1
|
Zhang Z, Shang L. Self-Assembled Hydroxypropyl Celluloses With Structural Colors for Biomedical Applications. SMART MEDICINE 2025; 4:e70004. [PMID: 40303870 PMCID: PMC12010047 DOI: 10.1002/smmd.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 05/02/2025]
Abstract
Hydroxypropyl cellulose (HPC), a cellulose derivative with biocompatibility, edibility, and exceptional solubility in many polar solvents, holds significant potential for biomedical applications. Within a specific concentration range, HPC undergoes self-assembly to form cholesteric liquid crystals, which display distinct structural colors. These colors result from the interaction between incident light and the periodic nano-architecture of HPC, providing long-lasting visual effects that can be dynamically adjusted by factors such as concentration, temperature, and functional additives. This review includes the mechanisms underlying the genesis of structural colors and the regulation of HPCs while summarizing advanced techniques for fabricating HPC-based materials with diverse configurations. Furthermore, through representative examples, we highlight the multifaceted applications of these materials in sensors, bionic skins, drug delivery, and anti-counterfeiting labels. We also propose strategies to address current research and application challenges with the goal of exploring the potential of structural color HPCs for scientific breakthroughs and societal well-being. We hope this review catalyzes HPC-based structural color materials' advancement and future biomedical applications.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Sun W, Zhao J, Wu L, Li Y, Liu W, Li H, Yang Y. Organic-Inorganic Hybrid Silica Film with a TGBA* Structure. Chemistry 2024; 30:e202403140. [PMID: 39363714 DOI: 10.1002/chem.202403140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Twisted grain boundary (TGB) phases exhibit highly frustrated and complex liquid crystal structures, and have attracted enormous interest because of their unique internal structure, textures and properties. However, among the few real concerns related to these interesting structures, applying them to prepare polymer-stabilized colored liquid crystal films has been challenging. Herein, the organic-inorganic hybrid silica (OIHS) films with a TGBA* structure were prepared using two organosilanes and one chiral additive under an acidic condition. The structural color of the films can be adjusted by varying the polycondensation temperature and the concentration of the chiral additive. A structurally colored pattern was prepared by the inject printing, which was suitably applied for decoration and anti-counterfeiting.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jinghua Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Limin Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, P. R. China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Wang T, Li X, Zhang Y, Ma H, Sun Y. Cholesteric Liquid Crystal Network Composite Film with Structure, Dual-Band Responsive Luminescent Color for Multiple Anti-Counterfeiting and Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68498-68505. [PMID: 39609082 DOI: 10.1021/acsami.4c18278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Anti-counterfeiting technology plays an indispensable role in the high-tech field and various critical application areas. However, traditional anti-counterfeiting approaches currently in widespread use are too simplistic and easily replicated or forged, while advanced technologies with multiple anti-counterfeiting functions remain in the developmental stage. This study presents a novel multiple anti-counterfeiting technique. By employing a patterned cholesteric liquid crystal polymer network (CLCN) film as a template, a composite film endowed with multiple anti-counterfeiting capabilities was successfully fabricated by filling the hollow patterned areas with a light-cured acrylate monomer mixed with commercial infrared and ultraviolet phosphors. The prepared composite film exhibits high transmittance and excellent flexibility, enabling its application across various applications. By utilizing the thermochromic and angular chromic properties of the CLCN film, along with ultraviolet-excited colorful fluorescent materials and infrared-excited upconversion luminescent materials incorporated within the acrylate film in the CLCN patterned area, a film featuring multiple anti-counterfeiting attributes is achieved. Furthermore, by modifying the mask, adjusting the content of the chiral dopant, and selecting the type of phosphors, a multiple anti-counterfeiting color image can be produced, which has significant implications for enhanced anti-counterfeiting measures and information encryption storage.
Collapse
Affiliation(s)
- Tianxiong Wang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoshuai Li
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yunbo Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongmei Ma
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Yubao Sun
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
4
|
Rusen E, Mocanu A, Dinescu A, Boldeiu A, Romanitan C, Iordanescu S, Aldrigo M, Somoghi R, Mitran R, Ghebaur A. Different morphologies of super-balls obtained to form photonic crystals of cholesteryl benzoate liquid crystals. NANOSCALE ADVANCES 2024:d4na00431k. [PMID: 39258118 PMCID: PMC11382146 DOI: 10.1039/d4na00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
The current study highlights the synthesis and characterization of some nanocomposite materials formed by polymer particles and liquid crystals. The liquid crystals used were cholesteryl benzoate (CLB), and the particles were synthesized by emulsion polymerization in the absence of the emulsifier. Through SEM and DLS analysis, the synthesis of particles of the same size was emphasized, and the amount of CLB showed no influence on these parameters. The lack of signal for CLB in the case of DSC and XRD analyses for the sample with the smallest amount of liquid crystal is attributed to the detection limits of the devices. To complete the surface characterization of the particles, XPS analysis was performed. Through XPS it was underlined that in the case of the smallest amount and the largest amount of CLB, respectively, it is encapsulated in the polymer particles, unlike the case of the average amount used, in which core-shell type morphologies have been obtained. For the electrical characterization of the samples, a Vector Network Analyzer (VNA) connected to two rectangular X-band (i.e., 8.2-12.4 GHz) waveguides through coaxial cables was used.
Collapse
Affiliation(s)
- Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Adina Boldeiu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Sergiu Iordanescu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Martino Aldrigo
- National Institute for Research and Development in Microtechnologies-IMT Bucharest 126A Erou Iancu Nicolae Street 077190 Bucharest Romania
| | - Raluca Somoghi
- Oil-Gas University of Ploiesti 39 B-dul Bucuresti 100520 Ploiesti Romania
- The National Institute for Research & Development in Chemistry and Petrochemistry 202, Spl. Independentei 060021 Bucharest Romania
| | - Raul Mitran
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy 202 Splaiul Indepedentei Bucharest 060021 Romania
| | - Adi Ghebaur
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest 1-7 Gh. Polizu Street Bucharest 011061 Romania
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnology Romania
| |
Collapse
|
5
|
Shi H, Zhu J, Deng Y, Yang Y, Wang C, Liu Y, Zhang W, Luo D, Chen D, Shi Y. Thermo-responsive circularly polarized luminescence from carbon quantum dots in a cellulose-based chiral nematic template. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3679-3688. [PMID: 39635029 PMCID: PMC11465985 DOI: 10.1515/nanoph-2024-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 12/07/2024]
Abstract
Circularly polarized light emitting active materials are of great interest, and the convenient tuning of the circularly polarized luminescence (CPL) remains a significant challenge. Integrating fluorescent materials into chiral photonic crystals to achieve tunable CPL is a promising approach, allowing efficient manipulation of CPL by adjusting the photonic band gap (PBG). We combined carbon quantum dots (CQDs) with hydroxypropyl cellulose (HPC), which self-assembles into a cholesteric liquid crystal (CLC). The helical structure can selectively reflect right circularly polarized (RCP) light, achieving strong circular dichroism (CD) and high CPL dissymmetry factor g lum. In addition, the chiral template is thermo-responsive. The CPL wavelength can be adjusted by regulating the PBG position through temperature adjustment, while the chirality of CPL keeps high especially in the heating process. This work enables stimuli-responsive manipulation of CPL under one template through temperature regulation, which may open up enormous possibilities for the cellulose-based material in different areas.
