1
|
Huang Y, Li J, Wang S, Tian H, Fan S, Zhao Y. Diselenide-based nanoparticles enhancing the radioprotection to the small intestine of mice. J Nanobiotechnology 2025; 23:236. [PMID: 40119423 PMCID: PMC11929180 DOI: 10.1186/s12951-025-03276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
The widespread application of ionizing radiation (IR) in medicine, while beneficial, also poses potential risks that necessitate effective countermeasures. Both 2-(3-aminopropylamino) ethanethiol (WR-1065) and curcumin are recognized as radioprotective agents; however, their clinical utility is hindered by notable shortcomings that could be addressed through reactive oxygen species (ROS)-responsive amphiphilic nanomaterials. We introduced a newly synthesized poly (ethylene glycol) (PEG)-polycaprolactone (PCL) polymer integrated with diselenide bonds and curcumin (HOOC-SeSe-Cur-PEG-SeSe-Cur-PCL, PEG-Cur-SeSe-PCL). The resulting spherical nanoparticles (NPs), which self-assembled from this polymer, were uniform with an average diameter of 118 nm. As a carrier for WR-1065, these NPs demonstrated a loading capacity of 30.9% and an efficacy of 56.7%. Importantly, the degradation of WR-1065 within the NPs was minimal in gastric fluid, decreasing by only approximately 20% over a 6-hour period. The innovative aspect of these NPs is their design to destabilize in ROS-rich environments, facilitating the release of WR-1065 and curcumin. Indeed, the survival rate of mice increased to 50% when these NPs were orally administered prior to exposure to a lethal dose of whole-body irradiation (8 Gy). The radioprotective impact of WR-1065-loaded NPs was evident in the small intestine of irradiated mice, characterized by the amelioration of radiation-induced epithelial damage, reduction of DNA damage, and inhibition of the apoptotic pathway. Collectively, this oral nanocarrier system for WR-1065 and curcumin holds promise as a potential candidate for the prophylaxis and treatment of acute intestinal injuries induced by IR.
Collapse
Affiliation(s)
- Yichi Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jiaze Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Sen Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Hongqi Tian
- Kechow Pharma, Inc., Shanghai, 200131, China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
2
|
Retamal Santibañez J, Bok D, Teng S, Bhansali D, de Amorim Ferreira M, Tonello R, Peach CJ, Latorre R, Thanigai GSA, Leong KW, Jensen DD. Characterization and targeting of the endosomal signaling of the gastrin releasing peptide receptor in pruritus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643743. [PMID: 40166294 PMCID: PMC11956961 DOI: 10.1101/2025.03.17.643743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chronic pruritus is a major unmet clinical problem affecting one in four adults. G protein-coupled receptors (GPCRs) are key receptors driving itch signaling and are a therapeutic target for itch relief. The endosomal signaling of GPCRs provides new challenges for understanding how GPCR signaling is regulated, how endosomal signaling of GPCRs contributes to disease states like chronic pruritus and opens new targets for therapeutic development. The Gastrin releasing peptide receptor (GRPR) is a key mediator of pruritus in the spinal cord. Yet, little is known about the molecular mechanisms regulating GRPR signaling in pruritus, if GRPR can signal from endosomes, or the role of endosomal GRPR in the development of pruritus. Here we show the importance of internalization and endosomal signaling of GRPR in pruritus. Agonist induced GRPR internalization and trafficking was quantified using BRET or microscopy while endosomal-mediated ERK signaling was measured using compartmentalized FRET biosensors. Recruitment of G proteins to endosomes was measured with NanoBit BRET. pH sensitive mesoporous silica nanoparticles (MSN) which accumulated in endosomes were used to deliver RC-3095, a GRPR specific antagonist, intracellularly to block endosomal signaling of GRPR. MSN-RC proved more effective than free RC-3095 at inhibiting chloroquine scratching in mice. Our results demonstrate a critical role for GRPR endosomal signaling in itch sensation. These results highlight the ability of endosomally targeted antagonist to inhibit GRPR signaling and provide a new target for developing therapeutics that block GRPR mediated pruritus.
Collapse
Affiliation(s)
- Jeffri Retamal Santibañez
- Department of Chemistry and Biology, University of Santiago Chile, Santiago, CL
- Pain Research Center, New York University; New York, USA
| | - Diana Bok
- Yale University School of Medicine; New Haven, USA
| | - Shavonne Teng
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
| | - Divya Bhansali
- Department of Biomedical Engineering, Columbia University; New York, USA
| | - Marcella de Amorim Ferreira
- Pain Research Center, New York University; New York, USA
- Translational Research Center, College of Dentistry, New York University; New York, USA
| | - Raquel Tonello
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
| | - Chloe J. Peach
- Department of Molecular Pharmacology, University of Nottingham, Nottingham, UK
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
| | - Gokul SA Thanigai
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University; New York, USA
| | - Dane D. Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University; New York, USA
- Pain Research Center, New York University; New York, USA
- Translational Research Center, College of Dentistry, New York University; New York, USA
| |
Collapse
|
3
|
Xu M, Xin W, Xu J, Wang A, Ma S, Dai D, Wang Y, Yang D, Zhao L, Li H. Biosilicification-mimicking chiral nanostructures for targeted treatment of inflammatory bowel disease. Nat Commun 2025; 16:2551. [PMID: 40089457 PMCID: PMC11910640 DOI: 10.1038/s41467-025-57890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The cascade reaction of lipopolysaccharides (LPS), cell-free DNA (cfDNA), and reactive oxygen species (ROS), drives the development of inflammatory bowel disease (IBD). Herein, we construct polyethylenimide (PEI)-L/D-tartaric acid (L/D-TA) complexes templated mesoporous organosilica nanoparticles (MON) (PEI-L/D-TA@MON) by mimicking biosilicification under ambient conditions within seconds. The chiral nanomedicines include four functional moieties, wherein PEI electrostatically attracts cfDNA, tetrathulfide bonds reductively react with ROS, silanol groups adsorb LPS, and L/D-TA enables chiral recognition and inflammatory localization. Following oral administration, PEI-L-TA@MON exhibiting preferential conformation stereoscopically matches with mucosa and anchors onto inflammatory intestine for lesion targeting. PEI-L-TA@MON eliminates LPS, ROS, and cfDNA, alleviating oxidative stress, inhibiting inflammatory cascade, and maintaining immune homeostasis to achieve IBD therapy. In addition, the rapid synthesis, low cost, energy-free preparation, negligible toxicity, satisfactory therapeutic effect, and facile conversion on therapeutic modes of PEI-L-TA@MON will bring changes for IBD treatment, providing research values and translational clinical prospects.
Collapse
Affiliation(s)
- Miao Xu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Wei Xin
- The First Hospital of China Medical University, Shenyang, China
| | - Jiabin Xu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Anya Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Shuai Ma
- School of Pharmacy, China Medical University, Shenyang, China
| | - Di Dai
- The First Hospital of China Medical University, Shenyang, China
| | - Yidan Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Dongmei Yang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Zhao
- School of Pharmacy, China Medical University, Shenyang, China.
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Gaviria-Soteras L, Sharma AK, Sanmartín C, Plano D. Recent Insights into Bioactive Dichalcogen Derivatives: From Small Molecules to Complex Materials. Int J Mol Sci 2025; 26:2436. [PMID: 40141080 PMCID: PMC11942125 DOI: 10.3390/ijms26062436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Organodichalcogenides have been explored due to their therapeutic properties. They have been demonstrated to be active against several diseases such as cancer, bacteria, viruses, parasites, or neurological diseases. Among the different classes of dichalcogenides, disulfide derivatives have been widely studied, and many studies cover their therapeutical use. For this reason, this review includes the latest studies of diselenides and ditellurides derivatives with biological applications. With this aim, several bioactive small molecules containing the diselenide or ditelluride bond in their structure have been discussed. Furthermore, it should be highlighted that, in recent years, there has been an increasing interest in the development of nanomaterials for drug delivery due to their therapeutic advantages. In this context, diselenide and ditelluride-containing nanocarriers have emerged as novel approaches. The information compiled in this review includes small molecules and more complex materials containing diselenide or ditelluride bonds in their structure for different therapeutical applications, which could be helpful for the further development of novel drugs for the treatment of different diseases.
