1
|
Wang X, Shu C, Wang G, Han P, Zheng L, Xu L, Chen Y. Recent progress of noble metal-based nanozymes: structural engineering and biomedical applications. NANOSCALE 2025; 17:10557-10580. [PMID: 40197505 DOI: 10.1039/d4nr05514d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Due to their tunable catalytic activity, high chemical stability, and favorable electronic structure, noble metal-based nanozymes that can mimic important biocatalytic processes have attracted great attention. Rational structural design of noble metal-based nanozymes can endow them with excellent enzyme-like activities, enhanced sensitivity and stability, as well as unique physicochemical functionalities towards various biomedical applications such as sensing, diagnostics, and disease treatment. This review summarizes the recent progress in structural engineering of noble metal-based nanozymes and emphasizes the relationship between key structural factors of nanozymes and their enzyme-like properties in various enzyme-mimicking reactions. The diverse applications of noble metal-based nanozymes in biosensors, antibiosis, and disease treatment are further introduced. Finally, current challenges and future research directions in noble metal-based nanozymes are discussed. This review could offer scientific guidance to design and fabricate advanced nanozymes with enhanced functionality and performance towards clinical, environmental and biomedical applications.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Chenhao Shu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Peng Han
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Lei Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
2
|
Li C, Guo Z, Jia W, Kang Y, Zeng M, Gu T, Zhou C, Zhao R, Cheng X, Jia N. Gold-Cerium bimetallic Star-Shaped nanoplatform for synergistic tumor therapy with nanozyme Catalytic/Photothermal/Chemotherapy. J Colloid Interface Sci 2025; 685:753-765. [PMID: 39864385 DOI: 10.1016/j.jcis.2025.01.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/05/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
A gold-cerium bimetallic asteroid nanoplatform (CeO2@GNSs/Myr-HA) was obtained by electrostatically adsorbing ultra-small cerium dioxide (CeO2) onto gold nanostars (GNSs) and further loading myricetin (Myr) and hyaluronic acid (HA). This nanoplatform exhibited three types of enzymatic properties-that is, GOD (glucose-oxidase), POD (peroxidase) and GSH-Ox (glutathione oxidase) mimicking catalytic activities. These enzymatic properties work together to effectively induce apoptosis in tumor cells. HA targets the CD44 receptor, which is located on the surface of tumor cells, leading to the further release of CeO2@GNSs/Myr into the cytosol. Myr functions as a chemical agent that inhibits the expression of vascular endothelial growth factor (VEGF), thereby suppressing tumor cell angiogenesis via the p38/MAPK signaling pathway. When exposed to light radiation of 808-nm wavelength, the nanomaterials aggregated at the tumor site efficiently absorbed photons and converted them into thermal energy, enabling the precise thermal ablation of the malignancy. Moreover, CeO2@GNSs/Myr-HA-as a multifunctional nanoplatform combining nanozyme catalytic therapy with photothermal therapy and chemotherapy-demonstrated the synergistic effect of effectively suppressing cancer cell proliferation and enhancing tumor ablation.
Collapse
Affiliation(s)
- Chao Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234 China
| | - Zichao Guo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200025
| | - Wenqing Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200025
| | - Yan Kang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234 China
| | - Meiling Zeng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234 China
| | - Tingting Gu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234 China
| | - Chaohui Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234 China
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200025.
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200025.
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234 China.
| |
Collapse
|
3
|
Zhang C, Zhou Y, Ming L, Chen L, Xue M, Zhang J, Zhang H. Dual-mode strategy for the determination of vanillin in milk-based products based on molecular-imprinted nanozymes. Food Chem 2025; 469:142615. [PMID: 39729658 DOI: 10.1016/j.foodchem.2024.142615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
The inclusion of artificial food additives such as vanillin in infant formula should be strictly monitored to mitigate potential negative impacts on the dietary habits and health of infants. This raises a necessity of an accurate inspection and prompt feedback of vanillin in infant foods. In this study, colorimetric and fluorescent dual-mode assays based on CuNS/Fe3O4@MIPs were established to detect vanillin selectively and sensitively. Quantification of vanillin could be achieved with linear detection ranges of 1-100 μM and 1-150 μM for the colorimetric and fluorescent assays respectively. The corresponding detection limits were 0.11 and 0.10 μM respectively. The CuNS/Fe3O4@MIPs-based dual-mode assays exhibited good selectivity and stability for vanillin detection in infant formula and milk-based foods. Hence, this method can serve as a reliable tool for the cost-saving, effective and quantitative determination of vanillin in infant foods, with the potential to replace conventional instrumental analysis.
Collapse
Affiliation(s)
- Can Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yongfei Zhou
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Ming
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lihong Chen
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minqiao Xue
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyan Zhang
- College of Life Science, Shandong Normal University, China.
| |
Collapse
|
4
|
Rajarathinam T, Jayaraman S, Kim CS, Yoon JH, Chang SC. Two-dimensional nanozyme nanoarchitectonics customized electrochemical bio diagnostics and lab-on-chip devices for biomarker detection. Adv Colloid Interface Sci 2025; 341:103474. [PMID: 40121951 DOI: 10.1016/j.cis.2025.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Recent developments in nanomaterials and nanotechnology have advanced biosensing research. Two-dimensional (2D) nanomaterials or nanozymes, such as metal oxides, graphene and its derivatives, transition metal dichalcogenides, metal-organic frameworks, carbon-organic frameworks and MXenes, have garnered substantial attention in recent years owing to their unique properties, including high surface area, excellent electrical conductivity, and mechanical flexibility. Moreover, 2D nanozymes exhibit intrinsic enzyme-mimicking properties, including those of peroxidase, oxidase, catalase, and superoxide dismutase, making them well-suited for detecting biomarkers of interest and developing bio diagnostics at the point-of-care. Since 2D nanosystems offer ultra-high sensitivity, label-free detection, and real-time analysis, point-of-care testing and multiplexed biomarker detection, the demand is growing. Additionally, their biocompatibility and scalable fabrication make them cost-effective for widespread adoption. This review discusses the advantages of 2D nanozymes and their recent advancements in biosensing applications. This review summarizes the latest developments in 2D nanozymes, focusing on their synthesis, biocatalytic capabilities, and advancements in developing bio diagnostics and lab-on-chip devices for detecting cancer and non-cancer biomarkers. In addition, existing challenges and prospects in 2D nanozyme-based biosensors are identified, highlighting their biosensing potential and advocating for their expanded application in bio diagnostics and lab-on-chip devices.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Wu Y, Tang M, Barsoum ML, Chen Z, Huang F. Functional crystalline porous framework materials based on supramolecular macrocycles. Chem Soc Rev 2025; 54:2906-2947. [PMID: 39931748 DOI: 10.1039/d3cs00939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, etc. Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (i.e., MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Michael L Barsoum
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
6
|
Zhao D, Wang R, Zhang C, Xiao X. Preparation of Carbon Dots with Peroxidase-like Activity and Their Application in Staphylococcus aureus Detection and Antimicrobial Susceptibility Test. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6408-6416. [PMID: 40026132 DOI: 10.1021/acs.langmuir.5c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Carbon dot (CD) nanozymes with excellent biocompatibility, optical properties, and catalytic activity show great promise for microbial detection and drug sensitivity testing. This study reports the synthesis of metal-doped green-emitting CDs with good peroxidase-like activity, which were synthesized via a one-step hydrothermal route using thiourea, N-[3-(trimethoxysilyl)propyl]ethylenediamine, and catechol as the starting materials and FeCl3 as the doping agent. In the presence of H2O2, CDs catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), producing a blue product; however, in the presence of bacteria and H2O2, the bacterial catalase enzyme decomposes H2O2 and inhibits the catalytic activity of CDs, preventing the color change. The bacterial catalase enzyme neutralizes H2O2, which prevents the CDs from producing the color-changing reaction with TMB. Based on the CDs-TMB-H2O2 cascade system of bioenzymes and nanozymes, we developed a rapid, sensitive, and direct colorimetric detection method for Staphylococcus aureus (S. aureus) with a detection limit of 2 × 103 CFU/mL and a linear range of 2 × 103-2 × 106 CFU/mL. This visual detection method was successfully applied to the detection of S. aureus in food samples. Antibiotics have different effects on the proliferation of sensitive and resistant bacterial strains, leading to different levels of hydrolysis of H2O2 in the bacterial solution and resulting in varying intensities of the solution color; therefore, we developed a simple and visual antibiotic susceptibility test. The applications of CD nanozymes provide a powerful tool for detecting pathogenic bacteria in food, clinical, and environmental samples and infections.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, P. R. China
| | - Rong Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, P. R. China
| | - Changpeng Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, P. R. China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, P. R. China
| |
Collapse
|
7
|
Liu M, Yang W, Xiao R, Li J, Tan R, Qin Y, Bai Y, Zheng L, Hu L, Gu W, Zhu C. Lattice atom-bridged chemical bond interface facilitates charge transfer for boosted photoelectric response. Natl Sci Rev 2025; 12:nwae465. [PMID: 39926201 PMCID: PMC11804805 DOI: 10.1093/nsr/nwae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 11/29/2024] [Indexed: 02/11/2025] Open
Abstract
The construction of chemical bonds at heterojunction interfaces currently presents a promising avenue for enhancing photogenerated carrier interfacial transfer. However, the deliberate modulation of these interfacial chemical bonds remains a significant challenge. In this study, we successfully established a p-n junction composed of atomic-level Pt-doped CeO2 and 2D metalloporphyrins metal-organic framework nanosheets (Pt-CeO2/CuTCPP(Fe)), which enables the realization of photoelectric enhancement by regulating the interfacial Fe-O bond and optimizing the built-in electric field. Atomic-level Pt doping in CeO2 leads to an increased density of oxygen vacancies and lattice mutation, which induces a transition in interfacial Fe-O bonds from adsorbed oxygen (Fe-OA) to lattice oxygen (Fe-OL). This transition changes the interfacial charge flow pathway from Fe-OA-Ce to Fe-OL, effectively reducing the carrier transport distance along the atomic-level charge transport highway. This results in a 2.5-fold enhancement in photoelectric performance compared with the CeO2/CuTCPP(Fe). Furthermore, leveraging the peroxidase-like activity of the p-n junction, we employed this functional heterojunction interface to develop a photoelectrochemical immunoassay for the sensitive detection of prostate-specific antigens.
