1
|
Thi Quynh L, Cheng CW, Gwo S. Flexible Multilayer Plasmonic Films for Biosensing and Photoemitting Applications. ACS OMEGA 2025; 10:6586-6592. [PMID: 40028125 PMCID: PMC11865980 DOI: 10.1021/acsomega.4c07333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Flexible plasmon metasensor devices describe the use of multiple Ag/Al2O3/mica layers for tunable plasmonic resonances and are a promising research direction. Here, we report on a flexible Ag/Al2O3/mica multilayer platform and its excellent performance on flexible biosensors and photon-emitting devices. In our approach, muscovite (mica) was adopted as a single-crystal substrate due to its optical transparency and mechanical flexibility. The Ag/Al2O3/mica multilayer film is characterized by X-ray diffraction and transmission electron microscopy. Optical, plasmonic, and biosensing studies of Ag/Al2O3/mica multilayers are performed for detailed understanding. A combination of optical absorption, numerical simulations, and optical reflectance measurements has confirmed the biosensor performance. Two kinds of flexible plasmonic device applications are reported here, including (1) plasmonic biosensors with high refractive index sensitivities and (2) significantly enhanced spontaneous photoluminescence (PL) of monolayer tungsten disulfide (WS2) spectra. We found that the PL emission under 0.4 mm-1 curvature bending state increased to 16% compared to the unbent state and redshift of 60 meV/% strain in the emission of WS2 monolayer. Furthermore, the Ag/Al2O3/mica multilayer film displays robust stability and strong endurance up to a bending curvature of 0.4 mm-1. This study shows great potential to be used for biosensors and flexible optoelectronics.
Collapse
Affiliation(s)
- Le Thi Quynh
- Department
of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chang-Wei Cheng
- Department
of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Shangjr Gwo
- Department
of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department
of Photonics, National Yang Ming Chiao Tung
University, Hsinchu 30010, Taiwan
- Institute
of Nanoengineering and Microsystems, National
Tsing-Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
2
|
Wu J, Guo Z, Qi X, Wei Q, He L, Fang K, Sun Y, Li Y, Chen Y, Jiang H, Chen H. Metacavities by harnessing the linear-crossing metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:51-58. [PMID: 39840388 PMCID: PMC11744454 DOI: 10.1515/nanoph-2024-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/05/2024] [Indexed: 01/23/2025]
Abstract
The formed optical cavity mode intensively relies on the size and geometry of optical cavity. When the defect or impurity exists inside the cavity, the formed cavity mode will be destroyed. Here, we propose a metacavity consisting of arrays of linear-crossing metamaterials (LCMMs) with abnormal dispersion, where each LCMM offers both the directional propagation channel for all incident angles and the negative refraction across its neighboring LCMMs. Such metacavity can be efficiently excited by a point source, where the excited wave vector components propagate along the same optical path in the cavity. More importantly, the proposed metacavity possesses the remarkable feature of partial defect immunity and geometry robustness. Assisted by two-dimensional transmission lines with loaded-circuit elements, a metacavity with partial defect immunity has been experimentally realized. Our work offers a new avenue for designing optical resonators excited by the point source in integrated photonics, which is very useful for high-efficiency filters, ultrasensitive sensors, and enhancement of light-matter interactions.
Collapse
Affiliation(s)
- Jiaju Wu
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou310018, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Zhiwei Guo
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Xin Qi
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Qian Wei
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Li He
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Kai Fang
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Yong Sun
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Yunhui Li
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Yuguang Chen
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Haitao Jiang
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| | - Hong Chen
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai200092, China
| |
Collapse
|
3
|
Li Z, Gu Q. Topological hyperbolic metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:825-839. [PMID: 39634373 PMCID: PMC11501501 DOI: 10.1515/nanoph-2023-0768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/04/2024] [Indexed: 12/07/2024]
Abstract
Hyperbolic metamaterial (HMM) is a unique type of anisotropic material that can exhibit metal and dielectric properties at the same time. This unique characteristic results in it having unbounded isofrequency surface contours, leading to exotic phenomena such as spontaneous emission enhancement and applications such as super-resolution imaging. However, at optical frequencies, HMM must be artificially engineered and always requires a metal constituent, whose intrinsic loss significantly limits the experimentally accessible wave vector values, thus negatively impacting the performance of these applications. The need to reduce loss in HMM stimulated the development of the second-generation HMM, termed active HMM, where gain materials are utilized to compensate for metal's intrinsic loss. With the advent of topological photonics that allows robust light transportation immune to disorders and defects, research on HMM also entered the topological regime. Tremendous efforts have been dedicated to exploring the topological transition from elliptical to hyperbolic dispersion and topologically protected edge states in HMM, which also prompted the invention of lossless HMM formed by all-dielectric material. Furthermore, emerging twistronics can also provide a route to manipulate topological transitions in HMMs. In this review, we survey recent progress in topological effects in HMMs and provide prospects on possible future research directions.
