1
|
Yu S, Rejinold NS, Choi G, Choy JH. Revolutionizing healthcare: inorganic medicinal nanoarchitectonics for advanced theranostics. NANOSCALE HORIZONS 2025; 10:460-483. [PMID: 39648727 DOI: 10.1039/d4nh00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Over the last two decades, advancements in nanomaterials and nanoscience have paved the path for the emergence of nano-medical convergence science, significantly impacting healthcare. In our review, we highlight how these advancements are applied in various biomedical technologies such as drug delivery systems, bio-imaging for diagnostic and therapeutic purposes. Recently, novel inorganic nanohybrid drugs have been developed, combining multifunctional inorganic nanomaterials with therapeutic agents (known as inorganic medicinal nanoarchitectonics). These innovative drugs are actively utilized in cutting-edge medical treatments, including targeted anti-cancer therapy, photo and radiation therapy, and immunotherapy. This review provides a detailed overview of the current development status of inorganic medicinal nanoarchitectonics and explores potential future directions in their advancements.
Collapse
Affiliation(s)
- Seungjin Yu
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Republic of Korea
- Tokyo Tech Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Institute of Science Tokyo, Yokohama 226853, Japan
| |
Collapse
|
2
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Xu M, Xu Y, Du C, Gu G, Wei G. Biomimetic CuCoO 2 nanosheets reinforced with self-assembling peptide nanofibers for tumor photothermal therapy. RSC Adv 2024; 14:39163-39172. [PMID: 39664248 PMCID: PMC11632949 DOI: 10.1039/d4ra07435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
The flexible design and unique physical and chemical properties of self-assembled peptides have shown great potential for applications in the fields of materials science, life science, and environmental science. Peptide nanofibers (PNFs), as a kind of bioactive nanomaterials, possess excellent biocompatibility, flexible designability, and multifaceted functionalizability. In this work, we design and describe PNFs that self-assembled by peptide molecules as carriers for bimetallic nanosheets (BMNS), leading to the development of hybrid nanomaterials, BMNS-PNFs, with unique properties. The BMNS-PNFs exhibit a photothermal conversion efficiency (PCE) of up to 31.57%, and can be used as a potential nanoplatform for photothermal therapy (PTT) of lung tumour cells. Through the results, it is shown that the PNFs can reduce the cytotoxicity of BMNS-PNFs and that BMNS-PNFs have excellent cancer cell killing effects, with photothermal killing rates of more than 95% and 90% for lung cancer cells HCC2279 and PC9, respectively. Finally, the comprehensive PTT performance of BMNS-PNFs is analysed by Ranking of Efficiency Performance (REP), and the REP value of BMNS-PNFs is calculated to be 0.741. The peptide sequences used to assemble into PNFs in this study are instructive for functional design and structural modulation of molecular self-assembly, and the constructed bimetallic-biomolecular hybrid materials provide a potential strategy for medical bioengineering.
Collapse
Affiliation(s)
- Mingjin Xu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University Qingdao 266700 PR China
| | - Youyin Xu
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| | - Chenxi Du
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| | - Guanghui Gu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University Qingdao 266700 PR China
| | - Gang Wei
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| |
Collapse
|
4
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
5
|
Zhang M, Wu T, Zhang H, Chen Z, Yang Y, Ling Y, Zhou Y. Mesoporous carbon hemispheres integrated with Fe-Gd nanoparticles for potential MR/PA imaging-guided photothermal therapy. J Mater Chem B 2024; 12:658-666. [PMID: 37934458 DOI: 10.1039/d3tb02073h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Asymmetric carbon has emerged as an important material to enrich morphologies as well as enhance functions for bioapplications. Here, asymmetric mesoporous carbon hemispheres (CHS) integrated with γ-Fe2O3 and GdPO4 (Fe-Gd) nanoparticles are proposed and prepared for potential imaging-guided photothermal therapy (PTT). Interestingly, Fe-Gd/CHS contributes to an almost 1.5 times enhancement in light harvesting and photothermal conversion efficiency as compared with its corresponding spherical analogue. The possible underlying mechanism is discussed in view of the unique asymmetric structure-featured carbon. Further identification of the inherited photoacoustic (PA) and magnetic resonance (MR) imaging properties leads to the consequent in vivo evaluation of its imaging and PTT performances, which demonstrates its capability as a function-integrated system for potential theranostics.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Tianze Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Hui Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Zhang Y, Song Q, Zhang Y, Xiao J, Deng X, Xing X, Hu H, Zhang Y. Iron-Based Nanovehicle Delivering Fin56 for Hyperthermia-Boosted Ferroptosis Therapy Against Osteosarcoma. Int J Nanomedicine 2024; 19:91-107. [PMID: 38192634 PMCID: PMC10773462 DOI: 10.2147/ijn.s441112] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Background Although systemic chemotherapy is a standard approach for osteosarcoma (OS) treatment, its efficacy is limited by the inherent or acquired resistance to apoptosis of tumor cells. Ferroptosis is considered as an effective strategy capable of stimulating alternative pathways of cancer cell demise. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods and Results A novel nanovehicle composed of arginine-glycine-aspartate (RGD) modified mesoporous silica-coated iron oxide loading Fin56 was rationally prepared (FSR-Fin56). With the RGD-mediated targeting affinity, FSR-Fin56 could achieve selective accumulation and accurate delivery of cargos into cancer cells. Upon exposure to NIR light, the nanovehicle could generate localized hyperthermia and disintegrate to liberate the therapeutic payload. The released Fin56 triggered the degradation of GPX4, while Fe3+ depleted the intracellular GSH pool, producing Fe2+ as a Fenton agent. The local rise in temperature, in conjunction with Fe2+-mediated Fenton reaction, led to a rapid and significant accumulation of ROS, culminating in LPOs and ferroptotic death. The outstanding therapeutic efficacy and safety of the nanovehicle were validated both in vitro and in vivo. Conclusion The Fin56-loaded FSR nanovehicle could effectively disturb the redox balance in cancer cells. Coupled with NIR laser irradiation, the cooperative CDT and PTT achieved a boosted ferroptosis-inducing therapy. Taken together, this study offers a compelling strategy for cancer treatment, particularly for ferroptosis-sensitive tumors like osteosarcoma.
Collapse
Affiliation(s)
- Yiran Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- HeBei Ex&Invivo Biotechnology Co. Ltd, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yueyao Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiheng Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiangtian Deng
- Orthopaedics Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xin Xing
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yingze Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
7
|
Yang H, Liao D, Cai Z, Zhang Y, Nezamzadeh-Ejhieh A, Zheng M, Liu J, Bai Z, Song H. Current status of Fe-based MOFs in biomedical applications. RSC Med Chem 2023; 14:2473-2495. [PMID: 38107167 PMCID: PMC10718519 DOI: 10.1039/d3md00416c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023] Open
Abstract
Recently nanoparticle-based platforms have gained interest as drug delivery systems and diagnostic agents, especially in cancer therapy. With their ability to provide preferential accumulation at target sites, nanocarrier-constructed antitumor drugs can improve therapeutic efficiency and bioavailability. In contrast, metal-organic frameworks (MOFs) have received increasing academic interest as an outstanding class of coordination polymers that combine porous structures with high drug loading via temperature modulation and ligand interactions, overcoming the drawbacks of conventional drug carriers. FeIII-based MOFs are one of many with high biocompatibility and good drug loading capacity, as well as unique Fenton reactivity and superparamagnetism, making them highly promising in chemodynamic and photothermal therapy, and magnetic resonance imaging. Given this, this article summarizes the applications of FeIII-based MOFs in three significant fields: chemodynamic therapy, photothermal therapy and MRI, suggesting a logical route to new strategies. This article concludes by summarising the primary challenges and development prospects in these promising research areas.