Collapse
Affiliation(s)
- Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinli Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Bai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
8
|
Cai X, Huang Y, Zhu C. Immobilized Multi-Enzyme/Nanozyme Biomimetic Cascade Catalysis for Biosensing Applications. Adv Healthc Mater 2025; 14:e2401834. [PMID: 38889805 DOI: 10.1002/adhm.202401834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Multiple enzyme-induced cascade catalysis has an indispensable role in the process of complex life activities, and is widely used to construct robust biosensors for analyzing various targets. The immobilized multi-enzyme cascade catalysis system is a novel biomimetic catalysis strategy that immobilizes various enzymes with different functions in stable carriers to simulate the synergistic catalysis of multiple enzymes in biological systems, which enables high stability of enzymes and efficiency enzymatic cascade catalysis. Nanozymes, a type of nanomaterial with intrinsic enzyme-like characteristics and excellent stabilities, are also widely applied instead of enzymes to construct immobilized cascade systems, achieving better catalytic performance and reaction stability. Due to good stability, reusability, and remarkably high efficiency, the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems show distinct advantages in promoting signal transduction and amplification, thereby attracting vast research interest in biosensing applications. This review focuses on the research progress of the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems in recent years. The construction approaches, factors affecting the efficiency, and applications for sensitive biosensing are discussed in detail. Further, their challenges and outlooks for future study are also provided.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
9
|
Feng HX, Zhou Z, Jiang J, Hui YF, Li BX, Li S, Guo H, Tang FQ, Lin ZJ, Yan LP. A Porphyrin-Based Metal-Organic Framework Nanozyme with Superior Peroxidase-like Activity for Combating Antibacterial Infections and Promoting Wound Healing. Inorg Chem 2025; 64:3541-3552. [PMID: 39930626 DOI: 10.1021/acs.inorgchem.4c05258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
As an antibacterial agent, H2O2 is widely used to combat pathogenic bacterial infections clinically. To mitigate potential side effects associated with a high dosage of H2O2, it is pivotal to improve its antibacterial efficacy. Herein, a nanoscale porphyrin-based mesoporous metal-organic framework (MOF) nanozyme, Nano-PCN-222(Fe), was readily prepared by a one pot. Nano-PCN-222(Fe) shows a striking peroxidase (POD)-like activity comparable to that of natural enzyme horse radish peroxidase. Such a high POD-like activity of Nano-PCN-222(Fe) nanozyme is primarily attributed to both the monodispersion and the accessibility of single-atom catalytic sites Fe within the framework. As a consequence of its ability to effectively catalyze the decomposition of H2O2 into more toxic hydroxyl radicals, Nano-PCN-222(Fe) shows excellent antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria with the assistance of H2O2. Remarkably, only 10 mM H2O2 is sufficient to fully kill E. coli and S. aureus in the presence of Nano-PCN-222(Fe) (10 ppm), which is significantly lower than that used in actual clinical disinfection (166-1000 mM). Moreover, Nano-PCN-222(Fe) could significantly accelerate infected wound healing due to its superior antimicrobial activity. Additionally, no appreciable biotoxicity of Nano-PCN-222(Fe) was observed even though its dosage was up to 30 ppm.
Collapse
Affiliation(s)
- Han-Xiao Feng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Zijie Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
| | - Jilin Jiang
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
| | - Yi-Fei Hui
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Bing-Xin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Shulin Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
| | - Huiling Guo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
| | - Fa-Qiang Tang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
| | - Zu-Jin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Lai-Peng Yan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
- Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P. R. China
| |
Collapse
|
10
|
Yang W, Liu M, Qin Y, Xiao R, Tan R, Qiu Y, Jiang W, Chen Y, Li W, Gu W, Hu L, Zhu C. Reducing Intrinsic Carrier Recombination in Au/CuTCPP(Fe) Schottky Junction Through Spin Polarization Manipulation for Sensitive Photoelectrochemical Biosensing. Anal Chem 2025; 97:3756-3764. [PMID: 39921629 DOI: 10.1021/acs.analchem.4c07022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Schottky junctions have been widely applied to facilitate charge carrier separation through the formation of an internal electric field (IEF). However, the notably restricted spatial distribution of the IEF weakens the promotion of intrinsic carrier separation. In this study, we unveil that Au nanoparticles (NPs) in the Au/CuTCPP(Fe) Schottky junction can manipulate the spin polarization of CuTCPP(Fe) to inhibit inner carrier recombination. Experimental investigations and theoretical calculations reveal that the introduction of Au NPs leads to an increased population of spin-polarized electrons, effectively suppressing inner charge carrier recombination in CuTCPP(Fe) by employing the spin mismatch between spin-polarized photoexcited carriers. Moreover, as a typical active site for the oxygen reduction reaction, the oxygen adsorption configuration on spin-polarized Fe single-atom sites in Au/CuTCPP(Fe) is further optimized, resulting in boosted interfacial reactions. Leveraging the thiocholine-induced poisoning of the active sites and the magnetic-enhanced photoelectric response, Au/CuTCPP(Fe) is harnessed to develop a photoelectrochemical biosensing platform for organophosphorus pesticides. This work offers a promising method for manipulating the spin polarization of semiconductors in heterojunctions to mitigate intrinsic charge carrier recombination.
