1
|
Yu X, Kong K, Ma X, Yu Y, Shen Y, Sang Y, Wang J, Shen S, Xu X, Liu Z, Tang R. Organic-Inorganic Copolymerization Induced Oriented Crystallization for Robust Lightweight Porous Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403443. [PMID: 39319512 DOI: 10.1002/smll.202403443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Porous composites are important in engineering fields for their lightweight, thermal insulation, and mechanical properties. However, increased porosity commonly decreases the robustness, making a trade-off between mechanics and weight. Optimizing the strength of solid structure is a promising way to co-enhance the robustness and lightweight properties. Here, acrylamide and calcium phosphate ionic oligomers are copolymerized, revealing a pre-interaction of these precursors induced oriented crystallization of inorganic nanostructures during the linear polymerization of acrylamide, leading to the spontaneous formation of a bone-like nanostructure. The resulting solid phase shows enhanced mechanics, surpassing most biological materials. The bone-like nanostructure remains intact despite the introduction of porous structures at higher levels, resulting in a porous composite (P-APC) with high strength (yield strength of 10.5 MPa) and lightweight properties (density below 0.22 g cm-3). Notably, the density-strength property surpasses most reported porous materials. Additionally, P-APC shows ultralow thermal conductivity (45 mW m-1 k-1) due to its porous structure, making its strength and thermal insulation superior to many reported materials. This work provides a robust, lightweight, and thermal insulating composite for practical application. It emphasizes the advantage of prefunctionalization of ionic oligomers for organic-inorganic copolymerization in creating oriented nanostructure with toughened mechanics, offering an alternative strategy to produce robust lightweight materials.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaoming Ma
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yadong Yu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yinlin Shen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanhua Sang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sudan Shen
- State Key Laboratory of Chemical Engineering, School of Chemical and Biological Engineering, Zhejiang University College of Chemistry & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xurong Xu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Li X, Li S, Yang Y, Li J, Lu P, Liu Y, Wang Q. Functional thermoelectric composite endows cellulose paper with superior fire safety. Int J Biol Macromol 2024; 277:133967. [PMID: 39069063 DOI: 10.1016/j.ijbiomac.2024.133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Due to intrinsic defect of fire hazard security, improving the flame retardant capacity of paper is still insufficient in case of precombustion. Herein, we integrate the flame retardant with flame detection performance on the surface of paper, the restricts of graphene oxide (GO) are overcome between high thermoelectric performance and flexibility. A flexible lamellar thermoelectric composite (GO-LA-HP) is constructed through the co-assembly of GO, ascorbic acid (LA), and phenoxycycloposphazene (HP), lamellar GO-LA-HP avoid GO's toughness decline after modification, but also enhance fire sensitivity and flame resistance. The composite could significantly decrease the temperature rise stage (<150 °C), and trigger the fire-warning within 2 s. The hybrid coating composed of phytic acid/phosphoric acid (PyA/PA) and modified thermoelectric GO-LA-HP becomes excellent compatibility on the surface of the modified paper (GPP). GPP is able to extinguish itself immediately after leaving the fire in the vertical combustion, and display the excellent flame resistance. Furthermore, GPP's alarm signal could be timely generated as little as 3 s of contacting the flame, and the response time can exceed 600 s. According to the structure observation and analysis, the related synergistic fire detection reinforcing and flame-retardant mechanisms are also proposed and clarified.
Collapse
Affiliation(s)
- Xie Li
- Polymer Research Institute of Sichuan University, the State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Shansu Li
- Polymer Research Institute of Sichuan University, the State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Yuzhao Yang
- Shenzhen Sf Tyson Holding(group) Co., Ltd., Xinghai Avenue, Nanshan Street, Shenzhen-Hong Kong Cooperation Zone, Qianhai, Shenzhen 518000, China
| | - Jiajun Li
- Shenzhen Sf Tyson Holding(group) Co., Ltd., Xinghai Avenue, Nanshan Street, Shenzhen-Hong Kong Cooperation Zone, Qianhai, Shenzhen 518000, China
| | - Peng Lu
- Shenzhen Sf Tyson Holding(group) Co., Ltd., Xinghai Avenue, Nanshan Street, Shenzhen-Hong Kong Cooperation Zone, Qianhai, Shenzhen 518000, China
| | - Yuan Liu
- Polymer Research Institute of Sichuan University, the State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China.
| | - Qi Wang
- Polymer Research Institute of Sichuan University, the State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| |
Collapse
|
3
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Wang S, Tan L, Yang Z, Zhao H, Guo L. A Strong, Tough, and Stable Composite with Nacre-Inspired Sandwich Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401883. [PMID: 38662873 DOI: 10.1002/adma.202401883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Improving the fracture resistance of nacre-inspired composites is crucial in addressing the strength-toughness trade-off. However, most previously proposed strategies for enhancing fracture resistance in these composites have been limited to interfacial modification by polymer, which restricts mechanical enhancement. Here, a composite material consisting of graphene oxide (GO) lamellae and nanocrystalline reinforced amorphous alumina nanowires (NAANs) has been developed. The structure of the composite is inspired by nacre and is composed of stacked GO nanosheets with NAANs in between, forming a sandwich-like structure. This design enhances the fracture resistance of the composite through the pull-out of GO nanosheets at the nanoscale and GO/NAANs sandwich-like coupling at the micro-scale, while also providing stiff ceramic support. This composite simultaneously possesses high strength (887.8 MPa), toughness (31.6 MJ m-3), superior cyclic stability (1600 cycles), and long-term (2 years) immersion stability, which outperform previously reported GO-based lamellar composites. The hierarchical fracture design provides a new path to design next-generation strong, tough, and stable materials for advanced engineering applications.
Collapse
Affiliation(s)
- Shaoxiong Wang
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Lulu Tan
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Zhao Yang
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Hewei Zhao
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Lin Guo
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| |
Collapse
|
5
|
Zhang H, Shao Y, Xia R, Chen G, Xiang X, Yu Y. Stretchable Electrodes with Interfacial Percolation Network. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401550. [PMID: 38591837 DOI: 10.1002/adma.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Stretchable electrodes are an essential component that determines the functionality and reliability of stretchable electronics, but face the challenge of balancing conductivity and stretchability. This work proposes a new conducting concept called the interfacial percolation network (PN) that results in stretchable electrodes with high conductivity, large stretchability, and high stability. The interfacial PN is composed of a 2D silver nanowires (AgNWs) PN and a protruding 3D AgNWs PN embedded on the surface and in the near-surface region of an elastic polymer matrix, respectively. The protruded PN is obtained by changing the arrangements of AgNWs from horizontal to quasi-vertical through introducing foreign polymer domains in the near-surface region of the polymer matrix. The resulting electrode achieves a conductivity of 13 500 S cm-1 and a stretchability of 660%. Its resistance changes under stretched conditions are orders of magnitude lower than those of conventional 2D PN and 2D + 3D PN. An interfacial PN electrode made from liquid metal remained its conductivity at 46 750 S cm-1 after the electrode underwent multiple stretch-release cycles with a deformation of >600%. The concept of interfacial PN provides fruitful implications for the design of stretchable electronics.
Collapse
Affiliation(s)
- Hanxue Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Shao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Rui Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guoli Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyue Xiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanhao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Yang J, Li M, Fang S, Wang Y, He H, Wang C, Zhang Z, Yuan B, Jiang L, Baughman RH, Cheng Q. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 2024; 383:771-777. [PMID: 38359121 DOI: 10.1126/science.adj3549] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Graphene and two-dimensional transition metal carbides and/or nitrides (MXenes) are important materials for making flexible energy storage devices because of their electrical and mechanical properties. It remains a challenge to assemble nanoplatelets of these materials at room temperature into in-plane isotropic, free-standing sheets. Using nanoconfined water-induced basal-plane alignment and covalent and π-π interplatelet bridging, we fabricated Ti3C2Tx MXene-bridged graphene sheets at room temperature with isotropic in-plane tensile strength of 1.87 gigapascals and moduli of 98.7 gigapascals. The in-plane room temperature electrical conductivity reached 1423 siemens per centimeter, and volumetric specific capacity reached 828 coulombs per cubic centimeter. This nanoconfined water-induced alignment likely provides an important approach for making other aligned macroscopic assemblies of two-dimensional nanoplatelets.