Collapse
Affiliation(s)
- Hanping Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University Dongguan 523700 China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Zhidong Cai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Yuelin Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Mingbin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Zhi Bai
- The First Dongguan Affiliated Hospital, Guangdong Medical University Dongguan 523700 China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital Dongguan 523770 China
| |
Collapse
|
8
|
Yuan M, Kermanian M, Agarwal T, Yang Z, Yousefiasl S, Cheng Z, Ma P, Lin J, Maleki A. Defect Engineering in Biomedical Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304176. [PMID: 37270664 DOI: 10.1002/adma.202304176] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Indexed: 06/05/2023]
Abstract
With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
9
|
Yu Y, Zhu L, Dai L, Hu Z, Li L, Xiang H, Zhou Z, Zhu M. Enhancing flame retardancy of polyphenylene sulfide nanocomposite fibers by the synergistic effect of catalytic crosslinking and physical barrier. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Lu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
- College of Mechanical and Engineering Donghua University Shanghai China
| | - Lili Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Zhe Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| |
Collapse
|
10
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi MM, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A, Pandey S. TiO2-based nanocomposites for cancer diagnosis and therapy: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Zhu H, Zhang X, Wang Q, Deng J, Zhang Z, Zhang X, Cao J, He B. In situ assembled titanium carbide-based heterojunctions for the synergistic enhancement of NIR-II photothermal/photodynamic therapy against breast cancer. J Mater Chem B 2022; 10:10083-10096. [PMID: 36458579 DOI: 10.1039/d2tb01783k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The combined use of photothermal therapy (PTT) and photodynamic therapy (PDT) could circumvent the drawbacks of each individual therapeutic strategy, resulting in an enhanced antitumor effect. However, the lack of highly effective photo-agents that are irradiation-safe in the biologically transparent window hinder the advancement of phototherapy clinically. Hence, in this study, a charge separation engineering strategy was adopted to fabricate a nanoplatform with heterojunctions, namely, in situ TiO2-loaded MXene (Ti3C2/TiO2 heterojunctions). This nanoplatform exhibited reduced bandgap (1.68 eV), enhanced NIR-II photothermal conversion efficiency (44.98%), and extended absorption edge compared to pristine TiO2 for enhanced photodynamic effect. More importantly, the proliferation of tumor cells could be efficiently inhibited at a 5 mm chicken breast depth after 1064 nm laser irradiation, and the intracellular ROS production significantly increased under 660 nm or even 1064 nm laser irradiation with heterojunctions (HJs) compared with that of TiO2. Moreover, the in vivo data further confirmed that the as-prepared heterojunctions could efficiently eradicate tumors efficiently via improved photothermal effect with NIR-II laser irradiation and upregulated ROS production. Collectively, the reported HJs strategy provides an opportunity for the success of combinational PTT and PDT therapy in tumor treatment.
Collapse
Affiliation(s)
- Hai Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xuequan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qiusheng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jin Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiaoxian Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
12
|
Chen J, Chen T, Fang Q, Pan C, Akakuru OU, Ren W, Lin J, Sheng A, Ma X, Wu A. Gd 2O 3/b-TiO 2 composite nanoprobes with ultra-high photoconversion efficiency for MR image-guided NIR-II photothermal therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20220014. [PMID: 37324803 PMCID: PMC10190978 DOI: 10.1002/exp.20220014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Photothermal therapy (PTT), as an important noninvasive and effective tumor treatment method, has been extensively developed into a powerful cancer therapeutic technique. Nevertheless, the low photothermal conversion efficiency and the limited tissue penetration of typical photothermal therapeutic agents in the first near-infrared (NIR-I) region (700-950 nm) are still the major barriers for further clinical application. Here, we proposed an organic/inorganic dual-PTT agent of synergistic property driven by polydopamine-modified black-titanium dioxide (b-TiO2@PDA) with excellent photoconversion efficiency in the second NIR (NIR-II) region (1000-1500 nm). More specifically, the b-TiO2 treated with sodium borohydride produced excessive oxygen vacancies resulting in oxygen vacancy band that narrowed the b-TiO2 band gap, and the small band gap led to NIR-II region wavelength (1064 nm) absorbance. Furthermore, the combination of defect energy level trapping carrier recombination heat generation and conjugate heat generation mechanism, significantly improved the photothermal performance of the PTT agent based on b-TiO2. The photothermal properties characterization indicated that the proposed dual-PTT agent possesses excellent photothermal performance and ultra-high photoconversion efficiency of 64.9% under 1064 nm laser irradiation, which can completely kill esophageal squamous cells. Meanwhile, Gd2O3 nanoparticles, an excellent magnetic resonance imaging (MRI) agent, were introduced into the nanosystem with similar dotted core-shell structure to enable the nanosystem achieve real-time MRI-monitored cancer therapeutic performance. We believe that this integrated nanotherapeutic system can not only solve the application of PTT in the NIR-II region, but also provide certain theoretical guidance for the clinical diagnosis and treatment of esophageal cancer.
Collapse
Affiliation(s)
- Jia Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Qianlan Fang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesHuairouBeijingChina
| | - Chunshu Pan
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesHuairouBeijingChina
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aizhu Sheng
- Department of Radiology, Hwa Mei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
- Department of Radiology, Hwa Mei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
13
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Homogeneous double-layer TiO2-ZrO2-SiO2 photocatalyst with multi-heterojunction structure for enhanced visible light-responsive photocatalytic activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Xue Y, Zhang L, Liu F, Zhao Y, Zhou J, Hou Y, Bao H, Kong L, Ma F, Han Y. Surface Bandgap Engineering of Nanostructured Implants for Rapid Photothermal Ion Therapy of Bone Defects. Adv Healthc Mater 2022; 11:e2200998. [PMID: 36064207 DOI: 10.1002/adhm.202200998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bone defects are seriously threatening the health of orthopedics patients and it is difficult for implants to accelerate bone regeneration without using bone growth factors. Herein, a fast photothermal ion therapeutic strategy is developed based on the bandgap engineering of nanostructured TiO2 through (Si/P)-dual elemental doping by micro-arc oxidation treatment of titanium implants. The (Si/P)-dual doping can tune the surface bandgap structure of TiO2 by decreasing bandgap and broadening valence band simultaneously, which is confirmed by density functional theory calculations. It not only endows the implants with a mildly photothermal effect under near-infrared (NIR) light irradiation, but also creates an (Si/P) ion-rich microenvironment around the implants. This photothermal ion microenvironment can tune the behaviors of osteoblasts by promoting p38/Smad and ERK signaling pathways of osteoblasts, thus significantly upregulating the expression of osteogenesis genes by the synergistic action of mild photothermal stimulation and increased release of Si/P ions. The in vivo results are also in good agreement with in vitro tests, i.e., under NIR light irradiation, the photothermally responsive TiO2 enhances the bone formation and osteointegration with implants. Therefore, this kind of photothermal ion strategy is a promising remote and noninvasive therapeutic mode for promoting bone regeneration of Ti implants.
Collapse
Affiliation(s)
- Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yiwei Zhao
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Yan Hou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Han Bao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Ma
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Sargazi S, ER S, Sacide Gelen S, Rahdar A, Bilal M, Arshad R, Ajalli N, Farhan Ali Khan M, Pandey S. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Xie Y, Wang M, Sun Q, Wang D, Luo S, Li C. PtBi-β-CD-Ce6 Nanozyme for Combined Trimodal Imaging-Guided Photodynamic Therapy and NIR-II Responsive Photothermal Therapy. Inorg Chem 2022; 61:6852-6860. [PMID: 35477242 DOI: 10.1021/acs.inorgchem.2c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combined photothermal/photodynamic therapy is a promising strategy to achieve an enhanced anticancer effect. However, hypoxia is one of the representative characteristics of the microenvironment of solid tumors, which not only attenuates the therapeutic effects but also promotes tumor invasion and metastasis. Herein, a PtBi-β-CD-Ce6 nanoplatform for the generation of sustained O2 was constructed for more effective tumor therapy. In detail, the catalase (CAT)-like nanozyme, PtBi, which could decompose H2O2 to produce O2, was modified with β-cyclodextrin (β-CD). O2 would be converted into 1O2 by PtBi-β-CD-Ce6 for enhanced photodynamic therapy (PDT) under 650 nm laser irradiation. In addition, by reason of excellent absorption in the near-infrared-II (NIR-II) region, PtBi-β-CD-Ce6 was used for photoacoustic imaging (PA) and photothermal imaging (PT)-guided photothermal therapy (PTT) in the NIR-II biowindow. Furthermore, PtBi-β-CD-Ce6 could be elected to serve as a contrast agent for X-ray computed tomography (CT) imaging due to the apparent X-ray attenuation capability of the Pt and Bi elements themselves. Therefore, by integrating the advantages of overcoming the hypoxia function and photothermal effect into a single nanoplatform, PtBi-β-CD-Ce6 showed an immense possibility in multimodal imaging-guided combined PDT/PTT.