Collapse
Affiliation(s)
- Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yiwei Qiu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yuanxing Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wen Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
11
|
Mohammed Ameen SS, Bedair A, Hamed M, R Mansour F, Omer KM. Recent Advances in Metal-Organic Frameworks as Oxidase Mimics: A Comprehensive Review on Rational Design and Modification for Enhanced Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:110-129. [PMID: 39772422 DOI: 10.1021/acsami.4c17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Metal-organic frameworks (MOFs) have emerged as innovative nanozyme mimics, particularly in the area of oxidase catalysis, outperforming traditional MOF-based peroxidase and other nanomaterial-based oxidase systems. This review explores the various advantages that MOFs offer in terms of catalytic activity, low-cost, stability, and structural versatility. With a primary focus on their application in biochemical sensing, MOF-based oxidases have demonstrated remarkable utility, prompting a thorough exploration of their design and modification strategies. Moreover, the review aims to provide a comprehensive analysis of the strategies employed in the rational design and modification of MOF structures to optimize key parameters such as sensitivity, selectivity, and stability in the context of biochemical sensors. Through an exhaustive examination of recent research and developments, this article seeks to offer insights into the nuanced interplay between MOF structures and their catalytic performance, shedding light on the mechanisms that underpin their effectiveness as nanozyme mimics. Finally, this review addresses challenges and opportunities associated with MOF-based oxidase mimics, aiming to drive further advancements in MOF structure design and the development of highly effective biochemical sensors for diverse applications.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 46002 Zakho, Kurdistan Region, Iraq
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 46002 Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
12
|
Zhao F, Lan J, Liu Y. A novel peptide electrochemical biosensor for heparin based on the dual "turn-on" signals of Ag/2D CuTCPP(Fe). Chem Commun (Camb) 2025; 61:693-696. [PMID: 39660387 DOI: 10.1039/d4cc05625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Herein, a "turn-on" peptide-based electrochemical biosensor was developed for the dual-signal sensing of heparin employing Ag/2D CuTCPP(Fe). Our method with high analytical performance was exploited in the accurate quantification of heparin in rat serum throughout its metabolic process.
Collapse
Affiliation(s)
- Fan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| | - Jingyue Lan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| | - Yunxi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| |
Collapse
|
13
|
Wang Z, Wu Y, Wang Z, Tian Z, Liu Y, Liu S. In situ noninvasive monitoring of cell secretions based on MOFs/AAO hybrid membrane induced asymmetric ion transport. Biosens Bioelectron 2024; 266:116735. [PMID: 39241337 DOI: 10.1016/j.bios.2024.116735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nanofluidic hybrid membranes display distinct ionic current rectification (ICR) properties and provide high surface area for immobilizing probes on the outer surface, exhibiting great potential in detection of biomolecules. Herein, we fabricated MOFs/AAO hybrid membrane with aptamers functionalized on the outer surface for in situ detection of living cells released secretions. TNF-α (a small molecular protein secreted by macrophages) was used as a model. After TNF-α was specifically captured by aptamers on the membrane surface, the asymmetry of surface charge on the hybrid membrane was amplified, the ICR was increased from 3.89 to 18.85. According to the ICR change, TNF-α was sensitively measured with a detection limit of ∼0.49 pM, which was significantly lower than other reported methods. When the hybrid membrane was clamped in the middle of self-made device, PET membrane incubated macrophages was rolled up and inserted into the chamber to mimic cellular microenvironment. Macrophages released TNF-α could be real time monitored with ionic current, macrophages and normal cells could be effectively distinguished according to the released TNF-α level. Thus, we proposed a nanofluidic platform for accurately measuring cell secretions in an engineered cellular microenvironment with a direct manner, without the need for labels or amplification steps.
Collapse
Affiliation(s)
- Zhaohan Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Zhi Wang
- Wuxi Institute of Inspection, Testing and Certification, Wuxi 214125, China
| | - Zhaoyan Tian
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Yu Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Du J, Sun J, Ding Q, Shi F, Chen C, Li C, Dong B, Wang L, Kim JS, Xu L. Dual oxidative stress biomarkers co-recognition in periodontal microenvironment: A flexible and low-power consumption nanozyme sensing platform. Biosens Bioelectron 2024; 265:116688. [PMID: 39213818 DOI: 10.1016/j.bios.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Sensing platforms with high interference immunity and low power consumption are crucial for the co-detection of dual oxidative stress biomarkers and clinical diagnosis of periodontitis. Herein, we constructed a bifunctional nanozyme to identify hydrogen peroxide (H2O2) and ascorbic acid (AA) with low crosstalk at zero or low bias voltage. To target H2O2 and AA, Fe(III) meso-tetra(4-carboxyphenyl) porphine (TCPP(Fe)) and Pt nanoclusters were selected as active sites respectively, and titanium carbide nanosheets were additionally introduced as a sensitizer. Due to their highly efficient catalytic properties, self-powered detection of H2O2 without bias voltage and distinguishable AA detection at 0.45 V were successfully achieved. Density functional theory calculations further confirmed the binding sites for target molecules and elucidated the sensing mechanism. On this basis, a dual-channel screen-printed electrode was fabricated to further ensure the discriminative detection of dual biomarkers at the device level. The constructed flexible, low-power consumption sensing platform was successfully applied to raw clinical samples, effectively distinguishing between healthy individuals and patients with varying degrees of periodontitis. This work is expected to provide new insights into the design of highly specific nanozymes and low-power consumption electrochemical sensing systems, which will contribute to the accurate and convenient diagnosis of periodontitis.
Collapse
Affiliation(s)
- Juanrui Du
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Jiao Sun
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Fangyu Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Cong Chen
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China.
| |
Collapse
|
15
|
Huang L, Pu H, Sun DW. Spatiotemporally Guided Single-Atom Bionanozyme for Targeted Antibiofilm Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407747. [PMID: 39370579 DOI: 10.1002/smll.202407747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Indexed: 10/08/2024]
Abstract
The heterogeneous and dynamic microenvironment of biofilms complicates bacterial infection treatment. Nanozyme catalytic therapy has recently been promising in treating biofilm infections. However, active nanozymes designed with the required precision targeting the biofilm microenvironment are lacking. This work proposes a spatiotemporally guided single-atom bionanozyme (BioSAzyme) for targeted antibiofilm therapy based on protein engineering of copper single-atom nanozyme (Cu SAzyme). The Cu SAzyme, synthesized via a novel mechanochemistry-assisted method, features highly accessible Cu-N4 active sites exposed on 2D N-doped carbon, exhibiting excellent triple enzyme-like activities according to experimental results and density functional theory calculations. Inheriting biofunctionality from both glucose oxidase and concanavalin A, BioSAzyme can localize the biofilm glycocalyx and catalyze endogenous glucose into H₂O₂ and gluconic acid, thus triggering multiplex cascade reactions with pH self-adaption to consume glucose and glutathione and generate •OH radicals. This spatiotemporally guided bionanocatalytic agent effectively inhibits E. coli O157: H7 and methicillin-resistant S. aureus biofilms in vitro and in vivo. Taking together, this work opens up new avenues for the rational design of single-atom nanozymes for precise antibiofilm therapy.
Collapse
Affiliation(s)
- Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin, D04 V1W8, Ireland
| |
Collapse
|
16
|
Zhu N, Niu X, Liang Z, Tian Y, Yin H, Qiao Z, Zhang Z. Cell-Inspired Microreactor with Compartmentalized Active Sites for Development of Cascade Catalysis System in Biosensing. Anal Chem 2024; 96:18736-18744. [PMID: 39535554 DOI: 10.1021/acs.analchem.4c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Enzymatic cascade reactions with high activity and specificity in living cells always benefit from multicompartmentalized organelles that provide separately confined spaces for enzymes, avoiding their mutual interference to ensure the high-efficiency operation of necessary vital movements. Inspired by this, we designed a 3D spherical microreactor (Au@H-APF@Pt) with biomimetic cascade catalysis for glucose detection. First, ultrasmall gold nanoparticles were immobilized in situ on the internal cavities of hollow 3-aminophenol formaldehyde resin (H-APF) nanospheres, along with glucose oxidase activity. Then, platinum nanoparticles (PtNPs) with peroxide-like activity were reduced surrounding the outer layer of the H-APF nanospheres. Similar to the cell structure, different metal sites in this bifunctional microreactor operated independently, bringing higher catalytic activity and selectivity and thus being synergistically capable of a cascade reaction to catalyze the substrate for glucose detection. This cell-mimicking microreactor (Au@H-APF@Pt) was successfully applied in glucose colorimetric detection, showing a 1.9-fold activity enhancement compared to direct mixing (Au/Pt). The observed low catalytic activity was attributed to the extended time for transferring hydrogen peroxide (H2O2) from Au NPs to the solution and then to PtNPs. Integrating a smartphone APP, a real-time, visual, and Au@H-APF@Pt-based hydrogel sensor for glucose detection was also proposed. Satisfactory results highlight that this cell-mimicking microreactor offers a very successful strategy to improve the efficiency of cascade catalysis systems in biosensing.