Collapse
Affiliation(s)
- Jiao Yang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Mingzhu Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Bicheng Yuan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Lei Jiang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Pan L, Hu R, Zhang Y, Sha D, Cao X, Li Z, Zhao Y, Ding J, Wang Y, Sun Z. Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti 3C 2T x MXene. NANO-MICRO LETTERS 2023; 15:225. [PMID: 37831299 PMCID: PMC10575839 DOI: 10.1007/s40820-023-01202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/26/2023] [Indexed: 10/14/2023]
Abstract
Exploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti3C2Tx MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe2/ZnTe interfaces, improving K+ diffusion and adsorption. In addition, the different work functions between CoTe2/ZnTe induce a robust built-in electric field at the CoTe2/ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti3C2Tx can effectively promote electrode conductivity and alleviate the volume change of CoTe2/ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe2/ZnTe/Ti3C2Tx (CZT) exhibit excellent rate capability (137.0 mAh g-1 at 10 A g-1) and cycling stability (175.3 mAh g-1 after 4000 cycles at 3.0 A g-1, with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg-1) and power density (837.2 W kg-1). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.
Collapse
Affiliation(s)
- Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Rongxiang Hu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yuan Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhuoran Li
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jiangxiang Ding
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Yaping Wang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
8
|
Jin J, Wu XE, Liang H, Wang H, Li S, Lu H, Bi P, Niu J, Wu Y, Zhang Y. A synergistic interfacial and topological strategy for reinforcing aramid nanofiber films. MATERIALS HORIZONS 2023; 10:4626-4634. [PMID: 37594192 DOI: 10.1039/d3mh00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
While nanomaterials possess impressive mechanical properties at the microscale level, their macroscopic assemblies usually exhibit inferior properties due to ineffective stress transfer among individual nanomaterials. This issue is addressed in this work by achieving strong interfacial interactions between aramid nanofibers and graphene oxide nanosheets through a neutralization reaction in a dipolar solvent and regulating the topological properties using polymer micelles to form a compact structure, leading to the formation of a super-strong and super-tough nanofiber film. The film was prepared through a sol-gel-film transition process and possesses a nacre-like microstructure that deflects microcracks and prevents them from propagating straight through the film. Remarkably, it demonstrates a tensile strength of 599.0 MPa and a toughness of 37.7 MJ m-3, which are 491.0% and 1094.5% that of a pristine aramid nanofiber film, respectively. In addition, it exhibits excellent tolerance to extreme temperatures (-196 to 300 °C) and fatigue resistance to folding 10 000 times. Overall, this study presents a synergistic interfacial and topological enhancement strategy for constructing nanomaterial-based composites with inherited properties from the nanoscale building blocks to the macroscale structural material.
Collapse
Affiliation(s)
- Jiongke Jin
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
| | - Xun-En Wu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
| | - Huarun Liang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
| | - Haomin Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
| | - Shuo Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
| | - Haojie Lu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
| | - Peng Bi
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
| | - Jiali Niu
- Beijing National Laboratory for Molecular Sciences, The Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Wu
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yingying Zhang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
9
|
Wang G, Zhang Y, Zhao S, Zhao Z, Liu M, Wang Y, Liu X, Hou S, Li L, Fan Y. Graphene Hollow Micropatterns via Capillarity-Driven Assembly for Drug Storage and Neural Cell Alignment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37775-37783. [PMID: 37467111 DOI: 10.1021/acsami.3c04217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Electrical conductivity, cell-guided surface topology, and drug storage capacity of biomaterials are attractive properties for the repair and regeneration of anisotropic tissues with electrical sensitivity, such as nerves. However, designing and fabricating implantable biomaterials with all these functions remain challenging. Herein, we developed a freestanding graphene substrate with micropatterned surfaces by a simple templating method. Importantly, the raised surface micropatterns had an internal hollow structure. The morphology results showed that the template microgroove width and the graphene nanosheet size were important indicators of the formation of the hollow structures. Through real-time monitoring and theoretical analysis of the formation process, it was found that the main formation mechanism was the delamination and interlayer movement of the graphene nanosheets triggered by the evaporation-induced capillary force. Finally, we achieved the controlled release of loaded microparticles and promoted the orientation of rat dorsal root ganglion neurons by applying an electric field to the hollow micropatterns. This capillarity-induced self-assembly strategy paves the way for the development of high-performance graphene micropatterned films with a hollow structure that have potential for clinical application in the repair of nerve injury.
Collapse
Affiliation(s)
- Guohang Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yilin Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shudong Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zhijun Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yawei Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Linhao Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
10
|
Wang L, Wang B, Wang Z, Huang J, Li K, Liu S, Lu J, Han Z, Gao Y, Cai G, Liu Y, Chen Y, Lin Y, Liu Y, Gao C, Xu Z. Superior Strong and Tough Nacre-Inspired Materials by Interlayer Entanglement. NANO LETTERS 2023; 23:3352-3361. [PMID: 37052245 DOI: 10.1021/acs.nanolett.3c00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Natural materials teach that mechanical dissipative interactions relieve the conflict between strength and toughness and enable fabrication of strong yet tough artificial materials. Replicating natural nacre structure has yielded rich biomimetic materials; however, stronger interlayer dissipation still waits to be exploited to extend the performance limits of artificial nacre materials. Here, we introduce strong entanglement as a new artificial interlayer dissipative mechanism and fabricate entangled nacre materials with superior strength and toughness, across molecular to nanoscale nacre structures. The entangled graphene nacre fibers achieved high strength of 1.2 GPa and toughness of 47 MJ/m3, and films reached 1.5 GPa and 25 MJ/m3. Experiments and simulations reveal that strong entanglement can effectively dissipate interlayer energy to relieve the conflict between strength and toughness, acting as natural folded proteins. The strong interlayer entanglement opens up a new path for designing stronger and tougher artificial materials to mimic but surpass natural materials.
Collapse
Affiliation(s)
- Lidan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ziqiu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiajing Huang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Kaiwen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Senping Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiahao Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhanpo Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yue Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Gangfeng Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yan Chen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yue Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Yilun Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| |
Collapse
|
11
|
Qian W, Fu H, Sun Y, Wang Z, Wu H, Kou Z, Li BW, He D, Nan CW. Scalable Assembly of High-Quality Graphene Films via Electrostatic-Repulsion Aligning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206101. [PMID: 36269002 DOI: 10.1002/adma.202206101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Assembling pristine graphene into freestanding films featuring high electrical conductivity, superior flexibility, and robust mechanical strength aims at meeting the all-around high criteria of new-generation electronics. However, voids and defects produced in the macroscopic assembly process of graphene nanosheets severely degrade the performance of graphene films, and mechanical brittleness often limits their applications in wide scenarios. To address such challenges, an electrostatic-repulsion aligning strategy is demonstrated to produce highly conductive, ultraflexible, and multifunctional graphene films. Typically, the high electronegativity of titania nanosheets (TiNS) induces the aligning of negatively charged graphene nanosheets via electrostatic repulsion in the film assembly. The resultant graphene films show fine microstructure, enhanced mechanical properties, and improved electrical conductivity up to 1.285 × 105 S m-1 . Moreover, the graphene films can withstand 5000 repeated folding without structural damage and electrical resistance fluctuation. These comprehensive improved properties, combined with the facile synthesis method and scalable production, make these graphene films a promising platform for electromagnetic interference (EMI) shielding and thermal-management applications in smart and wearable electronics.