Collapse
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Shuiping Luo
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
18
|
Liu Z, Jiang S, Tian Y, Shang H, Chen K, Tan H, Zhang L, Jing H, Cheng W. Targeted Phototherapy by Niobium Carbide for Mammalian Tumor Models Similar to Humans. Front Oncol 2022; 12:827171. [PMID: 35223508 PMCID: PMC8866440 DOI: 10.3389/fonc.2022.827171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In the past few decades, nanomaterial-mediated phototherapy has gained significant attention as an alternative antitumor strategy. However, its antitumor success is majorly limited to the treatment of subcutaneous tumors in nude mice. In fact, no studies have been previously conducted in this area/field on clinically-relevant big animal models. Therefore, there is an urgent need to conduct further investigation in a typical big animal model, which is more closely related to the human body. RESULTS In this study, niobium carbide (NbC) was selected as a photoactive substance owing to the presence of outstanding near-infrared (NIR) absorption properties, which are responsible for the generation of NIR-triggered hyperthermia and reactive oxygen species that contribute towards synergetic photothermal and photodynamic effect. Moreover, the present study utilized macrophages as bio-carrier for the targeted delivery of NbC, wherein phagocytosis by macrophages retained the photothermal/photodynamic effect of NbC. Consequently, macrophage-loaded NbC ensured/allowed complete removal of solid tumors both in nude mice and big animal models involving rabbits. Meanwhile, two-dimensional ultrasound, shave wave elastography (SWE), and contrast-enhanced ultrasound (CEUS) were used to monitor physiological evolution in tumor in vivo post-treatment, which clearly revealed the occurrence of the photoablation process in tumor and provided a new strategy for the surveillance of tumor in big animal models. CONCLUSION Altogether, the use of a large animal model in this study presented higher clinical significance as compared to previous studies.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Jiang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kexin Chen
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
19
|
Pourmadadi M, Ahmadi MJ, Dinani HS, Ajalli N, Dorkoosh F. Theranostic applications of stimulus-responsive systems based on Fe2O3. Pharm Nanotechnol 2022; 10:90-112. [PMID: 35142274 DOI: 10.2174/2211738510666220210105113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
According to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. Fe2O3 nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of Fe2O3-based materials and their photocatalytic and magnetic properties. Then, we highlight the application of Fe2O3-based nanoparticles in diagnosis and imaging, different therapy methods, and finally, stimulus-responsive systems, such as pH-responsive, magnetic-responsive, redox-responsive, and enzyme-responsive, with an emphasis on cancer treatment. In addition, the potential of Fe2O3 to combine diagnosis and therapy within a single particle called theranostic agent will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Javad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Farid Dorkoosh
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Medical Biomaterial Research Center (MBR), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
20
|
Du J, Liu J, Chen Y, Zhao Y, Li Y, Miao Y. Lanthanide-doped bismuth-based nanophosphors for ratiometric upconversion optical thermometry. RSC Adv 2022; 12:8743-8749. [PMID: 35424804 PMCID: PMC8985227 DOI: 10.1039/d2ra01181f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Nanothermometry could realize stable, efficient, and noninvasive temperature detection at the nanoscale. Unfortunately, most applications of nanothermometers are still limited due to their intricate synthetic process and low-temperature sensitivity. Herein, we reported a kind of novel bismuth-based upconversion nanomaterial with a fast and facile preparation strategy. The bismuth-based upconversion luminophore was synthesized by the co-precipitation method within 1 minute. By optimizing the doping ratio of the sensitizer Yb ion and the activator Er ion and adjusting the synthetic solvent strategy, the crystallinity of the nanomaterials was increased and the upconversion luminescence intensity was improved. Ratiometric upconversion optical measurements of temperature in the range of 278 K to 358 K can be achieved by ratiometric characteristic emission peaks of thermally sensitive Er ion. This method of rapidly constructing nanometer temperature probes provides a feasible strategy for the construction of novel fluorescent temperature probes. Lanthanide-doped bismuth-based nanospheres can be rapidly synthesized within 1 minute for upconversion luminescence ratiometric temperature detection.![]()
Collapse
Affiliation(s)
- Jun Du
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinliang Liu
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Chen
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuefeng Zhao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
21
|
Yao J, Yang F, Zheng F, Yao C, Xing J, Xu X, Wu A. Boosting Chemodynamic Therapy via a Synergy of Hypothermal Ablation and Oxidation Resistance Reduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54770-54782. [PMID: 34780685 DOI: 10.1021/acsami.1c16835] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemodynamic therapy (CDT), deemed as a cutting-edge antineoplastic therapeutic tactics, efficaciously suppresses tumors via catalytically yielding hydroxyl radicals (•OH) in tumor regions. Nevertheless, its biomedical applications are often restricted by the limited hydrogen peroxide (H2O2) level and upregulated antioxidant defense. Herein, a versatile nanoreactor is elaborately designed via integrating Cu2-xS and MnO2 for T1-weighted magnetic resonance (MR) imaging-guided CDT, synergistically enhanced through hypothermal ablation and oxidation resistance reduction, thereby displaying splendid antitumor efficiency as well as suppression on pulmonary metastasis. The as-synthesized Cu2-xS@MnO2 nanoreactors afford acid-dependent Cu-based and glutathione (GSH)-activated Mn-based catalytic properties for bimodal CDT. Owing to excellent absorbance at the second near-infrared (NIR-II) window, the Cu2-xS furnishes hypo-photo-thermal therapy (PTT) against tumor growth and ameliorates the catalytic performance for thermal-enhanced CDT. Additionally, MnO2 significantly downregulates GSH and glutathione peroxidase 4, which synergistically boosts CDT via promoting oxidative stress, simultaneously generating Mn2+ for MR contrast improvement and activatable tumor imaging. Therefore, this study proffers a new attempt centered on the collaborative strategy integrating NIR-II hypothermal PTT and synergistically enhanced CDT for tumor eradication.
Collapse
Affiliation(s)
- Junlie Yao
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang Yang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Fang Zheng
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiawei Xu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
22
|
Liu M, Xing Z, Li Z, Zhou W. Recent advances in core–shell metal organic frame-based photocatalysts for solar energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Guo Y, Cao X, Zhang S. Au-Fe 3O 4 nanoagent coated cell membrane for targeted delivery and enhanced chem/photo therapy. Chem Commun (Camb) 2021; 57:10504-10507. [PMID: 34528033 DOI: 10.1039/d1cc03454e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we propose a cancer cell membrane (CM) coated Au-Fe3O4 complex (AFTP@CM), loaded with tannic acid and phorbol 12-myristate 13-acetate for targeted drug delivery and enhanced chem/photo therapy.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiuping Cao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Shusheng Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
24
|
Building biointegration of Fe 2O 3-FeOOH coated titanium implant by regulating NIR irradiation in an infected model. Bioact Mater 2021; 8:1-11. [PMID: 34541382 PMCID: PMC8424078 DOI: 10.1016/j.bioactmat.2021.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Killing bacteria, eliminating biofilm and building soft tissue integration are very important for percutaneous implants which service in a complicated environment. In order to endow Ti implants with above abilities, multifunctional coatings consisted of Fe2O3–FeOOH nanograins as an outer layer and Zn doped microporous TiO2 as an inner layer were fabricated by micro-arc oxidation, hydrothermal treatment and annealing treatment. The microstructures, physicochemical properties and photothermal response of the coatings were observed; their antibacterial efficiencies and cell response in vitro as well as biofilm elimination and soft tissue integration in vivo were evaluated. The results show that with the increased annealing temperature, coating morphologies didn't change obviously, but lattices of β-FeOOH gradually disorganized into amorphous state and rearranged to form Fe2O3. The coating annealed at 450 °C (MA450) had nanocrystallized Fe2O3 and β-FeOOH. With a proper NIR irradiation strategy, MA450 killed adhered bacteria efficiently and increased fibroblast behaviors via up-regulating fibrogenic-related genes in vitro; in an infected model, MA450 eliminated biofilm, reduced inflammatory response and improved biointegration with soft tissue. The good performance of MA450 was due to a synergic effect of photothermal response and released ions (Zn2+ and Fe3+). Nanocrystallized Fe2O3–FeOOH layer endows Ti with good photothermal response. With NIR irradiation, Fe2O3–FeOOH layer improves biointegration in an infected model. Photothermal response combined with released ions gives implants good performance.