Collapse
Affiliation(s)
- Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zheng Liang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yixing Tian
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyi Yin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ze Qiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
17
|
Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, Shen G. Nanozymes: a bibliometrics review. J Nanobiotechnology 2024; 22:704. [PMID: 39538291 PMCID: PMC11562681 DOI: 10.1186/s12951-024-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.
Collapse
Affiliation(s)
- Zihan Feng
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuexin Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yicong Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Aiqin Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Meng Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Gangyi Shen
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
18
|
Huang S, Xiang H, Lv J, Guo Y, Xu L. Propelling gold nanozymes: catalytic activity and biosensing applications. Anal Bioanal Chem 2024; 416:5915-5932. [PMID: 38748246 DOI: 10.1007/s00216-024-05334-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Recently, gold nanomaterials have been rapidly developed owing to their high stability, good biocompatibility, and multifunctionality. The unique catalytic activity of gold nanomaterials has driven the emergence of the concept for a "gold nanozyme." Understanding the characteristics of gold nanozymes is crucial for improving their catalytic performance as well as expanding their applications. In this review, we provide an overview of the intrinsic enzyme-like activities of gold nanozymes, including peroxidase-, catalase-, superoxide dismutase-, and glucose oxidase-like activities, and the catalytic mechanisms involved. In addition, strategies for modulating the catalytic activity of gold nanozymes and their applications in biosensing were discussed in detail. Moreover, we highlight the current challenges of gold nanozymes and look forward to attracting more attention for propelling the developments in this field.
Collapse
Affiliation(s)
- Sijun Huang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Henglong Xiang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Jiachen Lv
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
19
|
Zhang K, Cheng P, Liu Y, Xia S. Efficient removal of per- and polyfluoroalkyl substances by a metal-organic framework membrane with high selectivity and stability. WATER RESEARCH 2024; 265:122276. [PMID: 39154397 DOI: 10.1016/j.watres.2024.122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in water requires sufficient removal due to their extreme chemical stability and potential health risk. Membrane separation can be a promising strategy, while membranes with conventional structures used for PFAS removal often face challenges such as limited efficiency and stability. In this study, a novel metal-organic framework (MOF) membrane with local modification of polyamide (PA) was developed by introducing interfacial polymerization process during the construction of lamellar membranes with MOF nanosheets. Benefiting from the dense structure and strong negative surface charge, the PA-modified MOF membrane could effectively remove 11 types of PFAS (five short-chain and six long-chain ones with molecular weights ranging from 214.0 to 514.1 Da), especially displaying high rejections for short-chain PFAS (over 84%), along with a remarkable water permeance of 21.4 L·m⁻²·h⁻¹·bar⁻1. The membrane removal characteristics for PFAS were deeply analyzed by elucidating various rejection mechanisms, with particularly distinguishing the rejection and adsorption capacity. Moreover, the membrane stability was significantly enhanced, demonstrated by the structural integrity after 10 min of ultrasonic treatment and stable separation efficiency over 120 h of continuous filtration. With enhanced surface hydrophilicity and negative charge as well as dense membrane pores, the novel membrane also exhibited more superior anti-fouling performance compared to conventional lamellar and PA membranes, further manifesting advantages for practical applications. This work provides a promising solution for developing high-performance membranes tailored specifically for efficient PFAS removal, addressing a critical need in water treatment.
Collapse
Affiliation(s)
- Kunpeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
20
|
Zhang J, Li W, Tao Z, Zhou X, Chen X, Zhou J, Sun H, Fang Y, Liu Y. Endogenous glucose-driven cascade reaction of nano-drug delivery for boosting multidrug-resistant bacteria-infected diabetic wound healing. J Colloid Interface Sci 2024; 672:63-74. [PMID: 38830319 DOI: 10.1016/j.jcis.2024.05.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Multidrug-resistant (MDR) bacteria-infected wound healing remains greatly challenging, especially in diabetic patients. Herein, a novel nano-drug delivery based on endogenous glucose-driven cascade reaction is proposed for boosting MDR bacteria-infected diabetic wound healing with high efficacy by improving wound microenvironment and enhancing photodynamic antibacterial activity. The composite nanoagent is first self-assembled by integrating berberine (BBR) and epigallocatechin gallate (EGCG) from natural plant extracts, named as BENPs, which is successively coated with manganese dioxide nanoshells (MnO2 NSs) and glucose oxidase (GOX) to form the final BEMGNPs. The cascade reaction is triggered by glucose at the wound site of diabetes which is specifically catalyzed by GOX in the BEMGNPs to produce gluconic acid and hydrogen peroxide (H2O2). That is subsequently to decompose MnO2 NSs in the BEMGNPs to generate oxygen (O2). The BEMGNPs as photosensitizers effectively produce reactive oxygen species (ROS) to enhance the eradication of bacteria with the assistance of O2. Under the synergistic function of the cascaded reaction, the BEMGNPs present excellent antibacterial efficacy even for MDR bacteria. The in vivo experiments explicitly validate that the constructed nano-drug delivery can augment the MDR bacteria-infected diabetic wound healing with excellent biosafety. The as-proposed strategy provides an instructive way to combat ever-threatening MDR bacteria, which particularly is beneficial for diabetic patients.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weiran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhanhui Tao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Dongguan University of Technology, School of Life and Health Technology, Dongguan, 523808, China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiying Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingya Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hanyue Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Dongguan University of Technology, School of Life and Health Technology, Dongguan, 523808, China.
| |
Collapse
|
21
|
Wang C, Wang L, Nallathambi V, Liu Y, Kresse J, Hübner R, Reichenberger S, Gault B, Zhan J, Eychmüller A, Cai B. Structural Regulation of Au-Pt Bimetallic Aerogels for Catalyzing the Glucose Cascade Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405200. [PMID: 39136065 DOI: 10.1002/adma.202405200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Indexed: 10/11/2024]
Abstract
Bimetallic nanostructures are promising candidates for the development of enzyme-mimics, yet the deciphering of the structural impact on their catalytic properties poses significant challenges. By leveraging the structural versatility of nanocrystal aerogels, this study reports a precise control of Au-Pt bimetallic structures in three representative structural configurations, including segregated, alloy, and core-shell structures. Benefiting from a synergistic effect, these bimetallic aerogels demonstrate improved peroxidase- and glucose oxidase-like catalytic performances compared to their monometallic counterparts, unleashing tremendous potential in catalyzing the glucose cascade reaction. Notably, the segregated Au-Pt aerogel shows optimal catalytic activity, which is 2.80 and 3.35 times higher than that of the alloy and core-shell variants, respectively. This enhanced activity is attributed to the high-density Au-Pt interface boundaries within the segregated structure, which foster greater substrate affinity and superior catalytic efficiency. This work not only sheds light on the structure-property relationship of bimetallic catalysts but also broadens the application scope of aerogels in biosensing and biological detections.