Collapse
Affiliation(s)
- Wei Qian
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Huaqiang Fu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yi Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhe Wang
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Han Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bao-Wen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Daping He
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ce-Wen Nan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Deng T, Xu B, Zhang L, Li C. Bottlebrush Polymer-Functionalized Graphene Oxide-Based Multifunctional Poly(vinyl alcohol) Nanocomposite Films with Exceptional Performance. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianbo Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, People’s Republic of China
| | - Binbin Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, People’s Republic of China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, People’s Republic of China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
13
|
Zhang Y, Wang S, Tang P, Zhao Z, Xu Z, Yu ZZ, Zhang HB. Realizing Spontaneously Regular Stacking of Pristine Graphene Oxide by a Chemical-Structure-Engineering Strategy for Mechanically Strong Macroscopic Films. ACS NANO 2022; 16:8869-8880. [PMID: 35604787 DOI: 10.1021/acsnano.1c10561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mechanical-electrical properties of macroscopic graphene films derived from graphene oxide (GO) sheets are substantially restricted by their surface wrinkles and structural misalignment. Herein, we propose a chemical-structure-engineering strategy to realize the spontaneously regular stacking of modified GO (GO-m) with trace carboxyl. The highly aligned GO-m film delivers a fracture strength and modulus of nearly 3- and 5-fold higher than a wrinkled film with conventional Hummer's method derived GO (GO-c). The favorable assembly pattern of GO-m sheets is attributed to their decreased interfacial friction on the atomic scale, which weakens their local gelation capability for freer configuration adjustment during the assembly process. The chemical structure of GO-m can be further engineered by an epoxide-to-hydroxyl reaction, achieving a record high tensile strength of up to 631 MPa for the pristine GO film. By exploring the relationship between the surface terminations of GO and its stacking mode, this work proves the feasibility to realize high-performance macroscopic materials with optimized microstructure through the chemical modulation of nanosheet assembly.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Shijun Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, 100084 Beijing, China
| | - Pingping Tang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zhenfang Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, 100084 Beijing, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
14
|
Ding Z, Tang Y, Zhu P. Reduced graphene oxide/cellulose nanocrystal composite films with high specific capacitance and tensile strength. Int J Biol Macromol 2022; 200:574-582. [PMID: 35077747 DOI: 10.1016/j.ijbiomac.2022.01.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Due to the environmental degradation and energy depletion, the strategy for fabricating high-performance supercapacitor electrode materials based on graphene and nanocellulose has received great attention. Herein, an environmentally friendly reduced graphene oxide (RGO)/cellulose nanocrystal (CNC) composite conductive film was prepared using L-ascorbic acid (L-AA) as the reductant of graphene oxide (GO). Based on chemical structure analysis, L-AA was proved to be an effective reductant to remove oxygen containing groups of GO. Through microstructure observation, a unique stacking structure of CNC and RGO was observed, which could be largely attributed to the hydrogen bond interaction. Furthermore, the effect of CNC amount on the performance of RGO/CNC composite films was also systematically investigated. Particularly, the addition of CNC was found to exert a positive effect on the tensile strength, which might be mainly due to a mass of hydrogen bonds between the CNCs. Meanwhile, the RGO/CNC composite conductive film featured ideal electrical double-layer capacitive (EDLC) behavior, exhibiting a gravity specific capacitance of 222.5 F/g and tensile strength of 32.17 MPa at 20 wt% CNC content. Therefore, the RGO/CNC composite conductive films may hold great promise for environmentally friendly electrode materials of supercapacitors and flexible electrical devices.
Collapse
Affiliation(s)
- Zejun Ding
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Pulp and Papermaking Center, Zhejiang Sci-Tech University, Hangzhou 310023, China.
| | - Peng Zhu
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
15
|
Tang Z, Xiong L, Zhang X, Shen J, Sun A, Lin X, Yang Y. Biomass-Induced Diphasic Carbon Decoration for Carbon Nitride: Band and Electronic Engineering Targeting Efficient N 2 Photofixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105217. [PMID: 34796651 DOI: 10.1002/smll.202105217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Boosting the replacement of traditional NH3 production (Haber-Bosch process) with photocatalytic technology is of great importance for energy and environment remediation. Herein, to develop a photocatalyst with efficient charge separation and abundant reactive sites for photocatalytic N2 fixation, a biomass-induced diphase-carbon doping strategy is proposed by adding lotus root starch which can be environmentally produced into the preparation of carbon nitride (CN). The adjustment to the CN framework by planar-fused carbon optimizes the band alignment of the catalyst, improving its response to sunlight. In particular, the in-plane-fused carbon in collaboration with the physically piled carbon initiates unique dual electron transfer pathways from different dimensions. The diphasic carbons can both function as qualified reactive sites according to the experimental explorations and further theoretical calculations, which effectively regulate the electron transfer and energy barrier associated with the N2 reduction on catalyst. The bio-carbon-doped catalyst exhibits drastically enhanced photocatalytic N2 fixation performance, and the NH3 yield on the optimized DC-CN0.1 reaches 167.35 µmol g-1 h-1 , which is fivefold of g-C3 N4 and stands far out from the single-phase doped systems. These explorations expand the metal-free skeleton engineering toolbox and provide new guidance for the solar energy utilizations.
Collapse
Affiliation(s)
- Zheng Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Lijun Xiong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xiaoyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Aiwu Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin, Jiangsu Province, 223001, P. R. China
| | - Xiangyang Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
16
|
Cho H, Shakil A, Polycarpou AA, Kim S. Enabling Selectively Tunable Mechanical Properties of Graphene Oxide/Silk Fibroin/Cellulose Nanocrystal Bionanofilms. ACS NANO 2021; 15:19546-19558. [PMID: 34807563 DOI: 10.1021/acsnano.1c06573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhancing and manipulating the mechanical properties of graphene oxide (GO)-based structures are challenging because the GO assembly is easily delaminated. We develop nacre-like bionanofilms whose in-plane mechanical properties can be manipulated through water vapor annealing without influencing their mechanical properties in the thickness direction. These bionanofilms are prepared from GO, silk fibroin (SF), and cellulose nanocrystals (CNCs) via a spin-assisted layer-by-layer assembly. The postannealing mechanical properties of the films are determined with atomic force microscopy (AFM) bending and nanoindentation, and it is confirmed that the mechanical properties of the bionanofilms are altered only in the in-plane direction. While AFM bending shows Young's moduli of 26.9, 36.3, 24.3, and 41.4 GPa for 15, 15 annealed, 30, and 30 annealed GO/SF/CNC trilayers, nanoindentation shows reduced moduli of 19.5 ± 2.6 and 19.5 ± 2.5 GPa before and after annealing, respectively. The unaltered mechanical properties of the bionanofilms along the thickness direction after annealing can be attributed to the CNC frame in the SF matrix acting as a support against stress in the thickness direction, while annealing reorganizes the bionanofilm structure. The tunability of the bionanofilms' mechanical properties in only one direction through structure manipulation can lead to various applications, such as e-skin, wearable sensors, and human-machine interaction devices.
Collapse
Affiliation(s)
- Hyeonho Cho
- School of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ahmad Shakil
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, United States
| | - Andreas A Polycarpou
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, United States
| | - Sunghan Kim
- School of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
17
|
Zhou T, Cheng Q. Chemical Strategies for Making Strong Graphene Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianzhu Zhou
- School of Chemistry Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
| | - Qunfeng Cheng
- School of Chemistry Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
18
|
Chang D, Liu J, Fang B, Xu Z, Li Z, Liu Y, Brassart L, Guo F, Gao W, Gao C. Reversible fusion and fission of graphene oxide-based fibers. Science 2021; 372:614-617. [PMID: 33958473 DOI: 10.1126/science.abb6640] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/16/2021] [Indexed: 01/03/2023]
Abstract
Stimuli-responsive fusion and fission are widely observed in both bio-organizations and artificial molecular assemblies. However, the design of a system with structure and property persistence during repeated fusion and fission remains challenging. We show reversible fusion and fission of wet-spun graphene oxide (GO) fibers, in which a number of macroscopic fibers can fuse into a thicker one and can also separate into original individual fibers under stimulation of solvents. The dynamic geometrical deformation of GO fiber shells, caused by solvent evaporation and infiltration, is the key to the reversible fusion-fission cycles. This principle is extended to implement flexible transitions between complex fiber assemblies and the inclusion or expulsion of guest compounds.
Collapse
Affiliation(s)
- Dan Chang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jingran Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Zheng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
| | - Yilun Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Laurence Brassart
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fan Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
19
|
Zhou T, Cheng Q. Chemical Strategies for Making Strong Graphene Materials. Angew Chem Int Ed Engl 2021; 60:18397-18410. [PMID: 33755316 DOI: 10.1002/anie.202102761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/10/2022]
Abstract
Graphene materials have been widely applied in various fields because of their remarkable mechanical and electrical properties. However, two obstacles arise during the assembly of graphene platelets into macroscale graphene materials and composites that impair the performance of the resultant graphene materials: 1) the voids between the graphene platelets, and 2) the wrinkling of the graphene platelets. In the past decade, several strategies have been developed to eliminate these obstacles. These strategies result in strong macroscale graphene materials, such as graphene fibers with tensile strengths of over 3.4 GPa and sheets with tensile strengths of over 1.5 GPa, which have many practical applications. This Minireview summarizes the effective strategies for assembling graphene materials and compares their advantages and drawbacks. The preparation processes as well as the resulting fundamental mechanical properties and wide spectrum of electrical and magnetic properties are also discussed. Finally, our outlook for the future of this field is presented.