Collapse
|
25
|
Mao C, Zhu W, Xiang Y, Zhu Y, Shen J, Liu X, Wu S, Cheung KMC, Yeung KWK. Enhanced Near-Infrared Photocatalytic Eradication of MRSA Biofilms and Osseointegration Using Oxide Perovskite-Based P-N Heterojunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002211. [PMID: 34145798 PMCID: PMC8336500 DOI: 10.1002/advs.202002211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/13/2021] [Indexed: 05/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) biofilm infections after orthopedic implant increase the risk of failure and potentially cause amputation of limbs or life-threatening sepsis in severe cases. Additionally, satisfactory bone-implant integration is another important indicator of an ideal implant. Here, an antibiotic-free antibacterial nanofilm based on oxide perovskite-type calcium titanate (CTO)/fibrous red phosphorus (RP) on titanium implant surface (Ti-CTO/RP) in which the P-N heterojunction and internal electric field are established at the heterointerface, is designed. Near-infrared light-excited electron-hole pairs are effectively separated and transferred through the synergism of the internal electric field and band offset, which strongly boosts the photocatalytic eradication of MRSA biofilms by reactive oxygen species with an efficacy of 99.42% ± 0.22% in vivo. Additionally, the charge transfer endows the heterostructure with hyperthermia to assist biofilm eradication. Furthermore, CTO/RP nanofilm provides a superior biocompatible and osteoconductive platform that enables the proliferation and osteogenic differentiation of mesenchymal stem cells, thus contributing to the subsequent implant-to-bone osseointegration after eradicating MRSA biofilms.
Collapse
Affiliation(s)
- Congyang Mao
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Weidong Zhu
- Biomedical Materials Engineering Research CenterCollaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and MinistryHubei Key Laboratory of Polymer MaterialsMinistry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062China
| | - Yiming Xiang
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Yizhou Zhu
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Jie Shen
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research CenterCollaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and MinistryHubei Key Laboratory of Polymer MaterialsMinistry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062China
| | - Shuilin Wu
- School of Materials Science and Engineeringthe Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of ChinaTianjin UniversityTianjin300072China
| | - Kenneth M. C. Cheung
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics and TraumatologyLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong999077China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaDepartment of Orthopaedics and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| |
Collapse
|
26
|
Wang Z, Liu B, Sun Q, Feng L, He F, Yang P, Gai S, Quan Z, Lin J. Upconverted Metal-Organic Framework Janus Architecture for Near-Infrared and Ultrasound Co-Enhanced High Performance Tumor Therapy. ACS NANO 2021; 15:12342-12357. [PMID: 34160201 DOI: 10.1021/acsnano.1c04280] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strict conditions such as hypoxia, overexpression of glutathione (GSH), and high concentration of hydrogen peroxide (H2O2) in the tumor microenvironment (TME) limit the therapeutic effects of reactive oxygen species (ROS) for photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Here we fabricated a biocatalytic Janus nanocomposite (denoted as UPFB) for ultrasound (US) driven SDT and 808 nm near-infrared (NIR) light mediated PDT by combining core-shell-shell upconversion nanoparticles (UCNPs, NaYF4:20%Yb,1%Tm@NaYF4:10%Yb@NaNdF4) and a ferric zirconium porphyrin metal organic framework [PCN-224(Fe)]. Our design not only substantially overcomes the inefficient PDT effect arising from the inadequate Förster resonance energy transfer (FRET) process from UCNPs (donor) to MOFs (acceptor) with only NIR laser irradiation, but also promotes the ROS generation via GSH depletion and oxygen supply contributed by Fe3+ ions coordinated in UPFB as a catalase-like nanozyme. Additionally, the converted Fe2+ from the foregoing process can achieve CDT performance under acidic conditions, such as lysosomes. Meanwhile, UPFB linked with biotin exhibits a good targeting ability to rapidly accumulate in the tumor region, verified by fluorescence imaging and T2-weighted magnetic resonance imaging (MRI). In a word, it is believed that the synthesis and antitumor detection of UPFB heterostructures render them suitable for application in cancer therapeutics.
Collapse
Affiliation(s)
- Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
27
|
Zheng Q, Liu X, Zheng Y, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. The recent progress on metal-organic frameworks for phototherapy. Chem Soc Rev 2021; 50:5086-5125. [PMID: 33634817 DOI: 10.1039/d1cs00056j] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some infectious or malignant diseases such as cancers are seriously threatening the health of human beings all over the world. The commonly used antibiotic therapy cannot effectively treat these diseases within a short time, and also bring about adverse effects such as drug resistance and immune system damage during long-term systemic treatment. Phototherapy is an emerging antibiotic-free strategy to treat these diseases. Upon light irradiation, phototherapeutic agents can generate cytotoxic reactive oxygen species (ROS) or induce a temperature increase, which leads to the death of targeted cells. These two kinds of killing strategies are referred to as photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. So far, many photo-responsive agents have been developed. Among them, the metal-organic framework (MOF) is becoming one of the most promising photo-responsive materials because its structure and chemical compositions can be easily modulated to achieve specific functions. MOFs can have intrinsic photodynamic or photothermal ability under the rational design of MOF construction, or serve as the carrier of therapeutic agents, owing to its tunable porosity. MOFs also provide feasibility for various combined therapies and targeting methods, which improves the efficiency of phototherapy. In this review, we firstly investigated the principles of phototherapy, and comprehensively summarized recent advances of MOF in PDT, PTT and synergistic therapy, from construction to modification. We expect that our demonstration will shed light on the future development of this field, and bring it one step closer to clinical trials.