Collapse
Affiliation(s)
- Haidong Shi
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang315211, China
| | - Jiaxin Zhu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Yaxuan Deng
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang315211, China
| | - Yanling Yang
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang315211, China
| | - Changxing Wang
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang315211, China
| | - Yihan Liu
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang315211, China
| | - Wanlong Zhang
- Nanophotonics Research Centre, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong518060, China
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Da Chen
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang315211, China
| | - Yue Shi
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang315211, China
| |
Collapse
|
6
|
Chen X, Hou XF, Chen XM, Li Q. An ultrawide-range photochromic molecular fluorescence emitter. Nat Commun 2024; 15:5401. [PMID: 38926352 PMCID: PMC11208420 DOI: 10.1038/s41467-024-49670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Photocontrollable luminescent molecular switches capable of changing emitting color have been regarded as the ideal integration between intelligent and luminescent materials. A remaining challenge is to combine good luminescence properties with wide range of wavelength transformation, especially when confined in a single molecular system that forms well-defined nanostructures. Here, we report a π-expanded photochromic molecular photoswitch, which allows for the comprehensive achievements including wide emission wavelength variation (240 nm wide, 400-640 nm), high photoisomerization extent (95%), and pure emission color (<100 nm of full width at half maximum). We take the advantageous mechanism of modulating self-assembly and intramolecular charge transfer in the synthesis and construction, and further realize the full color emission by simple photocontrol. Based on this, both photoactivated anti-counterfeiting function and self-erasing photowriting films are achieved of fluorescence. This work will provide insight into the design of intelligent optical materials.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao-Fang Hou
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
7
|
Ma X, Han Y, Zhang YS, Geng Y, Majumdar A, Lagerwall JPF. Tunable templating of photonic microparticles via liquid crystal order-guided adsorption of amphiphilic polymers in emulsions. Nat Commun 2024; 15:1404. [PMID: 38360960 PMCID: PMC10869789 DOI: 10.1038/s41467-024-45674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
Multiple emulsions are usually stabilized by amphiphilic molecules that combine the chemical characteristics of the different phases in contact. When one phase is a liquid crystal (LC), the choice of stabilizer also determines its configuration, but conventional wisdom assumes that the orientational order of the LC has no impact on the stabilizer. Here we show that, for the case of amphiphilic polymer stabilizers, this impact can be considerable. The mode of interaction between stabilizer and LC changes if the latter is heated close to its isotropic state, initiating a feedback loop that reverberates on the LC in form of a complete structural rearrangement. We utilize this phenomenon to dynamically tune the configuration of cholesteric LC shells from one with radial helix and spherically symmetric Bragg diffraction to a focal conic domain configuration with highly complex optics. Moreover, we template photonic microparticles from the LC shells by photopolymerizing them into solids, retaining any selected LC-derived structure. Our study places LC emulsions in a new light, calling for a reevaluation of the behavior of stabilizer molecules in contact with long-range ordered phases, while also enabling highly interesting photonic elements with application opportunities across vast fields.
Collapse
Affiliation(s)
- Xu Ma
- Experimental Soft Matter Physics group, Department of Physics & Materials Science, University of Luxembourg, 1511, Luxembourg, Luxembourg
| | - Yucen Han
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Yan-Song Zhang
- Experimental Soft Matter Physics group, Department of Physics & Materials Science, University of Luxembourg, 1511, Luxembourg, Luxembourg
| | - Yong Geng
- Experimental Soft Matter Physics group, Department of Physics & Materials Science, University of Luxembourg, 1511, Luxembourg, Luxembourg
| | - Apala Majumdar
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Jan P F Lagerwall
- Experimental Soft Matter Physics group, Department of Physics & Materials Science, University of Luxembourg, 1511, Luxembourg, Luxembourg.
| |
Collapse
|
8
|
Zhang Y, Yang H, Chen Y, Yu H. Progress in Fabrication and Applications of Cholesteric Liquid Crystal Microcapsules. Chemistry 2024; 30:e202303198. [PMID: 37971158 DOI: 10.1002/chem.202303198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Liquid crystals (LCs) are well known for inherent responsiveness to external stimuli, such as light, thermal, magnetic, and electric fields. Cholesteric LCs are among the most fascinating, since they possess distinctive optical properties due to the helical molecular orientation. However, the good flow, easy contamination, and poor stability of small-molecule LCs limit their further applications, and microencapsulation as one of the most effective tools can evade these disadvantages. Microencapsulation can offer shell-core structure with LCs in the core can strengthen their stability, avoiding interference with the environment while maintaining the stimuli-responsiveness and optical properties. Here, we report recent progress in the fabrication and applications of cholesteric LC microcapsules (CLCMCs). We summarize general properties and basic principles, fabrication methods including interfacial polymerization, in-situ polymerization, complex coacervation, solvent evaporation, microfluidic and polymerization of reactive mesogens, and then give a comprehensive overview of their applications in various popular domains, including smart fabrics, smart sensor, smart displays, anti-counterfeiting, information encryption, biomedicine and actuators. Finally, we discuss the currently facing challenges and the potential development directions in this field.
Collapse
Affiliation(s)
- Yajun Zhang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100020, Beijing, China
| | - Haixiao Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100020, Beijing, China
| | - Yinjie Chen
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, 102600, Beijing, China
| | - Haifeng Yu
- School of Materials Science and Engineering and, Key Laboratory of Polymer Chemistry and, Physics of Ministry of Education, Peking University, 100871, Beijing, China
| |
Collapse
|
9
|
Kaneko K, Mandai A, Heinrich B, Donnio B, Hanasaki T. Synthesis and mesomorphic properties of "side-on" hybrid liquid crystalline silsesquioxanes. SOFT MATTER 2023; 19:9115-9122. [PMID: 37990586 DOI: 10.1039/d3sm00801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Novel hybrid silsesquioxane-based liquid crystalline derivatives with varied lengths of spacers and tails have been synthesized by hydrosilylation reactions of octakis(dimethylsiloxy)silsesquioxane and side-on mesogens via a platinum catalyst. The thermal behavior of three types of silsesquioxane-based liquid crystals (LCs), differentiated by the molecular structure of mesogens, was investigated by differential scanning calorimetry (DSC) and polarising optical microscopy (POM). Temperature-dependent small and wide-angle X-ray scattering was used to verify liquid crystalline phases, revealing that the silsesquioxane-based derivatives formed hexagonal columnar and nematic mesophases, and the effect of the molecular structure of the mesogens and the spacer length on the formation of LC phases is discussed. This investigation demonstrated that the choice of the "side-on" attachments plays a crucial role in enhancing the emergence of the nematic phase.