Collapse
Affiliation(s)
- Cui Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Lingwei Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Varatharaja Nallathambi
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
- Max-Planck-Institut for Sustainable Materials, Max-Planck-Str.1, 40237, Düsseldorf, Germany
| | - Yuanwu Liu
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Johannes Kresse
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Baptiste Gault
- Max-Planck-Institut for Sustainable Materials, Max-Planck-Str.1, 40237, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, London, SW72AZ, UK
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | | | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| |
Collapse
|
22
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
23
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
24
|
Zhang SY, Yang XD, Zhang YJ, Zhou JH, Liu SH, Sun JK. A Versatile Strategy for the Generation of Air-stable Radical-functionalized Materials. SMALL METHODS 2024; 8:e2301468. [PMID: 38295090 DOI: 10.1002/smtd.202301468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Indexed: 02/02/2024]
Abstract
The exploration of a facile approach to create structurally versatile substances carrying air-stable radicals is highly desired, but still a huge challenge in chemistry and materials science. Herein, a non-contact method to generate air-stable radicals by exposing pyridine/imidazole ring-bearing substances to volatile cyanuric chloride vapor, harnessed as a chemical fuel is reported. This remarkable feat is accomplished through a nucleophilic substitution reaction, wherein an intrinsic electron transfer event transpires spontaneously, originating from the chloride anion (Cl-) to the cationic nitrogen (N+) atom, ultimately giving rise to pyridinium/imidazolium radicals. Impressively, the generated radicals exhibit noteworthy stability in the air over one month owing to the delocalization of the unpaired electron through the extended and highly fused π-conjugated pyridinium/imidazolium-triazine unit. Such an approach is universal to diverse substances, including organic molecules, metal-organic complexes, hydrogels, polymers, and organic cage materials. Capitalizing on this versatile technique, surface radical functionalization can be readily achieved across diverse substrates. Moreover, the generated radical species showcase a myriad of high-performance applications, including mimicking natural peroxidase to accelerate oxidation reactions and achieving high-efficiency near-infrared photothermal conversion and photothermal bacterial inhibition.
Collapse
Affiliation(s)
- Su-Yun Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiao-Dong Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Ya-Jun Zhang
- College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Si-Hua Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
25
|
Zhao F, Liu Y, Lan J. One-step electrosynthesis of Cu-Hemin MOFs/CNTs for the dual determination of glyphosate. Mikrochim Acta 2024; 191:564. [PMID: 39190188 DOI: 10.1007/s00604-024-06626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
A simple and efficient dual-signal electrochemical sensor was designed for glyphosate (GLYP) determination based on the one-step electro-synthesized Cu-Hemin MOFs/CNTs nanocrystals. Cu-Hemin MOFs/CNTs were directly modified on the electrode through electrodeposition, avoiding complicated synthesis and modification processes. The incorporation of CNTs greatly boosted the conductivity of Cu-Hemin MOFs and the sensitivity of the electrochemical sensor. Cu active sites in Cu-Hemin MOFs were converted to CuCl, allowing the specific detection of GLYP with the turn of CuCl into non-electroactive Cu-GLYP. Meanwhile, GLYP showed highly effective inhibition effect on the inherent peroxidase-like activity of Cu-Hemin MOFs, therefore generating the second electrochemical signal with Cu-Hemin MOFs-catalyzed o-phenylenediamine (o-PD) + H2O2 system. The Cu-Hemin MOFs/CNTs based sensor with two electrochemical signals showed good linearities of 1.0 × 10-10 M - 3.0 × 10-6 M and 1.0 × 10-10 M - 5.0 × 10-5 M, with detection limits of 5.17 × 10-12 M and 6.81 × 10-12 M for the CuCl signal based assay and nanozyme catalyzed o-PD + H2O2 procedure, respectively. This simple and robust dual-signal sensor with excellent selectivity, accuracy, and stability allowed GLYP quantification in real samples, highlighting the potential application of this approach for food and environmental monitoring.
Collapse
Affiliation(s)
- Fan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| | - Yunxi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Jingyue Lan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
26
|
Li N, Ma Y, Sun W. Exploring the Dynamics of Charge Transfer in Photocatalysis: Applications of Femtosecond Transient Absorption Spectroscopy. Molecules 2024; 29:3995. [PMID: 39274845 PMCID: PMC11396338 DOI: 10.3390/molecules29173995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Artificial photocatalytic energy conversion is a very interesting strategy to solve energy crises and environmental problems by directly collecting solar energy, but low photocatalytic conversion efficiency is a bottleneck that restricts the practical application of photocatalytic reactions. The key issue is that the photo-generated charge separation process spans a huge spatio-temporal scale from femtoseconds to seconds, and involves complex physical processes from microscopic atoms to macroscopic materials. Femtosecond transient absorption (fs-TA) spectroscopy is a powerful tool for studying electron transfer paths in photogenerated carrier dynamics of photocatalysts. By extracting the attenuation characteristics of the spectra, the quenching path and lifetimes of carriers can be simulated on femtosecond and picosecond time scales. This paper introduces the principle of transient absorption, typical dynamic processes and the application of femtosecond transient absorption spectroscopy in photocatalysis, and summarizes the bottlenecks faced by ultrafast spectroscopy in photocatalytic applications, as well as future research directions and solutions. This will provide inspiration for understanding the charge transfer mechanism of photocatalytic processes.
Collapse
Affiliation(s)
- Na Li
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanlong Ma
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
27
|
Tang Y, Liu X, Qi P, Xu W, Wu Y, Cai Y, Gu W, Sun H, Wang C, Zhu C. Artificial-Cofactor-Mediated Hydrogen and Electron Transfer Endows AuFe/Polydopamine Superparticles with Enhanced Glucose Oxidase-Like Activity. NANO LETTERS 2024; 24:9974-9982. [PMID: 39083237 DOI: 10.1021/acs.nanolett.4c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Various applications related to glucose catalysis have led to the development of functional nanozymes with glucose oxidase (GOX)-like activity. However, the unsatisfactory catalytic activity of nanozymes is a major challenge for their practical applications due to their inefficient hydrogen and electron transfer. Herein, we present the synthesis of AuFe/polydopamine (PDA) superparticles that exhibit photothermal-enhanced GOX-like activity. Experimental investigations and theoretical calculations reveal that the glucose oxidation process catalyzed by AuFe/PDA follows an artificial-cofactor-mediated hydrogen atom transfer mechanism, which facilitates the generation of carbon-centered radical intermediates. Rather than depending on charged Au surfaces for thermodynamically unstable hydride transfer, Fe(III)-coordinated PDA with abundant amino and phenolic hydroxyl groups serves as cofactor mimics, facilitating both hydrogen atom and electron transfer in the catalytic process. Finally, leveraging the photothermal-enhanced GOX-like and catalase-like activities of AuFe/PDA, we establish a highly sensitive and accurate point-of-care testing blood glucose determination with exceptional anti-jamming capabilities.
Collapse
Affiliation(s)
- Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xupeng Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Pengcheng Qi
- Institute of Nano-Science and Technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongcheng Sun
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
28
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
29
|
Bao J, Mi J, Xia Y, Gui H, Jia H, Wang D, Luo H, Su L, Zhang J, Liu J, Liu J. Heme-Mimetic Photosensitizer with Iron-Targeting and Internalizing Properties for Enhancing PDT Activity and Promoting Infected Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:4116-4132. [PMID: 38772009 DOI: 10.1021/acsabm.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The management of multibacterial infections remains clinically challenging in the care and treatment of chronic diabetic wounds. Photodynamic therapy (PDT) offers a promising approach to addressing bacterial infections. However, the limited target specificity and internalization properties of traditional photosensitizers (PSs) toward Gram-negative bacteria pose significant challenges to their antibacterial efficacy. In this study, we designed an iron heme-mimetic PS (MnO2@Fe-TCPP(Zn)) based on the iron dependence of bacteria that can be assimilated by bacteria and retained in different bacteria strains (Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus) and which shows high PDT antibacterial efficacy. For accelerated wound healing after antibacterial treatment, MnO2@Fe-TCPP(Zn) was loaded into a zwitterionic hydrogel with biocompatibility and antifouling properties to form a nanocomposite antibacterial hydrogel (PSB-MnO2@Fe-TCPP(Zn)). In the multibacterial infectious diabetic mouse wound model, the PSB-MnO2@Fe-TCPP(Zn) hydrogel dressing rapidly promoted skin regeneration by effectively inhibiting bacterial infections, eliminating inflammation, and promoting angiogenesis. This study provides an avenue for developing broad-spectrum antibacterial nanomaterials for combating the antibiotic resistance crisis and promoting the healing of complex bacterially infected wounds.