Collapse
Affiliation(s)
- Leire Gaviria-Soteras
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Molecular and Precision Medicine, Penn State Cancer Institute, CH72, 500 University Drive, Hershey, PA 17033, USA;
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
5
|
Liu X, Zhao Z, Li W, Ren M, Zhang H, Cao D, Wang Y, Yang H, Li Y, Zhu M, Xie L, Yin L. Rationally Engineering Pro-Proteins and Membrane-Penetrating α‑Helical Polypeptides for Genome Editing Toward Choroidal Neovascularization Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412366. [PMID: 39718218 DOI: 10.1002/adma.202412366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Indexed: 12/25/2024]
Abstract
Ribonucleoprotein (RNP)-based CRISPR/Cas9 genome editing holds great potential for the treatment of choroidal neovascularization (CNV), which however, is challenged by the lack of efficient cytosolic protein delivery tools. Herein, reversibly-phosphorylated pro-proteins (P-proteins) with conjugated adenosine triphosphate (ATP) tags are engineered and coupled with a membrane-penetrating, guanidine-enriched, α-helical polypeptide (LGP) to mediate robust and universal cytosolic delivery. LGP forms salt-stable nanocomplexes (NCs) with P-proteins via electrostatic interaction and salt bridging, and the helix-assisted, strong membrane activities of LGP enabled efficient cellular internalization and endolysosomal escape of NCs. Therefore, this approach allows efficient cytosolic delivery of a wide range of protein cargoes and maintains their bioactivities due to endolysosomal acidity-triggered traceless restoration of P-proteins. Notably, intravitreally delivered LGP/P-RNP NCs targeting hypoxia-inducible factor-1α (HIF-1α) induce pronounced gene disruption to downregulate pro-angiogenic factors and alleviate subretinal fibrosis, ultimately provoking robust therapeutic efficacy in CNV mice. Such a facile and versatile platform provides a powerful tool for cytosolic protein delivery and genome editing, and it holds promising potential for the treatment of CNV-associated diseases, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Xun Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Wei Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Mengyao Ren
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Haoyu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Desheng Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yehan Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - He Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yajie Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, 215123, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Yang Q, Dong MJ, Xu J, Xing Y, Wang Y, Yang J, Meng X, Xie T, Li Y, Dong H. CRISPR/RNA Aptamer System Activated by an AND Logic Gate for Biomarker-Driven Theranostics. J Am Chem Soc 2025; 147:169-180. [PMID: 39699588 DOI: 10.1021/jacs.4c08719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The development of an engineered RNA device capable of detecting multiple biomarkers to evaluate pathological states and autonomously implement responsive therapies is urgently needed. Here, we report InCasApt, an integrated nano CRISPR Cas13a/RNA aptamer theranostic platform capable of achieving both biomarker detection and biomarker-driven therapy. Within this system, a Cas13a/crRNA complex, a hairpin reporter (HR), a dinitroaniline caged Ce6 photosensitizer (Ce6-DN), and a DN-binding RNA aptamer precursor (DNBApt) are coloaded onto dendritic mesoporous silicon nanoparticles (DMSN) in a controlled manner. While InCasApt remains inert in normal cells, its programmable theranostic capabilities are activated in tumor cells that have elevated expression of carcinogenic miRNA-155 and miRNA-21. These miRNAs act as an AND logic gate, generating fluorescence for disease condition evaluation and ROS for photodynamic therapy. This process also upregulates antioncogene BRG1 and suppresses tumor migration by inhibiting the function of miRNA-155 and miRNA-21. These effects underscore the versatility of InCasApt as an miRNA-targeting strategy for bridging the gap between diagnosis and therapy.
Collapse
Affiliation(s)
- Qiqi Yang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming-Jie Dong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Jianglian Xu
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Wang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinlong Yang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianzhen Xie
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Yang B, Luo G, Nie T, Ban Z, Ning Q, Zhang J, Liu X, Lin Y, Xie X, Chen Q, Zhong H, Huang Y, Liao P, Liu Y, Guo C, Cheng C, Sun E. Biomimetic bioreactor for potentiated uricase replacement therapy in hyperuricemia and gout. Front Bioeng Biotechnol 2025; 12:1520663. [PMID: 39840134 PMCID: PMC11746906 DOI: 10.3389/fbioe.2024.1520663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Uricase replacement therapy is a promising approach for managing hyperuricemia and gout but is hindered by challenges such as short blood circulation time, reduced catalytic activity, and excessive hydrogen peroxide (H2O2) production. These limitations necessitate innovative strategies to enhance therapeutic efficacy and safety. Methods We designed and synthesized RBC@SeMSN@Uri, a red blood cell-coated biomimetic self-cascade bioreactor, which encapsulates uricase (Uri) and a selenium-based nano-scavenger (SeMSN) within RBC membranes. This design aims to reduce immunogenicity, extend systemic circulation, and maintain enzymatic activity. In vitro assays were conducted to evaluate biocompatibility, anti-inflammatory effects, and oxidative stress protection. In vivo experiments in hyperuricemia and gout models assessed therapeutic efficacy, biodistribution, and biosafety. Results RBC@SeMSN@Uri effectively degraded uric acid (UA) into allantoin and converted H2O2 into water, preventing oxidative damage and inflammation. In vitro assays demonstrated excellent biocompatibility and reduced H2O2-induced inflammatory responses compared to free uricase. In vivo, the bioreactor prolonged circulation time, significantly reduced uric acid levels, alleviated kidney damage, and mitigated symptoms of hyperuricemia and gout. It also targeted inflamed joints, reducing swelling and inflammation in gouty arthritis models. Discussion This study presents RBC@SeMSN@Uri as a novel biomimetic strategy for enzyme replacement therapy in hyperuricemia and gout. By integrating uricase and selenium-based nano-scavenger within RBC membranes, the bioreactor addresses key limitations of traditional therapies, offering enhanced stability, reduced immunogenicity, and superior therapeutic efficacy. This platform holds potential for broader applications in protein or antibody delivery for enzyme replacement therapies in other diseases.
Collapse
Affiliation(s)
- Bin Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Guihu Luo
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Tailei Nie
- Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenglan Ban
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Quanxin Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Jialin Zhang
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xiangru Liu
- Xingtan Hospital Affiliated of Southern Medical University Shunde Hospital, Foshan, China
| | - Yanhua Lin
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qianyun Chen
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Han Zhong
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Ying Huang
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Pan Liao
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, China
| | - Yan Liu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Chenyang Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Chuanxu Cheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| |
Collapse
|
8
|
Yang X, Mao K, Chang C, Huang G, Shao S, Zhang H. Advancing the analysis of volatile selenium species in high-humidity and low-volatility paddy systems: A novel approach for speciation and quantification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177514. [PMID: 39536867 DOI: 10.1016/j.scitotenv.2024.177514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Selenium (Se) volatilization represents a crucial component of the Se biogeochemical cycle in paddy systems. However, current existing methodologies for capturing volatile Se (VOSe) in high-humidity and low-volatility paddy systems are insufficient. This study developed an innovative approach to capture and quantify VOSe from soil and rice plants, such as DMSe (dimethylselenide) and DMDSe (dimethyldiselenide). Initially, the efficacy of preconcentration was enhanced by optimizing the sampling apparatus, which significantly reduced water vapour by 43.5 % and increased the Se concentration by 37.7 % within 6 h sampling. Subsequently, HPLC-ICPMS analysis refinements included the screening and optimizing chromatographic columns and mobile phases, achieving absolute detection limits of 1.2 pg and 1.4 pg for DMSe and DMDSe, respectively. For validation, VOSe were quantified in the paddy systems, with DMSe and DMDSe volatilized rates from soil measured at 16.55±9.94 ng·m-2·h-1 and 124.49±120.34 ng·m-2·h-1, and from rice plants at 38.38±29.85 ng·m-2·h-1 and 72.54±94.66 ng·m-2·h-1, respectively. Additionally, volatile H2Se and potential plant-based volatile organic Se species were found. This represents the first accurate and sensitive method for the in-situ capture of trace VOSe in high-humidity, low-volatility paddy systems, providing invaluable insights into the biogeochemical processes of Se volatilization.