Collapse
Affiliation(s)
- Kosuke Kaneko
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 (CNRS-Université de Strasbourg), 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Atsuhiko Mandai
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 (CNRS-Université de Strasbourg), 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 (CNRS-Université de Strasbourg), 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Tomonori Hanasaki
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
10
|
Chen X, Zhao Y, Zhang Y, Li B, Li Y, Jiang L. Optical Manipulation of Soft Matter. SMALL METHODS 2023:e2301105. [PMID: 37818749 DOI: 10.1002/smtd.202301105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Optical manipulation has emerged as a pivotal tool in soft matter research, offering superior applicability, spatiotemporal precision, and manipulation capabilities compared to conventional methods. Here, an overview of the optical mechanisms governing the interaction between light and soft matter materials during manipulation is provided. The distinct characteristics exhibited by various soft matter materials, including liquid crystals, polymers, colloids, amphiphiles, thin liquid films, and biological soft materials are highlighted, and elucidate their fundamental response characteristics to optical manipulation techniques. This knowledge serves as a foundation for designing effective strategies for soft matter manipulation. Moreover, the diverse range of applications and future prospects that arise from the synergistic collaboration between optical manipulation and soft matter materials in emerging fields are explored.
Collapse
Affiliation(s)
- Xixi Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
11
|
Zhao J, Yu R, Wu L, Li Y, Liu W, Yang Y. A PSCLC Pattern Prepared Based on Handedness Inversion for Anti-counterfeiting. Chem Asian J 2023; 18:e202300636. [PMID: 37606182 DOI: 10.1002/asia.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Handedness inversion has been widely studied in supramolecular chemistry and material sciences. Herein, a photoisomerizable chiral dopant was synthesized, which could induce the formation of a cholesteric phase with right-handedness. The Bragg reflection band of the cholesteric liquid crystal (CLC) mixture shifted to the long wavelength with extending 365 nm UV light irradiation time. Based on this photochromic property, a colourful polymer-stabilized CLC (PSCLC) film was prepared using a grayscale mask. A handedness reversible CLC mixture was prepared using a mixture of this chiral dopant and S5011. With extending the UV light irradiation time, the handedness of the CLC mixture changed from right- to left-handedness. A patterned PSCLC film was prepared using this CLC mixture. Complementary images were observed under right- and left-handedness circularly polarized lights. The results shown here not only give us a better understanding the competition between photopolymerization and photoisomerization, but also lay the foundations for decoration and anti-counterfeiting.
Collapse
Affiliation(s)
- Jinghua Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Runwei Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Limin Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, P. R. China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
12
|
Tambovtsev IM, Lobanov IS, Kiselev AD, Uzdin VM. Pair interaction of localized topological structures in confined chiral media. Phys Rev E 2023; 108:024705. [PMID: 37723750 DOI: 10.1103/physreve.108.024705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/20/2023]
Abstract
We study pairwise interactions between localized topological structures in chiral magnetic and cholesteric liquid crystal (CLC) systems confined in the planar geometry. Our calculations for magnetics are based on the lattice model that takes into account the bulk and surface anisotropies along with the exchange and the Dzyaloshinskii-Moriya interactions. In CLC cells, these anisotropies describe the energy of interaction with an external magnetic or electric field and the anchoring energy assuming that the magnetic or electric anisotropy is negative and the boundary conditions are homeotropic. We have selected the region of the phase diagram, where various localized solitonlike structures, including skyrmion tubes, torons, and leeches, embedded in the ground state of the z-cone (conical phase) coexist, and carried out numerical analysis of the distance dependencies of the effective intersoliton interaction potentials. For skyrmions and torons, the potentials are found to be attractive in the large separation region. It turned out that for these potentials, the effects of axial asymmetry are negligible. By contrast, it turned out that for the intermediate structures between the skyrmions and torons known as the leeches, the leech-leech potentials generally depend on the orientation of the intersoliton separation vector and their large distance parts may become repulsive at certain directions of the vector. All the potentials have the short distance repulsive parts and the local minima located at the equilibrium separations. It is found that the skyrmion-skyrmion potential has an additional metastable configuration shifted towards the short-distance region.
Collapse
Affiliation(s)
- I M Tambovtsev
- Faculty of Physics, ITMO University, 197101 St. Petersburg, Russia
- Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russia
- Science Institute and Faculty of Physical Sciences, University of Iceland, 107 Reykjavík, Iceland
| | - I S Lobanov
- Faculty of Physics, ITMO University, 197101 St. Petersburg, Russia
| | - Alexei D Kiselev
- Laboratory of Quantum Processes and Measurements, ITMO University, 199034 Saint Petersburg, Russia
| | - V M Uzdin
- Faculty of Physics, ITMO University, 197101 St. Petersburg, Russia
- Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russia
| |
Collapse
|
13
|
Wang Q, Niu W, Feng S, Liu J, Liu H, Zhu Q. Accelerating Cellulose Nanocrystal Assembly into Chiral Nanostructures. ACS NANO 2023. [PMID: 37464327 DOI: 10.1021/acsnano.3c03797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cellulose nanocrystal (CNC) suspensions self-assembled into chiral nematic liquid crystals. This property has enabled the development of versatile optical materials with fascinating properties. Nevertheless, the scale-up production and commercial success of chiral nematic CNC superstructures face significant challenges. Fabrication of chiral nematic CNC nanostructures suffers from a ubiquitous pernicious trade-off between uniform chiral nematic structure and rapid self-assembly. Specifically, the chiral nematic assembly of CNCs is a time-consuming, spontaneous process that involves the organization of particles into ordered nanostructures as the solvent evaporates. This review is driven by the interest in accelerating chiral nematic CNC assembly and promoting a long-range oriented chiral nematic CNC superstructure. To start this review, the chirality origins of CNC and CNC aggregates are analyzed. This is followed by a summary of the recent advances in stimuli-accelerated chiral nematic CNC self-assembly procedures, including evaporation-induced self-assembly, continuous coating, vacuum-assisted self-assembly, and shear-induced CNC assembly under confinement. In particular, stimuli-induced unwinding, alignment, and relaxation of chiral nematic structures were highlighted, offering a significant link between the accelerated assembly approaches and uniform chiral nematic nanostructures. Ultimately, future opportunities and challenges for rapid chiral nematic CNC assembly are discussed for more innovative and exciting applications.
Collapse
Affiliation(s)
- Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Wen Niu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Shixuan Feng
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Shoji Y, Komiyama R, Kobayashi M, Kosaka A, Kajitani T, Haruki R, Kumai R, Adachi SI, Tada T, Karasawa N, Nakano H, Nakamura H, Sakurai H, Fukushima T. Collective bending motion of a two-dimensionally correlated bowl-stacked columnar liquid crystalline assembly under a shear force. SCIENCE ADVANCES 2023; 9:eadg8202. [PMID: 37172082 PMCID: PMC10181172 DOI: 10.1126/sciadv.adg8202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stacked teacups inspired the idea that columnar assemblies of stacked bowl-shaped molecules may exhibit a unique dynamic behavior, unlike usual assemblies of planar disc- and rod-shaped molecules. On the basis of the molecular design concept for creating higher-order discotic liquid crystals, found in our group, we synthesized a sumanene derivative with octyloxycarbonyl side chains. This molecule forms an ordered hexagonal columnar mesophase, but unexpectedly, the columnar assembly is very soft, similar to sugar syrup. It displays, upon application of a shear force on solid substrates, a flexible bending motion with continuous angle variations of bowl-stacked columns while preserving the two-dimensional hexagonal order. In general, alignment control of higher-order liquid crystals is difficult to achieve due to their high viscosity. The present system that brings together higher structural order and mechanical softness will spark interest in bowl-shaped molecules as a component for developing higher-order liquid crystals with unique mechanical and stimuli-responsive properties.
