1
|
Deng J, Liu C, Madou M. Continuously superior-strong carbon nanofibers by additive nanostructuring and carbonization of polyacrylonitrile jetting. MICROSYSTEMS & NANOENGINEERING 2024; 10:185. [PMID: 39658550 PMCID: PMC11631983 DOI: 10.1038/s41378-024-00800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 12/12/2024]
Abstract
Carbon nanofibers show the advantages of scale effects on electrical and mechanical properties for applications such as aerospace1,2, automotive3,4, and energy5,6, but have to confront the challenge of maximizing the role of scale effects. Here, a method of additive nanostructuring and carbonization of polyacrylonitrile (PAN) jetting for the nano-forming of carbon fibers is developed by understanding the electrostatic submicro-initiation of a PAN jetting, altering the microstructure of PAN-based jetting fibers at the nanoscale and implementing subsequent carbonization of PAN jetting nanofiber. Using this method of additive nanostructuring and carbonization in combination with the radial distribution pattern of shear stress, we find that the conformation of some molecular chains inside the PAN nanofibers is transformed into the zigzag conformation. The ability to materialize and carbonize such PAN nanofibers with various conformational structures in the form of arrays on diverse micro-structures and macro-substrates enables the forming of continuous carbon nanofibers with a diameter of ~20 nm and allows the tensile strength of carbon fibers to be enhanced to 212 GPa through the combination of zigzag conformation and nanoscale effects. These advantages create opportunities for the application of maximizing nanoscale effects that have not previously been technically possible.
Collapse
Affiliation(s)
- Jufeng Deng
- Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guizhou, 550025, China.
| | - Chong Liu
- School of Mechanical Engineering, Dalian University of Technology, 116023, Dalian, China.
| | - Marc Madou
- Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92617, USA.
- School of Engineering and Science, Tecnologico de Monterrey, Ciudad de México, 64849, Mexico.
| |
Collapse
|
2
|
Jeong W, Shin H, Kang DJ, Jeon H, Seo J, Han TH. Highly Stable Heating Fibers of Ti 3C 2T x MXene and Polyacrylonitrile via Synergistic Thermal Annealing. SMALL METHODS 2024; 8:e2400199. [PMID: 38798160 PMCID: PMC11672183 DOI: 10.1002/smtd.202400199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Indexed: 05/29/2024]
Abstract
Nanohybrid assemblies provide an effective platform for integrating the intrinsic properties of individual components into microscale fibers. In this study, a novel approach for creating mechanically and environmentally stable MXene fibers through the synergistic assembly of MXene and polyacrylonitrile (PAN), is introduced. Unlike fibers generated via a conventional stabilization process, which relies on air-based stabilization to transform the PAN molecules into ring structures fundamental to carbon fibers, the hybrid fibers are annealed in an Ar atmosphere. This unique approach suggests MXene can serve as an oxygen provider that is essential for stabilizing PAN. As a result, significantly improved interfiber compactness is achieved and the oxidation stability of MXene is enhanced under atmospheric conditions. The resulting fibers exhibit exceptional stability, even after extended exposure to high humidity and elevated temperatures. This highlights the suitability of the thermally annealed MXene-PAN (T-MX-PAN) fibers as robust electric heating elements. Notably, these fibers consistently generate heat over 1800 bending cycles. When integrated into fabrics, they demonstrate the capability to generate sufficient heat for melting ice and rapid evaporation. This study highlights the potential of T-MX-PAN fibers as next-generation wearable heaters and offers valuable insights into advancing wearable technology in demanding environments.
Collapse
Affiliation(s)
- Woojae Jeong
- Department of Organic and Nano EngineeringHuman‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
- Research Institute of Industrial ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Hwansoo Shin
- Department of Organic and Nano EngineeringHuman‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
- Research Institute of Industrial ScienceHanyang UniversitySeoul04763Republic of Korea
| | - Dong Jun Kang
- Department of Organic and Nano EngineeringHuman‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
| | - Hongchan Jeon
- Materials Research & Engineering CenterSustainable Materials Research TeamHyundai Motor CompanyUiwang16082Republic of Korea
| | - Jaesik Seo
- Materials Research & Engineering CenterSustainable Materials Research TeamHyundai Motor CompanyUiwang16082Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano EngineeringHuman‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
- Research Institute of Industrial ScienceHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
3
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Liao M, Zhao B, Zhang G, Peng J, Zhang Y, Liu B, Wang X. The oxygen evolution reaction on cobalt atom embedded nitrogen doped graphene electrocatalysts: a density functional theory study. Phys Chem Chem Phys 2024; 26:14079-14088. [PMID: 38687286 DOI: 10.1039/d4cp00542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The oxygen evolution reaction (OER) is essential for the development of renewable energy conversion and storage technologies. Eight N-doped graphenes containing variable numbers of embedded cobalt atoms (Coxy-NG, x = 1-4, y = 1-3, where x represents the number of embedded Co atoms and y represents different configurations) were designed and their OER electrocatalytic activities were systematically studied through density functional theory calculations. The significant roles of the number of Co atoms and their configuration in their OER performance were discussed in detail. Co31-NG occupies the peak of the activity volcano plot with a low overpotential of 0.31 V, which is smaller than Co11-NG with only one Co atom and even superior to the widely used IrO2 (0.56 V). The electronic structure and electron density analysis reveal that the outstanding electrocatalytic performance is due to the orbital hybridization between Co and N atoms and the increased positive charge on in-plane Co due to the out-of-plane Co atoms/clusters. This work clarifies the important role of transition atoms and provides excellent examples for reducing the overpotential through embedding several transition metal atoms onto single-atom electrocatalysts.
Collapse
Affiliation(s)
- Meijing Liao
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Bing Zhao
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guangsong Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Junhao Peng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Bin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xinfang Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| |
Collapse
|
5
|
Wang L, Li K, Chen F, Guo R, Zhao Y, Liu S, Zhang Y, Li Z, Shen C, Wang Z, Ming X, Liu Y, Chen Y, Liu Y, Gao C, Xu Z. High Performance Nacre Fibers by Engineering Interfacial Entanglement. NANO LETTERS 2024; 24:4256-4264. [PMID: 38557048 DOI: 10.1021/acs.nanolett.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Biological materials exhibit fascinating mechanical properties for intricate interactions at multiple interfaces to combine superb toughness with wondrous strength and stiffness. Recently, strong interlayer entanglement has emerged to replicate the powerful dissipation of natural proteins and alleviate the conflict between strength and toughness. However, designing intricate interactions in a strong entanglement network needs to be further explored. Here, we modulate interlayer entanglement by introducing multiple interactions, including hydrogen and ionic bonding, and achieve ultrahigh mechanical performance of graphene-based nacre fibers. Two essential modulating trends are directed. One is modulating dynamic hydrogen bonding to improve the strength and toughness up to 1.58 GPa and 52 MJ/m3, simultaneously. The other is tailoring ionic coordinating bonding to raise the strength and stiffness, reaching 2.3 and 253 GPa. Modulating various interactions within robust entanglement provides an effective approach to extend performance limits of bioinspired nacre and optimize multiscale interfaces in diverse composites.