Collapse
Affiliation(s)
- Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guopei Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shuxun Shao
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
9
|
Cheng X, Sui H, Chen F, Li C, Du M, Zhang S, Chen J, Dou J, Huang Y, Xie X, Cheng C, Yang R, Yang C, Shi B, Shao D, Leong KW, Huang H. Nanomaterial-Mediated Reprogramming of Macrophages to Inhibit Refractory Muscle Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410368. [PMID: 39548911 PMCID: PMC11849413 DOI: 10.1002/adma.202410368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Orofacial muscles are particularly prone to refractory fibrosis after injury, leading to a negative effect on the patient's quality of life and limited therapeutic options. Gaining insights into innate inflammatory response-fibrogenesis homeostasis can aid in the development of new therapeutic strategies for muscle fibrosis. In this study, the crucial role of macrophages is identified in the regulation of orofacial muscle fibrogenesis after injury. Hypothesizing that orchestrating macrophage polarization and functions will be beneficial for fibrosis treatment, nanomaterials are engineered with polyethylenimine functionalization to regulate the macrophage phenotype by capturing negatively charged cell-free nucleic acids (cfNAs). This cationic nanomaterial reduces macrophage-related inflammation in vitr and demonstrates excellent efficacy in preventing orofacial muscle fibrosis in vivo. Single-cell RNA sequencing reveals that the cationic nanomaterial reduces the proportion of profibrotic Gal3+ macrophages through the cfNA-mediated TLR7/9-NF-κB signaling pathway, resulting in a shift in profibrotic fibro-adipogenic progenitors (FAPs) from the matrix-producing Fabp4+ subcluster to the matrix-degrading Igf1+ subcluster. The study highlights a strategy to target innate inflammatory response-fibrogenesis homeostasis and suggests that cationic nanomaterials can be exploited for treating refractory fibrosis.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Sui
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meijun Du
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiming Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiali Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinfeng Dou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yixuan Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Chuanxu Cheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Renjie Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Eastern Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Yang
- Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
10
|
Zhang X, Zhang H, Liu X, Wang J, Li S, Gao P. Review and Future Perspectives of Stimuli-Responsive Bridged Polysilsesquioxanes in Controlled Release Applications. Polymers (Basel) 2024; 16:3163. [PMID: 39599255 PMCID: PMC11598018 DOI: 10.3390/polym16223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Bridged polysilsesquioxanes (BPSs) are emerging biomaterials composed of synergistic inorganic and organic components. These materials have been investigated as ideal carriers for therapeutic and diagnostic systems for their favorable properties, including excellent biocompatibility, physiological inertia, tunable size and morphology, and their extensive design flexibility of functional organic groups to satisfy diverse application requirements. Stimuli-responsive BPSs can be activated by both endogenous and exogenous stimuli, offering a precise, safe, and effective platform for the controlled release of various targeted therapeutics. This review aims to provide a comprehensive overview of stimuli-responsive BPSs, focusing on their synthetic strategies, biocompatibility, and biodegradability, while critically assessing their capabilities for controlled release in response to specific stimuli. Furthermore, practical suggestions and future perspectives for the design and development of BPSs are presented. This review highlights the significant role of stimuli-responsive BPSs in advancing biomedical research.
Collapse
Affiliation(s)
- Xin Zhang
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Han Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Xiaonan Liu
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jiao Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Shifeng Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Peng Gao
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| |
Collapse
|
11
|
Geng Y, Guo X, Yue F, Xiang M, Zhu Q. Mass Production of Multishell Hollow SiO 2 Spheres With Adjustable Void Ratios and Pore Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409421. [PMID: 39291880 DOI: 10.1002/adma.202409421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/30/2024] [Indexed: 09/19/2024]
Abstract
SiO2 multishell hollow spheres (MHSs) as supports have multiple porous layers and internal voids, which present notable advantages in regulating mass transport and chemical reactions. However, practical applications of SiO2 MHSs are severely hindered because of their high costs and low production efficiency issues. Herein, it is overcome these obstacles by developing a precursor hydrolysis method and demonstrate a cost-effective production of void-ratio tunable SiO2 MHSs on a large scale, which has a much lower cavitation temperature (25 °C) and one order of magnitude decrease in cost. In addition, the new method can also be applied to fabricate TiO2 and SnO2 hollow spheres (HSs). In particular, an NH4Cl precipitation-pyrolysis strategy is developed to tune the pore diameters and pore distributions of SiO2 MHSs with different void ratios. SiO2 MHSs with varying void ratios and pore distributions have the broadest controlling release time ranges (30-430 h). The precursor hydrolysis method and NH4Cl precipitation-pyrolysis strategy offer adequate stimulus to push forward SiO2 MHSs from laboratory-scale to industry-scale applications.
Collapse
Affiliation(s)
- Yuqi Geng
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Guo
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Yue
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoqiao Xiang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshan Zhu
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
12
|
Wu H, Shi C, Li Q, Wang L, Wang R, Chen F, Li R, Guo X, Chen Y, She J. Oral Administration of Bioactive Nanoparticulates for Inflammatory Bowel Disease Therapy by Mitigating Oxidative Stress and Restoring Intestinal Microbiota Homeostasis. Mol Pharm 2024. [PMID: 39462848 DOI: 10.1021/acs.molpharmaceut.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The management of inflammatory bowel disease (IBD) continues to pose significant challenges due to the absence of curative therapies and a high rate of recurrence. Therefore, it is imperative to explore novel approaches to enhance the efficacy of IBD therapy. Herein, a bioactive nanoparticulate s is tailored designed to achieve a "Pull-Push" approach for efficient and safe IBD treatment by integrating reactive oxygen species (ROS) scavenging (Pull) with anti-inflammatory agent delivery (Push) in the inflammatory microenvironment. The multifunctional nanomedicine, designated MON-PAMAM@SASP, is developed through the encapsulation of sulfasalazine (SASP), a widely utilized clinical drug for the treatment of IBD, within cationic diselenide-bridged mesoporous organosilica nanoparticles (MONs) that possess significant antioxidant properties. Herein, poly(amidoamine) (PAMAM) endows the original MONs with positive charge characteristics. The MON-PAMAM@SASP not only displays the remarkable capability of neutralizing ROS to ameliorates intestinal damage, but also achieves controllable release of SASP to mitigate intestinal inflammation. Consequently, this nanomedicine effectively mitigates IBD by colitis in mouse models, and our current research has not identified any significant drug toxicity. Beyond regulating inflammatory microenvironment in intestine, treatment with MON-PAMAM@SASP results in increased richness and restores intestinal microbiota homeostasis, thereby mitigating IBD to a certain extent. Together, our work provides a highly versatile "Pull-Push" approach for IBD management and encourages the development of similar nanomedicine to treating multiple inflammatory diseases of gastrointestinal tract.
Collapse
Affiliation(s)
- Hong Wu
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Third Department of General Surgery, Xi'an Daxing Hospital Affiliated to Yan'an University, Xi'an 710016, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lizhao Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruochen Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ruizhe Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Guo
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Junjun She
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
13
|
Trayford C, van Rijt S. In situ modified mesoporous silica nanoparticles: synthesis, properties and theranostic applications. Biomater Sci 2024; 12:5450-5467. [PMID: 39371000 PMCID: PMC11457002 DOI: 10.1039/d4bm00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. In situ MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, in situ modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how in situ modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of in situ modified MSNs.