Collapse
Affiliation(s)
- Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ryo Komiyama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Miki Kobayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Atsuko Kosaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Tomofumi Tada
- Kyushu University Platform of Inter/Transdisciplinary Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoyuki Karasawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hiroshi Nakano
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hisao Nakamura
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
15
|
Li L, Wen ZB, Li D, Xu ZY, Shi LY, Yang KK, Wang YZ. Fabricating Freestanding, Broadband Reflective Cholesteric Liquid-Crystal Networks via Topological Tailoring of the Sm-Ch Phase Transition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21425-21434. [PMID: 37079877 DOI: 10.1021/acsami.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Numerous biological systems in nature provide much inspiration for humanity to master diverse coloration strategies for creating stimuli-responsive materials and display devices, such as to access gorgeous structural colors from well-defined photonic structures. Cholesteric liquid crystals (CLCs) are a fascinating genre of photonic materials displaying iridescent colors responsive to circumstance changes; however, it is still a big challenge to design materials with broadband color variation as well as good flexibility and freestanding capacity. Herein, we report a feasible and flexible strategy to fabricate cholesteric liquid-crystal networks (CLCNs) with precise colors across the entire visible spectrum through molecular structure tailoring and topology engineering and demonstrate their application as smart displays and rewritable photonic paper. Influences of chiral and achiral LC monomers on the thermochromic behaviors of CLC precursors as well as on the topology of the polymerized CLCNs are systematically investigated, demonstrating that the monoacrylate achiral LC facilitated the formation of a smectic phase-chiral phase (Sm-Ch) pretransitional phase in the CLC mixture and improved the flexibility of the photopolymerized CLCNs. High-resolution multicolor patterns in one CLCN film are generated through photomask polymerization. In addition, the freestanding CLCN films show perceivable mechanochromic behaviors and repeated erasing-rewriting performances. This work opens avenues toward the realization of pixelated colorful patterns and rewritable CLCN films promising in technology fields ranging from information storage and smart camouflage to anti-counterfeiting and smart display.
Collapse
Affiliation(s)
- Lu Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Zhi-Bin Wen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Zhi-Yuan Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Ling-Ying Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Boychuk A, Shibaev V, Cigl M, Hamplová V, Novotná V, Bobrovsky A. Large Thermally Irreversible Photoinduced Shift of Selective Light Reflection in Hydrazone-Containing Cholesteric Polymer Systems. Chemphyschem 2023:e202300011. [PMID: 36861819 DOI: 10.1002/cphc.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/03/2023]
Abstract
Stimuli responsive liquid crystalline polymers are a unique class of so-called "smart" materials demonstrating various types of mesomorphic structures easily controlled by external fields, including light. In the present work we synthesized and studied a comb-shaped hydrazone-containing copolyacrylate exhibited cholesteric liquid crystalline properties with the pitch length of the helix being tuned under irradiation with light. In the cholesteric phase selective light reflection in the near IR spectral range (1650 nm) was measured and a large blue shift of the reflection peak from 1650 nm to 500 nm was found under blue light (428 or 457 nm) irradiation. This shift is related to the Z-E isomerization of photochromic hydrazone-containing groups and it is photochemically reversible. The improved and faster photo-optical response was found after copolymer doping with 10 wt % of low-molar-mass liquid crystal. It is noteworthy that both, the E and Z isomers of hydrazone photochromic group are thermally stable that enable to achieve a pure photoinduced switch without any dark relaxation at any temperatures. The large photoinduced shift of the selective light reflection, together with thermal bistability, makes such systems promising for applications in photonics.
Collapse
Affiliation(s)
- Artem Boychuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991, Russia
| | - Valery Shibaev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991, Russia
| | - Martin Cigl
- Institute of Physics of the Czech Academy of Sciences, 1999/2 Na Slovance, 182 20, Prague 8, Czech Republic
| | - Vĕra Hamplová
- Institute of Physics of the Czech Academy of Sciences, 1999/2 Na Slovance, 182 20, Prague 8, Czech Republic
| | - Vladimíra Novotná
- Institute of Physics of the Czech Academy of Sciences, 1999/2 Na Slovance, 182 20, Prague 8, Czech Republic
| | - Alexey Bobrovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991, Russia
| |
Collapse
|
17
|
Wang Y, Yuan CL, Huang W, Sun PZ, Liu B, Hu HL, Zheng Z, Lu YQ, Li Q. Programmable Jigsaw Puzzles of Soft Materials Enabled by Pixelated Holographic Surface Reliefs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211521. [PMID: 36744552 DOI: 10.1002/adma.202211521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Manual intervention in the self-organization of soft matter to obtain a desired superstructure is a complex but significant project. Specifically, optical components made fully or partially from reconfigurable and stimuli-responsive soft materials, referred to as soft photonics, are poised to form versatile platforms in various areas; however, a limited scale, narrow spectral adaptability, and poor stability are still formidable challenges. Herein, a facile way is developed to program the optical jigsaw puzzle of nematic liquid crystals via pixelated holographic surface reliefs, leading to an era of manufacturing for programmable soft materials with tailored functions. Multiscale jigsaw puzzles are established and endowed with unprecedented stability and durability, further sketching a prospective framework toward customized adaptive photonic architectures. This work demonstrates a reliable and efficient approach for directly assembling soft matter, unlocking the long-sought full potential of stimuli-responsive soft systems, and providing opportunities to inspire the next generation of soft photonics and relevant areas.
Collapse
Affiliation(s)
- Yifei Wang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cong-Long Yuan
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenbin Huang
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Pei-Zhi Sun
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Binghui Liu
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hong-Long Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhigang Zheng
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Nanjing, 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
18
|
Kwok MH, Huang J, Rui G, Bohannon CA, Li R, Zhang H, Zhao B, Zhu L. Achieving High Permittivity Paraelectric Behavior in Mesogen-Free Sulfonylated Chiral Polyethers with Smectic C Liquid Crystalline Self-Assembly. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Man-Hin Kwok
- Department of Macromolecular Science and Engineering and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Jiahao Huang
- Department of Macromolecular Science and Engineering and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Guanchun Rui
- Department of Macromolecular Science and Engineering and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Caleb A. Bohannon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, New York 11973, United States
| | - Honghu Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, New York 11973, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lei Zhu
- Department of Macromolecular Science and Engineering and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
19
|
Miao T, Cheng X, Zhang G, Wang Y, He Z, Wang Z, Zhang W. Self-recovery of chiral microphase separation in an achiral diblock copolymer system. Chem Sci 2023; 14:1673-1678. [PMID: 36819871 PMCID: PMC9930918 DOI: 10.1039/d2sc05975d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Macroscopic regulation of chiral supramolecular nanostructures in liquid-crystalline block copolymers is of great significance in photonics and nanotechnology. Although fabricating helical phase structures via chiral doping and microphase separation has been widely reported, the chiral memory and self-recovery capacity of asymmetric phase structures are the major challenge and still deeply rely on the presence of chiral additives. Herein, we demonstrate the first controllable chiral microphase separation in an achiral amphiphilic block copolymer consisting of poly(ethylene oxide) and azobenzene (Azo) groups. Chirality can be transferred to the fabricated helical nanostructures by doping with chiral additives (tartaric acid, TA). After the removal of the chiral additives and then performing cross-linking, the formed helical nanostructures will completely dispense with the chiral source. The supramolecular chirality and the micron-scale phase structure can be maintained under UV irradiation and heating-cooling treatment, enabling a reversible "on-off" chiroptical switch feature. This work is expected to avoid the tedious synthesis and expensive raw materials and shows a great application prospect in chiral separation and so on.