Collapse
Affiliation(s)
- Jiawei Bao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jiayu Mi
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yi Xia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Han Gui
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Dianyu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Hongjing Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Linzhu Su
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jiamin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jinjian Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| |
Collapse
|
30
|
Zhang X, Li Z, Shi Y, Hu B, Zheng Q, Piao Y, Feng L, Cao J. Electrochemical/photoelectrochemical dual-mode aptasensor for sensitive aflatoxin B1 assay based on distance-modulation strategy using Au NPs/PC ZIF-8-ZnO as sensing substrate. Food Chem 2024; 441:138382. [PMID: 38218151 DOI: 10.1016/j.foodchem.2024.138382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Aflatoxin B1 (AFB1), a hepatotoxic and carcinogenic food contaminant, is commonly found in agricultural food. Herein, Au NPs anchored ZIF-8-derived porous carbon-ZnO (Au NPs/PCZIF-8-ZnO) was firstly synthesized to act as the sensing substrate. Then, a ratiometric electrochemical (EC) and "off-on" photoelectrochemical (PEC) dual-mode paper-based aptasensor was presented for AFB1 detection based on a distance-modulation sensing strategy. The independent signal transduction mechanisms and output mode not only broaden the dynamic detection range but also provide a self-verification to assay results, improving the sensitivity and reliability. The wide detection ranges of 0.1 pg/mL-100 ng/mL (EC mode) and 0.02 pg/mL-100 ng/mL (PEC mode) were obtained using dual-mode aptasensor, with detection limits of 36.7 and 9.3 fg/mL, respectively. The fabricated aptasensor exhibited excellent selectivity, reproducibility and stability. Furthermore, it exhibited good practicability for AFB1 assays in real samples, demonstrating great potential applications for food safety evaluation.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Yushu Shi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Yongzhe Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
31
|
Zhu S, Qin S, Wei C, Cen L, Xiong L, Luo X, Wang Y. Acetylcholine triggered enzymatic cascade reaction based on Fe 7S 8 nanoflakes catalysis for organophosphorus pesticides visual detection. Anal Chim Acta 2024; 1301:342464. [PMID: 38553122 DOI: 10.1016/j.aca.2024.342464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 μg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 μg mL-1. SIGNIFICANCE Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.
Collapse
Affiliation(s)
- Shu Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shangying Qin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chonghui Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Li Cen
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Luyun Xiong
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xingyu Luo
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Yilin Wang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
32
|
Peng Y, Li S, Wang M, Xiong X, Dang J, Zhang W, Cao R, Zheng H. Facet engineering of a two-dimensional metal-organic framework with uniquely oriented layered-structure for electrocatalytic oxygen reduction reaction. J Colloid Interface Sci 2024; 658:518-527. [PMID: 38128195 DOI: 10.1016/j.jcis.2023.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
The properties of metal-organic framework (MOF) nanocrystals are highly dependent on their sizes, morphologies, and exposed facets. Facet engineering of MOFs offers an efficient strategy to tailor the active sites and optimize the catalytic activity of both MOFs and their derivatives. In this study, we prepared 1D zeolitic imidazolate framework-nanorod (ZIF-NR) through facet engineering of the parental 2D ZIF-L. The introduction of cetyltrimethylammonium bromide (CTABr) surfactant into the synthesis solution hindered the crystal growth along the c-axis of leaf-like ZIF-L, resulting in the formation of 1D ZIF-NR. The derived Co nanoparticle encapsulated N doped carbon nanorod (denoted as Co-NCR) exhibited high activity and stability for electrocatalytic oxygen reduction reactions and Zn-air batteries. Facet engineering of a 2D MOF with a uniquely oriented layered structure demonstrates the possibility of designing novel electrocatalysts.
Collapse
Affiliation(s)
- Yuxin Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Mengying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xueqin Xiong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jingshuang Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
33
|
Liu S, He Y, Zhang W, Fu T, Wang L, Zhang Y, Xu Y, Sun H, Zhao H. Self-Cascade Ce-MOF-818 Nanozyme for Sequential Hydrolysis and Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306522. [PMID: 37884468 DOI: 10.1002/smll.202306522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/24/2023] [Indexed: 10/28/2023]
Abstract
Mimicking efficient biocatalytic cascades using nanozymes has gained enormous attention in catalytic chemistry, but it remains challenging to develop a nanozyme-based cascade system to sequentially perform the desired reactions. Particularly, the integration of sequential hydrolysis and oxidation reactions into nanozyme-based cascade systems has not yet been achieved, despite their significant roles in various domains. Herein, a self-cascade Ce-MOF-818 nanozyme for sequential hydrolysis and oxidation reactions is developed. Ce-MOF-818 is the first Ce(IV)-based heterometallic metal-organic framework constructed through the coordination of Ce and Cu to distinct groups. It is successfully synthesized using an improved solvothermal method, overcoming the challenge posed by the significant difference in the binding speeds of Ce and Cu to ligands. With excellent organophosphate hydrolase-like (Km = 42.3 µM, Kcat = 0.0208 min-1 ) and catechol oxidase-like (Km = 2589 µM, Kcat = 1.25 s-1 ) activities attributed to its bimetallic active centers, Ce-MOF-818 serves as a promising self-cascade platform for sequential hydrolysis and oxidation. Notably, its catalytic efficiency surpasses that of physically mixed nanozymes by approximately fourfold, owning to the close integration of active sites. The developed hydrolysis-oxidation self-cascade nanozyme has promising potential applications in catalytic chemistry and provides valuable insights into the rational design of nanozyme-based cascade systems.
Collapse
Affiliation(s)
- Sheng Liu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yang He
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Weikun Zhang
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tao Fu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Liangjie Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yixin Zhang
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Yi Xu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Hao Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Shanxi Laboratory for Yellow River, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
34
|
Liu Y, Cheng C, Zhao Z, Liu W, Qi L. MOF-polymer composites with well-distributed gold nanoparticles for visual monitoring of homocysteine. Analyst 2024; 149:1658-1664. [PMID: 38323490 DOI: 10.1039/d3an01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The distribution of gold nanoparticles (AuNPs) on the surface of a metal-organic framework (MOF) plays a crucial role in the catalytic performance of MOF-AuNP composites. This study describes how the physical adsorption (PH@AuNPs-on-U) and chemical modification of AuNPs on the surface of UiO-66-NH2 (U) affect the composites' catalytic efficiency. After 2-vinyl-4,4-dimethyl-2-oxazolin-5-one (VD) linked to poly(N-2-hydroxypropyl methacrylamide) (PH) with U (UVD-PH), UVD-PH@AuNPs composites were constructed with PH as the capping and reducing reagent. The composites exhibited higher peroxidase (POD)-like activity than PH@AuNPs-on-U for oxidising 3,3'5,5'-tetramethylbenzidine (TMB) with H2O2. The approach demonstrated that the proposed composite-based nanozymes could significantly enhance their catalytic activity and had a highly uniform distribution of PH@AuNPs on the surface of UVD. An assay with the nanozymes for visual detection of homocysteine (Hcy) was developed, displaying a good linear relationship (R2 = 0.998) ranging from 3.34 μM to 30.0 μM and a detection of limit of 0.3 μM. Additionally, the UVD-PH@AuNPs-TMB-H2O2 system successfully monitored serum Hcy after intraperitoneal injection in rats. This study paves a new way for developing MOF-AuNPs with highly uniform surface distribution of polymer@AuNPs to boost its catalytic activity and to detect drugs in real bio-samples.