Collapse
Affiliation(s)
- Lidan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kaiwen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feifan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Rui Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanyan Zhao
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Senping Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yiwei Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zeshen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chenwei Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ziqiu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, P. R. China
| | - Yan Chen
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, P. R. China
| |
Collapse
|
6
|
Pitfield J, Taylor NT, Hepplestone SP. Predicting Phase Stability at Interfaces. PHYSICAL REVIEW LETTERS 2024; 132:066201. [PMID: 38394598 DOI: 10.1103/physrevlett.132.066201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024]
Abstract
We present the RAFFLE methodology for structural prediction of the interface between two materials and demonstrate its effectiveness by applying it to MgO encapsulated by two layers of graphene. To address the challenge of interface structure prediction, our methodology combines physical insights derived from morphological features observed in related systems with an iterative machine learning technique. This employs physical-based methods, including void-filling and n-body distribution functions to predict interface structures. For the carbon-MgO encapsulated system, we have shown the rocksalt and hexagonal phases of MgO to be the two most energetically stable in the few-layer regime. We demonstrate that monolayer rocksalt is heavily stabilized by interfacing with graphene, becoming more energetically favorable than the graphenelike monolayer hexagonal MgO. The RAFFLE methodology provides valuable insights into interface behavior, and a route to finding new materials at interfaces.
Collapse
Affiliation(s)
- J Pitfield
- University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - N T Taylor
- University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - S P Hepplestone
- University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
7
|
Liang H, Yang W, Xia J, Gu H, Meng X, Yang G, Fu Y, Wang B, Cai H, Chen Y, Yang S, Liang C. Strain Effects on Flexible Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304733. [PMID: 37828594 PMCID: PMC10724416 DOI: 10.1002/advs.202304733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Indexed: 10/14/2023]
Abstract
Flexible perovskite solar cells (f-PSCs) as a promising power source have grabbed surging attention from academia and industry specialists by integrating with different wearable and portable electronics. With the development of low-temperature solution preparation technology and the application of different engineering strategies, the power conversion efficiency of f-PSCs has approached 24%. Due to the inherent properties and application scenarios of f-PSCs, the study of strain in these devices is recognized as one of the key factors in obtaining ideal devices and promoting commercialization. The strains mainly from the change of bond and lattice volume can promote phase transformation, induce decomposition of perovskite film, decrease mechanical stability, etc. However, the effect of strain on the performance of f-PSCs has not been systematically summarized yet. Herein, the sources of strain, evaluation methods, impacts on f-PSCs, and the engineering strategies to modulate strain are summarized. Furthermore, the problems and future challenges in this regard are raised, and solutions and outlooks are offered. This review is dedicated to summarizing and enhancing the research into the strain of f-PSCs to provide some new insights that can further improve the optoelectronic performance and stability of flexible devices.
Collapse
Affiliation(s)
- Hongbo Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Junmin Xia
- State Key Laboratory of OrganicElectronics and Information DisplaysNanjing University of Posts and TelecommunicationsNanjing210000China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauMacau999078P. R. China
| | - Xiangchuan Meng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330000P. R. China
| | - Gege Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Ying Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330000P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| |
Collapse
|
8
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
9
|
Sadri B, Gao W. Fibrous wearable and implantable bioelectronics. APPLIED PHYSICS REVIEWS 2023; 10:031303. [PMID: 37576610 PMCID: PMC10364553 DOI: 10.1063/5.0152744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023]
Abstract
Fibrous wearable and implantable devices have emerged as a promising technology, offering a range of new solutions for minimally invasive monitoring of human health. Compared to traditional biomedical devices, fibers offer a possibility for a modular design compatible with large-scale manufacturing and a plethora of advantages including mechanical compliance, breathability, and biocompatibility. The new generation of fibrous biomedical devices can revolutionize easy-to-use and accessible health monitoring systems by serving as building blocks for most common wearables such as fabrics and clothes. Despite significant progress in the fabrication, materials, and application of fibrous biomedical devices, there is still a notable absence of a comprehensive and systematic review on the subject. This review paper provides an overview of recent advancements in the development of fibrous wearable and implantable electronics. We categorized these advancements into three main areas: manufacturing processes, platforms, and applications, outlining their respective merits and limitations. The paper concludes by discussing the outlook and challenges that lie ahead for fiber bioelectronics, providing a holistic view of its current stage of development.
Collapse
Affiliation(s)
- Behnam Sadri
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology; Pasadena, California 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology; Pasadena, California 91125, USA
| |
Collapse
|
10
|
Wang G, Zhang Y, Zhao S, Zhao Z, Liu M, Wang Y, Liu X, Hou S, Li L, Fan Y. Graphene Hollow Micropatterns via Capillarity-Driven Assembly for Drug Storage and Neural Cell Alignment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37775-37783. [PMID: 37467111 DOI: 10.1021/acsami.3c04217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Electrical conductivity, cell-guided surface topology, and drug storage capacity of biomaterials are attractive properties for the repair and regeneration of anisotropic tissues with electrical sensitivity, such as nerves. However, designing and fabricating implantable biomaterials with all these functions remain challenging. Herein, we developed a freestanding graphene substrate with micropatterned surfaces by a simple templating method. Importantly, the raised surface micropatterns had an internal hollow structure. The morphology results showed that the template microgroove width and the graphene nanosheet size were important indicators of the formation of the hollow structures. Through real-time monitoring and theoretical analysis of the formation process, it was found that the main formation mechanism was the delamination and interlayer movement of the graphene nanosheets triggered by the evaporation-induced capillary force. Finally, we achieved the controlled release of loaded microparticles and promoted the orientation of rat dorsal root ganglion neurons by applying an electric field to the hollow micropatterns. This capillarity-induced self-assembly strategy paves the way for the development of high-performance graphene micropatterned films with a hollow structure that have potential for clinical application in the repair of nerve injury.
Collapse
Affiliation(s)
- Guohang Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yilin Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shudong Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zhijun Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yawei Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Linhao Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
11
|
Jia M, Wang M, Zhou Y. A Flexible and Highly Sensitive Pressure Sense Electrode Based on Cotton Pulp for Wearable Electronics. Polymers (Basel) 2023; 15:polym15092095. [PMID: 37177243 PMCID: PMC10181469 DOI: 10.3390/polym15092095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Flexible pressure sensors with high sensitivity have great potential applications in wearable electronics. However, it is still a great challenge to prepare sense electrodes with high flexibility, high sensitivity, and high electrochemical performance. Here, we propose a novel and simple method for carbonizing cotton fibers as excellent electrically conductive materials. Moreover, carbonized cotton fiber (CCF) and polydimethylsiloxane (PDMS) were assembled into a flexible sense electrode. The CCF/PDMS electrode shows a high sensitivity of 10.8 kPa-1, a wide response frequency from 0.2-2.0 Hz, and durability over 900 cycles. The combined CCF/PDMS sensors can monitor human movement and pulse vibration, showing the enormous potential for use in wearable device technology. Additionally, the CCF/PDMS can be used as electrodes with a specific capacitance of 332.5 mF cm-2 at a current density of 5 mA cm-2, thanks to their high electrical conductivity and hydrophilicity, demonstrating the promising prospect of flexible supercapacitors.
Collapse
Affiliation(s)
- Mengying Jia
- School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Meng Wang
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yucheng Zhou
- School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
12
|
Wang L, Wang B, Wang Z, Huang J, Li K, Liu S, Lu J, Han Z, Gao Y, Cai G, Liu Y, Chen Y, Lin Y, Liu Y, Gao C, Xu Z. Superior Strong and Tough Nacre-Inspired Materials by Interlayer Entanglement. NANO LETTERS 2023; 23:3352-3361. [PMID: 37052245 DOI: 10.1021/acs.nanolett.3c00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Natural materials teach that mechanical dissipative interactions relieve the conflict between strength and toughness and enable fabrication of strong yet tough artificial materials. Replicating natural nacre structure has yielded rich biomimetic materials; however, stronger interlayer dissipation still waits to be exploited to extend the performance limits of artificial nacre materials. Here, we introduce strong entanglement as a new artificial interlayer dissipative mechanism and fabricate entangled nacre materials with superior strength and toughness, across molecular to nanoscale nacre structures. The entangled graphene nacre fibers achieved high strength of 1.2 GPa and toughness of 47 MJ/m3, and films reached 1.5 GPa and 25 MJ/m3. Experiments and simulations reveal that strong entanglement can effectively dissipate interlayer energy to relieve the conflict between strength and toughness, acting as natural folded proteins. The strong interlayer entanglement opens up a new path for designing stronger and tougher artificial materials to mimic but surpass natural materials.