Collapse
Affiliation(s)
- Tengfei Miao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China .,Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huaian 223300 Jiangsu China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Yuqing Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China .,School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
20
|
Chauhan G, Malik P, Deep A. Morphological, dielectric, electro-optic and photoluminescence properties of titanium oxide nanoparticles enriched polymer stabilized cholesteric liquid crystal composites. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Liu M, Fu J, Yang S, Wang Y, Jin L, Nah SH, Gao Y, Ning Y, Murray CB, Yang S. Janus Microdroplets with Tunable Self-Recoverable and Switchable Reflective Structural Colors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207985. [PMID: 36341517 DOI: 10.1002/adma.202207985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Microdroplets made from chiral liquid crystals (CLCs) can display reflective structural colors. However, the small area of reflection and their isotropic shape limit their performance. Here, Janus microdroplets are synthesized through phase separation between CLCs and silicone oil. The as-synthesized Janus microdroplets show primary structural colors with ≈14 times larger area compared to their spherical counterparts at a specific orientation; the orientation and thus the colored/transparent states can be switched by applying a magnetic field. The color of the Janus microdroplets can be tuned ranging from red to violet by varying the concentration of the chiral dopant in the CLC phase. Due to the density difference between the two phases, the Janus microdroplets prefer to orientate the silicone oil side up vertically, enabling the self-recoverable structural color after distortion. The Janus microdroplets can be dispersed in aqueous media to track the configuration and speed of magnetic objects. They can also be patterned as multiplexed labels for data encryption. The magnetic field-responsive Janus CLC microdroplets presented here offer new insights to generate and switch reflective colors with high color saturation. It also paves the way for broader applications of CLCs, including anti-counterfeiting, data encryption, display, and untethered speed sensors.
Collapse
Affiliation(s)
- Mingzhu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Jiemin Fu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - So Hee Nah
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Yuchong Gao
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Yifan Ning
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Wei Q, Lv P, Zhang Y, Zhang J, Qin Z, de Haan LT, Chen J, Wang D, Xu BB, Broer DJ, Zhou G, Ding L, Zhao W. Facile Stratification-Enabled Emergent Hyper-Reflectivity in Cholesteric Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57235-57243. [PMID: 36520981 DOI: 10.1021/acsami.2c16938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cholesteric liquid crystals (CLCs) are chiral photonic materials with selective reflection in terms of wavelength and polarization. Helix engineering is often required in order to produce desired properties for CLC materials to be employed for beam steering, light diffraction, scattering, and adaptive or broadband reflection. Here, we demonstrate a novel photopolymerization-enforced stratification (PES)-based strategy to realize helix engineering in a chiral CLC system with initially one handedness of molecular rotation throughout the layer. PES plays a crucial role in driving the chiral dopant bundle consisting of two chiral dopants of opposite handedness to spontaneously phase separate and create a CLC bilayer structure that reflects left- and right-handed circularly polarized light (CPL). The initially hidden chiral information therefore becomes explicit, and hyper-reflectivity, i.e., reflecting both left- and right-handed CPL, successfully emerges from the designed CLC mixture. The PES mechanism can be applied to structure a wide range of liquid crystal (LC) and polymer materials. Moreover, the engineering strategy enables facile programming of the center wavelength of hyper-reflection, patterning, and incorporating stimuli-responsiveness in the optical device. Hence, the engineered hyper-reflective CLCs offer great promise for future applications, such as digital displays, lasing, optical storage, and smart windows.
Collapse
Affiliation(s)
- Qunmei Wei
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
| | - Pengrong Lv
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Yang Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiwen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
| | - Zhuofan Qin
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Laurens T de Haan
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawen Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Ding Wang
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Dirk J Broer
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen 518110, P. R. China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Zhao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, 510006 Guangzhou, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
23
|
Gollapelli B, Rama Raju Ganji S, Kumar Tatipamula A, Vallamkondu J. Bio-derived chlorophyll dye doped cholesteric liquid crystal films and microdroplets for advanced anti-counterfeiting security labels. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Ma LL, Li CY, Pan JT, Ji YE, Jiang C, Zheng R, Wang ZY, Wang Y, Li BX, Lu YQ. Self-assembled liquid crystal architectures for soft matter photonics. LIGHT, SCIENCE & APPLICATIONS 2022; 11:270. [PMID: 36100592 PMCID: PMC9470592 DOI: 10.1038/s41377-022-00930-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 06/03/2023]
Abstract
Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.
Collapse
Affiliation(s)
- Ling-Ling Ma
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chao-Yi Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jin-Tao Pan
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue-E Ji
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chang Jiang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ren Zheng
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ze-Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Bing-Xiang Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
25
|
Kim YG, Park S, Kim SH. Designing photonic microparticles with droplet microfluidics. Chem Commun (Camb) 2022; 58:10303-10328. [PMID: 36043863 DOI: 10.1039/d2cc03629k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photonic materials with a periodic change of refractive index show unique optical properties through wavelength-selective diffraction and modulation of the optical density of state, which is promising for various optical applications. In particular, photonic structures have been produced in the format of microparticles using emulsion templates to achieve advanced properties and applications beyond those of a conventional film format. Photonic microparticles can be used as a building block to construct macroscopic photonic materials, and the individual microparticles can serve as miniaturized photonic devices. Droplet microfluidics enables the production of emulsion drops with a controlled size, composition, and configuration that serve as the optimal confining geometry for designing photonic microparticles. This feature article reviews the recent progress and current state of the art in the field of photonic microparticles, covering all aspects of microfluidic production methods, microparticle geometries, optical properties, and applications. Two distinct bottom-up approaches based on colloidal assembly and liquid crystals are, respectively, discussed and compared.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
26
|
Wang H, Xu T, Fu Y, Wang Z, Leeson MS, Jiang J, Liu T. Liquid Crystal Biosensors: Principles, Structure and Applications. BIOSENSORS 2022; 12:639. [PMID: 36005035 PMCID: PMC9406233 DOI: 10.3390/bios12080639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022]
Abstract
Liquid crystals (LCs) have been widely used as sensitive elements to construct LC biosensors based on the principle that specific bonding events between biomolecules can affect the orientation of LC molecules. On the basis of the sensing interface of LC molecules, LC biosensors can be classified into three types: LC-solid interface sensing platforms, LC-aqueous interface sensing platforms, and LC-droplet interface sensing platforms. In addition, as a signal amplification method, the combination of LCs and whispering gallery mode (WGM) optical microcavities can provide higher detection sensitivity due to the extremely high quality factor and the small mode volume of the WGM optical microcavity, which enhances the interaction between the light field and biotargets. In this review, we present an overview of the basic principles, the structure, and the applications of LC biosensors. We discuss the important properties of LC and the principle of LC biosensors. The different geometries of LCs in the biosensing systems as well as their applications in the biological detection are then described. The fabrication and the application of the LC-based WGM microcavity optofluidic sensor in the biological detection are also introduced. Finally, challenges and potential research opportunities in the development of LC-based biosensors are discussed.