Collapse
Affiliation(s)
- Zhitong Li
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing100876, China
| | - Qing Gu
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC27695, USA
- Department of Physics, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
4
|
Lee D, Lee Y, Kim DS. Ultraviolet light scattering by a silicon Bethe hole. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1091-1097. [PMID: 39634011 PMCID: PMC11501262 DOI: 10.1515/nanoph-2023-0557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/22/2023] [Indexed: 12/07/2024]
Abstract
Bethe's theory predicts that scattering by a small hole on a thin perfect electric conductor (PEC) is presented as radiation by an in-plane magnetic dipole of the incident magnetic field direction. Even in the near-infrared range where metals are no more PEC, the magnetic dipole radiation of Bethe holes has been demonstrated. However, such Bethe holes' nature has not been addressed yet in the ultraviolet (UV) range where conductivity of metals becomes severely deteriorated. Meanwhile, UV plasmonics has been elevating its importance in spectroscopy and photochemistry, recognizing silicon (Si) as an alternative plasmonic metal featuring the interband transition in the UV range. In this work, we expanded the Bethe's theory's prediction to the UV range by investigating Si Bethe holes theoretically and experimentally in terms of the scattering pattern and polarization. Simulation results showed that the scattered field distribution resembles that of an in-plane magnetic dipole, and the dipole direction at oblique incidence is roughly given as the incident magnetic field direction with a deviation angle which can be predicted from the Fresnel equations. Simulation with various diameters showed that the magnetic dipole nature maintains with a diameter less than the quarter-wavelength and multipoles becomes noticeable for diameters larger than the half-wavelength. We performed scattering polarization measurement at 69-degree incidence, which confirms the theoretical analysis. The features of Si Bethe holes demonstrated here will be useful for designing UV plasmonic metasurfaces.
Collapse
Affiliation(s)
- Dukhyung Lee
- Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Youjin Lee
- Seoul National University, Seoul08826, Republic of Korea
| | - Dai-Sik Kim
- Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| |
Collapse
|
5
|
Chen MK, Zhang JC, Leung CW, Sun L, Fan Y, Liang Y, Yao J, Liu X, Yuan J, Xu Y, Tsai DP, Pang SW. Chiral-magic angle of nanoimprint meta-device. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2479-2490. [PMID: 39633776 PMCID: PMC11501801 DOI: 10.1515/nanoph-2022-0733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 12/07/2024]
Abstract
The magic angle of Twistronics has attracted a lot of attention because of its peculiar electrical characteristics. Moiré patterns formed by the superlattice of a twisted bilayer change overall physical properties. Circular dichroism can also be manipulated through the generated moiré pattern. Here, we report a polymer-based twisted bilayer meta-device fabricated by multilayer nanoimprint technology and study the magic angle of chirality. The superlattice of the bilayer meta-device creates moiré patterns and brings unique chiral optical responses. The bilayer nanoimprint technology is developed for metasurfaces with relative twist angles. Via the twist angle control, polymer materials with a low refractive index can manipulate the electric field of the light and reveal the chiral magic angle. Moreover, the shape of the meta-atoms plays a key role in chiral magic angle tuning. The chirality engineering by the reported nanoimprint technology and chiral meta-devices may contribute to applications in chiral imaging, biomedical sensing, lasing, and tunable optical devices.