Collapse
Affiliation(s)
- Lidan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ziqiu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiajing Huang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Kaiwen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Senping Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiahao Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhanpo Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yue Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Gangfeng Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Yan Chen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yue Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Yilun Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| |
Collapse
|
13
|
Xie W, Liang X, Wang H, Zhao X, Tang Y, Wu M, Yang H. Structurally Tailoring Clay Nanosheets to Design Emerging Macrofibers with Tunable Mechanical Properties and Thermal Behavior. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3141-3151. [PMID: 36598369 DOI: 10.1021/acsami.2c19295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bio-derived nanomaterials are promising candidates for spinning high-performance sustainable textiles, but the inherent flammability of biomass-based fibers seriously limits their applications. There is still an urgent need to improve fiber flame retardancy while maintaining excellent mechanical performance. Here, inspired by the structural properties of layered nanoclay, we report a novel and efficient strategy to synthesize the strong, super tough, and flame-retardant nanocellulose/clay/sodium alginate (CRS) macrofibers via wet-spinning and directional drying. Benefiting from the precise modulation of arrangement and orientation of nanoclay in macrofibers, the new inorganic structure exhibits excellent mechanical and thermal functional properties. The anisotropic structure contributes to high toughness: the tensile strength was 373.3 MPa and the toughness was 26.92 MJ·m-3. Remarkably, rectorite nanosheets as a thermal and qualitative insulator significantly improve the flame retardancy of the CRS fibers with a heat release rate as low as 6.07 W/g, thermal conductivity of 90.5 mW/(m·K), and good temperature tolerance (ranging from -196 to 100 °C). This facile and high-efficiency strategy may have great scalability in manufacturing high-strength, super tough, and flame-retardant fibers for emerging biodegradable next-generation artificial fibers.
Collapse
Affiliation(s)
- Weimin Xie
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Xiaozheng Liang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Xiaoguang Zhao
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Yili Tang
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Mingjie Wu
- Electrochemistry/Corrosion Laboratory, Department of Chemical Engineering, McGill University, Montréal, QuébecH3A 0C5, Canada
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| |
Collapse
|
14
|
Lu Y, Wang J, He J, Zou L, Zhao D, Song S. Waste Silicone Rubber in Three-Dimensional Conductive Networks as a Temperature and Movement Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29250-29260. [PMID: 35726848 DOI: 10.1021/acsami.2c06524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing a three-dimensional (3D) conductive network in a polymer matrix is a common method for preparing flexible sensors. However, the previously reported methods for constructing a 3D conductive network generally have shortcomings such as uncontrollable processes and insufficient network continuity, which limit the practical application of this method. In this work, we report a method for constructing a dual 3D conductive network. The carbon nanotube/graphene oxide co-continuous network (primary network) was introduced on the surface of the waste silicone rubber particles (WSRPs) through the adhesion of polydopamine (PDA), and then WSRPs were bonded into a porous skeleton using nanocellulose. The carbon fiber/carbon ball interconnection network (secondary network) was constructed in liquid silicone rubber (LSR) through the interaction of host-guest dendrimers and was filled into the WSRP skeleton. The dual 3D conductive network structure endowed the sensor with high electrical and thermal conductivity, outstanding stability, and excellent durability. In addition, the sensor showed high strain sensitivity and excellent stability when detecting human body temperature and motion behavior, and the pressure distribution can be spatially mapped through the sensor matrix. These demonstrations give our sensor high potential in the fields of smart devices, body monitoring, and human-machine interfaces.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jincheng Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Junwei He
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liming Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Dongqing Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Shiqiang Song
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| |
Collapse
|
15
|
Zeng Z, Wu N, Yang W, Xu H, Liao Y, Li C, Luković M, Yang Y, Zhao S, Su Z, Lu X. Sustainable-Macromolecule-Assisted Preparation of Cross-linked, Ultralight, Flexible Graphene Aerogel Sensors toward Low-Frequency Strain/Pressure to High-Frequency Vibration Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202047. [PMID: 35570715 DOI: 10.1002/smll.202202047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Ultralight and highly flexible aerogel sensors, composed of reduced graphene oxide cross-linked by sustainable-macromolecule-derived carbon, are prepared via facile freeze-drying and thermal annealing. The synergistic combination of cross-linked graphene nanosheets and micrometer-sized honeycomb pores gives rise to the exceptional properties of the aerogels, including superior compressibility and resilience, good mechanical strength and durability, satisfactory fire-resistance, and outstanding electromechanical sensing performances. The corresponding aerogel sensors, operated at an ultralow voltage of 0.2 V, can efficiently respond to a wide range of strains (0.1-80%) and pressures (13-2750 Pa) even at temperatures beyond 300 °C. Moreover, the ultrahigh-pressure sensitivity of 10 kPa-1 and excellent sensing stability and durability are accomplished. Strikingly, the aerogel sensors can also sense the vibration signals with ultrahigh frequencies of up to 4000 Hz for >1 000 000 cycles, significantly outperforming those of other sensors. These enable successful demonstration of the exceptional performance of the cross-linked graphene-based biomimetic aerogels for sensitive monitoring of mechanical signals, e.g., acting as wearable devices for monitoring human motions, and for nondestructive monitoring of cracks on engineering structures, showing the great potential of the aerogel sensors as next-generation electronics.
Collapse
Affiliation(s)
- Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Weidong Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
| | - Hao Xu
- School of Aeronautics and Astronautics, Dalian University of Technology, Dalian, 116024, China
| | - Yaozhong Liao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chenwei Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Mirko Luković
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shanyu Zhao
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Zhongqing Su
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
16
|
Liang S, Li J, Li F, Hu L, Chen W, Yang C. Flexible Tactile Sensing Microfibers Based On Liquid Metals. ACS OMEGA 2022; 7:12891-12899. [PMID: 35474773 PMCID: PMC9025990 DOI: 10.1021/acsomega.2c00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
High-performance and intelligent fibers are indispensable parts of wearable electronics in the future. This work mainly demonstrates the preparation of flexible intelligent liquid metal (LM) fibers with three core-sheath structures. An ultra-thin (10-50 μm), conductive, and highly flexible LM was deposited on the fiber core [carbon/polyethylene terephthalate (C/PET)--150-500 μm] along the fiber direction and then deposited on a polymer-protective layer [polyvinyl alcohol/epoxy resin (PVA/EP)--10 μm]. Four kinds of LM intelligent fibers were manufactured, including the C-LM-PVA fiber, C-LM-EP fiber, PET-LM-PVA fiber, and PET-LM-EP fiber. These LM intelligent fibers (diameter, 150-600 μm) were demonstrated with a high conductivity of 7.839 × 104 S·m-1. The changes in resistance in different torsion directions were measured, and these smart LM fibers could also be used as electrical heaters or thermoelectric generators, which released heat (36-36.9 °C/1-1.5 V) into the environment. Then, these multifunctional LM fibers were applied as high-performance strain sensors and bending sensors. These flexible LM conductive fibers could be successfully utilized in intelligent wearable fabrics and were expected to be widely utilized in artificial muscle and sensor fields.