Collapse
Affiliation(s)
- Haonan Wang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Yaoxin Fu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Ziyihui Wang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mark S. Leeson
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Junfeng Jiang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
27
|
Ohishi Y, Chiba J, Inouye M. Chiral Assemblies of Planar and Achiral meta-Arylene Ethynylene Macrocycles Induced by Saccharide Recognition. J Org Chem 2022; 87:10825-10835. [PMID: 35938888 DOI: 10.1021/acs.joc.2c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We created chiral assemblies of planar and achiral macrocycles by saccharide recognition. To achieve this, we synthesized stackable meta-arylene ethynylene macrocycles consisting of pyridine-acetylene-phenol and pyridine-acetylene-aniline units. 1H NMR, absorption, and fluorescence emission spectroscopy indicated that these macrocycles formed 1:1 and 2:1 complexes with lipophilic alkyl glycosides. The 2:1 complex of the pyridine-acetylene-phenol macrocycle showed induced circular dichroism (ICD) bands, meaning that two achiral macrocycles are arranged in an asymmetrically twisted manner. CD spectroscopy revealed that the helical sense was affected by the chirality of guest saccharides. On the other hand, strong CD bands were observed after solid-liquid extraction of native saccharides into lipophilic solvents using the pyridine-acetylene-aniline macrocycle.
Collapse
Affiliation(s)
- Yuki Ohishi
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Junya Chiba
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
28
|
Carboxylated cellulose nanocrystal films with tunable chiroptical properties. Carbohydr Polym 2022; 289:119442. [DOI: 10.1016/j.carbpol.2022.119442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022]
|
29
|
Zhou H, Wang H, He W, Yang Z, Cao H, Wang D, Li Y. Research Progress of Cholesteric Liquid Crystals with Broadband Reflection. Molecules 2022; 27:4427. [PMID: 35889300 PMCID: PMC9317135 DOI: 10.3390/molecules27144427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesteric liquid crystal (ChLC) materials with broadband reflection are witnessing a significant surge in interest due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship. Nowadays, by the virtue of building self-organized nanostructures with pitch gradient or non-uniform pitch distribution, extensive work has already been performed to obtain ChLC films with a broad reflection band. This critical review systematically summarizes the optical background of the ChLCs with broadband reflection characteristics, methods to obtain broadband reflection of ChLCs, as well as the application in this area. Combined with the research status and the advantages in the field, the challenges and opportunities of applied scientific problems in the research direction are also introduced.
Collapse
Affiliation(s)
| | | | - Wanli He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (H.Z.); (H.W.); (H.C.); (D.W.); (Y.L.)
| | - Zhou Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (H.Z.); (H.W.); (H.C.); (D.W.); (Y.L.)
| | | | | | | |
Collapse
|
30
|
Dolganov PV, Baklanova KD, Dolganov VK. Peculiarities of focal conic structure formed near the cholesteric-isotropic phase transition. Phys Rev E 2022; 106:014703. [PMID: 35974502 DOI: 10.1103/physreve.106.014703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Focal conic structure formed near the transition from the cholesteric liquid crystal phase into isotropic liquid is studied in planar cells with a combination of optical methods. Employing a procedure with slow variation of temperature, we manage to obtain regions of periodic focal conic structure with two-dimensional square ordering in the plane of the cell. Using ordered samples and materials with selective reflection in the visible spectral range, we obtain spectral and microscopic optical data which deepen our knowledge of the focal conic structure.
Collapse
Affiliation(s)
- P V Dolganov
- Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
| | - K D Baklanova
- Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
- National Research University Higher School of Economics, 101000, Moscow, Russia
| | - V K Dolganov
- Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
| |
Collapse
|
31
|
Rim M, Kang DG, Jung D, Lim SI, Lee KM, Godman NP, McConney ME, De Sio L, Ahn SK, Jeong KU. Remote-controllable and encryptable smart glasses: a photoresponsive azobenzene molecular commander determines the molecular alignments of liquid crystal soldiers. NANOSCALE 2022; 14:8271-8280. [PMID: 35586949 DOI: 10.1039/d2nr01382g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the development of optically encryptable smart glass that can control the molecular alignment of liquid crystals (LCs), an azobenzene-based reactive molecule (ARM) capable of trans-cis photoisomerization is newly designed and synthesized. Photo-triggered LC-commandable smart glasses are successfully constructed by the surface functionalization technique using 3-aminopropyltriethoxysilane (APTMS) coupling agent and an ARM. The surface functionalization with the ARM is verified by spectroscopic analysis and various observations including changes in the wettability and surface morphology. Using the ARM-treated substrate, the LC command cell which can effectively switch the molecular orientation of nematic LC (E7) by the irradiation of UV and visible light is demonstrated. The results of optical investigation demonstrate the directional correlation between light and photoisomerization, revealing the tilt mechanism of azobenzene units. The capability to control the molecular orientation of LCs remotely and selectively allows the development of remote-controllable and encryptable smart glasses.
Collapse
Affiliation(s)
- Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Dong-Gue Kang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Dayoung Jung
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seok-In Lim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Kyung Min Lee
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Nicholas P Godman
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Michael E McConney
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Luciano De Sio
- Department of Medico-Surgical Science and Biotechnologies, Center for Biophotonics, Sapienza University of Rome, Latina 04100, Italy
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
32
|
Dynamically actuated soft heliconical architecture via frequency of electric fields. Nat Commun 2022; 13:2712. [PMID: 35581208 PMCID: PMC9114134 DOI: 10.1038/s41467-022-30486-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Dynamic electric field frequency actuated helical and spiral structures enable a plethora of attributes for advanced photonics and engineering in the contemporary era. Nevertheless, leveraging the frequency responsiveness of adaptive devices and systems within a broad dynamic range and maintaining restrained high-frequency induced heating remain challenging. Herein, we establish a frequency-actuated heliconical soft architecture that is quite distinct from that of common frequency-responsive soft materials. We achieve reversible modulation of the photonic bandgap in a wide spectral range by delicately coupling the frequency-dependent thermal effect, field-induced dielectric torque and elastic equilibrium. Furthermore, an information encoder prototype without the aid of complicated algorithm design is established to analogize an information encoding and decoding process with a more convenient and less costly way. A technique for taming and tailoring the distribution of the pitch length is exploited and embodied in a prototype of a spatially controlled soft photonic cavity and laser emission. This work demonstrates a distinct frequency responsiveness in a heliconical soft system, which may not merely inspire the interest in field-assisted bottom-up molecular engineering of soft matter but also facilitate the practicality of adaptive photonics. Frequency responsiveness within a broad dynamic range in adaptive systems while also reducing high-frequency induced heating remains a challenge for advanced photonics. Here, authors report a frequency-actuated heliconical soft architecture with reversible modulation of the photonic bandgap in a wide spectral range.