Collapse
Affiliation(s)
- Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jing Cheng Zhang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Cheuk Wai Leung
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Linshan Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yubin Fan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yao Liang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jin Yao
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiaoyuan Liu
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jiaqi Yuan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yuanhao Xu
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Stella W. Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Zheng P, Liang L, Arora S, Ray K, Semancik S, Barman I. Pyramidal hyperbolic metasurfaces enhance spontaneous emission of nitrogen-vacancy centers in nanodiamond. ADVANCED OPTICAL MATERIALS 2023; 11:2202548. [PMID: 37920689 PMCID: PMC10619965 DOI: 10.1002/adom.202202548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 11/04/2023]
Abstract
Nitrogen-vacancy (NV) centers in nanodiamond hold great promise for creating superior biological labels and quantum sensing methods. Yet, inefficient photon generation and extraction from excited NV centers restricts the achievable sensitivity and temporal resolution. Herein, we report an entirely complementary route featuring pyramidal hyperbolic metasurface to modify the spontaneous emission of NV centers. Fabricated using nanosphere lithography, the metasurface consists of alternatively stacked silica-silver thin films configured in a pyramidal fashion, and supports both spectrally broadband Purcell enhancement and spatially extended intense local fields owing to the hyperbolic dispersion and plasmonic coupling. The enhanced photophysical properties are manifested as a simultaneous amplification to the spontaneous decay rate and emission intensity of NV centers. We envision the reported pyramidal metasurface could serve as a versatile platform for creating chip-based ultrafast single-photon sources and spin-enhanced quantum biosensing strategies, as well as aiding in further fundamental understanding of photoexcited species in condensed phases.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Le Liang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- The Institute of Advanced Studies, Wuhan University, China, 430072
| | - Saransh Arora
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Krishanu Ray
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Steve Semancik
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
7
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
8
|
Inverse-cavity structure for low-threshold miniature lasers. Sci Rep 2022; 12:11333. [PMID: 35790768 PMCID: PMC9256698 DOI: 10.1038/s41598-022-15319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Creating micro and nano lasers, high threshold gain is an inherent problem that have critically restricted their great technological potentials. Here, we propose an inverse-cavity laser structure where its threshold gain in the shortest-cavity regime is order-of-magnitude lower than the conventional cavity configurations. In the proposed structure, a resonant feedback mechanism efficiently transfers external optical gain to the cavity mode at a higher rate for a shorter cavity, hence resulting in the threshold gain reducing with decreasing cavity length in stark contrast to the conventional cavity structures. We provide a fundamental theory and rigorous numerical analyses confirming the feasibility of the proposed structure. Remarkably, the threshold gain reduces down by a factor ~ 10−3 for a vertical-cavity surface-emitting laser structure and ~ 0.17 for a lattice-plasmonic nanocavity structure. Therefore, the proposed approach may produce extremely efficient miniature lasers desirable for variety of applications potentially beyond the present limitations.
Collapse
|
9
|
Abstract
Recent years have witnessed promising artificial intelligence (AI) applications in many disciplines, including optics, engineering, medicine, economics, and education. In particular, the synergy of AI and meta-optics has greatly benefited both fields. Meta-optics are advanced flat optics with novel functions and light-manipulation abilities. The optical properties can be engineered with a unique design to meet various optical demands. This review offers comprehensive coverage of meta-optics and artificial intelligence in synergy. After providing an overview of AI and meta-optics, we categorize and discuss the recent developments integrated by these two topics, namely AI for meta-optics and meta-optics for AI. The former describes how to apply AI to the research of meta-optics for design, simulation, optical information analysis, and application. The latter reports the development of the optical Al system and computation via meta-optics. This review will also provide an in-depth discussion of the challenges of this interdisciplinary field and indicate future directions. We expect that this review will inspire researchers in these fields and benefit the next generation of intelligent optical device design.