Collapse
Affiliation(s)
- Qiyao Zheng
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Xianbao Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
28
|
Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
29
|
Zhang H, Wu T, Chen Y, Zhang Q, Chen Z, Ling Y, Jia Y, Yang Y, Liu X, Zhou Y. Hollow carbon nanospheres dotted with Gd-Fe nanoparticles for magnetic resonance and photoacoustic imaging. NANOSCALE 2021; 13:10943-10952. [PMID: 34132292 DOI: 10.1039/d1nr02914b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Integrating magnetic resonance (MR) and photoacoustic (PA) contrast agents into porous nanomaterials is a favorable way for screening of potential theranostic nanomedicines. Hollow carbon nanospheres (HCSs) dotted with GdPO4 and γ-Fe2O3 (Gd-Fe) nanoparticles are therefore prepared and studied in this work. The resultant Gd-Fe/HCSs possess a size of ∼100 nm with a cavity of ∼80 nm and a shell thickness of ∼10 nm, where the magnetic Gd-Fe nanoparticles are dotted. Owing to the synergistic effects, the Gd-Fe/HCSs give 2.5 times enhanced PA signals as compared with HCSs as well as the inherited MR imaging properties from Gd-Fe nanoparticles. In vivo MR and PA imaging of the liver in mice are consequently evaluated and validated. Furthermore, taking the tunable particle size, hollow cavity, shell thickness, and dotted amounts of nanoparticles into consideration, our studies here provide a useful structural model for the synergistic integration of MR and PA imaging in HCSs.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu Y, Zeng F, Zhao Y, Wu S. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications. Chem Soc Rev 2021; 50:7924-7940. [PMID: 34114588 DOI: 10.1039/d1cs00358e] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optoacoustic imaging is a hybrid biomedical imaging modality which collects ultrasound waves generated via photoexciting contrast agents in tissues and produces images of high resolution and penetration depth. As a functional optoacoustic imaging technique, multispectral optoacoustic imaging, which can discriminate optoacoustic signals from different contrast agents by illuminating samples with multi-wavelength lasers and then processing the collected data with specific algorithms, assists in the identification of a specific contrast agent in target tissues and enables simultaneous molecular and physiological imaging. Moreover, multispectral optoacoustic imaging can also generate three-dimensional images for biological tissues/samples with high resolution and thus holds great potential in biomedical applications. Contrast agents play essential roles in optoacoustic imaging, and they have been widely explored and applied as probes and sensors in recent years, leading to the emergence of a variety of new contrast agents. In this review, we aim to summarize the latest advances in emerging contrast agents, especially the activatable ones which can respond to specific biological stimuli, as well as their preclinical and clinical applications. We highlight their design strategies, discuss the challenges and prospects in multispectral optoacoustic imaging, and outline the possibility of applying it in clinical translation and public health services using synthetic contrast agents.
Collapse
Affiliation(s)
- Yinglong Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | | | | | | |
Collapse
|
31
|
Cai L, Hu C, Liu S, Zhou Y, Liu Z, Pang M. Covalent Organic Framework-Titanium Oxide Nanocomposite for Enhanced Sonodynamic Therapy. Bioconjug Chem 2021; 32:661-666. [PMID: 33710853 DOI: 10.1021/acs.bioconjchem.1c00039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sonodynamic therapy (SDT) has attracted wide attention for its high tissue-penetration depth capacity. However, developing new kinds of sonosensitizers that are capable of generating large amounts of reactive oxygen species (ROS) still remains a challenge. Herein, covalent organic framework-titanium oxide nanoparticles (COF-TiO2 NPs) were successfully synthesized by using COF as a template. Under ultrasound (US) irradiation, large quantities of ROS can be generated, and compared with pure TiO2 NPs, the SDT performance of COF-TiO2 nanoparticles was significantly improved due to the narrower band gap. Both in vitro and in vivo experiments demonstrated the great tumor inhibitory effect via COF-TiO2-mediated SDT. This work broadens the biomedical applications of COF-based composites.
Collapse
Affiliation(s)
- Lihan Cai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunling Hu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Maolin Pang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
32
|
|
33
|
Ren X, Yang S, Yu N, Sharjeel A, Jiang Q, Macharia DK, Yan H, Lu C, Geng P, Chen Z. Cell membrane camouflaged bismuth nanoparticles for targeted photothermal therapy of homotypic tumors. J Colloid Interface Sci 2021; 591:229-238. [PMID: 33609894 DOI: 10.1016/j.jcis.2021.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Bi nanoparticles (NPs) have been demonstrated as effective all-in-one type theranostic agent for imaging-guided photothermal therapy, but their applications have been limited by relatively low biocompatibility and target accumulation capacity. To address this issue, we report the camouflage of Bi NPs (size: ~42 ± 2 nm) by using the mouse colon cancer CT26 cells membrane (CT26 CCM). The camouflaging process confers the efficient coating of CCM shell layer with thickness of ~8 ± 2 nm on Bi NPs cores, which can be confirmed by TEM image, zeta potential and protein gel electrophoresis tests. Simultaneously, CCM shell has no side effects on the photoabsorption/photothermal effect. Importantly, Bi@CCM NPs retain significant features of CCM, including good biocompatibility and homologous targeting ability. When Bi@CCM dispersion was intravenously (i.v.) injected into mice, they exhibited higher blood circulation half-life (11.5 h, ~2.9 times) and accumulation amount (4.7 ± 0.56% ID/g, ~2.3 times) in homotypic CT26 tumor compared to those (4.0 h in blood and 2.03 ± 0.60% ID/g in tumor) from uncoated Bi NPs. After 808 nm laser irradiation, CT26 cancer cells could be effectively ablated after the photothermal therapy of high-accumulated Bi@CCM NPs, and then the tumor tends to be eradicated after 12 days. Thus, Bi NPs camouflaged with CT26 CCM have great potential for the targeted photothermal therapy of homotypic tumors.
Collapse
Affiliation(s)
- Xiaoling Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuangping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ahmed Sharjeel
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qin Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Han Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Changrui Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peng Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
34
|
Gao Y, Yin Z, Ji Q, Jiang J, Tao Z, Zhao X, Sun S, Wu A, Zeng L. Black titanium dioxide@manganese dioxide for glutathione-responsive MR imaging and enhanced photothermal therapy. J Mater Chem B 2021; 9:314-321. [PMID: 33305301 DOI: 10.1039/d0tb02514c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multifunctional nanoprobes with tumor microenvironment response are playing important roles in highly efficient theranostics of cancers. Herein, a kind of theranostic nanoprobe was synthesized by coating manganese dioxide (MnO2) on the surface of black commercial P25 titanium dioxide (b-P25). The resultant nanoprobe (b-P25@MnO2) possessed glutathione (GSH)-responsive magnetic resonance (MR) imaging and enhanced photothermal therapy (PTT). In tumor microenvironments, the excessive GSH was consumed by reacting with MnO2 to generate Mn2+ for GSH-responsive MR imaging, in which the longitudinal relaxation rate of b-P25@MnO2 was up to 30.44 mM-1 s-1, showing excellent cellular and intratumoral MR imaging. Moreover, the prepared b-P25@MnO2 exhibited stable and strong photothermal conversion capability with a high photothermal conversion efficiency of 30.67%, by which the 4T1 tumors disappeared completely, indicating safe and highly efficient PTT performance. The current work developed GSH-responsive b-P25@MnO2 nanoprobes, demonstrated for MR imaging and enhanced PTT in cancers.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China. and Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Zhibin Yin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Qian Ji
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Jiabing Jiang
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Zhengzheng Tao
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Xiaolong Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Sijia Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
35
|
Niazi Z, Goharshadi EK, Mashreghi M, Jorabchi MN. Highly efficient solar photocatalytic degradation of a textile dye by TiO 2/graphene quantum dots nanocomposite. Photochem Photobiol Sci 2021; 20:87-99. [PMID: 33721238 DOI: 10.1007/s43630-020-00005-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Herein, two sunlight responsive photocatalysts including TiO2 nanoparticles (NPs) and TiO2/graphene quantum dots (GQDs) nanocomposite for degrading a textile dye, Reactive Black 5 (RB5), were prepared. The results showed that 100% of 50 ppm RB5 could be degraded by TiO2 NPs and TiO2/GQDs within 60 and 30 min sunlight irradiation, respectively. Hence, much better photocatalytic activity in degradation of RB5 was achieved by TiO2/GQDs under sunlight irradiation compared with pure TiO2 NPs due to its lower band gap (2.13 eV) and electron/hole recombination rate. The photocatalytic degradation mechanism of RB5 by TiO2 NPs was elucidated by adding some scavengers to the solution. The main reactive species contributing to RB5 degradation were surface hydroxyl radicals. The first-order solar degradation rate constant of RB5 for TiO2/GQDs is greater than that of TiO2 NPs under sunlight illumination.