Collapse
|
33
|
Wang Z, Servio P, Rey AD. Complex Nanowrinkling in Chiral Liquid Crystal Surfaces: From Shaping Mechanisms to Geometric Statistics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1555. [PMID: 35564263 PMCID: PMC9105835 DOI: 10.3390/nano12091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
Surface wrinkling is closely linked to a significant number of surface functionalities such as wetting, structural colour, tribology, frictions, biological growth and more. Given its ubiquity in nature's surfaces and that most material formation processes are driven by self-assembly and self-organization and many are formed by fibrous composites or analogues of liquid crystals, in this work, we extend our previous theory and modeling work on in silico biomimicking nanowrinkling using chiral liquid crystal surface physics by including higher-order anisotropic surface tension nonlinearities. The modeling is based on a compact liquid crystal shape equation containing anisotropic capillary pressures, whose solution predicts a superposition of uniaxial, equibiaxial and biaxial egg carton surfaces with amplitudes dictated by material anchoring energy parameters and by the symmetry of the liquid crystal orientation field. The numerical solutions are validated by analytical solutions. The blending and interaction of egg carton surfaces create surface reliefs whose amplitudes depend on the highest nonlinearity and whose morphology depends on the anchoring coefficient ratio. Targeting specific wrinkling patterns is realized by selecting trajectories on an appropriate parametric space. Finally, given its importance in surface functionalities and applications, the geometric statistics of the patterns up to the fourth order are characterized and connected to the parametric anchoring energy space. We show how to minimize and/or maximize skewness and kurtosis by specific changes in the surface energy anisotropy. Taken together, this paper presents a theory and simulation platform for the design of nano-wrinkled surfaces with targeted surface roughness metrics generated by internal capillary pressures, of interest in the development of biomimetic multifunctional surfaces.
Collapse
Affiliation(s)
| | | | - Alejandro D. Rey
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, QC H3A 0C5, Canada; (Z.W.); (P.S.)
| |
Collapse
|
34
|
Yu Z, Bisoyi HK, Chen XM, Nie ZZ, Wang M, Yang H, Li Q. An Artificial Light-Harvesting System with Controllable Efficiency Enabled by an Annulene-Based Anisotropic Fluid. Angew Chem Int Ed Engl 2022; 61:e202200466. [PMID: 35100478 DOI: 10.1002/anie.202200466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 12/17/2022]
Abstract
The development of controllable artificial light-harvesting systems based on liquid crystal (LC) materials, i.e., anisotropic fluids, remains a challenge. Herein, an annulene-based discotic LC compound 6 with a saddle-shaped cyclooctatetrathiophene core has been synthesized to construct a tunable light-harvesting platform. The LC material shows a typical aggregation-induced emission, which can act as a suitable light-harvesting donor. By loading Nile red (NiR) as an acceptor, an artificial light-harvesting system is achieved. Relying on the thermal-responsive self-assembling ability of 6 with variable molecular order, the efficiency of such 6-NiR system can be controlled by temperature. This light-harvesting system works sensitively at a high donor/acceptor ratio as 1000 : 1, and exhibits a high antenna effect (39.1) at a 100 : 1 donor/acceptor ratio. This thermochromic artificial light-harvesting LC system could find potential applications in smart devices employing soft materials.
Collapse
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhen-Zhou Nie
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.,Advanced Materials and Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
35
|
Alaasar M, Cai X, Kraus F, Giese M, Liu F, Tschierske C. Controlling ambidextrous mirror symmetry breaking in photosensitive supramolecular polycatenars by alkyl-chain engineering. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Hockey-Stick Polycatenars: Network formation and transition from one dimensional to three-dimensional liquid crystalline phases. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Lanfranchi A, Megahd H, Lova P, Comoretto D. Multilayer Polymer Photonic Aegises Against Near-Infrared Solar Irradiation Heating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14550-14560. [PMID: 35306809 PMCID: PMC8972252 DOI: 10.1021/acsami.1c25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/24/2022] [Indexed: 05/30/2023]
Abstract
Preventing solar heating is nowadays of paramount interest in energy savings and health preservation. For instance, in building thermalization solar heating consumes an excess of energy leading to harmful CO2 emissions, while in food and beverage packaging it may lead to variation of organoleptic properties or even health issues. The phenomenon is attributed to the large presence of moieties with highly absorbing vibrational overtones and combination bands in the near-infrared spectral region that induces heating in water, moisture, and in polymers used in packaging. Thus, reducing and controlling the light absorbed by these materials with effective low-cost passive systems can play a major role in energy saving and health preservation. In this work, different polymer dielectric mirrors are reported, made of poly(N-vinylcarbazole) and either cellulose acetate or poly(acrylic acid), and able to selectively reflect near-infrared radiation while maintaining high transparency in the visible range. To this end, simple, tandem, and superperiodic mirrors are used to shield radiation impinging on samples of water and paraffin, demonstrating shielding efficiencies up to 52% with respect to unshielded references, promising a new paradigm to solve thermal management issues.
Collapse
|
38
|
Chen ZQ, Sun YW, Zhu YL, Li ZW, Sun ZY. A chiral smectic phase induced by an alternating external field. SOFT MATTER 2022; 18:2569-2576. [PMID: 35293929 DOI: 10.1039/d2sm00093h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using simple achiral building blocks modulated by an external field to achieve chiral liquid crystal phases remains a challenge. In this study, a chiral helix liquid crystal phase is obtained for a simple Gay-Berne ellipsoid model under an alternating external field by using molecular dynamics simulations. Our results show that the chiral helix liquid crystal phase can be observed in a wide range of external field strengths when the oscillation period is smaller than the rotational characteristic diffusion timescale of ellipsoids. In addition, we find that the pitch and tilt angle of the helix structure can also be adjusted by changing the strength and oscillation period of the applied alternating external field. This may provide a feasible route for the regulation of chiral liquid crystal phases by an alternating external field.
Collapse
Affiliation(s)
- Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining, 835000, China
| |
Collapse
|
39
|
Zhang J, Sun D, Zhang B, Sun Q, Zhang Y, Liu S, Wang Y, Liu C, Chen J, Chen J, Song Y, Liu X. Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics. MATERIALS HORIZONS 2022; 9:1045-1056. [PMID: 35040453 DOI: 10.1039/d1mh01810h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoresponsive soft actuators with the unique merits of flexibility, contactless operation, and remote control have huge potential in technological applications of bionic robotics and biomedical devices. Herein, a facile strategy was proposed to prepare an intrinsically-photoresponsive elastomer by chemically grafting carbon nanotubes (CNTs) into a thermally-sensitive liquid-crystalline elastomer (LCE) network. Highly effective dispersion and nematic orientation of CNTs in the intrinsic LCE matrix were observed to yield anchoring energies ranging from 1.65 × 10-5 J m-2 to 5.49 × 10-7 J m-2, which significantly enhanced the mechanical and photothermal properties of the photoresponsive elastomer. When embedding an ultralow loading of CNTs (0.1 wt%), the tensile strength of the LCE increased by 420% to 13.89 MPa (||) and 530% to 3.94 MPa (⊥) and exhibited a stable response to repeated alternating cooling and heating cycles, as well as repeated UV and infrared irradiation. Furthermore, the shape transformation, locomotion, and photo-actuation capabilities allow the CNT/LCE actuator to be applied in high-definition biomechanical applications, such as phototactic flowers, serpentine robots and artificial muscles. This design strategy may provide a promising method to manufacture high-precision, remote-control smart devices.