Collapse
Affiliation(s)
- Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077.,The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong 999077
| | - Xiaoyuan Liu
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077.,The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong 999077
| |
Collapse
|
10
|
Lin HI, Tan HY, Liao YM, Shen KC, Shalaginov MY, Kataria M, Chen CT, Chang JW, Chen YF. A Transferrable, Adaptable, Free-Standing, and Water-Resistant Hyperbolic Metamaterial. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49224-49231. [PMID: 34609827 DOI: 10.1021/acsami.1c15481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperbolic metamaterials (HMMs) have attracted significant attention due to the profound manipulation of the photonic density of states, resulting in the efficient optoelectronic devices with the enhanced light-matter interaction. HMMs are conventionally built on rigid large-size substrates with poor conformability and the absence of flexibility. Here, we demonstrate a grating collageable HMM (GCHMM), which is composed of eight alternating layers of Au and poly(methyl methacrylate) (PMMA) and PMMA grating nanostructure containing quantum dots (QDs). The QDs serve as a scattering gain medium performing a random laser action, and the grating nanostructure enhances the extraction of light from QDs. The GCHMM enhances laser action by 13 times, reduces lasing threshold by 46%, and increases differential quantum efficiency by 1.8 times as compared to a planar collageable HMM. In addition, the GCHMM can be retransferred multiple times to other substrates as well as provide sufficient protection in water and still retain an excellent performance. It also shows stable functionality even when transferred to a dental floss. The GCHMM, therefore, promises to become a versatile platform for foldable, adaptable, free-standing, and water-resistant optoelectronic device applications.
Collapse
Affiliation(s)
- Hung-I Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiang-Yao Tan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ming Liao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Kun-Ching Shen
- Advanced Remanufacturing and Technology Centre, The Agency for Science, Technology and Research, 637143 Singapore
| | - Mikhail Y Shalaginov
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Monika Kataria
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ting Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jun-Wei Chang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Centre for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Liang Y, Li C, Huang YZ, Zhang Q. Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges. ACS NANO 2020; 14:14375-14390. [PMID: 33119269 DOI: 10.1021/acsnano.0c07011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The plasmonic nanolaser is a class of lasers with the physical dimensions free from the optical diffraction limit. In the past decade, progress in performance, applications, and mechanisms of plasmonic nanolasers has increased dramatically. We review this advance and offer our prospectives on the remaining challenges ahead, concentrating on the integration with nanochips. In particular, we focus on the qualifications for electrical pumping, energy consumption, and ultrafast modulation. At last, we evaluate the strategies for on-chip source construction design and further threshold reduction to achieve a long-term room-temperature electrically pumped plasmonic nanolaser, the ultimate goal toward practical applications.
Collapse
Affiliation(s)
- Yin Liang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chun Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yong-Zhen Huang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Zang W, Yuan Q, Chen R, Li L, Li T, Zou X, Zheng G, Chen Z, Wang S, Wang Z, Zhu S. Chromatic Dispersion Manipulation Based on Metalenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904935. [PMID: 31823480 DOI: 10.1002/adma.201904935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Metasurfaces are 2D metamaterials composed of subwavelength nanoantennas according to specific design. They have been utilized to precisely manipulate various parameters of light fields, such as phase, polarization, amplitude, etc., showing promising functionalities. Among all meta-devices, the metalens can be considered as the most basic and important application, given its significant advantage in integration and miniaturization compared with traditional lenses. However, the resonant dispersion of each nanoantenna in a metalens and the intrinsic chromatic dispersion of planar devices and optical materials result in a large chromatic aberration in metalenses that severely reduces the quality of their focusing and imaging. Consequently, how to effectively suppress or manipulate the chromatic aberration of metalenses has attracted worldwide attention in the last few years, leading to variety of excellent achievements promoting the development of this field. Herein, recent progress in chromatic dispersion control based on metalenses is reviewed.