Collapse
Affiliation(s)
- Shuting Liang
- College
of Chemical and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
- Chongqing
Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
| | - Jie Li
- College
of Chemical and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
| | - Fengjiao Li
- Shenzhen
Automotive Research Institute, Beijing Institute
of Technology, Shenzhen 518118, PR China
| | - Liang Hu
- Key
Laboratory of Biomechanics and Mechanobiology, Ministry of Education
Beijing Advanced Innovation Center for Biomedical Engineering, School
of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - Wei Chen
- College
of Chemical and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
| | - Chao Yang
- College
of Chemical and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
| |
Collapse
|
17
|
Guo T, Wan Z, Yu Y, Chen H, Wang Z, Li D, Song J, Rojas OJ, Jin Y. Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16809-16819. [PMID: 35353500 PMCID: PMC9011349 DOI: 10.1021/acsami.1c25227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate the mechanism of binding of dopamine-conjugated carboxymethyl cellulose (DA-CMC) with carbon nanotubes (CNTs) and the strain-induced interfacial strengthening that takes place upon wet drawing and stretching filaments produced by wet-spinning. The filaments are known for their tensile strength (as high as 972 MPa and Young modulus of 84 GPa) and electrical conductivity (241 S cm-1). The role of axial orientation in the development of interfacial interactions and structural changes, enabling shear load bearing, is studied by molecular dynamics simulation, which further reveals the elasto-plasticity of the system. We propose that the reversible torsion of vicinal molecules and DA-CMC wrapping around CNTs are the main contributions to the interfacial strengthening of the filaments. Such effects play important roles in impacting the properties of filaments, including those related to electrothermal heating and sensing. Our findings contribute to a better understanding of high aspect nanoparticle assembly and alignment to achieve high-performance filaments.
Collapse
Affiliation(s)
- Tianyu Guo
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yan Yu
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hui Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zhifeng Wang
- Testing
Center, Yangzhou University, 48# Wenhui East Road, Yangzhou 225002, P. R. China
| | - Dagang Li
- College
of Material Science and Engineering, Nanjing
Forestry University, Nanjing 210037, P. R. China
| | - Junlong Song
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FI-00076 Aalto, Finland
| | - Yongcan Jin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
18
|
Zhao Z, Zhang Y, He H, Pan L, Yu D, Egun I, Wan J, Chen W, Fan HJ. Bamboo Weaving Inspired Design of a Carbonaceous Electrode with Exceptionally High Volumetric Capacity. NANO LETTERS 2022; 22:954-962. [PMID: 35080402 DOI: 10.1021/acs.nanolett.1c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A highly densified electrode material is desirable to achieve large volumetric capacity. However, pores acting as ion transport channels are critical for high utilization of active material. Achieving a balance between high volume density and pore utilization remains a challenge particularly for hollow materials. Herein, capillary force is employed to convert hollow fibers to a bamboo-weaving-like flexible electrode (BWFE), in which the shrinkage of hollow space results in high compactness of the electrode. The volume of the electrode can be decreased by 96% without sacrificing the gravimetric capacity. Importantly, the conductivity of BWFE after thermal treatment can reach up to 50,500 S/m which exceeds that for most other carbon materials. Detailed mechanical analysis reveals that, due to the strong interaction between nanoribbons, Young's modulus of the electrode increases by 105 times. After SnO2 active materials is impregnated, the BWFE/SnO2 electrode exhibits an exceptionally ultrahigh volumetric capacity of 2000 mAh/cm3.
Collapse
Affiliation(s)
- Zehua Zhao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuting Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haiyong He
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Linhai Pan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Dongdong Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ishioma Egun
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jia Wan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Weilin Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
19
|
Qiu H, Zhao X, Li H, Li Y, Li J, Yang J. Highly flexible and thermal conductive films of graphene/poly(naphthylamine) and applications in thermal management of
LED
devices. J Appl Polym Sci 2021. [DOI: 10.1002/app.51383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hanxun Qiu
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Xiaowei Zhao
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Haoliang Li
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ying Li
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Jing Li
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Junhe Yang
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
20
|
Yoon J, Hou Y, Knoepfel AM, Yang D, Ye T, Zheng L, Yennawar N, Sanghadasa M, Priya S, Wang K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem Soc Rev 2021; 50:12915-12984. [PMID: 34622260 DOI: 10.1039/d0cs01493a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.
Collapse
Affiliation(s)
- Jungjin Yoon
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Yuchen Hou
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Abbey Marie Knoepfel
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Dong Yang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Tao Ye
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Luyao Zheng
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Neela Yennawar
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Mohan Sanghadasa
- U.S. Army Combat Capabilities Development Command Aviation & Missile Center, Redstone Arsenal, Alabama, 35898, USA
| | - Shashank Priya
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Kai Wang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
21
|
Yang J, Li W, Zhou Y, Liu H. Rigid Polyurethane Composites Reinforced with Carbon Fibers Decorated with a Skein‐like Silver Coating. ChemistrySelect 2021. [DOI: 10.1002/slct.202101754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jie Yang
- Ningbo Key Laboratory of Specialty Polymers Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Weiwei Li
- Ningbo Key Laboratory of Specialty Polymers Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Yilong Zhou
- Ningbo Key Laboratory of Specialty Polymers Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Huixin Liu
- Ningbo Key Laboratory of Specialty Polymers Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| |
Collapse
|
22
|
Shim YH, Ahn H, Lee S, Kim SO, Kim SY. Universal Alignment of Graphene Oxide in Suspensions and Fibers. ACS NANO 2021; 15:13453-13462. [PMID: 34324294 DOI: 10.1021/acsnano.1c03954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) has become a key component for high-performance carbon-based films or fibers based on its dispersibility and liquid crystallinity in an aqueous suspension. While the superior performance of GO-based fiber relies on their alignment at the submicrometer level, fine control of the microstructure is often hampered, in particular, under dynamic nature of GO-processing involving shear. Here, we systemically studied the structural variation of GO suspensions under shear conditions via in situ rheo-scattering and shear-polarized optical microscope analysis. The evolution of GO alignment under shear is indeed complex. However, we found that the shear-dependent structural equilibrium exists. GO showed a nonlinear structural transition with shear, yet there is a "universal" shear threshold for the best alignment, resulting in graphene fiber achieved an improvement in mechanical properties by ∼54% without any chemical modification. This finding challenges the conventional concept that high shear stress is required for the good alignment of particles and their best performance.
Collapse
Affiliation(s)
- Yul Hui Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Lab, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sangsul Lee
- Pohang Accelerator Lab, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science & Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Zhou T, Cheng Q. Chemical Strategies for Making Strong Graphene Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianzhu Zhou
- School of Chemistry Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
| | - Qunfeng Cheng
- School of Chemistry Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
24
|
Zhou T, Cheng Q. Chemical Strategies for Making Strong Graphene Materials. Angew Chem Int Ed Engl 2021; 60:18397-18410. [PMID: 33755316 DOI: 10.1002/anie.202102761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/10/2022]
Abstract
Graphene materials have been widely applied in various fields because of their remarkable mechanical and electrical properties. However, two obstacles arise during the assembly of graphene platelets into macroscale graphene materials and composites that impair the performance of the resultant graphene materials: 1) the voids between the graphene platelets, and 2) the wrinkling of the graphene platelets. In the past decade, several strategies have been developed to eliminate these obstacles. These strategies result in strong macroscale graphene materials, such as graphene fibers with tensile strengths of over 3.4 GPa and sheets with tensile strengths of over 1.5 GPa, which have many practical applications. This Minireview summarizes the effective strategies for assembling graphene materials and compares their advantages and drawbacks. The preparation processes as well as the resulting fundamental mechanical properties and wide spectrum of electrical and magnetic properties are also discussed. Finally, our outlook for the future of this field is presented.