Collapse
Affiliation(s)
- Zohreh Niazi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Elaheh K Goharshadi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran. .,Nano Research Center, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Majid Namayandeh Jorabchi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.,Institute of Chemistry, Physical and Theoretical Chemistry, University of Rostock, Albert-Einstein-Straße 21, 18059, Rostock, Germany
| |
Collapse
|
36
|
Wang L, Xu SM, Yang X, He S, Guan S, Waterhouse GIN, Zhou S. Exploiting Co Defects in CoFe-Layered Double Hydroxide (CoFe-LDH) Derivatives for Highly Efficient Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54916-54926. [PMID: 33233881 DOI: 10.1021/acsami.0c14147] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, two-dimensional materials are being actively pursued in catalysis and other fields due their abundance of defects, which results in enhanced performance relative to their bulk defect-free counterparts. To date, the exploitation of defects in two-dimensional materials to enhance photothermal therapies has received little attention, motivating a detailed investigation. Herein, we successfully fabricated a series of novel CoFe-based photothermal agents (CoFe-x) by heating CoFe-layered double hydroxide (CoFe-LDH) nanosheets at different temperatures (x) between 200-800 °C under a Ar atmosphere. The CoFe-x products differed in their particle size, cobalt defect concentration, and electronic structure, with the CoFe-500 product containing the highest concentration of Co2+ defects and most efficient photothermal performance under near-infrared (NIR, 808 nm) irradiation. Experiments and density functional theory (DFT) calculations revealed that Co2+ defects modify the electronic structure of CoFe-x, narrowing the band gap and thus increasing the nonradiative recombination rate, thereby improving the NIR-driven photothermal properties. In vitro and in vivo results demonstrated that CoFe-500 was an efficient agent for photothermal cancer treatment and also near-infrared (NIR) thermal imaging, magnetic resonance (MR) imaging, and photoacoustic (PA) imaging. This work provides valuable new insights about the role of defects in the rational design of nanoagents with optimized structures for improved cancer therapy.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Xueting Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Shan He
- Beijing Technology and Business University, Beijing 100148, P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
37
|
Wu J, Zhang S, Mei X, Liu N, Hu T, Liang R, Yan D, Wei M. Ultrathin Transition Metal Chalcogenide Nanosheets Synthesized via Topotactic Transformation for Effective Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48310-48320. [PMID: 33048540 DOI: 10.1021/acsami.0c13364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultrathin transition metal chalcogenide (TMC) nanosheets with ultrahigh photothermal conversion efficiency (η) and excellent stability are strongly desired in the application of photothermal therapy (PTT). However, the current synthetic methods of ultrathin TMC nanosheets have issues in obtaining uniform morphology, good dispersion, and satisfactory PTT behavior. Herein, ultrathin nanosheets of CoFe-selenide (CFS) with a finely controlled structure were prepared via a topological structural transformation process from an ultrathin CoFe-layered double hydroxide (LDH) precursor, followed by surface modification with poly(ethylene glycol) (PEG). The as-prepared CFS-PEG nanosheets inherit the ultrathin morphology of CoFe-LDH and exhibit an outstanding photothermal performance with a η of 74.5%, which is the first rank level of reported two-dimensional (2D) TMC nanosheet materials. The CFS-PEG nanosheets possess a satisfactory photoacoustic (PA) imaging capability with an ultralow detection limit (5 ppm) and simultaneously superior T2 magnetic resonance imaging (MRI) performance with a large transverse MR relaxivity value (r2) of 347.7 mM-1 s-1. Moreover, in vitro and in vivo assays verify superior anticancer activity with a dramatic photoinduced cancer cell apoptosis and tumor ablation. Therefore, a successful paradigm is provided for rational design and preparation of ultrathin TMC nanosheets in this work, holding enormous potential in cancer theranostics.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shaomin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xuan Mei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ning Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dan Yan
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
38
|
Bi L, Luan X, Geng F, Xu X, Chen Y, Zhang F. Microwave-Assisted Synthesis of Hollow Microspheres with Multicomponent Nanocores for Heavy-Metal Removal and Magnetic Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46779-46787. [PMID: 32965095 DOI: 10.1021/acsami.0c14298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The primary advantage of a hollow structure is the likelihood of introducing diverse components in a single particle to achieve multiple missions. Herein, hollow microspheres with multicomponent nanocores (HMMNs) have been prepared based on a template-free strategy via a microwave-assisted hydrothermal treatment of Chlorella. The resulting HMMNs retain the near-spherical hollow morphology and functional groups of the cell wall of Chlorella, obviating the need for templates and chemical modification. The elements (iron, cobalt, calcium, magnesium, chlorine, and phosphorus) naturally present within the Chlorella cells react to form hydroxyapatite/chlorapatite and magnetic nanocores without the need for exogenous chemical reagents. The performances of HMMNs for cadmium ion (Cd2+) removal and antibiotic detection are explored. HMMNs exhibit relatively high adsorbance of Cd2+ (1035.8 mmol/kg) and can be easily recovered by application of an external magnetic field. Ion exchange with Ca2+ and Mg2+ is shown to be the main mechanism of Cd2+ elimination. In addition, HMMNs are a suitable carrier for the construction of a magnetic immunosensor, as demonstrated by the successful development of such an immunosensor with acceptable analytical performance for the detection of neomycin in milk samples. The versatile applications of HMMNs result from their multicomponent nanocores, hollow structure, and the functional groups on their shell. This work not only offers a simple and eco-friendly strategy for the fabrication of novel HMMNs but also provides a valuable advanced material for contaminant detection and heavy-metal removal.
Collapse
Affiliation(s)
- Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Luan
- Waters Technology (Beijing) Co., Ltd., Pudong New Area Building 13 Jinling Capital, No. 1000 Jinhai Road, Beijing 100176, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| |
Collapse
|
39
|
Liu B, Wang Z, Li T, Sun Q, Dong S, Zhong C, Yang D, He F, Gai S, Yang P. Rapid Decomposition and Catalytic Cascade Nanoplatforms Based on Enzymes and Mn-Etched Dendritic Mesoporous Silicon for MRI-Guided Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45772-45788. [PMID: 32969221 DOI: 10.1021/acsami.0c12580] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The endogenous tumor microenvironment (TME) can signally influence the therapeutic effects of cancer, so it is necessary to explore effective synergistic therapeutic strategies based on changing of the TME. Here, a catalytic cascade nanoplatform based on manganese (Mn)-etched dendritic mesoporous silicon nanoparticles (designated as DMMnSiO3 NPs) loaded with indocyanine green (ICG) and natural glucose oxidase (GOD) is established (designated as DIG nanocomposites). As the Mn-O bonds in DMMnSiO3 NPs are susceptive to mildly acidic and reducing environments, the DIG nanocomposites can be rapidly decomposed because of the biodegradation of DMMnSiO3 NPs once internalized into the tumor by the consumption of glutathione (GSH) in TME to weaken the antioxidant capability of the tumors. The released Mn2+ could catalyze endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) to relieve the hypoxia in TME. The generation of O2 may promote the catalyzed oxidation of glucose by GOD, which will cut off nutrient supplies, accompanied by the regeneration of H2O2. The regenerated H2O2 could be sequentially catalyzed by Mn2+ to compensate for the consumed O2, and thus, the catalytic cascade process between Mn2+ and GOD was set up. As a result, a synergistic therapeutic strategy based on T1-weighted magnetic resonance imaging (MRI) of Mn2+, starvation therapy by O2-compensation enhanced catalyzing glucose, dual-model (GSH consumption and O2 compensation) enhanced photodynamic therapy, and effective photothermal therapy of ICG (η = 23.8%) under 808 nm laser irradiation has been successfully established.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Tianyao Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
40
|
Li QH, Dong M, Li R, Cui YQ, Xie GX, Wang XX, Long YZ. Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C 3N 4/TiO 2 nanofibers. Carbohydr Polym 2020; 253:117200. [PMID: 33278973 DOI: 10.1016/j.carbpol.2020.117200] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023]
Abstract
Chitosan/g-C3N4/TiO2 (CS/CNT) nanofibers were fabricated by electrospinning technique for Cr(VI) removal through the adsorption and photocatalytic processes. The effects of crucial factors in the adsorption process including contact time (0-1440 min), pH (1-7), initial concentration of Cr(VI) (20-800 mg/L) were investigated. The photocatalytic experiment was executed in a photochemical reactor with an 800 W xenon lamp to simulate visible light. In adsorption process, at pH = 2, the adsorption capacities of chitosan (CS) nanofibers, CS/CNT10:1 (CS : g-C3N4/TiO2 = 10:1) nanofibers and CS/CNT5:1 nanofibers were 20.8, 165.3 and 68.9 mg/g, respectively, suggesting the addition of g-C3N4/TiO2 (CNT) could notably enhance the acid resistance of CS and widen its practical application. Under visible-light irradiation, the removal efficiency of Cr(VI) using CS/CNT nanofibers was appreciably improved, which was about 50 % higher than that of pure adsorption, indicating that the CS/CNT nanofibers exhibited the effective synergistic effect of adsorption and photocatalysis.