Collapse
Affiliation(s)
- Wenbo Zang
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Quan Yuan
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Run Chen
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lin Li
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Tianyue Li
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiujuan Zou
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Gaige Zheng
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhuo Chen
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shuming Wang
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing, 210093, China
| | - Zhenlin Wang
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing, 210093, China
| |
Collapse
|
13
|
Azzam SI, Kildishev AV, Ma RM, Ning CZ, Oulton R, Shalaev VM, Stockman MI, Xu JL, Zhang X. Ten years of spasers and plasmonic nanolasers. LIGHT, SCIENCE & APPLICATIONS 2020; 9:90. [PMID: 32509297 PMCID: PMC7248101 DOI: 10.1038/s41377-020-0319-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/25/2023]
Abstract
Ten years ago, three teams experimentally demonstrated the first spasers, or plasmonic nanolasers, after the spaser concept was first proposed theoretically in 2003. An overview of the significant progress achieved over the last 10 years is presented here, together with the original context of and motivations for this research. After a general introduction, we first summarize the fundamental properties of spasers and discuss the major motivations that led to the first demonstrations of spasers and nanolasers. This is followed by an overview of crucial technological progress, including lasing threshold reduction, dynamic modulation, room-temperature operation, electrical injection, the control and improvement of spasers, the array operation of spasers, and selected applications of single-particle spasers. Research prospects are presented in relation to several directions of development, including further miniaturization, the relationship with Bose-Einstein condensation, novel spaser-based interconnects, and other features of spasers and plasmonic lasers that have yet to be realized or challenges that are still to be overcome.
Collapse
Affiliation(s)
- Shaimaa I. Azzam
- School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907 USA
| | - Alexander V. Kildishev
- School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907 USA
| | - Ren-Min Ma
- State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Cun-Zheng Ning
- Department of Electronic Engineering and International Center for Nano-Optoelectronics, Tsinghua University, 100084 Beijing, China
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Rupert Oulton
- The Blackett Laboratory, Imperial College London, South Kensington, London, SW7 2AZ UK
| | - Vladimir M. Shalaev
- School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907 USA
| | - Mark I. Stockman
- Center for Nano-Optics (CeNO) and Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 USA
| | - Jia-Lu Xu
- Department of Electronic Engineering and International Center for Nano-Optoelectronics, Tsinghua University, 100084 Beijing, China
| | - Xiang Zhang
- Nanoscale Science and Engineering Center, University of California, Berkeley, Berkeley, CA 94720 USA
- Faculties of Sciences and Engineering, University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Lin ZH, Gao F, Chen H, Lei JY, Yang Z, Cai JW, Wang PJ, Wang MQ. Synthesis and model simulation of the hexagonal to circular transition of perovskite cesium lead halide nanosheets by rapidly changing the temperature. RSC Adv 2020; 10:4211-4217. [PMID: 35495235 PMCID: PMC9049192 DOI: 10.1039/c9ra10312k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/12/2020] [Accepted: 01/12/2020] [Indexed: 01/16/2023] Open
Abstract
Lead halide perovskites have emerged as promising optoelectronic materials due to their excellent efficiencies in photovoltaic and light-emitting applications. CsPbBr3 is a kind of all-inorganic perovskite that exhibits higher stability. Here, we report the synthesis of hexagonal and circular all-inorganic CsPbBr3 perovskite nanoplates by changing the reaction temperature. As time goes on, the different reaction temperatures play an important role in determining the shape and size. We use first-principles to explicate the formation of hexagonal nanoplates. Meanwhile, a model is built and the calculation of the properties is conducted. In brief, a method to directly and conveniently synthesize all-inorganic CsPbBr3 is proposed. Lead halide perovskites have emerged as promising optoelectronic materials due to their excellent efficiencies in photovoltaic and light-emitting applications.![]()
Collapse
Affiliation(s)
- Zhong-Hai Lin
- Key Laboratory of Intelligent Information Processing in Universities of Shandong