Collapse
Affiliation(s)
- Tianzhu Zhou
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
25
|
Ma T, Su TY, Zhang L, Yang JW, Yao HB, Lu LL, Liu YF, He C, Yu SH. Scallion-Inspired Graphene Scaffold Enabled High Rate Lithium Metal Battery. NANO LETTERS 2021; 21:2347-2355. [PMID: 33705149 DOI: 10.1021/acs.nanolett.0c04033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene-based one-dimensional macroscopic assemblies (GBOMAs) have attracted great attention and extensive efforts have been devoted to enabling great progress. However, their applications are still restricted to less functionalized electronics, and the superior potentials remain scarce. Herein, inspired by natural scallion structure, a novel strategy was introduced to effectively improve battery performances through the mesoscale scallion-like wrapping of graphene. The obtained RGO/Ag-Li anodes demonstrated an ultralow overpotential of ∼11.3 mV for 1800 h at 1 mA cm-2 in carbonate electrolytes, which is superior to those of the most previous reports. Besides, this strategy can also be further expanded to the high mass loading of various cathode nanomaterials, and the resulting RGO/LiFePO4 cathodes exhibited remarkable rate performance and cycle stability. This work opens a new avenue to explore and broaden the applications of GBOMAs as scaffolds in fabricating full lithium batteries via maximizing their advantages derived from the unique structure and properties.
Collapse
Affiliation(s)
- Tao Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Ting-Yu Su
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Long Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Ji-Wen Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Hong-Bin Yao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Lei-Lei Lu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Fei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Huang P, Li Y, Yang G, Li ZX, Li YQ, Hu N, Fu SY, Novoselov KS. Graphene film for thermal management: A review. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly Electroconductive and Mechanically Strong Ti 3C 2T x MXene Fibers Using a Deformable MXene Gel. ACS NANO 2021; 15:3320-3329. [PMID: 33497182 DOI: 10.1021/acsnano.0c10255] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Self-assembly of two-dimensional MXene sheets is used in various fields to create multiscale structures due to their electrical, mechanical, and chemical properties. In principle, MXene nanosheets are assembled by molecular interactions, including hydrogen bonds, electrostatic interactions, and van der Waals forces. This study describes how MXene colloid nanosheets can form self-supporting MXene hydrogels. Three-dimensional network structures of MXene gels are strengthened by reinforced electrostatic interactions between nanosheets. Stable gel networks are beneficial for fabricating highly aligned fibers because MXene gel can endure structural deformation. During wet spinning of highly concentrated MXene colloids in a coagulation bath, MXene sheets can be transformed into perfectly aligned fibers under a mechanical drawing force. Oriented MXene fibers exhibit a 1.5-fold increase in electrical conductivity (12 504 S cm-1) and Young's modulus (122 GPa) compared with other fibers. The oriented MXene fibers are expected to have widespread applications, including electrical wiring and signal transmission.
Collapse
Affiliation(s)
- Hwansoo Shin
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Wonsik Eom
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ki Hyun Lee
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Woojae Jeong
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kang
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
28
|
Huang Z, Ding S, Li P, Chen C, Zhang M. Flexible Sb-graphene-carbon nanofibers as binder-free anodes for potassium-ion batteries with enhanced properties. NANOTECHNOLOGY 2021; 32:025401. [PMID: 33055362 DOI: 10.1088/1361-6528/abbb4d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potassium-ion batteries (KIBs) are emerging as attractive alternatives to lithium-ion batteries for the large scale energy storage and conversion systems, in view of the natural abundance and low cost of potassium resources. However, the lack of applicable anodes for reversible accommodation to the large K+ limits the application of KIBs. Herein, porous Sb-graphene-carbon (Sb-G-C) nanofibers are fabricated via a scalable and facile electrospinning approach. As an attempt, the nanofibers weaving into flexible mats are introduced as binder-free anode materials of KIBs, presenting a great cycle life (204.95 mAh g-1 after 100 cycles at 100 mA g-1), as well as the excellent rate capability (120.83 mAh g-1 at 1 A g-1). The superior performances of the Sb-G-C anodes can be derived from the dispersed graphene, which offers enhanced tolerance to the volume change and promotes the electron transportation, accounting for the outstanding cyclability and rate capability. Furthermore, the extrinsic pseudocapacitance created from the 1D porous nanostructure of the Sb-G-C also boosts the K+ storage capacity. The presented results may pave a new pathway for future high-performance KIBs.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
- College of Traffic Engineering, Hunan University of Technology, Zhuzhou 412007, People's Republic of China
| | - Shuangshuang Ding
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Pengchao Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Changmiao Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Ming Zhang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
29
|
Liu G, Chen X, Liu J, Liu C, Xu J, Jiang Q, Jia Y, Jiang F, Duan X, Liu P. Fabrication of PEDOT:PSS/rGO fibers with high flexibility and electrochemical performance for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137363] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Utech T, Pötschke P, Simon F, Janke A, Kettner H, Paiva M, Zimmerer C. Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abce05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
Collapse
|
31
|
Fang WZ, Peng L, Liu YJ, Wang F, Xu Z, Gao C. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2515-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Chen X, Jiang J, Yang G, Li C, Li Y. Bioinspired wood-like coaxial fibers based on MXene@graphene oxide with superior mechanical and electrical properties. NANOSCALE 2020; 12:21325-21333. [PMID: 33074280 DOI: 10.1039/d0nr04928j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MXenes, a new class of two-dimensional materials with excellent performance, are promising materials for wearable energy storage devices. However, the lack of sufficient interaction between various MXene particles makes it difficult to translate the exceptional performance from the nanoscale to macroscale. Additionally, the intrinsic characteristic of easy oxidation limits their practical applications. Herein, inspired by the structure of wood, a biomimetic core-shell MXene@graphene oxide (MX@GO) fiber was fabricated using GO as a mechanical layer to wrap MXenes. The GO layer could easily assemble MXene particles into macroscale materials and protect them from oxidation. Therefore, the as-fabricated core-shell MX@GO fiber showed a high tensile strength (290 MPa) and excellent electrical conductivity (2400 S m-1). Notably, the conductivity of the biomimetic fiber only decreased to 1800 S m-1 with a reduction of about 30% at 100 °C. This work paves the way to fabricate MXene-based fibers with freely designed functionalities and morphologies, which are suitable for various high-value fabric-based applications.
Collapse
Affiliation(s)
- Xing Chen
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China. and Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, DK-2800 Kongens Lyngby, Denmark
| | - Jianjun Jiang
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Guoyu Yang
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Chuanbing Li
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Yujun Li
- Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
33
|
High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. Sci Bull (Beijing) 2020; 65:1363-1370. [PMID: 36659215 DOI: 10.1016/j.scib.2020.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 01/21/2023]
Abstract
Graphene emerges as an ideal material for constructing high-performance strain sensors, due to its superior mechanical property and high conductivity. However, in the process of assembling graphene into macroscopic materials, its conductivity decreases significantly. Also, tedious fabrication process hinders the application of graphene-based strain sensors. In this work, we report a freestanding graphene assembled film (GAF) with high conductivity ((2.32 ± 0.08) × 105 S m-1). For the sensitive materials of strain sensors, it is higher than most of reported carbon nanotube and graphene materials. These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations. The resistance of the GAF remains unchanged with increasing temperature (20-100 ℃), exhibiting a good thermal stability. Also, the GAF can be used as a strain sensor directly without any flexible substrates, which greatly simplifies the fabrication process in comparison with most reported strain sensors. Additionally, the GAF used as a pressure sensor with only ~4.7 μW power is investigated. This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption, and the development of flexible and energy-saving electronic devices.