Collapse
Affiliation(s)
- Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
14
|
Liu Y, Wu Y, Li Z, Wan D, Pan J. Targeted Drug Delivery Strategies for the Treatment of Hepatocellular Carcinoma. Molecules 2024; 29:4405. [PMID: 39339402 PMCID: PMC11434448 DOI: 10.3390/molecules29184405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignant tumors, exhibiting a high incidence rate that presents a substantial threat to human health. The use of sorafenib and lenvatinib, commonly employed as single-agent targeted inhibitors, complicates the treatment process due to the absence of definitive targeting. Nevertheless, the advent of nanotechnology has injected new optimism into the domain of liver cancer therapy. Nanocarriers equipped with active targeting or passive targeting mechanisms have demonstrated the capability to deliver drugs to tumor cells with high efficiency. This approach not only facilitates precise delivery to the affected site but also enables targeted drug release, thereby enhancing therapeutic efficacy. As medical technology progresses, there is an increasing call for innovative treatment modalities, including novel chemotherapeutic agents, gene therapy, phototherapy, immunotherapy, and combinatorial treatments for HCC. These emerging therapies are anticipated to yield improved clinical outcomes for patients, while minimizing systemic toxicity and adverse effects. Consequently, the application of nanotechnology is poised to significantly improve HCC treatment. This review focused on targeted strategies for HCC and the application of nanotechnology in this area.
Collapse
Affiliation(s)
- Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Zijian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| |
Collapse
|
15
|
Nag S, Kar S, Mishra S, Stany B, Seelan A, Mohanto S, Haryini S S, Kamaraj C, Subramaniyan V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs) - A state-of-the-art comprehensive update. Int J Pharm 2024; 662:124535. [PMID: 39094922 DOI: 10.1016/j.ijpharm.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Shinjini Kar
- Department of Life Science and Biotechnology, Jadavpur University (JU), 188 Raja S.C. Mallick Road, Kolkata 700032, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shatakshi Mishra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - B Stany
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anmol Seelan
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies (NMIMS), Pherozeshah Mehta Rd., Mumbai 400056, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sree Haryini S
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India; Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
16
|
Huang J, Hong X, Chen S, He Y, Xie L, Gao F, Zhu C, Jin X, Yan H, Ye Y, Shao M, Du X, Feng G. Biomimetic Metal-Organic Framework Gated Nanoplatform for Sonodynamic Therapy against Extensively Drug Resistant Bacterial Lung Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402473. [PMID: 38962911 PMCID: PMC11434100 DOI: 10.1002/advs.202402473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Novel antimicrobial strategies are urgently needed to treat extensively drug-resistant (XDR) bacterial infections due to the high mortality rate and lack of effective therapeutic agents. Herein, nanoengineered human umbilical cord mesenchymal stem cells (hUC-MSCs), named PMZMU, are designed as a sonosensitizer for synergistic sonodynamic-nano-antimicrobial therapy against gram-negative XDR bacteria. PMZMU is composed of a bacterial targeting peptide (UBI29-41) modified hUC-MSCs membrane (MSCm), a sonosensitizer meso-tetra(4-car-boxyphenyl) porphine doped mesoporous organo-silica nanoparticle and an acidity-responsive metal-organic framework ZIF-8. This innovative formulation enables efficient loading of polymyxin B, reduces off-target drug release, increases circulation and targeting efficacy, and generates reactive oxygen species upon ultrasound irradiation. PMZMU exhibits remarkable in vitro inhibitory activity against four XDR bacteria: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa (PA), and Escherichia coli. Taking advantage of the bacterial targeting ability of UBI29-41 and the inflammatory chemotaxis of hUC-MSC, PMZMU can be precisely delivered to lung infection sites thereby augmenting polymyxin B concentration. PMZMU-mediated sonodynamic therapy significantly reduces bacterial burden, relieves inflammatory damage by promoting the polarization of macrophages toward M2 phenotype, and improves survival rates without introducing adverse events. Overall, this study offers promising strategies for treating deep-tissue XDR bacterial infections, and guides the design and optimization of biomimetic nanomedicine.
Collapse
Affiliation(s)
- Jianling Huang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiuwen Hong
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Sixi Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yucong He
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Lixu Xie
- Department of Pulmonary and Critical Care Medicine, Qi Lu Hospital of Shandong University, Wen hua xi Road 107#, Jinan, 250012, China
| | - Fenglin Gao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Chenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiao Jin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Haihao Yan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yongxia Ye
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Mingyue Shao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xingran Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| |
Collapse
|
17
|
Duan W, Shen Q, Ju L, Huang Z, Geng J, Wu Q, Yu C, Wei J. Homologous Tumor Cell-Derived Biomimetic Nano-Trojan Horse Integrating Chemotherapy with Genetherapy for Boosting Triple-Negative Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45523-45536. [PMID: 39141925 DOI: 10.1021/acsami.4c08842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that carries the worst prognosis and lacks specific therapeutic targets. To achieve accurate "cargos" delivery at the TNBC site, we herein constructed a novel biomimetic nano-Trojan horse integrating chemotherapy with gene therapy for boosting TNBC treatment. Briefly, we initially introduce the diselenide-bond-containing organosilica moieties into the framework of mesoporous silica nanoparticles (MONs), thereby conferring biodegradability to intratumoral redox conditions in the obtained MONSe. Subsequently, doxorubicin (Dox) and therapeutic miR-34a are loaded into MONSe, thus achieving the combination of chemotherapy and gene-therapy. After homologous tumor cell membrane coating, the ultimate homologous tumor cell-derived biomimetic nano-Trojan horse (namely, MONSe@Dox@miR-34a@CM) can selectively enter the tumor cells in a stealth-like fashion. Notably, such a nanoplatform not only synergistically eradicated the tumor but also inhibited the proliferation of breast cancer stem-like cells (BCSCs) in vitro and in vivo. With the integration of homologous tumor cell membrane-facilitated intratumoral accumulation, excellent biodegradability, and synergistic gene-chemotherapy, our biomimetic nanocarriers hold tremendous promise for the cure of TNBC in the future.
Collapse
Affiliation(s)
- Wenjie Duan
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Linjie Ju
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| |
Collapse
|
18
|
Niebles Navas AF, Araujo-Rodríguez DG, Valencia-Llano CH, Insuasty D, Delgado-Ospina J, Navia-Porras DP, Zapata PA, Albis A, Grande-Tovar CD. Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration. Molecules 2024; 29:3850. [PMID: 39202929 PMCID: PMC11356782 DOI: 10.3390/molecules29163850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 μm) and large pores (between 100 and 160 μm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Collapse
Affiliation(s)
- Andrés Felipe Niebles Navas
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Daniela G Araujo-Rodríguez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos-Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 Número 6-65, Cali 760001, Colombia
| | - Diana Paola Navia-Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 Número 6-65, Cali 760001, Colombia
| | - Paula A Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Alberto Albis
- Grupo de Investigación en Bioprocesos, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
19
|
Hu Y, Liu P. Design of pH/Redox Co-Triggered Degradable Diselenide-Containing Polyprodrug via a Facile One-Pot Two-Step Approach for Tumor-Specific Chemotherapy. Molecules 2024; 29:3837. [PMID: 39202916 PMCID: PMC11357291 DOI: 10.3390/molecules29163837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
The diselenide bond has attracted intense interest for drug delivery systems (DDSs) for tumor chemotherapy, owing to it possessing higher redox sensitivity than the disulfide one. Various redox-responsive diselenide-containing carriers have been developed for chemotherapeutics delivery. However, the premature drug leakage from these DDSs was significant enough to cause toxic side effects on normal cells. Here, a pH/redox co-triggered degradable polyprodrug was designed as a drug self-delivery system (DSDS) by incorporating drug molecules as structural units in the polymer main chains, using a facile one-pot two-step approach. The proposed PDOX could only degrade and release drugs by breaking both the neighboring acid-labile acylhydrazone and the redox-cleavable diselenide conjugations in the drug's structural units, triggered by the higher acidity and glutathione (GSH) or reactive oxygen species (ROS) levels in the tumor cells. Therefore, a slow solubility-controlled drug release was achieved for tumor-specific chemotherapy, indicating promising potential as a safe and efficient long-acting DSDS for future tumor treatment.