- Shandong Technology and Business University
- Yantai
- China
| | - Fei Gao
- Key Laboratory of Intelligent Information Processing in Universities of Shandong
- Shandong Technology and Business University
- Yantai
- China
| | - Hong Chen
- Key Laboratory of Intelligent Information Processing in Universities of Shandong
- Shandong Technology and Business University
- Yantai
- China
| | - Jia-Yi Lei
- Key Laboratory of Intelligent Information Processing in Universities of Shandong
- Shandong Technology and Business University
- Yantai
- China
| | - Zhi Yang
- Electronic Materials Research Laboratory (EMRL)
- Key Laboratory of Education Ministry
- International Center for Dielectric Research (ICDR)
- Xi'an Jiaotong University
- Xi'an
| | - Jun-Wei Cai
- Key Laboratory of Intelligent Information Processing in Universities of Shandong
- Shandong Technology and Business University
- Yantai
- China
| | - Ping-Jian Wang
- Key Laboratory of Intelligent Information Processing in Universities of Shandong
- Shandong Technology and Business University
- Yantai
- China
| | - Ming-Qiang Wang
- Electronic Materials Research Laboratory (EMRL)
- Key Laboratory of Education Ministry
- International Center for Dielectric Research (ICDR)
- Xi'an Jiaotong University
- Xi'an
| |
Collapse
|
15
|
Indukuri SRKC, Bar-David J, Mazurski N, Levy U. Ultrasmall Mode Volume Hyperbolic Nanocavities for Enhanced Light-Matter Interaction at the Nanoscale. ACS NANO 2019; 13:11770-11780. [PMID: 31589409 DOI: 10.1021/acsnano.9b05730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cavities are the building blocks for multiple photonic applications from linear to nonlinear optics and from classical optics to quantum electrodynamics. Hyperbolic metamaterial cavities are one class of optical cavities that have recently been realized and shown to possess desirable characteristics such as engineered refractive indices and ultrasmall mode volumes, both beneficial for enhancement of light-matter interactions at the nanoscale. We hereby report the design, fabrication, and experimental characterization of nanoscale hyperbolic metamaterial cavities at the visible frequency. We show experimentally that these nanocavities enhance the light-matter interaction at the nanoscale and demonstrate increased photonic density of states and enhanced free space radiation efficiency of quantum dots coupled to such cavities, thus demonstrating the importance of hyperbolic metamaterial cavities for applications in solid-state light sources, quantum technologies, and cavity quantum electrodynamics.
Collapse
Affiliation(s)
- S R K Chaitanya Indukuri
- Department of Applied Physics, Faculty of Science and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel
| | - Jonathan Bar-David
- Department of Applied Physics, Faculty of Science and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel
| | - Noa Mazurski
- Department of Applied Physics, Faculty of Science and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel
| | - Uriel Levy
- Department of Applied Physics, Faculty of Science and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem , 91904 , Israel
| |
Collapse
|
16
|
Dual-Band Light Absorption Enhancement in Hyperbolic Rectangular Array. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of dual-band light absorption enhancement in a hyperbolic rectangular array (HRA) is presented. The enhanced light absorption of the HRA results from the propagating surface plasmon (PSP) resonance, and a dual-band absorption with low and flat sideband level can be realized. The impedance theory is used to evaluate the absorption properties of the HRA, and shows that the input impedances of the HRA varied abruptly around the absorption bands to meet the impedance matching. The absorption spectra of the HRA can be estimated using the effective medium theory (EMT), and its accuracy can be improved as the number of film stacks is increased. The dual-band absorptions of the HRA are very robust to the variations of the width and the number of film stack. Potential application in refractive index sensing can be achieved by utilizing the two absorption bands.
Collapse
|
17
|