Collapse
Affiliation(s)
- Qing-Hao Li
- College of Environmental Science & Engineering, Qingdao University, Qingdao 266071, China
| | - Min Dong
- College of Environmental Science & Engineering, Qingdao University, Qingdao 266071, China
| | - Ru Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Yu-Qian Cui
- College of Environmental Science & Engineering, Qingdao University, Qingdao 266071, China.
| | - Gui-Xu Xie
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Xiao-Xiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
41
|
Yu S, Xu J, Shang X, Zheng W, Huang P, Li R, Tu D, Chen X. A Dual-Excitation Decoding Strategy Based on NIR Hybrid Nanocomposites for High-Accuracy Thermal Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001589. [PMID: 33101860 PMCID: PMC7578878 DOI: 10.1002/advs.202001589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Indexed: 05/04/2023]
Abstract
Optical thermal sensing holds great promise for disease theranostics. However, traditional ratiometric thermometry methods, in which intensity ratio of two nonoverlapping emissions is defined as the thermosensitive parameter, may have a limited accuracy in temperature read-out due to the deleterious interference from wavelength- and temperature-dependent photon attenuation in tissue. To overcome this limitation, a dual-excitation decoding strategy based on NIR hybrid nanocomposites comprising self-assembled quantum dots (QDs) and Nd3+ doped fluoride nanocrystals (NCs) is proposed for thermal sensing. Upon excitation at 808 nm, the intensity ratio of two emissions at identical wavelength (1057 nm) from QDs and NCs, respectively, is defined as the thermometric parameter R. By employing another 830 nm laser beam following the same optical path as 808 nm laser to exclusively excite QDs, the two overlapping emissions can be easily decoded. The acquired R proves to be inert to the detection depth in tissue, with a minimized temperature reading error of ≈2.3 °C at 35 °C (at a depth of ≈1.1 mm), while the traditional thermometry mode based on the nonoverlapping 1025 and 863 nm emissions may exhibit a large error of ≈43.0 °C. The insights provided by this work pave the way toward high-accuracy deep-tissue biosensing.
Collapse
Affiliation(s)
- Shaohua Yu
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresState Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jin Xu
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresState Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresState Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresState Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresState Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresState Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresState Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresState Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesBeijing100049China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108China
| |
Collapse
|
42
|
Sheng L, Zhang Z, Zhang Y, Wang E, Ma B, Xu Q, Ma L, Zhang M, Pei G, Chang J. A novel "hot spring"-mimetic hydrogel with excellent angiogenic properties for chronic wound healing. Biomaterials 2020; 264:120414. [PMID: 32980635 DOI: 10.1016/j.biomaterials.2020.120414] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/02/2023]
Abstract
The treatment of chronic wounds is a major challenge in regenerative medicine, and angiogenesis is known to be critical for chronic wound healing. Hot springs with temperature in the range of 30-45 °C can promote blood circulation, and some hot spring elements including iron and silicon are also known to be active in promoting angiogenesis. Inspired by the hot spring function, we designed a novel bioactive photothermal hydrogel with "hot spring effect" based on fayalite (FA) and N, O-carboxymethyl chitosan (NOCS), which releases bioactive ions and has heating function to create hot ion environment in wound area. The hot spring-mimetic hydrogel showed significant enhancement of angiogenesis and chronic wound healing in vivo due to the in situ heating through photothermal effect combined with the bioactive ions (Fe2+ and SiO44-) released from the hydrogel. It is further confirmed that the synergetic effect of the mild heating and bioactive ions on angiogenesis was mainly because of the activation of different angiogenic factors and signaling pathways. Our study suggests that the hot spring-mimetic approach may be an effective strategy to design bioactive materials for promoting angiogenesis and tissue regeneration.
Collapse
Affiliation(s)
- Lili Sheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciencs, Beijing, 100049, PR China
| | - Zhaowenbin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciencs, Beijing, 100049, PR China
| | - Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciencs, Beijing, 100049, PR China
| | - Endian Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciencs, Beijing, 100049, PR China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Qing Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciencs, Beijing, 100049, PR China
| | - Lingling Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciencs, Beijing, 100049, PR China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciencs, Beijing, 100049, PR China
| | - Ge Pei
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciencs, Beijing, 100049, PR China.
| |
Collapse
|
43
|
Feng L, Zhao R, Liu B, He F, Gai S, Chen Y, Yang P. Near-Infrared Upconversion Mesoporous Tin Oxide Bio-Photocatalyst for H 2O 2-Activatable O 2-Generating Magnetic Targeting Synergetic Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41047-41061. [PMID: 32816454 DOI: 10.1021/acsami.0c10685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor hypoxia compromises the therapeutic efficacy of oxygen (O2)-dependent treatment methods as the endogenous O2 levels have an important influence on the production of reaction oxygen species. Herein, a synergistic multifunctional mesoporous Fe@Sn-UCNPs bio-photocatalytic nanoplatform is provided to comprehensively realize endogenous hydrogen peroxide (H2O2)-activatable, self-supplied O2, photothermal performance, and near-infrared-mediated magnetic targeting PDT/PTT simultaneously for relieving tumor hypoxia. Such a nanoplatform is constructed by encapsulating magnetic Fe3O4 with lanthanide-ion-doped mesoporous tin oxide upconversion nanoparticles and further modified with phosphorylated serine and poly(ethylene glycol) for enhancing the biocompatibility and solubility. The nanoparticles can be activated by endogenous H2O2 and in situ generated O2 to relieve hypoxia through catalytic reaction. Therefore, H2O2-responsive/O2-evolving nanoparticles can elevate the O2 level in the tumor site for an apparently enhanced PDT effect in vitro and in vivo. What is more, Fe@Sn-UCNPs demonstrate enhanced photothermal conversion efficiency based on the special nanostructure and much more circuit loops for electron transitions between Fe3O4 and Sn-UCNPs, and the electronic structure of Fe@Sn-UCNPs was calculated. In addition, such Fe@Sn-UCNPs also exhibit multimodality imaging performance (including photothermal, magnetic resonance, and computed tomography imaging) for monitoring and tracking the in vivo tumor therapeutic process. This work provides novel insight into the smart Fe@Sn-UCNPs as an "all-in-one" theranostic nanosystem for cancer therapy.
Collapse
Affiliation(s)
- Lili Feng
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yujin Chen
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
44
|
Liu W, Chen L, Chen M, Wang W, Li X, Yang H, Yang S, Zhou Z. Self-Amplified Apoptosis Targeting Nanoplatform for Synergistic Magnetic-Thermal/Chemo Therapy In Vivo. Adv Healthc Mater 2020; 9:e2000202. [PMID: 32761734 DOI: 10.1002/adhm.202000202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/30/2020] [Indexed: 11/12/2022]
Abstract
The low efficiency homing of nanomaterials in tumors remains a major challenge in nanomedicine. Inspired by the apoptosis targeting properties of phosphatidylserine (PS), a self-amplified apoptosis targeting nanoplatform (MNPs-ZnDPA/β-Lap) is fabricated combining Zn0.4 Co0.6 Fe2 O4 @Zn0.4 Mn0.6 Fe2 O4 nanoparticles (MNPs) with an excellent magnetic hyperthermia effect, a chemotherapeutic drug of β-lapachone (β-Lap) with the promotion of cell apoptosis, and the good apoptosis targeting moiety of Zn(II)-bis(dipicolylamine) (bis-ZnDPA) for PS. In an apoptotic 4T1 xenograft model, MNPs-ZnDPA/β-Lap can first accumulate in tumors by the EPR effect. The released β-Lap triggers the apoptosis of cancer cells in the tumor and increases the apoptotic target, which results in amplifying their apoptosis targeting properties. This self-amplified apoptosis targeting efficiency of MNPs-ZnDPA/β-Lap almost inhibits the growth of tumors with the synergistic magnetic-thermal/chemo therapy, which can offer a significant promise for targeting cancer theranostics.