Collapse
Affiliation(s)
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
20
|
Yang C, Chen Y, Liu J, Zhang W, He Y, Chen F, Xie X, Tang J, Guan S, Shao D, Wang Z, Wang L. Leveraging Senescent Cancer Cell Membrane to Potentiate Cancer Immunotherapy Through Biomimetic Nanovaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400630. [PMID: 38867377 PMCID: PMC11321648 DOI: 10.1002/advs.202400630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Senescent cancer cells are endowed with high immunogenic potential that has been leveraged to elicit antitumor immunity and potentially complement anticancer therapies. However, the efficacy of live senescent cancer cell-based vaccination is limited by interference from immunosuppressive senescence-associated secretory phenotype and pro-tumorigenic capacity of senescent cells. Here, a senescent cancer cell-based nanovaccine with strong immunogenicity and favorable potential for immunotherapy is reported. The biomimetic nanovaccine integrating a senescent cancer cell membrane-coated nanoadjuvant outperforms living senescent cancer cells in enhancing dendritic cells (DCs) internalization, improving lymph node targeting, and enhancing immune responses. In contrast to nanovaccines generated from immunogenic cell death-induced tumor cells, senescent nanovaccines facilitate DC maturation, eliciting superior antitumor protection and improving therapeutic outcomes in melanoma-challenged mice with fewer side effects when combined with αPD-1. The study suggests a versatile biomanufacturing approach to maximize immunogenic potential and minimize adverse effects of senescent cancer cell-based vaccination and advances the design of biomimetic nanovaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Yang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Yinglu Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jie Liu
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Wensheng Zhang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| | - Yan He
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jie Tang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | - Shan Guan
- National Engineering Research Center of Immunological ProductsThird Military Medical UniversityChongqing400038China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Zheng Wang
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and NanoBionicsChinese Academy of SciencesSuzhou215123China
| | - Liang Wang
- Department of OrthopedicsGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510630China
| |
Collapse
|
21
|
Godakhindi V, Tarannum M, Dam SK, Vivero-Escoto JL. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv Healthc Mater 2024; 13:e2400323. [PMID: 38653190 PMCID: PMC11305940 DOI: 10.1002/adhm.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mubin Tarannum
- Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sudip Kumar Dam
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
22
|
Wang Y, Qian D, Wang X, Zhang X, Li Z, Meng X, Yu L, Yan X, He Z. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. ACS NANO 2024; 18:19283-19302. [PMID: 38990194 DOI: 10.1021/acsnano.4c05369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (∼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xue Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zerui Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xinlei Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
23
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
24
|
Shen Q, Cao M, Yu C, Tang J, Song L, Ding Y, Ju L, Wei JF, Li L, Huang W. Biodegradable Mesoporous Organosilica-Based Nanostabilizer Targeting Mast Cells for Long-Term Treatment of Allergic Diseases. ACS NANO 2024; 18:16934-16946. [PMID: 38907988 DOI: 10.1021/acsnano.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Allergic diseases are immune system dysfunctions mediated by mast cell (MC) activation stimulated by specific allergens. However, current small molecular MC stabilizers for allergic disease prevention often require multiple doses over a long period of time and are associated with serious side effects. Herein, we develop a diselenide-bridged mesoporous silica nanostabilizer, proving that it could specifically target sensitized MCs via the recognition of IgE aptamer and IgE. Meantime, the IgE aptamer can also mitigate allergic reactions by preventing re-exposure of allergens from the surface of sensitized MCs. Furthermore, the diselenide-bridged scaffold can be reduced by the intracellular excessive ROS, subsequently achieving redox homeostasis via ROS depletion. Finally, the precise release of small molecular MC stabilizers along with the biodegradation of nanocarrier can stabilize the membranes of MCs. In vivo assays in passive cutaneous anaphylactic (PCA) and allergic rhinitis (AR) mice indicated that our current strategy further endowed it with a high efficacy, long-term therapeutic time window, as well as negligible inflammatory side effects for allergic diseases, offering a promising therapeutic strategy for the clinical generalization of allergic diseases.
Collapse
Affiliation(s)
- Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Mengda Cao
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210044, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jian Tang
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Lebin Song
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yanan Ding
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Linjie Ju
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ji-Fu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- The Institute of Flexible Electronics, Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- The Institute of Flexible Electronics, Xiamen University, Xiamen 361005, China
| |
Collapse
|
25
|
Alamgir A, Ghosal S, DeLisa MP, Alabi CA. Bioreversible Anionic Cloaking Enables Intracellular Protein Delivery with Ionizable Lipid Nanoparticles. ACS CENTRAL SCIENCE 2024; 10:1179-1190. [PMID: 38947210 PMCID: PMC11212127 DOI: 10.1021/acscentsci.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 07/02/2024]
Abstract
Protein-based therapeutics comprise a rapidly growing subset of pharmaceuticals, but enabling their delivery into cells for intracellular applications has been a longstanding challenge. To overcome the delivery barrier, we explored a reversible, bioconjugation-based approach to modify the surface charge of protein cargos with an anionic "cloak" to facilitate electrostatic complexation and delivery with lipid nanoparticle (LNP) formulations. We demonstrate that the conjugation of lysine-reactive sulfonated compounds can allow for the delivery of various protein cargos using FDA-approved LNP formulations of the ionizable cationic lipid DLin-MC3-DMA (MC3). We apply this strategy to functionally deliver RNase A for cancer cell killing as well as a full-length antibody to inhibit oncogenic β-catenin signaling. Further, we show that LNPs encapsulating cloaked fluorescent proteins distribute to major organs in mice following systemic administration. Overall, our results point toward a generalizable platform that can be employed for intracellular delivery of a wide range of protein cargos.
Collapse
Affiliation(s)
- Azmain Alamgir
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Souvik Ghosal
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Zhang Y, Lin X, Chen X, Fang W, Yu K, Gu W, Wei Y, Zheng H, Piao J, Li F. Strategies to Regulate the Degradation and Clearance of Mesoporous Silica Nanoparticles: A Review. Int J Nanomedicine 2024; 19:5859-5878. [PMID: 38887691 PMCID: PMC11182361 DOI: 10.2147/ijn.s451919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted extensive attention as drug delivery systems because of their unique meso-structural features (high specific surface area, large pore volume, and tunable pore structure), easily modified surface, high drug-loading capacity, and sustained-release profiles. However, the enduring and non-specific enrichment of MSNs in healthy tissues may lead to toxicity due to their slow degradability and hinder their clinical application. The emergence of degradable MSNs provided a solution to this problem. The understanding of strategies to regulate degradation and clearance of these MSNs for promoting clinical trials and expanding their biological applications is essential. Here, a diverse variety of degradable MSNs regarding considerations of physiochemical properties and doping strategies of degradation, the biodistribution of MSNs in vivo, internal clearance mechanism, and adjusting physical parameters of clearance are highlighted. Finally, an overview of these degradable and clearable MSNs strategies for biosafety is provided along with an outlook of the encountered challenges.