Collapse
Affiliation(s)
- Yutong Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Cheng Cheng
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
35
|
An Y, Fang X, Cheng J, Yang S, Chen Z, Tong Y. Research progress of metal-organic framework nanozymes in bacterial sensing, detection, and treatment. RSC Med Chem 2024; 15:380-398. [PMID: 38389881 PMCID: PMC10880901 DOI: 10.1039/d3md00581j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
The high efficiency and specificity of enzymes make them play an important role in life activities, but the high cost, low stability and high sensitivity of natural enzymes severely restrict their application. In recent years, nanozymes have become convincing alternatives to natural enzymes, finding utility across diverse domains, including biosensing, antibacterial interventions, cancer treatment, and environmental preservation. Nanozymes are characterized by their remarkable attributes, encompassing high stability, cost-effectiveness and robust catalytic activity. Within the contemporary scientific landscape, metal-organic frameworks (MOFs) have garnered considerable attention, primarily due to their versatile applications, spanning catalysis. Notably, MOFs serve as scaffolds for the development of nanozymes, particularly in the context of bacterial detection and treatment. This paper presents a comprehensive review of recent literature pertaining to MOFs and their pivotal role in bacterial detection and treatment. We explored the limitations and prospects for the development of MOF-based nanozymes as a platform for bacterial detection and therapy, and anticipate their great potential and broader clinical applications in addressing medical challenges.
Collapse
Affiliation(s)
- Yiwei An
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Xuankun Fang
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Jie Cheng
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Shuiyuan Yang
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Yanli Tong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| |
Collapse
|
36
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
37
|
Lin H, Yang Y, Diamond BG, Yan TH, Bakhmutov VI, Festus KW, Cai P, Xiao Z, Leng M, Afolabi I, Day GS, Fang L, Hendon CH, Zhou HC. Integrating Photoactive Ligands into Crystalline Ultrathin 2D Metal-Organic Framework Nanosheets for Efficient Photoinduced Energy Transfer. J Am Chem Soc 2024; 146:1491-1500. [PMID: 38170908 PMCID: PMC10863068 DOI: 10.1021/jacs.3c10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yihao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brian G. Diamond
- Department
of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Tian-Hao Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Vladimir I. Bakhmutov
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kelechi W. Festus
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mingwan Leng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ibukun Afolabi
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gregory S. Day
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lei Fang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Zhao F, Guo D, Tang X, Lan J, Chen J. Ratiometrically electrochemical and colorimetric dual-mode detection of glyphosate based on 2D Cu-TCPP(Fe) NSs. Talanta 2024; 267:125207. [PMID: 37717538 DOI: 10.1016/j.talanta.2023.125207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
In this work, a dual-signal output sensor was developed for the ratiometrically electrochemical and colorimetric detection of glyphosate (GLYP) based on the duplex nature of 2D Cu-TCPP(Fe) nanosheets (2D Cu-TCPP(Fe) NSs). Cu active center sites in 2D Cu-TCPP(Fe) NSs could transform into CuCl for signal amplification in the presence of chloride ions (Cl-), which dropped dramatically upon GLPY addition due to the strong interaction between GLYP and cuprous ion triggering the competitive reaction with the conversion of CuCl into Cu-GLYP complex. Meanwhile, the constant current signals of Fe2+/3+ in the iron-porphyrin structure of Cu-TCPP(Fe) served as an inner reference, resulting in a ratiometrically electrochemical GLYP sensor. Moreover, 2D Cu-TCPP(Fe) NSs with intrinsic peroxidase-like activity was employed for the colorimetric determination of GLYP based on the specific inhibitory effect of GLYP on the peroxidase activity of 2D Cu-TCPP(Fe) nanozyme. GLYP concentrations can be quantified in the range from 1.0 × 10-10 M to 1.0 × 10-6 M and 1.0 × 10-9 M to 1.0 × 10-7 M, with detection limits of 3.9 × 10-12 M and 1.89 × 10-11 M for ratiometrically electrochemical method and colorimetric assay, respectively. Such a dual-mode sensor with remarkable selectivity, reproducibility, and stability was finally applied for GLYP detection in real samples and reliable outcomes were achieved.
Collapse
Affiliation(s)
- Fan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| | - Dongqing Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xuan Tang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jingyue Lan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jing Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
39
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
40
|
Deshwal A, Saxena K, Sharma G, Rajesh, Sheikh FA, Seth CS, Tripathi RM. Nanozymes: A comprehensive review on emerging applications in cancer diagnosis and therapeutics. Int J Biol Macromol 2024; 256:128272. [PMID: 38000568 DOI: 10.1016/j.ijbiomac.2023.128272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Nanozymes, a new class of nanomaterials-based artificial enzymes, have gained huge attraction due to their high operational stability, working efficiency in extreme conditions, and resistance towards protease digestion. Nowadays, they are effectively substituted for natural enzymes for catalysis by closely resembling the active sites found in natural enzymes. Nanozymes can compensate for natural enzymes' drawbacks, such as high cost, poor stability, low yield, and storage challenges. Due to their transforming nature, nanozymes are of utmost importance in the detection and treatment of cancer. They enable precise cancer detection, tailored drug delivery, and catalytic therapy. Through enhanced diagnosis, personalized therapies, and reduced side effects, their adaptability and biocompatibility can transform the management of cancer. The review focuses on metal and metal oxide-based nanozymes, highlighting their catalytic processes, and their applications in the prevention and treatment of cancer. It emphasizes their potential to alter diagnosis and therapy, particularly when it comes to controlling reactive oxygen species (ROS). The article reveals the game-changing importance of nanozymes in the future of cancer care and describes future research objectives, making it a useful resource for researchers, and scientists. Lastly, outlooks for future perspective areas in this rapidly emerging field have been provided in detail.
Collapse
Affiliation(s)
- Akanksha Deshwal
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rajesh
- CSIR-National Physical Laboratory, New Delhi, India
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | | | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
41
|
Wei S, Li L, Gou L, Wu L, Hou X. Thiol-ene click derivatization reaction coupled with ratiometric surface-enhanced Raman scattering for reproducible and accurate determination of acrylamide. Food Chem 2023; 429:136991. [PMID: 37523913 DOI: 10.1016/j.foodchem.2023.136991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Acrylamide (AA) is a carcinogen mainly ingested through food and drinking water, making its accurate determination crucial for both food safety and environmental protection. Herein, we proposed a derivatization-based ratiometric surface-enhanced Raman scattering (SERS) method for the quantification of AA. High density Au NPs were anchored to the surface of Cu-TCPP MOF nanosheets (MOFNs) to form the SERS sensor. The abundant Raman "hot spots" at the nanogaps generated by the Au NPs and the internal standard (IS) signal provided by Cu-TCPP MOFNs improved the sensitivity and quantitative accuracy of the method. Following the thiol-ene click derivatization reaction between p-aminothiophenol (PATP) and AA, the Raman peak intensity ratio (I1080/I395) was employed to quantify AA. The linear range was 0.1 nM to 10 μM, and the limit of detection (LOD) was as low as 0.08 nM. Trace amounts of AA in food and water samples were successfully determined using this method.
Collapse
Affiliation(s)
- Siqi Wei
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ling Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichen Gou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China; College of Chemistry and Key Lab of Green Chem & Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
42
|
Li S, Zhang Y, Jin H, Gao H, Liu S, Shi W, Sun W, Liu Y, Zhang H. Biomimetic dual-nanozymes with catalytic cascade reactions against diabetic wound infection. J Colloid Interface Sci 2023; 651:319-333. [PMID: 37544221 DOI: 10.1016/j.jcis.2023.07.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Diabetes-related chronic wounds characterized by hyperglycemia and weak alkaline milieu provide numerous advantages for bacteria growth and biofilm formation, setting a myriad of stumbling blocks for wound healing. Therefore, reshaping the spatially and temporally pathological wound microenvironment against bacterial infection is critical to rescue stalled healing progress in diabetes-related chronic wounds. Herein, we demonstrate on the room-temperature construction of a glucose oxidase (GOx)-mimicking and peroxidase (POD)-mimicking dual-nanozymes catalytic cascade system upon the partial reduction of Fe3+ to Fe2+ and the deposition of Au nanoparticles, simultaneously. The as-prepared dual-nanozymes catalytic cascade system possesses the capabilities of reshaping the pathological microenvironments of diabetic wound via glucose consumption and acidification, leading to amplified catalytic cascade activities for sterilization. On the one hand, the GOx-mimicking enzymatic activity of the catalytic cascade system can not only deplete glucose and acidize wound milieu to inhibit bacteria growth, but also utilize the weak alkaline milieu of diabetic wound to provide sufficient H2O2 and a favorable pH for subsequent OH generation. On the other hand, the POD-mimicking enzymatic activity of the catalytic cascade system can continuously produce OH for sterilization under the weak acidic milieu in the presence of abundant H2O2. Benefiting from the simply and mild preparation process and the excellent dual-nanozymes catalytic cascade activities under the deliberate evolved milieus of diabetes-related chronic wounds, our catalytic cascade system exhibits the promising healing effect and clinical translation potential against diabetic wound infection.