Collapse
Affiliation(s)
- Wei Liu
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Li Chen
- Institute of Diagnostic and Interventional Radiology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Ming Chen
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Xiaoling Li
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
45
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
46
|
Yang L, Shu XP, Fu MY, Wang HY, Zhu QY, Dai J. Molybdenum-titanium oxo-cluster, an efficient electrochemical catalyst for the facile preparation of black titanium dioxide film. Dalton Trans 2020; 49:10516-10522. [PMID: 32691817 DOI: 10.1039/d0dt01959c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black-TiO2 has become increasingly interesting as a promising photoactive material. Most of the preparations for black-TiO2 involve either high temperature calcination, plasma, lengthy chemical reactions or dealing with dangerous or toxic chemicals. We found, by accident, that Mo-Ti oxo-clusters are efficient catalysts for the hydrogenation of a TiO2 electrode to black-TiO2 at room temperature. A series of Mo-Ti oxo-clusters, [Ti4Mo4O10(OR)14(X-BA)2] (BA = benzoate, X = H (1), F (2), Cl (3), and Br (4)), were prepared and were characterized by crystallography. They have a Mo4Ti4 structure with Mo(v)-Mo(v) metal-metal interactions. The activated hydrogen (H*) generated by electrochemically catalytic water splitting turns the TiO2 electrode to black-TiO2 at room temperature, due to the reduction of Ti(iv) to H+Ti(iii). The potentials applied for water reduction must generally be higher than the overpotential at the TiO2 electrode (-1.0 V vs. RHE). In this work, the onset potential of hydrogen evolution significantly decreased to -0.1 V vs. RHE. Using this blackened 1-TiO2 electrode, the effective electrochemical catalytic degradation of a dye was examined in comparison with the degradation using the white TiO2 electrode. This work provides a method for the facile preparation of a black-TiO2 film, and is a step forward in black-TiO2 research.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
47
|
Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, He F, Gai S, Yang P. Fusiform-Like Copper(II)-Based Metal-Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17254-17267. [PMID: 32227859 DOI: 10.1021/acsami.0c01539] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The therapeutic effect of traditional chemodynamic therapy (CDT) agents is severely restricted by their weakly acidic pH and glutathione (GSH) overexpression in the tumor microenvironment. Here, fusiform-like copper(II)-based tetrakis(4-carboxy phenyl)porphyrin (TCPP) nanoscale metal-organic frameworks (nMOFs) were designed and constructed for the first time (named PCN-224(Cu)-GOD@MnO2). The coated MnO2 layer can not only avoid conjugation of glucose oxidase (GOD) to damage normal cells but also catalyzes the generation of O2 from H2O2 to enhance the oxidation of glucose (Glu) by GOD, which also provides abundant H2O2 for the subsequent Cu+-based Fenton-like reaction. Meanwhile, the Cu2+ chelated to the TCPP ligand is converted to Cu+ by the excess GSH in the tumor, which reduces the tumor antioxidant activity to improve the CDT effect. Next, the Cu+ reacts with the plentiful H2O2 by enzyme catalysis to produce a toxic hydroxyl radical (•OH), and singlet oxygen (1O2) is synchronously generated from combination with Cu+, O2, and H2O via the Russell mechanism. Furthermore, the nanoplatform can be used for both TCPP-based in vivo fluorescence imaging and Mn2+-induced T1-weighted magnetic resonance imaging. In conclusion, fusiform-like PCN-224(Cu)-GOD@MnO2 nMOFs facilitate the therapeutic efficiency of chemodynamic and starvation therapy via combination with relief hypoxia and GSH depletion after acting as an accurate imaging guide.
Collapse
Affiliation(s)
- Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- College of Sciences, Harbin Engineering University, Harbin 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- College of Sciences, Harbin Engineering University, Harbin 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ye Kuang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- College of Sciences, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
48
|
Zhao Y, Ding B, Xiao X, Jiang F, Wang M, Hou Z, Xing B, Teng B, Cheng Z, Ma P, Lin J. Virus-Like Fe 3O 4@Bi 2S 3 Nanozymes with Resistance-Free Apoptotic Hyperthermia-Augmented Nanozymitic Activity for Enhanced Synergetic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11320-11328. [PMID: 32067461 DOI: 10.1021/acsami.9b20661] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials with intrinsic peroxidase-like activities are able to catalyze the oxidation of the substrate with the peroxide, which have been widely considered as artificial enzymatic agents in cancer therapy. However, current peroxidase catalytic oxidation treatments generating reactive oxygen species rely highly on hydrogen peroxide and pH, which limit greatly their therapeutic efficiency in the tumor microenvironment. Here, we report a strategy to construct the complex virus-like Fe3O4@Bi2S3 nanocatalysts (F-BS NCs) by connecting typical peroxidase Fe3O4 (MNPs) with a narrow band gap semiconductor Bi2S3 (BS) to enhance the enzymatic activity resorting to the limited intratumoral peroxide and efficient external photothermal stimuli. In this formulation, the integrated F-BS NCs induce cancer-cell death through mild photothermal treatment and sequential photothermal-stimulative catalysis of H2O2 into highly toxic •OH under 808 nm laser, which successfully realize a remarkable synergistic anticancer achievement.
Collapse
Affiliation(s)
- Yajie Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Bengang Xing
- School of Physical & Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Bo Teng
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun 130041, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of Science and Technology of China, No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
49
|
Wang C, Yang J, Li T, Shen Z, Guo T, Zhang H, Lu Z. In Situ Tuning of Defects and Phase Transition in Titanium Dioxide by Lithiothermic Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5750-5758. [PMID: 31913596 DOI: 10.1021/acsami.9b18359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Defects engineering of oxides plays a vital role in tuning their physicochemical and electronic properties and thereby determining their potential applications. However, the safe and controllable production of effective defects in the oxides is still challenging. Here, we report a facile one-pot solid lithiothermic reduction approach to generate graded oxygen defects in TiO2 nanoparticles. Various levels of lithium reduction are systematically studied, and meanwhile, a distinct phase transition from anatase TiO2 to cubic LixTiO2 is observed with the increasing lithium ratio. The structure and evolution of surface defects and bulk phase transition are investigated in detail. Afterward, we demonstrate their applications in carbon dioxide photoreduction and photothermal imaging. The slightly reduced TiO2 with effective oxygen defects affords a highly broadened solar spectrum absorption and yields significantly enhanced visible photocatalytic activity in CO2 conversion, which is further revealed by theoretical calculations. The highly reduced TiO2 with obvious phase transition shows enhanced solar absorption and achieves high photo-thermal-conversion efficacy, showing huge potential in photo-thermal-related applications. The lithiothermic reduction is a general and effective approach to produce defects and induce phase transition in oxides, which can be used in multiple applications.
Collapse
Affiliation(s)
- Chao Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jingjing Yang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Taozhu Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Zihan Shen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Taolian Guo
- College of Chemistry , Central China Normal University , Wuhan 430079 , China
| | - Huigang Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Zhenda Lu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
- Jiangsu Key Laboratory of Artificial Functional Materials , Nanjing University , Nanjing 210093 , China
- Research Center for Environmental Nanotechnology (ReCENT) , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
50
|
Magnetic Bi2WO6 nanocomposites: Synthesis, magnetic response and their visible-light-driven photocatalytic performance for ciprofloxacin. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|