Collapse
Affiliation(s)
- Yuelin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xue Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xinxin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Weixiang Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Kailing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wenting Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Jigang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
27
|
Liu Q, Wang L, Su Y, Dong W, Wang H, Liu Y, Liu H, Liu L, Wang Y. Ultrahigh Enzyme Loading Metal-Organic Frameworks for Deep Tissue Pancreatic Cancer Photoimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305131. [PMID: 37875640 DOI: 10.1002/smll.202305131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Indexed: 10/26/2023]
Abstract
Protein drugs hold promise in treating multiple complex diseases, including cancer. The priority of protein drug application is precise delivery of substantial bioactive protein into tumor site. Metal-organic-framework (MOF) is widely considered as a promising carrier to encapsulate protein drug owing to the noncovalent interaction between carrier and protein. However, limited loading efficiency and potential toxicity of metal ion in MOF restrict its application in clinical research. Herein, a tumor targeted collagenase-encapsulating MOF via protein-metal ion-organic ligand coordination (PMOCol ) for refining deep tissue pancreatic cancer photoimmunotherapy is developed. By an expedient method in which the ratio of metal ion, histidine residues of protein and ligand is precisely controlled, PMOCol is constructed with ultrahigh encapsulation efficiency (80.3 wt%) and can release collagenase with high enzymatic activity for tumor extracellular matrix (ECM) regulation after reaching tumor microenvironment (TME). Moreover, PMOcol exhibits intensively poorer toxicity than the zeolitic imidazolate framework-8 biomineralized protein. After treatment, the pancreatic tumor with abundant ECM shows enhanced immunocyte infiltration owing to extracellular matrix degradation that improves suppressive TME. By integrating hyperthermia agent with strong near-infrared absorption (1064 nm), PMOCol can induce acute immunogenicity to host immunity activation and systemic immune memory production to prevent tumor development and recurrence.
Collapse
Affiliation(s)
- Qian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, P. R. China
| | - Li Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yitan Su
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Wang Dong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huiru Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, P. R. China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
28
|
Xu J, Zhang W, Chen H, Ding Q, Xie S, Zhang L. Controllable synthesis of flower-like hierarchical porous TiO 2 at room temperature and its affinity application. J Mater Chem B 2024; 12:2114-2122. [PMID: 38294239 DOI: 10.1039/d3tb02591h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Flower-like particles have attracted much attention due to their efficient surface accessible sites and unique hierarchical porous structure. However, their synthesis is usually challenging and requires complex procedures. Herein, we present a simple method for rapid preparation of flower-like hierarchical porous TiO2 (FHP-TiO2) at room temperature for the first time. This method can accurately control the size of FHP-TiO2 from 150 nm to 400 nm by combining co-assembly and Stober reaction. The formation mechanism and influencing factors of FHP-TiO2 were systematically investigated, and its excellent metal oxide affinity was confirmed by theoretical calculations. Due to its hierarchical porous structure, large surface area and high specificity performance, FHP-TiO2 served as an appealing restricted-access adsorbent for specific and efficient enrichment of molecules with phosphate groups in a complex sample matrix, thereby realizing the quantitative analysis of these important biomolecules by coupling with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Moreover, compared with other morphologies (rough surface, and hollow dendritic and mesoporous structure) of TiO2 and flower-like SiO2, FHP-TiO2 showed the best affinity binding ability. This research not only presents a novel approach for tunable room-temperature synthesis of FHP-TiO2 with different sizes, but also expands the application of FHP-TiO2 as an appealing sample-enricher for food safety monitoring and early disease diagnosis.
Collapse
Affiliation(s)
- Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Shiye Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
29
|
Shi Y, Chang L, Pan C, Zhang H, Yang Y, Wu A, Zeng L. Biodegradable hollow mesoporous bimetallic nanoreactors to boost chemodynamic therapy. J Colloid Interface Sci 2024; 656:93-103. [PMID: 37984174 DOI: 10.1016/j.jcis.2023.11.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
As an endogenous catalytic treatment, chemodynamic therapy (CDT) was attracting considerable attention, but the weak catalytic efficiency of Fenton agents and the non-degradation of nanocarriers severely limited its development. In this work, a biodegradable bimetallic nanoreactor was developed for boosting CDT, in which Fe-doped hollow mesoporous manganese dioxide (HMnO2) was selected as nanocarrier, and the Fe/HMnO2@DOX-GOD@HA nanoprobe was constructed by loading doxorubicin (DOX) and modifying glucose oxidase (GOD) and hyaluronic acid (HA). The glutathione (GSH) responsive degradation of HMnO2 promoted the release of DOX, by which the release rate significantly increased to 96.6%. Moreover, by the GSH depletion, the reduction of Mn2+/Fe2+ achieved strong bimetallic Fenton efficiency, and the hydroxyl radicals (·OH) generation was further enhanced using the self-supplying H2O2 of GOD. Through the active targeting recognition of HA, the bimetallic nanoreactor significantly enriched the tumor accumulation, by which the enhanced antitumor efficacy was realized. Thus, this work developed biodegradable bimetallic nanoreactor by consuming GSH and self-supplying H2O2, and provided a new paradigm for enhancing CDT.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Linna Chang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Chunshu Pan
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315201, PR China
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Yiqian Yang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
30
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
31
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
32
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
33
|
Barguilla I, Candela-Noguera V, Oliver P, Annangi B, Díez P, Aznar E, Martínez-Máñez R, Marcos R, Hernández A, Marcos MD. Toxicological Profiling and Long-Term Effects of Bare, PEGylated- and Galacto-Oligosaccharide-Functionalized Mesoporous Silica Nanoparticles. Int J Mol Sci 2023; 24:16158. [PMID: 38003350 PMCID: PMC10671840 DOI: 10.3390/ijms242216158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell's enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone.
Collapse
Affiliation(s)
- Irene Barguilla
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Vicente Candela-Noguera
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Patrick Oliver
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Paula Díez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
34
|
Liu M, Yu H, Zhao T, Li X. Emerging enzyme-based nanocomposites for catalytic biomedicine. Dalton Trans 2023; 52:15203-15215. [PMID: 37490002 DOI: 10.1039/d3dt01381b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
With the promising advances in nanomedicine, numerous strategies have emerged for the diagnosis and treatment of diseases. Among them, enzyme-based multifunctional nanocomposites have attracted a great deal of attention in the field of catalytic biomedicine. These nanocomposites with high catalytic activity are capable of converting low/non-toxic substances into therapeutic ones, thus realizing highly efficient, site-specific therapy with minimal side effects. Enzyme-based nanocomposites for catalytic biomedicine are mainly divided into three types: (i) natural-enzyme based nanocomposites; (ii) artificial-nanozyme based nanocomposites; and (iii) nanocomposites of natural-enzymes and nanozymes. In this review, we discuss key aspects of enzyme-based catalytic biomedicine, including the construction of enzyme-based nanocomposites, their unique properties and applications in catalytic biomedicine. We also highlight the main challenges faced in this field, and provide relevant guidelines for the rational design and extensive application of enzyme-based nanocomposites from our point of view.
Collapse
Affiliation(s)
- Minchao Liu
- Department of Chemistry, Shanghai Stomatological Hospital and School of Stomatology, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Shanghai Stomatological Hospital and School of Stomatology, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Shanghai Stomatological Hospital and School of Stomatology, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital and School of Stomatology, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
35
|
Song Y, You Q, Chen X. Transition Metal-Based Therapies for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212102. [PMID: 36863722 DOI: 10.1002/adma.202212102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory disease (ID) is a general term that covers all diseases in which chronic inflammation performs as the major manifestation of pathogenesis. Traditional therapies based on the anti-inflammatory and immunosuppressive drugs are palliative with the short-term remission. The emergence of nanodrugs has been reported to solve the potential causes and prevent recurrences, thus holding great potential for the treatment of IDs. Among various nanomaterial systems, transition metal-based smart nanosystems (TMSNs) with unique electronic structures possess therapeutic advantages owing to their large surface area to volume ratio, high photothermal conversion efficiency, X-ray absorption capacity, and multiple catalytic enzyme activities. In this review, the rationale, design principle, and therapeutic mechanisms of TMSNs for treatments of various IDs are summarized. Specifically, TMSNs can not only be designed to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, but also can be engineered to block the mechanism of initiating inflammatory responses. In addition, TMSNs can be further applied as nanocarriers to deliver anti-inflammatory drugs. Finally, the opportunities and challenges of TMSNs are discussed, and the future directions of TMSN-based ID treatment for clinical applications are emphasized.