Lin HI, Yadav K, Shen KC, Haider G, Roy PK, Kataria M, Chang TJ, Li YH, Lin TY, Chen YT, Chen YF. Nanoscale Core-Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1163-1173. [PMID: 30543414 DOI: 10.1021/acsami.8b13844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic material has emerged with multifunctionalities for its remarkable tailoring light emission, reshaping density of states (DOS), and focusing subwavelength light. However, restricted by its propagation loss and narrowband resonance in nature, it is a challenge for plasmonic material to provide a broadband DOS to advance its application. Here, we develop a novel nanoscale core-shell hyperbolic structure that possesses a remarkable coupling effect inside the multishell nanoscale composite owing to a higher DOS and a longer time of collective oscillations of the electrons than the plasmonic-based pure-metal nanoparticles. Subsequently, a giant localized electromagnetic wave of surface plasmon resonance is formed at the surface, causing pronounced out-coupling effect. Specifically, the nanoscale core-shell hyperbolic structure confines the energy well without being decayed, reducing the propagation loss and then achieving an unprecedented stimulated emission (random lasing action by dye molecule) with a record ultralow threshold (∼30 μJ/cm2). Besides, owing to the radial symmetry of the nanoscale core-shell hyperbolic structure, the excitation of high wavevector modes and induced additional DOS are easily accessible. We believe that the nanoscale core-shell hyperbolic structure paves a way to enlarge the development of plasmonic-based applications, such as high optoelectronic conversion efficiency of solar cells, great power extraction of light-emitting diodes, wide spectra photodetectors, carrying the emitter inside the core part as quantitative fluorescence microscopy and bioluminescence imaging system for in vivo and in vitro research on human body.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tai-Yuan Lin
- Institute of Optoelectronic Sciences , National Taiwan Ocean University , Keelung 202 , Taiwan
| | | | | |
Collapse
|
18
|
Ma RM, Oulton RF. Applications of nanolasers. NATURE NANOTECHNOLOGY 2019; 14:12-22. [PMID: 30559486 DOI: 10.1038/s41565-018-0320-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 10/31/2018] [Indexed: 05/22/2023]
Abstract
Nanolasers generate coherent light at the nanoscale. In the past decade, they have attracted intense interest, because they are more compact, faster and more power-efficient than conventional lasers. Thanks to these capabilities, nanolasers are now an emergent tool for a variety of practical applications. In this Review, we explain the intrinsic merits of nanolasers and assess recent progress on their applications, particularly for optical interconnects, near-field spectroscopy and sensing, optical probing for biological systems and far-field beam synthesis through near-field eigenmode engineering. We highlight the scientific and engineering challenges that remain for forging nanolasers into powerful tools for nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Ren-Min Ma
- State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| | - Rupert F Oulton
- The Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| |
Collapse
|
19
|
Haider G, Lin HI, Yadav K, Shen KC, Liao YM, Hu HW, Roy PK, Bera KP, Lin KH, Lee HM, Chen YT, Chen FR, Chen YF. A Highly-Efficient Single Segment White Random Laser. ACS NANO 2018; 12:11847-11859. [PMID: 30352157 DOI: 10.1021/acsnano.8b03035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Production of multicolor or multiple wavelength lasers over the full visible-color spectrum from a single chip device has widespread applications, such as superbright solid-state lighting, color laser displays, light-based version of Wi-Fi (Li-Fi), and bioimaging, etc. However, designing such lasing devices remains a challenging issue owing to the material requirements for producing multicolor emissions and sophisticated design for producing laser action. Here we demonstrate a simple design and highly efficient single segment white random laser based on solution-processed NaYF4:Yb/Er/Tm@NaYF4:Eu core-shell nanoparticles assisted by Au/MoO3 multilayer hyperbolic meta-materials. The multicolor lasing emitted from core-shell nanoparticles covering the red, green, and blue, simultaneously, can be greatly enhanced by the high photonic density of states with a suitable design of hyperbolic meta-materials, which enables decreasing the energy consumption of photon propagation. As a result, the energy upconversion emission is enhanced by ∼50 times with a drastic reduction of the lasing threshold. The multiple scatterings arising from the inherent nature of the disordered nanoparticle matrix provide a convenient way for the formation of closed feedback loops, which is beneficial for the coherent laser action. The experimental results were supported by the electromagnetic simulations derived from the finite-difference time-domain (FDTD) method. The approach shown here can greatly simplify the design of laser structures with color-tunable emissions, which can be extended to many other material systems. Together with the characteristics of angle free laser action, our device provides a promising solution toward the realization of many laser-based practical applications.