Collapse
Affiliation(s)
- Tianzhu Zhou
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
20
|
Jiang S, Wei Y, Shi SQ, Dong Y, Xia C, Tian D, Luo J, Li J, Fang Z. Nacre-Inspired Strong and Multifunctional Soy Protein-Based Nanocomposite Materials for Easy Heat-Dissipative Mobile Phone Shell. NANO LETTERS 2021; 21:3254-3261. [PMID: 33739112 DOI: 10.1021/acs.nanolett.1c00542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the hierarchically ordered "brick and mortar" (BM) architecture of natural nacre, in this study a rational assembly of boron nitride (BN) nanosheets was introduced into a mixture of trimethylolpropane triglycidyl ether (TTE) and soy protein isolate (SPI), and a strong and multifunctional SPI-based nanocomposite film with multinetwork structure was synthesized. At a low BN loading (<0.5%), the resulting multifunctional film was flexible, antiultraviolet, and nearly transparent and also displayed good thermal diffusion ability and exhibited an excellent combination of high tensile strength (36.4 MPa) and thermal conductivity (TC, 2.40 W·m-1·K-1), surpassing the performances of various types of petroleum-based plastics (displayed a tensile strength ranging from 1.9 to 21 MPa and TC ranging from 0.55-2.13 W·m-1·K-1), including nine different types of materials currently utilized for mobile phone shells, suggesting its vast potential in practical applications.
Collapse
Affiliation(s)
- Shuaicheng Jiang
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanqiang Wei
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Youming Dong
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dan Tian
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Luo
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Zhen Fang
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
- Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
21
|
Chang J, Zhang M, Zhao Q, Qu L, Yuan J. Ultratough and ultrastrong graphene oxide hybrid films via a polycationitrile approach. NANOSCALE HORIZONS 2021; 6:341-347. [PMID: 33660723 DOI: 10.1039/d1nh00073j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) is a classic two dimensional (2D) building block that can be used to develop high-performance materials for numerous applications, particularly in the energy and environmental fields. Currently, the precise assembly of GO nanosheets into macroscopic nanohybrids of superior strength and toughness is desirable, and faces challenges and trade-offs. Herein, we exploited the freshly established polycationitrile method as a powerful molecular crosslinking strategy to engineer ultratough and ultrastrong GO/polymer hybrid films, in which a covalent triazine-based network was constructed in a mild condition to reinforce the interface between GO nanosheets. The tensile strength and toughness reached 585 ± 25 MPa and 14.93 ± 1.09 MJ m-3, respectively, which, to the best of our knowledge, are the current world records in all GO-based hybrid films. As an added merit of the tailor-made polymer crosslinker, the high mechanical performance can be maintained in large part at an extremely high relative humidity of 98%. This emerging interface-engineering approach paves a new avenue to produce integrated strong-and-tough 2D nanohybrid materials that are useful in aerospace, artificial muscle, energy harvesting, tissue engineering and more.
Collapse
Affiliation(s)
- Jian Chang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Wang L, Wang Y, Dai J, Tian S, Xie A, Dai X, Pan J. Coordination-driven interfacial cross-linked graphene oxide-alginate nacre mesh with underwater superoleophobicity for oil-water separation. Carbohydr Polym 2021; 251:117097. [PMID: 33142635 DOI: 10.1016/j.carbpol.2020.117097] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Inspired by the seashell nacre and seaweed, a novel GO-Ca2+-SA nacre-inspired hybrid mesh was prepared via an interfacial layer-by-layer self-assembly and cross-linking, using graphene oxide (GO) and sodium alginate (SA) as the building blocks and calcium chloride as the coordination agent, respectively. Hybrid mesh was characterized by FTIR, XPS, XRD, SEM and contact angel instrument, showing superhydrophilic and underwater superoleophobic property and low oil adhesion, due to its wrinkle and rough surface, and high hydration ability of GO-Ca-alginate nanohydrogels. The separation efficiencies of various oil-water mixtures were above 99 %, with a highest flux of 119,426 L m-2 h-1. Hybrid mesh showed an orderly layered "brick and mortar" microstructure with many ultrasmall nanoscaled protuberances. Ca2+ ions could chelate with SA to form the "egg-box" structure, and interact with GO nanosheets. Hybrid mesh possessed high salt/acid/alkaline tolerance, abrasion resistance, mechanical property with Young's modulus of 35.8 ± 4.9 GPa, and excellent cycling stability.
Collapse
Affiliation(s)
- Lulu Wang
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Sujun Tian
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Atian Xie
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaohui Dai
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
Zhang S, Ma Y, Suresh L, Hao A, Bick M, Tan SC, Chen J. Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS NANO 2020; 14:9282-9319. [PMID: 32790347 DOI: 10.1021/acsnano.0c03268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As an excellent candidate for lightweight structural materials and nonmetal electrical conductors, carbon nanotube reinforced carbon matrix (CNT/C) composites have potential use in technologies employed in aerospace, military, and defense endeavors, where the combinations of light weight, high strength, and excellent conductivity are required. Both polymer infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) methods have been widely studied for CNT/C composite fabrications with diverse focuses and various modifications. Progress has been reported to optimize the performance of CNT/C composites from broad aspects, including matrix densification, CNT alignment, microstructure control, and interface engineering, etc. Recent approaches, such as using resistance heating for PIP or CVI, contribute to the development of CNT/C composites. To deliver a timely and up-to-date overview of CNT/C composites, we have reviewed the most recent trends in fabrication processes, summarized the mechanical reinforcement mechanism, and discussed the electrical and thermal properties, as well as relevant case studies for high-temperature applications. Conclusions and perspectives addressing future routes for performance optimization are also presented. Hence, this review serves as a rundown of recent advances in CNT/C composites and will be a valuable resource to aid future developments in this field.
Collapse
Affiliation(s)
- Songlin Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yan Ma
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textiles and Clothing, Nantong University, Nantong 226019, P.R. China
| | - Lakshmi Suresh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Ayou Hao
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
24
|
Vural M, Zhu H, Pena-Francesch A, Jung H, Allen BD, Demirel MC. Self-Assembly of Topologically Networked Protein-Ti 3C 2T x MXene Composites. ACS NANO 2020; 14:6956-6967. [PMID: 32437121 DOI: 10.1021/acsnano.0c01431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hierarchical organization plays an important role in the stunning physical properties of natural and synthetic composites. Limits on the physical properties of such composites are generally defined by percolation theory and can be systematically altered using the volumetric filler fraction of the inorganic/organic phase. In natural composites, organic materials such as proteins that interact with inorganic filler materials can further alter the hierarchical order and organization of the composite via topological interactions, expanding the limits of the physical properties defined by percolation theory. However, existing polymer systems do not offer a topological parameter that can systematically modulate the assembly characteristics of composites. Here, we present a composite based on proteins and titanium carbide (Ti3C2Tx) MXene that manifests a topological network that regulates the organization, and hence physical properties, of these biomimetic composites. We designed, recombinantly expressed, and purified synthetic proteins consisting of polypeptides with repeating amino acid sequences (tandem repeats) that have the ability to self-assemble into topologically networked biomaterials. We demonstrated that the interlayer distance between MXene sheets can be controlled systematically by the number of tandem repeat units. We varied the filler fraction and number of tandem repeat units to regulate the in-plane and out-of-plane electrical conductivities of these composites. Once Ti3C2Tx MXene sheets are separated enough to facilitate formation of cross-links in our proteins with the number of tandem repeat units reaching 11, the linear I-V characteristics of the composites switched into nonlinear I-V curves with a distinct hysteresis for out-of-plane electron transport, while the in-plane I-V characteristics remained linear. This highlights the impact of synthetic protein templates, which can be designed to modulate electronic transport in composites both isotropically and anisotropically.