Collapse
Affiliation(s)
- Yilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing You
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
36
|
Ma H, Xing F, Zhou Y, Yu P, Luo R, Xu J, Xiang Z, Rommens PM, Duan X, Ritz U. Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. J Mater Chem B 2023; 11:7873-7912. [PMID: 37551112 DOI: 10.1039/d3tb01008b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.
Collapse
Affiliation(s)
- Hong Ma
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Ludwigstraße 23, 35392 Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
37
|
Zhang F, Jia Y, Chen F, Zhao Y, Li L, Chang Z. Tumor-targeted bioactive nanoprobes visualizing of hydrogen peroxide for forecasting chemotherapy-exacerbated malignant prognosis. Front Bioeng Biotechnol 2023; 11:1226680. [PMID: 37635993 PMCID: PMC10450909 DOI: 10.3389/fbioe.2023.1226680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: Fluorescent visualization of hydrogen peroxide in the tumor microenvironment (TME) is conducive to predicting malignant prognosis after chemotherapy. Two photon microscopy has been employed for in vivo hydrogen peroxide detection owing to its advantages of deep penetration and low phototoxicity. Methods: In this study, a two-photon fluorescent probe (TPFP) was protected by mesoporous silica nanoparticles (MSNs) and masked by cloaking the cancer cell membranes (CM), forming a tumor-targeted bioactive nanoprobe, termed MSN@TPFP@CM. Results: This multifunctional nanoprobe allowed for the effective and selective detection of excessive hydrogen peroxide production in chemotherapeutic Etoposide (VP-16)-challenged tumor cells using two-photon microscopy. After specific accumulation in tumors, VP-16-MSN@TPFP@CM monitored tumor-specific hydrogen peroxide levels and revealed a positive correlation between oxidative stress in the TME and chemotherapy-exacerbated malignant prognosis. Discussion: Given the recent translation of fluorescent imaging into early clinical trials and the high biocompatibility of bioactive nanoprobes, our approach may pave the way for specific imaging of oxidative stress in solid tumors after treatment and provide a promising technology for malignant prognosis predictions.
Collapse
Affiliation(s)
- Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Yong Jia
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Yawei Zhao
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Li Li
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| |
Collapse
|
38
|
Gao J, Qin H, Wang F, Liu L, Tian H, Wang H, Wang S, Ou J, Ye Y, Peng F, Tu Y. Hyperthermia-triggered biomimetic bubble nanomachines. Nat Commun 2023; 14:4867. [PMID: 37567901 PMCID: PMC10421929 DOI: 10.1038/s41467-023-40474-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoparticle-based drug delivery systems have gained much attention in the treatment of various malignant tumors during the past decades. However, limited tumor penetration of nanodrugs remains a significant hurdle for effective tumor therapy due to the existing biological barriers of tumoral microenvironment. Inspired by bubble machines, here we report the successful fabrication of biomimetic nanodevices capable of in-situ secreting cell-membrane-derived nanovesicles with smaller sizes under near infrared (NIR) laser irradiation for synergistic photothermal/photodynamic therapy. Porous Au nanocages (AuNC) are loaded with phase transitable perfluorohexane (PFO) and hemoglobin (Hb), followed by oxygen pre-saturation and indocyanine green (ICG) anchored 4T1 tumor cell membrane camouflage. Upon slight laser treatment, the loaded PFO undergoes phase transition due to surface plasmon resonance effect produced by AuNC framework, thus inducing the budding of outer cell membrane coating into small-scale nanovesicles based on the pore size of AuNC. Therefore, the hyperthermia-triggered generation of nanovesicles with smaller size, sufficient oxygen supply and anchored ICG results in enhanced tumor penetration for further self-sufficient oxygen-augmented photodynamic therapy and photothermal therapy. The as-developed biomimetic bubble nanomachines with temperature responsiveness show great promise as a potential nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hong Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323020, China
| | - Juanfeng Ou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
39
|
Wei W, Zhang Y, Yang F, Zhou L, Zhang Y, Wang Y, Yang S, Li J, Dong H. Orthometric multicolor encoded hybridization chain reaction amplifiers for multiplexed microRNA profiling in living cells. Chem Sci 2023; 14:5503-5509. [PMID: 37234881 PMCID: PMC10208064 DOI: 10.1039/d3sc00563a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Multiplexed microRNA (miRNA) profiling of more than four types in living cells is challenging due to fluorescent spectral overlap, representing a significant limitation in studying the complex interactions related to the occurrence and development of diseases. Herein, we report a multiplexed fluorescent imaging strategy based on an orthometric multicolor encoded hybridization chain reaction amplifier named multi-HCR. The targeting miRNA can trigger this multi-HCR strategy due to the specific sequence recognition, and then its self-assembly to amplify the programmability signals. We take the four-colored chain amplifiers, showing that the multi-HCR can form 15 combinations simultaneously. In a living process of hypoxia-induced apoptosis and autophagy under complicated mitochondria and endoplasmic reticulum stress, the multi-HCR demonstrates excellent performance in detecting eight different miRNA changes. The multi-HCR provides a robust strategy for simultaneously profiling multiplexed miRNA biomarkers in studying complicated cellular processes.
Collapse
Affiliation(s)
- Wei Wei
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University 518060 Guangdong China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
- Beijing Yaogen Biotechnology Co. Ltd 26 Yongwangxi Road 102609 Beijing China
| | - Yiyi Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Yufan Zhang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University 518060 Guangdong China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Yeyu Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University 518060 Guangdong China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
- Beijing Yaogen Biotechnology Co. Ltd 26 Yongwangxi Road 102609 Beijing China
| | - Shuangshuang Yang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University 518060 Guangdong China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Jinze Li
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University 518060 Guangdong China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University 518060 Guangdong China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| |
Collapse
|
40
|
Wang W, Zhong F, Wang D, Zhao Y, Peng D, Li S, Ning Q, Tang S, Yu CY, Wei H. Dual gatekeepers-modified mesoporous organic silica nanoparticles for synergistic photothermal-chemotherapy of breast cancer. J Colloid Interface Sci 2023; 646:118-128. [PMID: 37187045 DOI: 10.1016/j.jcis.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
HYPOTHESIS Construction of dual gatekeepers-functionalized mesoporous organic silica nanoparticles (MONs) with both physical and chemical mechanisms for modulated drug delivery properties provides one solution to the extracellular stability vs. intracellular high therapeutic efficiency of MONs that hold great potential for clinical translations. EXPERIMENTS We reported herein facile construction of diselenium-bridged MONs decorated with dual gatekeepers, i.e., azobenzene (Azo)/polydopamine (PDA) for both physical and chemical modulated drug delivery properties. Specifically, Azo can act as a physical barrier to block DOX in the mesoporous structure of MONs for extracellular safe encapsulation. The PDA outer corona serves not only as a chemical barrier with acidic pH-modulated permeability for double insurance of minimized DOX leakage in the extracellular blood circulation but also for inducing a PTT effect for synergistic PTT and chemotherapy of breast cancer. FINDINGS An optimized formulation, DOX@(MONs-Azo3)@PDA resulted in approximately 1.5 and 2.4 fold lower IC50 values than DOX@(MONs-Azo3) and (MONs-Azo3)@PDA controls in MCF-7 cells, respectively, and further mediated complete tumor eradication in 4T1 tumor-bearing BALB/c mice with insignificant systematic toxicity due to the synergistic PTT and chemotherapy with enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Wei Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Fengmin Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dongdong Peng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Shuang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System (2018TP1044), School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410000, China
| | - Shengsong Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System (2018TP1044), School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410000, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
41
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
42
|
Li W, Jiang Y, Lu J. Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy. Int J Pharm 2023; 634:122655. [PMID: 36720448 PMCID: PMC9975075 DOI: 10.1016/j.ijpharm.2023.122655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tumor immunotherapy has revolutionized the field of oncology treatments in recent years. As one of the promising strategies of cancer immunotherapy, tumor immunogenic cell death (ICD) has shown significant potential for tumor therapy. Nanoparticles are widely used for drug delivery due to their versatile characteristics, such as stability, slow blood elimination, and tumor-targeting ability. To increase the specificity of ICD inducers and improve the efficiency of ICD induction, functionally specific nanoparticles, such as liposomes, nanostructured lipid carriers, micelles, nanodiscs, biomembrane-coated nanoparticles and inorganic nanoparticles have been widely reported as the vehicles to deliver ICD inducers in vivo. In this review, we summarized the strategies of different nanoparticles for ICD-induced cancer immunotherapy, and systematically discussed their advantages and disadvantages as well as provided feasible strategies for solving these problems. We believe that this review will offer some insights into the design of effective nanoparticulate systems for the therapeutic delivery of ICD inducers, thus, promoting the development of ICD-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson 85721, United States.