Collapse
Affiliation(s)
- Golam Haider
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu 300 , Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program , Academia Sinica , Taipei 115 , Taiwan
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
- J Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic , Prague 8 , Czechia
| | - Hung-I Lin
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Kanchan Yadav
- Nano-Science and Technology Program, Taiwan International Graduate Program , Academia Sinica , Taipei 115 , Taiwan
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Kun-Ching Shen
- Research Center for Applied Sciences , Academia Sinica , Taipei 115 , Taiwan
| | - Yu-Ming Liao
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu 300 , Taiwan
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Han-Wen Hu
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Pradip Kumar Roy
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Krishna Prasad Bera
- Nano-Science and Technology Program, Taiwan International Graduate Program , Academia Sinica , Taipei 115 , Taiwan
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
| | - Kung-Hsuan Lin
- Institute of Physics , Academia Sinica , Taipei 115 , Taiwan
| | - Hsien-Ming Lee
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Yit-Tsong Chen
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Fu-Rong Chen
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Yang-Fang Chen
- Department of Physics , National Taiwan University , Taipei 106 , Taiwan
- Advanced Research Center for Green Materials Science and Technology , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
20
|
Wang S, Chen HZ, Ma RM. High Performance Plasmonic Nanolasers with External Quantum Efficiency Exceeding 10. NANO LETTERS 2018; 18:7942-7948. [PMID: 30422664 DOI: 10.1021/acs.nanolett.8b03890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic nanolasers break the diffraction limit for an optical oscillator, which brings new capabilities for various applications ranging from on-chip optical interconnector to biomedical sensing and imaging. However, the inevitably accompanied metallic absorption loss could convert the input power to heat rather than radiations, leading to undesired low external quantum efficiency and device degradation. To date, direct characterization of quantum efficiency of plasmonic nanolasers is still a forbidden task due to its near-field surface plasmon emissions, divergent emission profile, and the limited emission power. Here, we develop a method to characterize the external quantum efficiency of plasmonic nanolasers by synergizing experimental measurement and theoretical calculation. With systematical device optimization, we demonstrate high performance plasmonic nanolasers with external quantum efficiency exceeding 10% at room temperature. This work fills in a missing yet essential piece of key metrics of plasmonic nanolasers. The demonstrated high external quantum efficiency of plasmonic nanolasers not only clarifies the long-standing debate, but also endorses the exploration of them in various practical applications such as near-field spectroscopy and sensing, integrated optical interconnects, solid-state lighting, and free-space optical communication.
Collapse
Affiliation(s)
- Suo Wang
- State Key Lab for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , China
| | - Hua-Zhou Chen
- State Key Lab for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , China
| | - Ren-Min Ma
- State Key Lab for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871 , China
| |
Collapse
|
21
|
Lin HI, Shen KC, Lin SY, Haider G, Li YH, Chang SW, Chen YF. Transient and Flexible Hyperbolic Metamaterials on Freeform Surfaces. Sci Rep 2018; 8:9469. [PMID: 29930247 PMCID: PMC6013475 DOI: 10.1038/s41598-018-27812-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
Transient technology is deemed as a paramount breakthrough for its particular functionality that can be implemented at a specific time and then totally dissolved. Hyperbolic metamaterials (HMMs) with high wave-vector modes for negative refraction or with high photonic density of states to robustly enhance the quantum transformation efficiency represent one of the emerging key elements for generating not-yet realized optoelectronics devices. However, HMMs has not been explored for implementing in transient technology. Here we show the first attempt to integrate transient technology with HMMs, i.e., transient HMMs, composed of multilayers of water-soluble and bio-compatible polymer and metal. We demonstrate that our newly designed transient HMMs can also possess high-k modes and high photonic density of states, which enables to dramatically enhance the light emitter covered on top of HMMs. We show that these transient HMMs devices loss their functionalities after immersing into deionized water within 5 min. Moreover, when the transient HMMs are integrated with a flexible substrate, the device exhibits an excellent mechanical stability for more than 3000 bending cycles. We anticipate that the transient HMMs developed here can serve as a versatile platform to advance transient technology for a wide range of application, including solid state lighting, optical communication, and wearable optoelectronic devices, etc.
Collapse
Affiliation(s)
- Hung-I Lin
- Graduate Institute of Applied Physics, National Taiwan University, Taipei, 106, Taiwan.,Department of Physics, National Taiwan University, Taipei, 106, Taiwan
| | - Kun-Ching Shen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Shih-Yao Lin
- Department of Physics, National Taiwan University, Taipei, 106, Taiwan
| | - Golam Haider
- Department of Physics, National Taiwan University, Taipei, 106, Taiwan
| | - Yao-Hsuan Li
- Graduate Institute of Applied Physics, National Taiwan University, Taipei, 106, Taiwan
| | - Shu-Wei Chang
- Graduate Institute of Applied Physics, National Taiwan University, Taipei, 106, Taiwan
| | - Yang-Fang Chen
- Graduate Institute of Applied Physics, National Taiwan University, Taipei, 106, Taiwan. .,Department of Physics, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|