Collapse
|
34
|
Zhang S, Ma Y, Suresh L, Hao A, Bick M, Tan SC, Chen J. Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS NANO 2020; 14:9282-9319. [PMID: 32790347 DOI: 10.1021/acsnano.0c03268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As an excellent candidate for lightweight structural materials and nonmetal electrical conductors, carbon nanotube reinforced carbon matrix (CNT/C) composites have potential use in technologies employed in aerospace, military, and defense endeavors, where the combinations of light weight, high strength, and excellent conductivity are required. Both polymer infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) methods have been widely studied for CNT/C composite fabrications with diverse focuses and various modifications. Progress has been reported to optimize the performance of CNT/C composites from broad aspects, including matrix densification, CNT alignment, microstructure control, and interface engineering, etc. Recent approaches, such as using resistance heating for PIP or CVI, contribute to the development of CNT/C composites. To deliver a timely and up-to-date overview of CNT/C composites, we have reviewed the most recent trends in fabrication processes, summarized the mechanical reinforcement mechanism, and discussed the electrical and thermal properties, as well as relevant case studies for high-temperature applications. Conclusions and perspectives addressing future routes for performance optimization are also presented. Hence, this review serves as a rundown of recent advances in CNT/C composites and will be a valuable resource to aid future developments in this field.
Collapse
Affiliation(s)
- Songlin Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yan Ma
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textiles and Clothing, Nantong University, Nantong 226019, P.R. China
| | - Lakshmi Suresh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Ayou Hao
- High-Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
35
|
Li L, Liang Y, Wang G, Xu P, Yang L, Hou S, Zhou J, Wang L, Li X, Yang L, Fan Y. In Vivo Disintegration and Bioresorption of a Nacre-Inspired Graphene-Silk Film Caused by the Foreign-Body Reaction. iScience 2020; 23:101155. [PMID: 32450519 PMCID: PMC7251954 DOI: 10.1016/j.isci.2020.101155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Graphene-based substrates are emerging as a promising functional platform for biomedical applications. Although dispersible graphene sheets have been demonstrated to be biodegradable, their assembled macroscopic architectures are biopersistent because of strong π-π interactions. In this study, we developed a nacre-inspired graphene-silk nanocomposite film by vacuum filtration with a subsequent green chemical reduction procedure. The "brick-and-mortar" architecture not only ensures the mechanical and electrical properties of the film but also endows it with disintegrable and bioresorbable properties following rat subcutaneous implantation. Furthermore, covalent cross-linking leads to the formation of graphene with decreased interlayer spacing, which effectively prolongs the residence time in vivo. We found that enzymatic treatment created microcracks on the film surface and that the foreign-body reaction was involved in the deformation, delamination, disintegration, and phagocytosis processes of the nanocomposite films. This bioinspired strategy paves the way for the development of high-performance graphene-based macroscopic biomaterials with tunable bioresorbability.
Collapse
Affiliation(s)
- Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| | - Yanbing Liang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Guohang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Peng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lingbing Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Sen Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Jin Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Li Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China; Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
36
|
Kim Y, Kim J. Carbonization of Polydopamine-Coating Layers on Boron Nitride for Thermal Conductivity Enhancement in Hybrid Polyvinyl Alcohol (PVA) Composites. Polymers (Basel) 2020; 12:E1410. [PMID: 32599762 PMCID: PMC7361685 DOI: 10.3390/polym12061410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022] Open
Abstract
Inspired by mussel adhesion proteins, boron nitride (BN) particles coated with homogeneous polydopamine (BNPDA) were prepared, and through an annealing process, a carbonized PDA layer on the surface of BN was obtained, which exhibited a nanocrystalline graphite-like structure. The effect of carbonization of PDA coating layer on BN particles was characterized by various analytical techniques including SEM, TEM, Raman spectroscopy, and XPS. When the resulting particles were used as a thermally conductive filler for polyvinyl alcohol (PVA) composite films, enhanced thermal conductivity was observed compared to raw BN composite due to the ordered structure and improved solubility in water. Furthermore, the homogeneous dispersion of the filler and excellent flexibility of the modified composite film with 21 wt % filler may be attributed to compatibility with the PVA chain. As the whole fabrication process did not use toxic chemicals (mainly water was used as the solvent), it may contribute to green and sustainable chemistry.
Collapse
Affiliation(s)
| | - Jooheon Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 156-756, Korea;
| |
Collapse
|
37
|
Large-scale wet-spinning of highly electroconductive MXene fibers. Nat Commun 2020; 11:2825. [PMID: 32499504 PMCID: PMC7272396 DOI: 10.1038/s41467-020-16671-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
Ti3C2Tx MXene is an emerging class of two-dimensional nanomaterials with exceptional electroconductivity and electrochemical properties, and is promising in the manufacturing of multifunctional macroscopic materials and nanomaterials. Herein, we develop a straightforward, continuously controlled, additive/binder-free method to fabricate pure MXene fibers via a large-scale wet-spinning assembly. Our MXene sheets (with an average lateral size of 5.11 μm2) are highly concentrated in water and do not form aggregates or undergo phase separation. Introducing ammonium ions during the coagulation process successfully assembles MXene sheets into flexible, meter-long fibers with very high electrical conductivity (7,713 S cm-1). The fabricated MXene fibers are comprehensively integrated by using them in electrical wires to switch on a light-emitting diode light and transmit electrical signals to earphones to demonstrate their application in electrical devices. Our wet-spinning strategy provides an approach for continuous mass production of MXene fibers for high-performance, next-generation, and wearable electronic devices.
Collapse
|
38
|
Zeng Z, Jiang F, Yue Y, Han D, Lin L, Zhao S, Zhao YB, Pan Z, Li C, Nyström G, Wang J. Flexible and Ultrathin Waterproof Cellular Membranes Based on High-Conjunction Metal-Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908496. [PMID: 32227390 DOI: 10.1002/adma.201908496] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 05/21/2023]
Abstract
Ultrathin, lightweight, and flexible electromagnetic interference (EMI) shielding materials are urgently demanded to address EM radiation pollution. Efficient design to utilize the shields' microstructures is crucial yet remains highly challenging for maximum EMI shielding effectiveness (SE) while minimizing material consumption. Herein, novel cellular membranes are designed based on a facile polydopamine-assisted metal (copper or silver) deposition on electrospun polymer nanofibers. The membranes can efficiently exploit the high-conjunction cellular structures of metal and polymer nanofibers, and their interactions for excellent electrical conductivity, mechanical flexibility, and ultrahigh EMI shielding performance. EMI SE reaches more than 53 dB in an ultra-broadband frequency range at a membrane thickness of merely 2.5 µm and a density of 1.6 g cm-3 , and an SE of 44.7 dB is accomplished at the lowest thickness of 1.2 µm. The normalized specific SE is up to 232 860 dB cm2 g-1 , significantly surpassing that of other shielding materials ever reported. More, integrated functionalities are discovered in the membrane, such as antibacterial, waterproof properties, excellent air permeability, high resistance to mechanical deformations and low-voltage uniform heating performance, offering strong potential for applications in aerospace and portable and wearable smart electronics.