Collapse
Affiliation(s)
- Juzhong Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China.
| | - Dandan Sun
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China.
| | - Qingqing Sun
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yang Zhang
- Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuiren Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yaming Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jingbo Chen
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Xuying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
40
|
Wang Z, Servio P, Rey A. Wrinkling pattern formation with periodic nematic orientation: From egg cartons to corrugated surfaces. Phys Rev E 2022; 105:034702. [PMID: 35428159 DOI: 10.1103/physreve.105.034702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Egg cartons, known as doubly sinusoidal surfaces, display a rich variety of saddles-cylinder-spherical patches organized with different spatial symmetries and connectivities. Egg carton surfaces, rich in functionalities, are observed in synthetic and biological materials, as well as across atomic and macroscopic scales. In this work we use the liquid crystal shape equation in the absence of elastic effects and normal stress jumps to predict and classify a family of uniaxial, equibiaxial, and biaxial egg cartons, according to the periodicities of the surface director field in nematic (N) and cholesteric (N*) liquid crystals under the presence of anisotropic surface tension (anchoring). Egg carton surface shape periodic solutions to the nonlinear and linearized liquid crystal shape equations predict that the mean curvature is a linear function of the orthogonal (along the surface normal) splay and bend contributions. Mixtures of egg carton surfaces (uniaxial, equibiaxial, and biaxial) emerge according to the symmetries of the nonsingular director field, and the spatial distributions of the director escape into the third dimension; pure uniaxial egg cartons emerge when the director escape has linelike geometries and mixtures of egg cartons arise under source or sink orientation lattices. Orientation symmetry and permutation analysis are incorporated into a full curvature (Casorati, shape parameter, mean curvature, and Gaussian curvature) characterization. Under a fixed anchoring parameter, conditions for maximal nanoscale curvedness and microscale maximal shape gradient diversity are identified. The present results contribute to various pathways to surface pattern formation using intrinsic anisotropic interfacial tension.
Collapse
Affiliation(s)
- Ziheng Wang
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, Canada H3A 0C5
| | - Phillip Servio
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, Canada H3A 0C5
| | - Alejandro Rey
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, Canada H3A 0C5
| |
Collapse
|
41
|
Yu Z, Bisoyi HK, Chen X, Nie Z, Wang M, Yang H, Li Q. An Artificial Light‐Harvesting System with Controllable Efficiency Enabled by an Annulene‐Based Anisotropic Fluid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Zhen‐Zhou Nie
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
42
|
Effect of end groups with aliphatic chain or ring structures on the thermal properties and optical textures of achiral and chiral liquid crystal compounds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Chen X, Zhang S, Chen X, Li Q. Tunable Circularly Polarized Luminescent Supramolecular Systems: Approaches and Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
44
|
Zhang M, Wang Y, Zhou Y, Yuan H, Guo Q, Zhuang T. Amplifying inorganic chirality using liquid crystals. NANOSCALE 2022; 14:592-601. [PMID: 34850801 DOI: 10.1039/d1nr06036h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chiral inorganic nanostructures have drawn extensive attention thanks to their unique physical properties as well as multidisciplinary applications. Amplifying inorganic chirality using liquid crystals (LCs) is an efficient way to enhance the parented inorganic asymmetry owing to chirality transfer. Herein, the universal synthetic methods and structural characterizations of chiral inorganic-doped LC hybrids are introduced. Additionally, the current progress and status of recent experiment and theory research about chiral interactions between inorganic nanomaterials (e.g. metal, semiconductor, perovskite, and magnetic oxide) and LCs are summarized in this review. We further present representative applications of these new hybrids in the area of encryption, sensing, optics, etc. Finally, we provide perspectives on this field in terms of material variety, new synthesis, and future practice. It is envisaged that LCs will act as a pivotal part in the amplification of inorganic chirality with versatile applications.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Yaxin Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Yajie Zhou
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Honghan Yuan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Qi Guo
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Taotao Zhuang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
45
|
Shoji Y, Kobayashi M, Kosaka A, Haruki R, Kumai R, Adachi SI, Kajitani T, Fukushima T. Design of discotic liquid crystal enabling complete switching between and memory of two alignment states over a large area. Chem Sci 2022; 13:9891-9901. [PMID: 36128239 PMCID: PMC9430577 DOI: 10.1039/d2sc03677k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
The alignment control of discotic columnar liquid crystals (LCs), featuring a low motility of the constituent molecules and thus having a large viscosity, is a challenging task. Here we show that triphenylene hexacarboxylic ester, when functionalized with hybrid side chains consisting of alkyl and perfluoroalkyl groups in an appropriate ratio, gives a hexagonal columnar (Colh) LC capable of selectively forming large-area uniform homeotropic or homogeneous alignments, upon cooling from its isotropic melt or upon application of a shear force at its LC temperature, respectively. In addition to the alignment switching ability, each alignment state remains persistent unless the LC is heated to its melting temperature. In situ X-ray diffraction analysis under the application of a shear force, together with polarized optical microscopy observations, revealed how the columnar assembly is changed during the alignment-switching process. The remarkable behavior of the discotic LC is discussed in terms of its rheological properties. A columnar liquid crystal consisting of a triphenylene hexacarboxylic ester mesogen and semifluoroalkyl side chains shows complete switching between homeotropic and homogeneous alignments, each of which remains persistent up to its melting point.![]()
Collapse
Affiliation(s)
- Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Miki Kobayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Atsuko Kosaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho Tsukuba 305-0801 Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
46
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
47
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
48
|
Wang X, He J, Wei Q, Zhang Y, Li Y, Zhang Z, Zhao W, Zhou G. Influence of molecular weight on helical twisting power of oligomer chiral dopants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Xiang Y, Jing H, Chen H, Zhang J, Ding X, Li J, Cai Z, Éber N, Buka Á. Light-driven rotation of gratings formed by electroconvection patterns in cholesteric liquid crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Miao T, Cheng X, Ma H, He Z, Zhang Z, Zhou N, Zhang W, Zhu X. Transfer, Amplification, Storage, and Complete Self-Recovery of Supramolecular Chirality in an Achiral Polymer System. Angew Chem Int Ed Engl 2021; 60:18566-18571. [PMID: 34156135 DOI: 10.1002/anie.202107992] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Supramolecular chirality and its complete self-recovery ability are highly mystical in nature and biological systems, which remains a major challenge today. Herein, we demonstrate that partially cross-linked azobenzene (Azo) units can be employed as the potential chiral trigger to fully heal the destroyed helical superstructure in achiral nematic polymer system. Combining the self-assembly of Azo units and terminal hydroxyl groups in polymer side chains allows the vapor-induced chiral nematic phase and covalent fixation of the superstructure via acetal reaction. The induced helical structure of Azo units can be stored by inter-chain cross-linking, even after removal of the chiral source. Most interestingly, the stored chiral information can trigger perfect chiral self-recovery (CSR) behavior after being destroyed by UV light, heat, and solvents. The results pave a new way for producing novel chiroptical materials with reversible chirality from achiral sources.
Collapse
Affiliation(s)
- Tengfei Miao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|