Collapse
Affiliation(s)
- Mert Vural
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haoyue Zhu
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Abdon Pena-Francesch
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Huihun Jung
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin D Allen
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Melik C Demirel
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
25
|
Huang H, Peng L, Fang W, Cai S, Chu X, Liu Y, Gao W, Xu Z, Gao C. A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene. NANOSCALE 2020; 12:11971-11978. [PMID: 32458941 DOI: 10.1039/d0nr00725k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon materials are widely used in numerous fields, thus changing our lives. With the increasing consumption of carbon-based products, the disposal of consequent wastes has become a challenge due to their inert nature, which is hard to degrade, burn, or melt. Here, a recyclable strategy is proposed to deal with the explosive growth of carbon wastes. Through a fast and clean electrochemical method, carbon wastes are converted into functional building blocks of high value, such as graphene and graphene quantum dots (GQDs). For typical polyimide-pyrolyzed carbon (PPC), we establish the relationship between the chemical structure of raw materials and the characteristics of graphene products, including size and yield. The size-tunable graphene ranging from 3 nm to tens of micrometers is prepared by tuning the sp3/sp2 carbon ratio of PPC from 0.5 to 0 at adjustable temperatures (800 °C-2800 °C). Significantly, PPC with a bicontinuous structure (comprising sp2 and sp3) was efficiently cut into GQDs in 2 h with a high yield of 98%. Our protocol offers great potential for the scale-up preparations and applications of GQDs. Besides, we demonstrate that the GQDs performed well as dispersants to disperse hydrophobic carbon nanotubes (0.6 mg mL-1) in water and improved the gravimetric capacitance of graphene-based supercapacitors by 79.4% with 3% GQDs added as nano-fillers.
Collapse
Affiliation(s)
- Haoguang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| | - Li Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| | - Shengying Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| | - Xingyuan Chu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.
| |
Collapse
|
26
|
Li P, Yang M, Liu Y, Qin H, Liu J, Xu Z, Liu Y, Meng F, Lin J, Wang F, Gao C. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat Commun 2020; 11:2645. [PMID: 32461580 PMCID: PMC7253461 DOI: 10.1038/s41467-020-16494-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
Graphene has an extremely high in-plane strength yet considerable out-of-plane softness. High crystalline order of graphene assemblies is desired to utilize their in-plane properties, however, challenged by the easy formation of chaotic wrinkles for the intrinsic softness. Here, we find an intercalation modulated plasticization phenomenon, present a continuous plasticization stretching method to regulate spontaneous wrinkles of graphene sheets into crystalline orders, and fabricate continuous graphene papers with a high Hermans' order of 0.93. The crystalline graphene paper exhibits superior mechanical (tensile strength of 1.1 GPa, stiffness of 62.8 GPa) and conductive properties (electrical conductivity of 1.1 × 105 S m-1, thermal conductivity of 109.11 W m-1 K-1). We extend the ultrastrong graphene papers to the realistic laminated composites and achieve high strength combining with attractive conductive and electromagnetic shielding performance. The intercalation modulated plasticity is revealed as a vital state of graphene assemblies, contributing to their industrial processing as metals and plastics.
Collapse
Affiliation(s)
- Peng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Mincheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Huasong Qin
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jingran Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China.
| | - Yilun Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, 710049, Xi'an, P. R. China.
| | - Fanxu Meng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Jiahao Lin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Fang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China.
| |
Collapse
|
27
|
Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 2020; 580:210-215. [PMID: 32269352 DOI: 10.1038/s41586-020-2161-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/24/2020] [Indexed: 11/08/2022]
Abstract
Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness1-3. Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix4-6. Inspired by these biological structures, several assembly strategies-including layer-by-layer4,7,8, casting9,10, vacuum filtration11-13 and use of magnetic fields14,15-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 ± 80 megapascals and a Young's modulus of 198.8 ± 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 ± 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre; meanwhile, the tensile strength is 1,195 ± 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.
Collapse
|
28
|
Wei Q, Pei S, Qian X, Liu H, Liu Z, Zhang W, Zhou T, Zhang Z, Zhang X, Cheng HM, Ren W. Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907411. [PMID: 32091164 DOI: 10.1002/adma.201907411] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Indexed: 05/21/2023]
Abstract
Ultrathin, lightweight, high-strength, and thermally conductive electromagnetic interference (EMI) shielding materials with high shielding effectiveness (SE) are highly desired for next-generation portable and wearable electronics. Pristine graphene (PG) has a great potential to meet all the above requirements, but the poor processability of PG nanosheets hinders its applications. Here, efficient synthesis of highly aligned laminated PG films and nacre-like PG/polymer composites with a superhigh PG loading up to 90 wt% by a scanning centrifugal casting method is reported. Due to the PG-nanosheets-alignment-induced high electrical conductivity and multiple internal reflections, such films show superhigh EMI SE comparable to the reported best synthetic material, MXene films, at an ultralow thickness. An EMI SE of 93 dB is obtained for the PG film at a thickness of ≈100 µm, and 63 dB is achieved for the PG/polyimide composite film at a thickness of ≈60 µm. Furthermore, such PG-nanosheets-based films show much higher mechanical strength (up to 145 MPa) and thermal conductivity (up to 190 W m-1 K-1 ) than those of their MXene counterparts. These excellent comprehensive properties, along with ease of mass production, pave the way for practical applications of PG nanosheets in EMI shielding.
Collapse
Affiliation(s)
- Qinwei Wei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Songfeng Pei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Xitang Qian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Haopeng Liu
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 100819, P. R. China
| | - Zhibo Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Weimin Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Tianya Zhou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| | - Zhangcai Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 100819, P. R. China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, P. R. China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China
| |
Collapse
|
29
|
Zeng F, Chen X, Xiao G, Li H, Xia S, Wang J. A Bioinspired Ultratough Multifunctional Mica-Based Nanopaper with 3D Aramid Nanofiber Framework as an Electrical Insulating Material. ACS NANO 2020; 14:611-619. [PMID: 31891484 DOI: 10.1021/acsnano.9b07192] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid development of modern electrical equipment toward miniaturization and high power puts forward stringent requirements to the mechanical reliability, dielectric property, and heat resistance of electrical insulating materials. Simultaneous integration of all these properties for mica-based materials remains unresolved. Herein, inspired by the three-dimensional (3D) chitin nanofiber framework within the layered architecture of natural nacre, we report a large-area layered mica-based nanopaper containing a 3D aramid nanofiber framework, which is prepared by a sol-gel-film transformation process. The coupling of 3D aramid nanofiber framework and oriented mica nanoplatelets imparts the nanopaper with good mechanical strength, particularly outstanding ductility (close to 80%) and toughness (up to 109 MJ m-3), which are 4-240 and 6-220 times higher than those of all other nacre-mimetics. Meanwhile, the excellent mechanical properties are integrated with high dielectric strength (164 kV mm-1), excellent heat resistance (Tg = 268 °C), good solvent resistance, and nonflammability, much better than conventional mica-based materials. Additionally, we successfully demonstrate its continuous production in the form of nanotape. The fabulous multiproperty combination and continuous production capability render the mica-based nanopaper a very promising electrical insulating material in miniaturized high-power electrical equipment.
Collapse
Affiliation(s)
- Fanzhan Zeng
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
- College of Packaging and Material Engineering , Hunan University of Technology , Zhuzhou 412007 , China
| | - Xianhong Chen
- College of Metallurgy and Material Engineering , Hunan University of Technology , Zhuzhou 412007 , China
| | - Guang Xiao
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
| | - Hao Li
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
| | - Shuang Xia
- Institute of Chemical Materials , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Jianfeng Wang
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
| |
Collapse
|
30
|
Pinto SC, Gonçalves G, Sandoval S, López-Periago AM, Borras A, Domingo C, Tobias G, Duarte I, Vicente R, Marques PAAP. Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability. Carbohydr Polym 2019; 230:115598. [PMID: 31887938 DOI: 10.1016/j.carbpol.2019.115598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/27/2019] [Accepted: 11/09/2019] [Indexed: 12/22/2022]
Abstract
We present a novel method for processing bacterial cellulose/graphene oxide (BC/GO) aerogels with multifunctional properties. The addition of a small amount of dimethyl sulfoxide (DMSO) to the aqueous dispersion of the nanomaterials during the gelification process affected the water freezing temperature of the system and thereby affecting the porous structure of the aerogel obtained after liophilization. The possibility to obtain small and elongated pore with axial orientation allowed a significant improvement of the structural stability of the aerogels. Moreover, the aerogels reduction by thermal treatment with ammonia gas induced crosslinking between the different nanophases, thus given an incremental factor for the mechanical performance of the aerogels under harsh conditions. The resulting aerogels also showed significant improvements in terms of thermal stability and electrical conductivity. These multifunctional BC/GO aerogels present high potential as sustainable and ecological alternative materials for lightweight packaging, filters for atmosphere and water treatment, or energy applications.
