize Carbon Nanotubes for Gas Sensing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4340. [PMID: 31597303 PMCID: PMC6806221 DOI: 10.3390/s19194340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022]
Abstract
Carbon nanotubes (CNTs) can be grown locally on custom-designed CMOS microstructures to use them as a sensing material for manufacturing low-cost gas sensors, where CMOS readout circuits are directly integrated. Such a local CNT synthesis process using thermal chemical vapor deposition (CVD) requires temperatures near 900 °C, which is destructive for CMOS circuits. Therefore, it is necessary to ensure a high thermal gradient around the CNT growth structures to maintain CMOS-compatible temperature (below 300 °C) on the bulk part of the chip, where readout circuits are placed. This paper presents several promising designs of CNT growth microstructures and their thermomechanical analyses (by ANSYS Multiphysics software) to check the feasibility of local CNT synthesis in CMOS. Standard CMOS processes have several conductive interconnecting metal and polysilicon layers, both being suitable to serve as microheaters for local resistive heating to achieve the CNT growth temperature. Most of these microheaters need to be partially or fully suspended to produce the required thermal isolation for CMOS compatibility. Necessary CMOS post-processing steps to realize CNT growth structures are discussed. Layout designs of the microstructures, along with some of the microstructures fabricated in a standard AMS 350 nm CMOS process, are also presented in this paper.
Collapse
Affiliation(s)
- Avisek Roy
- Department of Microsystems, University of South-Eastern Norway, 3184 Borre, Norway.
| | - Mehdi Azadmehr
- Department of Microsystems, University of South-Eastern Norway, 3184 Borre, Norway.
| | - Bao Q Ta
- Department of Microsystems, University of South-Eastern Norway, 3184 Borre, Norway.
| | - Philipp Häfliger
- Department of Informatics, University of Oslo, 0373 Oslo, Norway.
| | - Knut E Aasmundtveit
- Department of Microsystems, University of South-Eastern Norway, 3184 Borre, Norway.
| |
Collapse
|
14
|
Dudina A, Frey U, Hierlemann A. Carbon-Nanotube-Based Monolithic CMOS Platform for Electrochemical Detection of Neurotransmitter Glutamate. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3080. [PMID: 31336874 PMCID: PMC6660312 DOI: 10.3390/s19143080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
We present a monolithic biosensor platform, based on carbon-nanotube field-effect transistors (CNTFETs), for the detection of the neurotransmitter glutamate. We used an array of 9'216 CNTFET devices with 96 integrated readout and amplification channels that was realized in complementary metal-oxide semiconductor technology (CMOS). The detection principle is based on amperometry, where electrochemically active hydrogen peroxide, a product of the enzymatic reaction of the target analyte and an enzyme that was covalently bonded to the CNTFET, modulated the conductance of the CNTFET-based sensors. We assessed the performance of the CNTs as enzymatic sensors by evaluating the minimal resolvable concentration change of glutamate in aqueous solutions. The minimal resolvable concentration change amounted to 10 µM of glutamate, which was one of the best values reported for CMOS-based systems so far.
Collapse
Affiliation(s)
- Alexandra Dudina
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | - Urs Frey
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- MaxWell Biosystems AG, CH-4058 Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
15
|
Dudina A, Seichepine F, Chen Y, Stettler A, Hierlemann A, Frey U. Monolithic CMOS sensor platform featuring an array of 9'216 carbon-nanotube-sensor elements and low-noise, wide-bandwidth and wide-dynamic-range readout circuitry. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 279:255-266. [PMID: 30344373 PMCID: PMC6193531 DOI: 10.1016/j.snb.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present the design and characterization of a monolithic complementary metal-oxide-semiconductor (CMOS) biosensor platform comprising of a switch-matrix-based array of 9'216 carbon nanotube field-effect transistors (CNTFETs) and associated readout circuitry. The switch-matrix allows for flexible selection and simultaneous routing of 96 sensor elements to the corresponding readout channels. A low-noise, wide-bandwidth, wide-dynamic-range transimpedance continuous-time amplifier architecture has been implemented to facilitate resistance measurements in the range between 50 kΩ and 1 GΩ at a bandwidth of up to 1 MHz. The achieved accuracy of the resistance measurements over the whole range is 4%. The system has been successfully fabricated and tested and shows a noise performance equal to 2.14 pArms at a bandwidth of 1 kHz and 0.84 nArms at a bandwidth of 1 MHz. A batch integration of the CNTFETs has been achieved by using a dielectrophoresis (DEP)-based manipulation technique. The current-voltage curves of CNTFETs have been acquired, and the sensing capabilities of the system have been demonstrated by recording resistance changes of CNTFETs upon exposure to solutions with different pH values and different concentrations of NaCl. The smallest resolvable concentrations for the respective analytes were estimated to amount to 0.025 pH-units and 4 mM NaCl.
Collapse
Affiliation(s)
- Alexandra Dudina
- ETH Zurich, Bio Engineering Laboratory, Department of Biosystems Science and Engineering, Basel, Switzerland
- RIKEN QBiC, Kobe, Japan
| | | | - Yihui Chen
- ETH Zurich, Bio Engineering Laboratory, Department of Biosystems Science and Engineering, Basel, Switzerland
- Analog Devices Shanghai Co. Ltd., Shanghai, China
| | - Alexander Stettler
- ETH Zurich, Bio Engineering Laboratory, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Bio Engineering Laboratory, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Urs Frey
- ETH Zurich, Bio Engineering Laboratory, Department of Biosystems Science and Engineering, Basel, Switzerland
- RIKEN QBiC, Kobe, Japan
- MaxWell Biosystems AG, Basel, Switzerland
| |
Collapse
|
16
|
Ren J, Xu Q, Chen X, Li W, Guo K, Zhao Y, Wang Q, Zhang Z, Peng H, Li YG. Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702713. [PMID: 29024059 DOI: 10.1002/adma.201702713] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/19/2017] [Indexed: 05/21/2023]
Abstract
Cardiac engineering of patches and tissues is a promising option to restore infarcted hearts, by seeding cardiac cells onto scaffolds and nurturing their growth in vitro. However, current patches fail to fully imitate the hierarchically aligned structure in the natural myocardium, the fast electrotonic propagation, and the subsequent synchronized contractions. Here, superaligned carbon-nanotube sheets (SA-CNTs) are explored to culture cardiomyocytes, mimicking the aligned structure and electrical-impulse transmission behavior of the natural myocardium. The SA-CNTs not only induce an elongated and aligned cell morphology of cultured cardiomyocytes, but also provide efficient extracellular signal-transmission pathways required for regular and synchronous cell contractions. Furthermore, the SA-CNTs can reduce the beat-to-beat and cell-to-cell dispersion in repolarization of cultured cells, which is essential for a normal beating rhythm, and potentially reduce the occurrence of arrhythmias. Finally, SA-CNT-based flexible one-piece electrodes demonstrate a multipoint pacing function. These combined high properties make SA-CNTs promising in applications in cardiac resynchronization therapy in patients with heart failure and following myocardial infarctions.
Collapse
Affiliation(s)
- Jing Ren
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Quanfu Xu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaomeng Chen
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wei Li
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Guo
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yang Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Qian Wang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhitao Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yi-Gang Li
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|