Collapse
Affiliation(s)
- Zhihui Zeng
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
| | - Fuze Jiang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
- ETH Zürich, Stefano-Franscini-Platz 3, Zürich, 8093, Switzerland
| | - Yang Yue
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
- ETH Zürich, Stefano-Franscini-Platz 3, Zürich, 8093, Switzerland
| | - Daxin Han
- Department of Information Technology and Electrical Engineering, ETH Zürich, Stefano-Franscini-Platz 3, Zürich, 8093, Switzerland
| | - Luchan Lin
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
| | - Shanyu Zhao
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
| | - Yi-Bo Zhao
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
- ETH Zürich, Stefano-Franscini-Platz 3, Zürich, 8093, Switzerland
| | - Zhengyuan Pan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
- ETH Zürich, Stefano-Franscini-Platz 3, Zürich, 8093, Switzerland
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gustav Nyström
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich, 8092, Switzerland
| | - Jing Wang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überland Strasse 129, Dübendorf, 8600, Switzerland
- ETH Zürich, Stefano-Franscini-Platz 3, Zürich, 8093, Switzerland
| |
Collapse
|
39
|
Gao W, Wang M, Bai H. A review of multifunctional nacre-mimetic materials based on bidirectional freeze casting. J Mech Behav Biomed Mater 2020; 109:103820. [PMID: 32543396 DOI: 10.1016/j.jmbbm.2020.103820] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/03/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Nacre has achieved an excellent combination of strength and toughness through its unique brick-and-mortar structure of layered aragonite platelets bonded with biopolymers. Mimicking nacre has been considered as a practical way for the development of high-performance structural composites. Over the past years, many techniques have been developed to fabricate multifunctional nacre-mimetic materials, including freeze casting, layer-by-layer assembly, vacuum filtration, 3D printing and so on. Among them, freeze casting, especially bidirectional freeze casting, as an environmentally friendly and scalable method, has attracted extensive attention recently. In this review, we begin with the introduction and discussion of various fabrication techniques comparing their advantages and disadvantages, focusing on the most recent advances of the bidirectional freeze casting technique. Then, we summarize representative examples of applying the bidirectional freeze casting technique to assemble various building blocks into multifunctional nacre-mimetic materials and their wide applications. At the end, we discuss the future direction of using bidirectional freeze casting to make nacre-mimetic materials.
Collapse
Affiliation(s)
- Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, China
| | - Mengning Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
40
|
Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-Based Approaches for the Fabrication of Stretchable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902743. [PMID: 31408223 DOI: 10.1002/adma.201902743] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/28/2019] [Indexed: 05/23/2023]
Abstract
Stretchable electronics are mechanically compatible with a variety of objects, especially with the soft curvilinear contours of the human body, enabling human-friendly electronics applications that could not be achieved with conventional rigid electronics. Therefore, extensive research effort has been devoted to the development of stretchable electronics, from research on materials and unit device, to fully integrated systems. In particular, material-processing technologies that encompass the synthesis, assembly, and patterning of intrinsically stretchable electronic materials have been actively investigated and have provided many notable breakthroughs for the advancement of stretchable electronics. Here, the latest studies of such material-based approaches are reviewed, mainly focusing on intrinsically stretchable electronic nanocomposites that generally consist of conducting/semiconducting filler materials inside or on elastomer backbone matrices. Various approaches for fabricating these intrinsically stretchable electronic materials are presented, including the blending of electronic fillers into elastomer matrices, the formation of bi-layered heterogeneous electronic-layer and elastomer support-layer structures, and modifications to polymeric molecular structures in order to impart stretchability. Detailed descriptions of the various conducting/semiconducting composites prepared by each method are provided, along with their electrical/mechanical properties and examples of device applications. To conclude, a brief future outlook is presented.
Collapse
Affiliation(s)
- Dong Chan Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung Joon Shim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woongchan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
41
|
Chen G, Wang H, Guo R, Duan M, Zhang Y, Liu J. Superelastic EGaIn Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6112-6118. [PMID: 31941273 DOI: 10.1021/acsami.9b23083] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stretchable conductive fibers have gained significant attention in the field of wearable and flexible electronics because of their inherited unique properties. Up to now, there are few reports regarding the highly stretchable fibers with excellent electronic properties. In this work, a highly stretchable fiber with superior electrical conductivity is fabricated, which contains a core fiber, an intermediate modified layer, and an outer eutectic-gallium-indium liquid metal layer. The fiber demonstrates an excellent electrical conductivity of over 103 S cm-1 when stretched up to 500% strain, which is far superior to the existing stretchable conductive fiber. The stretchable conductive fiber shows excellent thermostability with a maximum operating temperature of nearly 250 °C. Such unique fibers can be applied as highly stretchable, deformable conductor to charge a mobile phone, and sensor to monitor human activities. This work offers promising application in the areas of flexible and wearable electronics.
Collapse
Affiliation(s)
- Guozhen Chen
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Rui Guo
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Minghui Duan
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
42
|
Yin F, Hu J, Hong Z, Wang H, Liu G, Shen J, Wang HL, Zhang KQ. A review on strategies for the fabrication of graphene fibres with graphene oxide. RSC Adv 2020; 10:5722-5733. [PMID: 35497453 PMCID: PMC9049421 DOI: 10.1039/c9ra10823h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/03/2022] Open
Abstract
Graphene fibres have been recognized as ideal building blocks to make advanced, macroscopic, and functional materials for a variety of applications. Direct fabrication of graphene fibres with ideal graphene sheets is still far from reality due to the weak intermolecular bonding between graphene sheets. In contrast, the construction of graphene oxide fibres by following a reduction process is a common compromise. The self-assembly of graphene oxide is an effective strategy for the continuous fabrication of graphene fibre. Different fabrication strategies endow graphene fibres with different performances. Over the past decade, various studies have been carried out into integrating graphene oxide nanosheets into graphene fibres. In this review, we summarize the assembly methods of graphene fibres and compare the mechanical and electrical performances of the graphene fibres fabricated by different strategies. Also the influence of the fabrication strategy on mechanical performance is discussed. Finally, the expectation of macroscopic graphene fibres in the future is further presented.
Collapse
Affiliation(s)
- Fei Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Jianchen Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Zhenglin Hong
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Gang Liu
- Shanghai Institute of Spacecraft Equipment Shanghai 200240 China
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University Shanghai 200092 China
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| |
Collapse
|
43
|
Xu T, Zhang Z, Qu L. Graphene-Based Fibers: Recent Advances in Preparation and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901979. [PMID: 31334581 DOI: 10.1002/adma.201901979] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/04/2019] [Indexed: 06/10/2023]
Abstract
Graphene-based fibers (GBFs) are macroscopic 1D assemblies formed by using microscopic 2D graphene sheets as building blocks. Their unique structure exhibits the same merits as graphene such as low weight, high specific surface area, excellent mechanical/electrical properties, and ease of functionalization. Furthermore, the fibrous nature of GBFs is intrinsically compatible with existing textile technologies, making them suitable for applications in flexible and wearable electronics. Recently, novel synthetic methods have endowed GBFs with new structures and functions, further improving their mechanical and electrical properties. These improvements have rapidly bridged the gaps between laboratory demonstrations and real-life applications in fiber-shaped batteries, supercapacitors, and electrochemical sensors. Recent advances in the fabrication, optimization, and application of GBFs are systematically reviewed and a perspective on their future development is given.
Collapse
Affiliation(s)
- Tong Xu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhipan Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
44
|
Fang B, Chang D, Xu Z, Gao C. A Review on Graphene Fibers: Expectations, Advances, and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902664. [PMID: 31402522 DOI: 10.1002/adma.201902664] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Indexed: 05/17/2023]
Abstract
Graphene fiber (GF) is a macroscopically assembled fibrous material made of individual units of graphene and its derivatives. Beyond traditional carbon fibers, graphene building blocks consisting of regulable sizes and regular orientations of GF are expected to generate extreme mechanical and transport properties, as well as multiple functions in smart electronic fibrous devices and textiles. Here, the features of GF are presented along four lines: preparation, morphology, structure-performance correlations, and state-of-the-art applications as flexible and wearable electronics. The principles, experiments, and keys of fabricating GF from graphite with different methods, focusing on the industrially viable mainstream strategy, wet spinning, are introduced. Then, the fundamental relationship between the mechanical and transport properties and the structure, including both highly condensed structures for high-performance and hierarchical structures for multiple functions, is presented. The advances of GF based on structure-performance formulas boost its functional applications, especially in electronic devices. Finally, the possible promotion methods and structural-functional integrated applications of GF are discussed.