Collapse
Affiliation(s)
- Susana C Pinto
- TEMA, Mechanical Engineering Department, University of Aveiro, P-3810-193 Aveiro, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, P-3810-193 Aveiro, Portugal.
| | - Stefania Sandoval
- Institut de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Ana M López-Periago
- Institut de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Alejandro Borras
- Institut de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Concepción Domingo
- Institut de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Gerard Tobias
- Institut de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Isabel Duarte
- TEMA, Mechanical Engineering Department, University of Aveiro, P-3810-193 Aveiro, Portugal
| | - Romeu Vicente
- RISCO, Civil Engineering Department, University of Aveiro, P-3810-193 Aveiro, Portugal
| | - Paula A A P Marques
- TEMA, Mechanical Engineering Department, University of Aveiro, P-3810-193 Aveiro, Portugal.
| |
Collapse
|
31
|
Wen Y, Gao E, Hu Z, Xu T, Lu H, Xu Z, Li C. Chemically modified graphene films with tunable negative Poisson's ratios. Nat Commun 2019; 10:2446. [PMID: 31164652 PMCID: PMC6547682 DOI: 10.1038/s41467-019-10361-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Graphene-derived macroscopic assemblies feature hierarchical nano- and microstructures that provide numerous routes for surface and interfacial functionalization achieving unconventional material properties. We report that the microstructural hierarchy of pristine chemically modified graphene films, featuring wrinkles, delamination of close-packed laminates, their ordered and disordered stacks, renders remarkable negative Poisson’s ratios ranging from −0.25 to −0.55. The mechanism proposed is validated by the experimental characterization and theoretical analysis. Based on the understanding of microstructural origins, pre-strech is applied to endow chemically modified graphene films with controlled negative Poisson’s ratios. Modulating the wavy textures of the inter-connected network of close-packed laminates in the chemically modified graphene films also yields finely-tuned negative Poisson’s ratios. These findings offer the key insights into rational design of films constructed from two-dimensional materials with negative Poisson’s ratios and mechanomutable performance. Negative Poisson’s ratio, offering unusual properties, is displayed by several materials and predicted for graphene. This work demonstrates such behaviors in monolithic films with interconnected networks of close-packed graphene laminates, and tunability through the chemistry and microstructures.
Collapse
Affiliation(s)
- Yeye Wen
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Enlai Gao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhenxing Hu
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Tingge Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Hongbing Lu
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, 100084, Beijing, China.
| | - Chun Li
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
32
|
Ji D, Kim J. Bioinspired Design and Fabrication of Polymer Composite Films Consisting of a Strong and Stiff Organic Matrix and Microsized Inorganic Platelets. ACS NANO 2019; 13:2773-2785. [PMID: 30676740 DOI: 10.1021/acsnano.8b06767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intensive studies on nacre-inspired composites with exceptional mechanical properties based on an organic/inorganic hierarchical layered structure have been conducted; however, integrating high strength, stiffness, and toughness for engineering materials still remains a challenge. We herein report the design and fabrication of polymer composites through a hydrogel-film casting method that allow for building uniformly layered organic/inorganic microstructure. Alginate (Alg) was used for an organic matrix, whose mechanical properties were controlled by Ca2+ cross-linking toward the simultaneously strong, stiff, and tough resultant composite. Alumina (Alu) microplatelets were used for horizontally aligned inorganic phase, and their alignment and interactions with the organic matrix were improved by polyvinylpyrrolidone (PVP) coating on the platelet. The composite film exhibits well-balanced elastic and plastic deformation under tensile stress, leading to high stiffness and toughness, which have not been generally achieved in microplatelet-based composite films developed in previous studies. The synergistic effect of Ca2+ cross-linking and PVP-coated Alu platelets on the mechanical properties improved polymer-platelet interfacial interactions, and platelet alignment is clearly demonstrated through mechanical tests and Fourier transform infrared and X-ray diffraction analyses. We further demonstrate that the reinforcing effect of the Alu platelet and PVP-coated platelet on the mechanical properties is dependent on humidity. Such effects are maximized at highly dry conditions, which is consistent with the model estimation. Furthermore, a thick bulk composite was produced by laminating thin films and showed high mechanical properties under flexural stress. Our design and fabrication strategies combined with the understanding of their mechanism yield an alternative approach to produce engineered composite materials.
Collapse
|
33
|
Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 2019; 48:1566-1595. [PMID: 30519703 DOI: 10.1039/c8cs00706c] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly conductive and intrinsically stretchable electrodes are vital components of soft electronics such as stretchable transistors and circuits, sensors and actuators, light-emitting diode arrays, and energy harvesting devices. Many kinds of conducting nanomaterials with outstanding electrical and mechanical properties have been integrated with elastomers to produce stretchable conductive nanocomposites. Understanding the characteristics of these nanocomposites and assessing the feasibility of their fabrication are therefore critical for the development of high-performance stretchable conductors and electronic devices. We herein summarise the recent advances in stretchable conductors based on the percolation networks of nanoscale conductive fillers in elastomeric media. After discussing the material-, dimension-, and size-dependent properties of conductive fillers and their implications, we highlight various techniques that are used to reduce the contact resistance between the conductive filler materials. Furthermore, we categorize elastomer matrices with different stretchabilities and mechanical properties based on their polymeric chain structures. Then, we discuss the fabrication techniques of stretchable conductive nanocomposites toward their use in soft electronics. Finally, we provide representative examples of stretchable device applications and conclude the review with a brief outlook for future research.
Collapse
Affiliation(s)
- Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. NANOSCALE 2019; 11:4653-4682. [PMID: 30840003 DOI: 10.1039/c9nr00117d] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recent development of nanoscale fillers, such as carbon nanotubes, graphene, and nanocellulose, allows the functionality of polymer nanocomposites to be controlled and enhanced. However, conventional synthesis methods of polymer nanocomposites cannot maximise the reinforcement of these nanofillers at high filler content. Approaches for the synthesis of high content filler polymer nanocomposites are suggested to facilitate future applications. The fabrication methods address the design of the polymer nanocomposite architecture, which encompasses one, two, and three dimensional morphologies. Factors that hamper the reinforcement of nanostructures, such as alignment, dispersion of the filler and interfacial bonding between the filler and polymer, are outlined. Using suitable approaches, maximum potential reinforcement of nanoscale fillers can be anticipated without limitations in orientation, dispersion, and the integrity of the filler particle-matrix interface. High filler content polymer composites containing emerging materials such as 2D transition metal carbides, nitrides, and carbonitrides (MXenes) are expected in the future.
Collapse
Affiliation(s)
- Christian Harito
- Energy Technology Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
| | | | | | | | | |
Collapse
|
35
|
Chen H, Du W, Liu J, Qu L, Li C. Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chem Sci 2019; 10:1244-1253. [PMID: 30774925 PMCID: PMC6349015 DOI: 10.1039/c8sc03695k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/04/2018] [Indexed: 11/21/2022] Open
Abstract
The excellent solution-processability of graphene oxide (GO) has provided a collection of strategies for the construction of functional graphene assemblies. To improve the performance of graphene-based materials, structurally intact GO should be prepared as a precursor for high-quality graphene; however, solution chemical methods have been constantly challenged by a structural integrity versus fabrication yield trade-off. Here, we report a wet chemical method for the high-efficiency production of a high-quality graphene oxide precursor, with all steps conducted at room-temperature. The functionalization of graphite was performed under temperature and water content control in a concentrated sulfuric acid-potassium permanganate system, and the resulting GO showed a monolayer yield of over 120%. We show that the increased production yield comes from the high functionalization degree and, more interestingly, the functional groups on GO were proven to be removable upon reduction with hydroiodic acid, which produced high-quality graphene-based materials.
Collapse
Affiliation(s)
- Hongwu Chen
- Department of Chemistry , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China .
| | - Wencheng Du
- Department of Chemistry , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China .
| | - Jing Liu
- Department of Chemistry , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China .
| | - Liangti Qu
- Department of Chemistry , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China .