Collapse
Affiliation(s)
- Siyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Hao Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Hang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wanrui Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Wei Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
43
|
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303594. [PMID: 37626465 DOI: 10.1002/smll.202303594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Collapse
Affiliation(s)
- Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiusi Guo
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
44
|
Ye Q, Yuan E, Shen J, Ye M, Xu Q, Hu X, Shu Y, Pang H. Amphiphilic Polymer Capped Perovskite Compositing with Nano Zr-MOF for Nanozyme-Involved Biomimetic Cascade Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304149. [PMID: 37635202 PMCID: PMC10625115 DOI: 10.1002/advs.202304149] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Indexed: 08/29/2023]
Abstract
CsPbX3 perovskite nanocrystal (NC) is considered as an excellent optical material and is widely applied in optoelectronics. However, its poor water stability impedes its study in enzyme-like activity, and further inhibits its application in biomimetic cascade catalysis. Herein, for the first time, the oxidase-like and ascorbate oxidase-like activities of an amphiphilic polymer capped CsPbX3 are demonstrated, and its catalytic mechanism is further explored. Furthermore, an all-nanozyme cascade system (multifunctional CsPbBr3 @Zr-metal organic framework (Zr-MOF) and Prussian blue as oxidase-like and peroxidase-like nanozyme) is constructed with a portable paper-based device for realizing the dual-mode (ratiometric fluorescence and colorimetric) detection of ascorbic acid in a point-of-care (POC) fashion. This is the first report on the utilization of all-inorganic CsPbX3 perovskite NC in biomimetic cascade catalysis, which opens a new avenue for POC clinical disease diagnosis.
Collapse
Affiliation(s)
- Qiuyu Ye
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Enxian Yuan
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Jin Shen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Mingli Ye
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Qin Xu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Yun Shu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| |
Collapse
|
45
|
Zhong J, Zheng X, Wen Y, Li Y, Zhang J, Kankala RK, Wang S, Chen A. NIR-switchable local hydrogen generation by tandem bimetallic MOFs nanocomposites for enhanced chemodynamic therapy. Regen Biomater 2023; 11:rbad097. [PMID: 38173769 PMCID: PMC10761206 DOI: 10.1093/rb/rbad097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024] Open
Abstract
The inadequate quantity of hydrogen peroxide (H2O2) in cancer cells promptly results in the constrained success of chemodynamic therapy (CDT). Significant efforts made throughout the years; nevertheless, researchers are still facing the great challenge of designing a CDT agent and securing H2O2 supply within the tumor cell. In this study, taking advantage of H2O2 level maintenance mechanism in cancer cells, a nanozyme-based bimetallic metal-organic frameworks (MOFs) tandem reactor is fabricated to elevate intracellular H2O2 levels, thereby enhancing CDT. In addition, under near-infrared excitation, the upconversion nanoparticles (UCNPs) loaded into the MOFs can perform photocatalysis and generate hydrogen, which increases cellular susceptibility to radicals induced from H2O2, inhibits cancer cell energy, causes DNA damages and induces tumor cell apoptosis, thus improving CDT therapeutic efficacy synergistically. The proposed nanozyme-based bimetallic MOFs-mediated CDT and UCNPs-mediated hydrogen therapy act as combined therapy with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Jun Zhong
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Xiang Zheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Yuan Wen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Yuewei Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Jianting Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
46
|
Xie Q, Liu H, Wen S, Wang X, Bing W, Ji W, Zhao B, Ozaki Y, Song W. SERS Tracking Oxidative Stress on a Metalloporphyrin Framework by Vitamin C. Anal Chem 2023; 95:15333-15341. [PMID: 37793058 DOI: 10.1021/acs.analchem.3c02935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Accurate control of charge transfer is crucial to investigate the catalytic reaction mechanism of the biological oxidation process that biomedicine participates in. Herein, we have established an assembly model of metalloporphyrin framework (MPF) nanosheets as the active centers of biological enzymes. The introduction of Vitamin C (VC) into the MPF system can precisely modulate its content of charges. The surface-enhanced Raman scattering activity and peroxidase-like catalytic performance are enhanced simultaneously for the first time by manipulating the optimal molar ratio of an MPF to VC and the reaction sequence with target model molecules. We have confirmed that the formation of the intermediate of Fe(2+)-OOH species is specifically enhanced after VC modulation, which indicates that VC can regulate the oxidative stress of the active center of biological enzymes. This discovery not only accurately resolves the mechanism of VC-selective anticancer therapy but also has important significance for the precise treatment of VC synergistic targeting medicines.
Collapse
Affiliation(s)
- Qinhui Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaojun Wang
- School of Construction Machinery, Shandong Jiaotong University, Changqing University Science Park, Jinan 250357, P. R. China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
47
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
48
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
49
|
Yang Q, Mo C, Cui P, Zhou S, Qiu L, Jiang P, Xuan Y, Huang H, Wang C, Wang J. Application of f-FeNC@GOx cascade enzyme nanomaterials in the healing of infected wounds. Life Sci 2023; 329:121930. [PMID: 37454755 DOI: 10.1016/j.lfs.2023.121930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
AIMS Bacterial infection is a significant factor contributing to the deterioration of wounds, and the misuse of antibiotics has exacerbated bacterial resistance. Therefore, there is an urgent need to develop a novel antibacterial strategy to replace conventional therapies. This study aims to construct a self-activated cascade reaction nanozyme, f-FeNC@GOx, which triggers a cascade reaction in the presence of glucose. This cascade reaction generates highly toxic hydroxyl radicals (OH), thereby achieving the goal of eliminating bacteria and promoting wound healing. MATERIAL AND METHODS In vitro antibacterial experiments, bacterial spread plate method, Live/Dead staining, and crystal violet staining were conducted to analyze the antibacterial ability and mechanism of f-FeNC@GOx. In vivo experiments, a mouse wound model was established, and H&E and Masson staining of wound tissues were performed to assess the antibacterial activity of the f-FeNC@GOx in vivo. KEY FINDINGS The in vivo and in vitro experiments confirmed that f-FeNC@GOx exhibited significant antibacterial effect against both Staphylococcus aureus and Escherichia coli in the presence of glucose. Furthermore, it showed optimal wound healing performance in the wound models. SIGNIFICANCE These findings suggested that f-FeNC@GOx was a novel and effective antibacterial nanomaterial, which provided a promising antibacterial strategy using nanoenzyme based cascade reaction.
Collapse
Affiliation(s)
- Qingbo Yang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China; School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Chuangqi Mo
- Department of Neurosurgery, Nanjing Pukou People's Hospital, Nanjing, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Hai Huang
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China.
| |
Collapse
|
50
|
Zhao F, Tang X, Guo D. In vivo monitoring of glutathione in a live rat brain based on the ratiometric signal output of 2D Cu-TCPP(Fe) nanosheets. Chem Commun (Camb) 2023; 59:10984-10987. [PMID: 37615037 DOI: 10.1039/d3cc03626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Herein, a novel ratiometric electrochemical platform was developed for in vivo analysis of GSH based on the dual signal output of 2D Cu-TCPP(Fe) nanosheets. Our method with high selectivity and high accuracy enabled GSH monitoring in a live rat brain, and accurate GSH concentrations were firstly reported in different brain regions upon global cerebral ischemia.
Collapse
Affiliation(s)
- Fan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| | - Xuan Tang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| | - Dongqing Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Binshui West Road 393, Tianjin 300387, P. R. China.
| |
Collapse
|