| |
Collapse
|
43
|
Jiang D, Xia X, He Z, Xue Y, Xiang X. Biodegradable organosilica-based targeted and redox-responsive delivery system of resveratrol for efficiently alleviating ulcerative colitis. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
44
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
45
|
Hu X, Li H, Li R, Qiang S, Chen M, Shi S, Dong C. A Phase-Change Mediated Intelligent Nanoplatform for Chemo/Photothermal/Photodynamic Therapy of Cancer. Adv Healthc Mater 2023; 12:e2202245. [PMID: 36373209 DOI: 10.1002/adhm.202202245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Up to now, chemotherapy is still the main strategy for cancer treatment. However, the emergence of chemo-resistance and systemic side effects often seriously affects the treatment and prognosis. Herein, an intelligent nanoplatform based on dendritic mesoporous organosilica nanoparticles (DMON) is constructed. The encapsulated phase-change material, 1-tetradecanol (TD) can serve as a "doorkeeper" and enable the responsive release of drugs based on the temperature changes. Meanwhile, polyethylene glycol (PEG) is used to improve the dispersibility and biocompatibility. Cisplatin is chosen as the model of chemotherapy drug, which is co-loaded with indocyanine green (ICG) in DMON to produce DMON-PEG-cisplatin/ICG-TD (DPCIT). Exciting, the hyperthermia and reactive oxygen species induced by ICG under the NIR-laser irradiation will initiate a phase transition of TD to release cisplatin, thus leading a combined therapy (chemo/photothermal/photodynamic therapy). The results indicated that under laser irradiation, DPCIT can kill cancer cells and inhibit tumor growth efficiently. In addition, the designed nanoplatform reveals minimal systemic toxicity in vivo, in contrast, the distinct liver damage can be observed by the direct treatment of cisplatin. Overall, this research may provide a general approach for the targeted delivery and controlled release of chemotherapy drugs to realize a cooperatively enhanced multimodal tumor therapy.
Collapse
Affiliation(s)
- Xiaochun Hu
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Hui Li
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Ruihao Li
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Sufeng Qiang
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Mengyao Chen
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Shuo Shi
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Chunyan Dong
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| |
Collapse
|
46
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
47
|
Li J, Jian X, Wang Y, Zhong Z, Fu X, Deng G, Li Z. Fabrication of poly methylacrylate acid hybrid silica core‐shell microspheres with redox responsive biodegradability for drug delivery. J Appl Polym Sci 2023. [DOI: 10.1002/app.53630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiagen Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules Chengdu Normal University Chengdu China
| | - Xiaoyi Jian
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules Chengdu Normal University Chengdu China
| | - Yuqing Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules Chengdu Normal University Chengdu China
| | - Zhanqiong Zhong
- Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaohong Fu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules Chengdu Normal University Chengdu China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules Chengdu Normal University Chengdu China
| | - Zhonghui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules Chengdu Normal University Chengdu China
| |
Collapse
|
48
|
Chen B, Wei F, Ma Z, Peng Y, Guo H, Wang Y, Guan S, Fu J, Jing C, Cheng J, Xu J, Liu S. Interfacial self‐assembly growth of mesoporous polydopamine nanofilms for formaldehyde sensing. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Bowen Chen
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science East China Normal University Shanghai People's Republic of China
| | - Facai Wei
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science East China Normal University Shanghai People's Republic of China
| | - Zhiheng Ma
- NEST Lab, Department of Chemistry, College of Science Shanghai University Shanghai People's Republic of China
| | - Yonghui Peng
- Chanhigh Holdings Limited (Ningbo) Cang Hai Industry Building Ningbo City Zhejiang Province People's Republic of China
| | - Haitao Guo
- Chanhigh Holdings Limited (Ningbo) Cang Hai Industry Building Ningbo City Zhejiang Province People's Republic of China
| | - Yuexi Wang
- Chanhigh Holdings Limited (Ningbo) Cang Hai Industry Building Ningbo City Zhejiang Province People's Republic of China
| | - Shaojian Guan
- Chanhigh Holdings Limited (Ningbo) Cang Hai Industry Building Ningbo City Zhejiang Province People's Republic of China
| | - Jianwei Fu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou People's Republic of China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science East China Normal University Shanghai People's Republic of China
| | - Jiangong Cheng
- Department State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai People's Republic of China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Science Shanghai University Shanghai People's Republic of China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science East China Normal University Shanghai People's Republic of China
| |
Collapse
|
49
|
Xu J, Xu J, Shi T, Zhang Y, Chen F, Yang C, Guo X, Liu G, Shao D, Leong KW, Nie G. Probiotic-Inspired Nanomedicine Restores Intestinal Homeostasis in Colitis by Regulating Redox Balance, Immune Responses, and the Gut Microbiome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207890. [PMID: 36341495 DOI: 10.1002/adma.202207890] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Microbiota-based therapeutics offer innovative strategies to treat inflammatory bowel diseases (IBDs). However, the poor clinical outcome so far and the limited flexibility of the bacterial approach call for improvement. Inspired by the health benefits of probiotics in alleviating symptoms of bowel diseases, bioartificial probiotics are designed to restore the intestinal microenvironment in colitis by regulating redox balance, immune responses, and the gut microbiome. The bioartificial probiotic comprises two components: an E. coli Nissle 1917-derived membrane (EM) as the surface and the biodegradable diselenide-bridged mesoporous silica nanoparticles (SeM) as the core. When orally administered, the probiotic-inspired nanomedicine (SeM@EM) adheres strongly to the mucus layer and restored intestinal redox balance and immune regulation homeostasis in a murine model of acute colitis induced by dextran sodium sulfate. In addition, the respective properties of the EM and SeM synergistically alter the gut microbiome to a favorable state by increasing the bacterial diversity and shifting the microbiome profile to an anti-inflammatory phenotype. This work suggests a safe and effective nanomedicine that can restore intestinal homeostasis for IBDs therapy.
Collapse
Affiliation(s)
- Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongfei Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yinlong Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xinjing Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol 2023; 20:33-48. [PMID: 36307534 DOI: 10.1038/s41571-022-00699-x] [Citation(s) in RCA: 335] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
Traditional cancer therapeutics, such as chemotherapies, are often limited by their non-specific nature, causing harm to non-malignant tissues. Over the past several decades, nanomedicine researchers have sought to address this challenge by developing nanoscale platforms capable of more precisely delivering drug payloads. Cell membrane-coated nanoparticles (CNPs) are an emerging class of nanocarriers that have demonstrated considerable promise for biomedical applications. Consisting of a synthetic nanoparticulate core camouflaged by a layer of naturally derived cell membranes, CNPs are adept at operating within complex biological environments; depending on the type of cell membrane utilized, the resulting biomimetic nanoformulation is conferred with several properties typically associated with the source cell, including improved biocompatibility, immune evasion and tumour targeting. In comparison with traditional functionalization approaches, cell membrane coating provides a streamlined method for creating multifunctional and multi-antigenic nanoparticles. In this Review, we discuss the history and development of CNPs as well as how these platforms have been used for cancer therapy. The application of CNPs for drug delivery, phototherapy and immunotherapy will be described in detail. Translational efforts are currently under way and further research to address key areas of need will ultimately be required to facilitate the successful clinical adoption of CNPs.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA. .,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|