- Key Laboratory for Advanced Materials Processing Technology , Ministry of Education of China , State Key Laboratory of Tribology , Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Chun Li
- Department of Chemistry , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China .
| |
Collapse
|
36
|
Huang H, He P, Huang T, Hu S, Xu T, Gu H, Yang S, Song L, Xie X, Ding G. Electrochemical Strategy for Flexible and Highly Conductive Carbon Films: The Role of 3-Dimensional Graphene/Graphite Aggregates. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1239-1246. [PMID: 30525387 DOI: 10.1021/acsami.8b17060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conductive carbon films with good flexibility are ever-increasingly desired for electronics. Previous efforts relying on graphene films to achieve this required special treatment to create wrinkles in the lamellar stacking sheet structure. Here, films with a wrinkled structure were facilely fabricated from electrochemically derived 3-dimiensional (3D) graphene/graphite aggregates, exhibiting excellent flexibility and high conductivity. The resulting films are very flexible that can bear 1000 times fold without breakage. A high conductivity up to 100 000 S m-1 can be achieved after a relatively low temperature annealing (1000 °C) owing to its low content of defect and large size of graphene/graphite aggregates. Based on these properties, an electrothermal heater assembled from these composite films supplies a high saturated temperature (423 °C) at low working voltages (4 V). These superior properties, together with the advantage of environmental friendliness and facile and large-scale fabrication, endow the composite films with great potential applications in flexible electronics.
Collapse
Affiliation(s)
- Haoguang Huang
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Peng He
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Tao Huang
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Shike Hu
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Tao Xu
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hongyu Gu
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Siwei Yang
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Lixin Song
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xiaoming Xie
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Guqiao Ding
- CAS Center for Excellence in Superconducting Electronics (CENSE) , Shanghai 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
37
|
Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. J Mater Chem B 2019; 7:6890-6913. [DOI: 10.1039/c9tb01733j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assembly of silk fibroin and graphene-based nanomaterials would present fantastic properties and functions via optimizing the interaction between each other, and can be processed into various formats to tailor specific biomedical applications.
Collapse
Affiliation(s)
- Kun Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| |
Collapse
|
38
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
39
|
Shim YH, Lee KE, Shin TJ, Kim SO, Kim SY. Tailored Colloidal Stability and Rheological Properties of Graphene Oxide Liquid Crystals with Polymer-Induced Depletion Attractions. ACS NANO 2018; 12:11399-11406. [PMID: 30407782 DOI: 10.1021/acsnano.8b06320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene oxide liquid crystallinity (GO LC) has been widely exploited for high-performance graphene-based applications. In this regard, colloidal stability of GO LC suspension is a crucial requirement, particularly while polymers are often added to the GO LC. Unfortunately, current level of knowledge on how polymers influence the structure and properties of GO LC is not sufficient to systematically guide the development of applications. Here, we investigate the microstructure and rheological properties of GO LC suspensions in the presence of polymer additives with varying molecular weights and concentrations. Similar to conventional colloidal systems, non-negligible polymer-induced interactions are found in GO LC suspensions, which can effectively modulate the interaction among GO platelets and the relevant physical properties. On the basis of extensive small-angle X-ray scattering and rheological measurements, we demonstrate that, contrary to the general perception, polymer-induced depletion attraction can increase the colloidal stability of GO, while also preventing the vitrification of GO LC. In addition, a proper level of polymer additive can reduce the viscosity of GO LC suspensions by orders of magnitude, providing an effective route to GO LC-based solution processing. After all, the colloidal stability and rheological properties of GO can significantly impact the quality of GO. Therefore, we believe that our finding will be of great interest in the field of graphene-based applications, as it presents effective strategies for improving properties.
Collapse
Affiliation(s)
| | - Kyung Eun Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science & Engineering , KAIST , Daejeon , 34141 , Republic of Korea
| | | | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science & Engineering , KAIST , Daejeon , 34141 , Republic of Korea
| | | |
Collapse
|
40
|
Ling S, Jin K, Qin Z, Li C, Zheng K, Zhao Y, Wang Q, Kaplan DL, Buehler MJ. Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing High-Performance Dynamic Responsive Bio-Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802306. [PMID: 30260527 PMCID: PMC7189256 DOI: 10.1002/adma.201802306] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/14/2018] [Indexed: 05/20/2023]
Abstract
Major challenge remains in the design and fabrication of artificial hierarchical materials that mimic the structural and functional features of these natural materials. Here, a novel biomimetic strategy to assemble hierarchical materials from biological nanobuilding blocks is demonstrated. The constituents and structures of the materials are designed by multiscale modeling and then experimentally constructed by multiscale self-assembly. The resultant materials that consist of silk nanofibrils (SNFs), hydroxyapatite (HAP), and chitin nanofibrils (CNFs) show nacre-like structures with mechanical strength and toughness better than most natural nacre and nacre-like nanocomposites. In addition, these SNF/HAP:CNF nanocomposites can be programmed into "grab-and-release" actuators due to the gradient structure of the nanocomposites as well as the high water sensitivity of each of the components, and thusshow potential applications in the design of novel third-generation biomaterials for potential clinical applications. In addition, this "in silico design and biomimetic assembly" route represents a rational, low-cost, and efficient strategy for the design and preparation of robust, hierarchical, and functional nanomaterials to meet a variety of application requirements in bio-nanotechnologies.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yanyan Zhao
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Qi Wang
- Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
41
|
One-pot synthesis of graphene/chitin nanofibers hybrids and their remarkable reinforcement on Poly(vinyl alcohol). Carbohydr Polym 2018; 194:146-153. [DOI: 10.1016/j.carbpol.2018.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/19/2022]
|
42
|
Wan S, Fang S, Jiang L, Cheng Q, Baughman RH. Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and π Bridging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802733. [PMID: 30024065 DOI: 10.1002/adma.201802733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/21/2018] [Indexed: 06/08/2023]
Abstract
The goal of this work is to develop an inexpensive low-temperature process that provides polymer-free, high-strength, high-toughness, electrically conducting sheets of reduced graphene oxide (rGO). To develop this process, we have evaluated the mechanical and electrical properties resulting from the application of an ionic bonding agent (Cr3+ ), a π-π bonding agent comprising pyrene end groups, and their combinations for enhancing the performance of rGO sheets. When only one bonding agent was used, the π-π bonding agent is much more effective than the ionic bonding agent for improving both the mechanical and electrical properties of rGO sheets. However, the successive application of ionic bonding and π-π bonding agents maximizes tensile strength, toughness, long-term electrical stability in various corrosive solutions, and resistance to mechanical abuse and ultrasonic dissolution. Using a combination of ionic bonding and π-π bonding agents, high tensile strength (821 MPa), high toughness (20 MJ m-3 ), and electrical conductivity (416 S cm-1 ) were obtained, as well as remarkable retention of mechanical and electrical properties during ultrasonication and mechanical cycling by both sheet stretch and sheet folding, suggesting high potential for applications in aerospace and flexible electronics.