Collapse
Affiliation(s)
- Bo Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Dan Chang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| |
Collapse
|
45
|
Weng W, Yang J, Zhang Y, Li Y, Yang S, Zhu L, Zhu M. A Route Toward Smart System Integration: From Fiber Design to Device Construction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902301. [PMID: 31328845 DOI: 10.1002/adma.201902301] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/03/2019] [Indexed: 05/15/2023]
Abstract
Fiber is a symbol of human civilization, being ubiquitous but obscure in society over most of history. Fiber has been revived upon the advent of fiber-based electronic devices in the past two decades. This is due to its desirable lightweight, flexible, and conformable characteristics, which enable it to play a fundamental role in the electronic and information era. Numerous fiber-based electronic devices have sprung up in energy conversion, energy storage, sensing, actuation, etc. A possibility is thereby conceived that they can be integrated into smart systems compatible with the human body, consisting of biotic fiber-based organs and tissues, which possess similar but more advanced functions. However, the design of mono-/multifibers, the construction of fiber-based devices, and the integration of these smart systems represent great challenges in fundamental understanding and practical implementation. A systematic review of the current state of the art with respect to the design and fabrication of electronic fiber materials, construction of fiber-based devices, and integration of smart systems is presented. In addition, limitations of current fiber-based devices and perspectives are explored toward potential and promising smart integration.
Collapse
Affiliation(s)
- Wei Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junjie Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuxing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
46
|
Zou R, Liu F, Hu N, Ning H, Jiang X, Xu C, Fu S, Li Y, Yan C. 1-Pyrenemethanol derived nanocrystal reinforced graphene films with high thermal conductivity and flexibility. NANOTECHNOLOGY 2020; 31:065602. [PMID: 31658447 DOI: 10.1088/1361-6528/ab51c5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Miniaturization and integration of electronic components lead to increasing challenges of thermal management. Ultrathin materials with excellent thermal and flexibility are urgently required for portable electronic devices. In this study, the 1-pyrenemethanol (PyM) modified graphene oxide (GO) (GO-PyM) films were prepared in ethanol solution by an evaporation-induced assembly method. The PyM interacts with the GO sheets by hydrogen bonds and π-π interactions. The GO-PyM films were further graphitized at 3000 °C and roll compressed to fabricate the graphene films (GFs), by which, the PyM was transformed into nanosized graphite crystals (PNGCs). The PNGCs filled the voids between the graphene sheets of GFs and linked the graphene sheets, which enhanced the interaction between the graphene sheets, restricted the slippage of the graphene sheets under tension, increased the number of paths for electrons and phonons, and reduced the interface thermal resistance resulted from the existed voids. The resulting GFs showed excellent flexibility of a large elongation up to 14% and an elastic zone up to 3%, a tensile strength of 30.4 MPa, a thermal conductivity of 1316.32 W m-1 K-1, and an electrical conductivity of 6.48 × 105 S m-1. These integrated excellent properties of GFs will promote their applications in thermal management.
Collapse
Affiliation(s)
- Rui Zou
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sun T, Zhou B, Zheng Q, Wang L, Jiang W, Snyder GJ. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun 2020; 11:572. [PMID: 31996675 PMCID: PMC6989526 DOI: 10.1038/s41467-020-14399-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022] Open
Abstract
Assembling thermoelectric modules into fabric to harvest energy from body heat could one day power multitudinous wearable electronics. However, the invalid 2D architecture of fabric limits the application in thermoelectrics. Here, we make the valid thermoelectric fabric woven out of thermoelectric fibers producing an unobtrusive working thermoelectric module. Alternately doped carbon nanotube fibers wrapped with acrylic fibers are woven into π-type thermoelectric modules. Utilizing elasticity originating from interlocked thermoelectric modules, stretchable 3D thermoelectric generators without substrate can be made to enable sufficient alignment with the heat flow direction. The textile generator shows a peak power density of 70 mWm−2 for a temperature difference of 44 K and excellent stretchability (~80% strain) with no output degradation. The compatibility between body movement and sustained power supply is further displayed. The generators described here are true textiles, proving active thermoelectrics can be woven into various fabric architectures for sensing, energy harvesting, or thermal management. Despite recent advances in flexible thermoelectric generators for wearable devices, current designs are unable to efficiently harvest heat flowing from human body. Here, the authors report high thermoelectric performance and stretchability in interlocked fiber-based modules for wearable devices.
Collapse
Affiliation(s)
- Tingting Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Beiying Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.,Engineering Research Center of Advanced Glasses Manufacturing Technolog, Ministry of Education, Donghua University, Shanghai, China
| | - Qi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China. .,Engineering Research Center of Advanced Glasses Manufacturing Technolog, Ministry of Education, Donghua University, Shanghai, China.
| | - Gerald Jeffrey Snyder
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
48
|
Lee Y, Jun K, Lee K, Seo YC, Jeong C, Kim M, Oh I, Lee H. Phenol‐Derived Carbon Sealant Inspired by a Coalification Process. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yunhan Lee
- Department of Chemistry KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Kiwoo Jun
- Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering Department of Mechanical Engineering KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Kyueui Lee
- Department of Chemistry KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Young Chang Seo
- Department of Chemistry KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Changyoung Jeong
- Semiconductor R&D Center Samsung Electronics Corporation 1, Samsungjeonja-ro Hwaseong-si Gyeonggi-do 18448 Republic of Korea
| | - Munja Kim
- Semiconductor R&D Center Samsung Electronics Corporation 1, Samsungjeonja-ro Hwaseong-si Gyeonggi-do 18448 Republic of Korea
| | - Il‐Kwon Oh
- Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering Department of Mechanical Engineering KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Haeshin Lee
- Department of Chemistry KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
49
|
Lee Y, Jun K, Lee K, Seo YC, Jeong C, Kim M, Oh I, Lee H. Phenol‐Derived Carbon Sealant Inspired by a Coalification Process. Angew Chem Int Ed Engl 2020; 59:3864-3870. [DOI: 10.1002/anie.201913181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Yunhan Lee
- Department of Chemistry KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Kiwoo Jun
- Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering Department of Mechanical Engineering KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Kyueui Lee
- Department of Chemistry KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Young Chang Seo
- Department of Chemistry KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Changyoung Jeong
- Semiconductor R&D Center Samsung Electronics Corporation 1, Samsungjeonja-ro Hwaseong-si Gyeonggi-do 18448 Republic of Korea
| | - Munja Kim
- Semiconductor R&D Center Samsung Electronics Corporation 1, Samsungjeonja-ro Hwaseong-si Gyeonggi-do 18448 Republic of Korea
| | - Il‐Kwon Oh
- Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering Department of Mechanical Engineering KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Haeshin Lee
- Department of Chemistry KAIST 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
50
|
Zheng J, Chen L, Xie X, Tong Q, Ouyang G. Polydopamine modified ordered mesoporous carbon for synergistic enhancement of enrichment efficiency and mass transfer towards phenols. Anal Chim Acta 2020; 1095:109-117. [DOI: 10.1016/j.aca.2019.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/24/2023]
|