Collapse
Affiliation(s)
- Sijie Wan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
- Shen Yuan Honors College, Beihang University, Beijing, 100191, P. R. China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qunfeng Cheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
43
|
Meng X, Pan H, Zhu C, Chen Z, Lu T, Xu D, Li Y, Zhu S. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22611-22622. [PMID: 29888597 DOI: 10.1021/acsami.8b05514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m-1 K-1) and through-plane (4.596 W m-1 K-1) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm-1. The strategy reported here may open a new avenue to the development of high-performance thermal management films.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hui Pan
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chengling Zhu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhixin Chen
- School of Mechanical, Materials & Mechatronics Engineering , University of Wollongong , Wollongong , NSW 2522 , Australia
| | - Tao Lu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Da Xu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
44
|
Wang Y, Li T, Ma P, Zhang S, Zhang H, Du M, Xie Y, Chen M, Dong W, Ming W. Artificial Nacre from Supramolecular Assembly of Graphene Oxide. ACS NANO 2018; 12:6228-6235. [PMID: 29890073 DOI: 10.1021/acsnano.8b03025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Inspired by the "brick-and-mortar" structure and remarkable mechanical performance of nacre, many efforts have been devoted to fabricating nacre-mimicking materials. Herein, a class of graphene oxide (GO) based artificial nacre material with quadruple hydrogen-bonding interactions was fabricated by functionalization of polydopamine-capped graphene oxide (PDG) with 2-ureido-4[1 H]-pyrimidinone (UPy) self-complementary quadruple hydrogen-bonding units followed by supramolecular assembly process. The artificial nacre displays a strict "brick-and-mortar" structure, with PDG nanosheets as the brick and UPy units as the mortar. The resultant nanocomposite shows an excellent balance of strength and toughness. Because of the strong strengthening via quadruple hydrogen bonding, the tensile strength and toughness can reach 325.6 ± 17.8 MPa and 11.1 ± 1.3 MJ m-3, respectively, thus exceeding natural nacre, and reaching 3.6 and 10 times that of a pure GO artificial nacre. Furthermore, after further H2O treatment, the resulting H2O-treated PDG-UPy actuator displays significant bending actuations when driven by heat. This work provides a pathway for the development of artificial nacre for their potential applications in energy conversion, temperature sensor, and thermo-driven actuator.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
- Department of Chemistry and Biochemistry , Georgia Southern University , P.O. Box 8064, Statesboro , Georgia 30460 , United States
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
| | - Shengwen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
| | - Yi Xie
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , China
| | - Weihua Ming
- Department of Chemistry and Biochemistry , Georgia Southern University , P.O. Box 8064, Statesboro , Georgia 30460 , United States
| |
Collapse
|
45
|
Ji D, Choi S, Kim J. A Hydrogel-Film Casting to Fabricate Platelet-Reinforced Polymer Composite Films Exhibiting Superior Mechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801042. [PMID: 29808527 DOI: 10.1002/smll.201801042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/21/2018] [Indexed: 05/23/2023]
Abstract
The fabrication of mechanically superior polymer composite films with controllable shapes on various scales is difficult. Despite recent research on polymer composites consisting of organic matrices and inorganic materials with layered structures, these films suffer from complex preparations and limited mechanical properties that do not have even integration of high strength, stiffness, and toughness. Herein, a hydrogel-film casting approach to achieve fabrication of simultaneously strong, stiff, and tough polymer composite films with well-defined microstructure, inspired from a layer-by-layer structure of nacre is reported. Ca2+ -crosslinked alginate hydrogels incorporated with platelet-like alumina particles are dried to form composite films composed of horizontally aligned alumina platelets and alginate matrix with uniformly layered microstructure. Alumina platelets are evenly distributed parallel without precipitations and contribute to synergistic enhancements of strength, stiffness and toughness in the resultant film. Consequentially, Ca2+ -crosslinked alginate/alumina (Ca2+ -Alg/Alu) films show exceptional tensile strength (267 MPa), modulus (17.9 GPa), and toughness (3.60 MJ m-3 ). Furthermore, the hydrogel-film casting allows facile preparation of polymer composite films with controllable shapes and various scales. The results suggest an alternative approach to design and prepare polymer composites with the layer-by-layer structure for superior mechanical properties.
Collapse
Affiliation(s)
- Donghwan Ji
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Suji Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
46
|
Xiong R, Kim HS, Zhang L, Korolovych VF, Zhang S, Yingling YG, Tsukruk VV. Wrapping Nanocellulose Nets around Graphene Oxide Sheets. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Ho Shin Kim
- Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695-7907 USA
| | - Lijuan Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Volodymyr F. Korolovych
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Shuaidi Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695-7907 USA
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| |
Collapse
|
47
|
Xiong R, Kim HS, Zhang L, Korolovych VF, Zhang S, Yingling YG, Tsukruk VV. Wrapping Nanocellulose Nets around Graphene Oxide Sheets. Angew Chem Int Ed Engl 2018; 57:8508-8513. [DOI: 10.1002/anie.201803076] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Ho Shin Kim
- Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695-7907 USA
| | - Lijuan Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Volodymyr F. Korolovych
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Shuaidi Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695-7907 USA
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| |
Collapse
|
48
|
Gao E, Xu Z. Bio-inspired graphene-derived membranes with strain-controlled interlayer spacing. NANOSCALE 2018; 10:8585-8590. [PMID: 29696272 DOI: 10.1039/c8nr00013a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The precisely controlled size of nanoscale fluidic channels plays a critical role in resolving the permeation-selectivity trade-off in separation and filtration applications, where highly efficient gas separation and water desalination are targeted. Inspired by natural nacre where the spacing between mineral platelets changes upon applying tension as fractured mineral bridges climb over each other, bio-inspired graphene-derived membranes with sheets cross-linked by aligned covalent bonds are proposed in design, to ensure a controlled interlayer spacing ranging from 4 Å to 14 Å while preserving structural and mechanical stabilities by prohibiting swelling. The underlying mechanism is that the tension applied to the membrane is transferred between finite-sized graphene sheets through interlayer shear of the cross-links, which expands the interlayer gallery. First-principles calculations and continuum mechanics based model analysis are combined to explore the feasibility of this protocol, by considering the microstructures of graphene-derived membranes that have recently been demonstrated to offer exceptional performance in selective mass transport. The results show that the critical size range in molecular sieving is covered by this synergetic interface- and strain-engineering approach.
Collapse
Affiliation(s)
- Enlai Gao
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
49
|
Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. Proc Natl Acad Sci U S A 2018; 115:5359-5364. [PMID: 29735659 PMCID: PMC6003513 DOI: 10.1073/pnas.1719111115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There is a continuing search for manufacturable sheets having high strength and toughness in all sheet directions for diverse applications, from airplanes to windmills. Cross-plied carbon fibers in a polymer resin requiring high-temperature cure presently provide the common solution. We demonstrate cross-linked graphene sheets that are manufacturable from graphene platelets, which are resin-free, processable at low temperature, contain less than 10 wt % additives, and provide high strength and record toughness in all in-plane directions. This advance results from successive use of π–π and covalent cross-linking agents. Simultaneous enhancement of strength, durability, and electrical conductivity are demonstrated. Spectroscopic measurements, including Raman studies of interplatelet stress transfer, elucidate the chemical nature and physical consequences of these dual cross-linking agents. We here show that infiltrated bridging agents can convert inexpensively fabricated graphene platelet sheets into high-performance materials, thereby avoiding the need for a polymer matrix. Two types of bridging agents were investigated for interconnecting graphene sheets, which attach to sheets by either π–π bonding or covalent bonding. When applied alone, the π–π bonding agent is most effective. However, successive application of the optimized ratio of π–π bonding and covalent bonding agents provides graphene sheets with the highest strength, toughness, fatigue resistance, electrical conductivity, electromagnetic interference shielding efficiency, and resistance to ultrasonic dissolution. Raman spectroscopy measurements of stress transfer to graphene platelets allow us to decipher the mechanisms of property improvement. In addition, the degree of orientation of graphene platelets increases with increasing effectiveness of the bonding agents, and the interlayer spacing increases. Compared with other materials that are strong in all directions within a sheet, the realized tensile strength (945 MPa) of the resin-free graphene platelet sheets was higher than for carbon nanotube or graphene platelet composites, and comparable to that of commercially available carbon fiber composites. The toughness of these composites, containing the combination of π–π bonding and covalent bonding, was much higher than for these other materials having high strengths for all in-plane directions, thereby opening the path to materials design of layered nanocomposites using multiple types of quantitatively engineered chemical bonds between nanoscale building blocks.
Collapse
|
50
|
Chen FF, Zhu YJ, Chen F, Dong LY, Yang RL, Xiong ZC. Fire Alarm Wallpaper Based on Fire-Resistant Hydroxyapatite Nanowire Inorganic Paper and Graphene Oxide Thermosensitive Sensor. ACS NANO 2018. [PMID: 29532660 DOI: 10.1021/acsnano.8b00047] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wallpaper with multiple functions, such as fire resistance and an automatic alarm in fire disasters, will be attractive for the interior decoration of houses. Herein, we report a smart fire alarm wallpaper prepared using fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) and graphene oxide (GO) thermosensitive sensors. At room temperature, the GO thermosensitive sensor is in a state of electrical insulation; however, it becomes electrically conductive at high temperatures. In a fire disaster, high temperature will rapidly remove the oxygen-containing groups of GO, leading to the transformation process of GO from an electrically insulated state into an electrically conductive one. In this way, the alarm lamp and alarm buzzer connected with the GO thermosensitive sensor will send out the alerts to people immediately for taking emergency actions. After the surface modification with polydopamine of GO (PGO), the sensitivity and flame retardancy of the GO thermosensitive sensor are further improved, resulting in a low responsive temperature (126.9 °C), fast response (2 s), and sustained working time in the flame (at least 5 min). Compared with combustible commercial wallpaper, the smart fire alarm wallpaper based on HNs and GO (or PGO) is superior owing to excellent nonflammability and high-temperature resistance of HNs, which can protect the GO (or PGO) thermosensitive sensor from the flames. The smart fire alarm wallpaper can be processed into various shapes, dyed with different colors, and printed with the commercial printer and thus has promising applications in high-safety interior decoration of houses.
Collapse
Affiliation(s)
- Fei-Fei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
| | - Li-Ying Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
| | - Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
| |
Collapse
|