1
|
Nguyen MCT, Nguyen HQ, Kang H, Park SJ, Lee J. Biomimetic Bouligand Meta-Assembly Enhances Modulability of Chiroptical Cotton Effects. ACS NANO 2025. [PMID: 40329517 DOI: 10.1021/acsnano.5c03919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Hierarchical bioinspired nanostructures have garnered significant attention due to their ability to mimic natural phenomena in well-defined artificial systems. Specifically, bioinspired chiral metasurfaces demonstrate strong chiroptical interactions with circularly polarized light, setting the stage for their role in next-generation optical technologies. In this study, a nature-inspired approach mimicking the structure of the Protaetia scarab beetle exoskeleton was applied to fabricate Bouligand meta-assemblies of magnetoplasmonic gold/iron oxide nanowires. By sputter coating a thin metallic platinum layer with controlled thickness, the fabricated structure exhibits amplified and tunable circular dichroism (CD) in transmission, diffuse reflectance circular dichroism (DRCD), and magnetic circular dichroism (MCD) modes within the ultraviolet and visible wavelength range. A strong enhancement of bisignate Cotton effects in the transmission CD spectrum was observed by adding a 30-nm-thick platinum layer, while a thinner metallic coating layer of 10 nm provided the strongest enhancement effect in DRCD mode. Additionally, the MCD study and computational optical simulations revealed the unique interplay of plasmonic coupling, enhanced absorption/reflection, and conformal inheritance of chirality as the origin of the enhancement effect of the metallic coating layer. The facile biomimetic fabrication technique provides multimodal control of the chiroptical Cotton effects, holding promises for applications in structural coloration, camouflage photonics, anti-counterfeiting, chiral sensing, and asymmetric catalysis.
Collapse
Affiliation(s)
- My-Chi Thi Nguyen
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyojin Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se Jeong Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Yuan XY, Guan DH, Wang XX, Li JY, Miao CL, Xu JJ. A Magnetic Field-Assisted Lithium-Oxygen Batteries with Enhanced Reaction Kinetics by Spin-Polarization Strategy. Angew Chem Int Ed Engl 2025; 64:e202421361. [PMID: 40022575 DOI: 10.1002/anie.202421361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/03/2025]
Abstract
Lithium-oxygen (Li-O2) batteries have attracted significant attention due to their ultrahigh theoretical energy density, but are obstructed by the sluggish reaction kinetics at the cathode and high overpotential. Our previous researches have proved that energy fields such as light, force, and heat are effective strategies to improve the reaction kinetics of Li-O2 batteries. Herein, we proposed a novel magnetic field-assisted Li-O2 batteries via a spin polarization strategy. By doping magnetic Mn2+ ions with spin polarization characteristics into CsPbBr3 (Mn-CsPbBr3) perovskite, a magnetic field-responsive cathode was designed and prepared. The incorporation of Mn2+ ions drives the charge redistribution and spin polarization of CsPbBr3, which remarkably improve the carrier separation efficiency and the oxygen species adsorption energy. The Increased spin-polarization of the magnetic elements by Zeeman effect in an external magnetic field results in the enhanced oxygen reduction and evolution reaction. In the magnetic field, a low overpotential of 0.40 V was obtained for Li-O2 batteries with Mn-CsPbBr3 cathodes, demonstrating an ultralow overpotential of 0.12 V and an ultrahigh energy efficiency of 96.3% with the further illumination. The introduction of magnetic fields into the Li-O2 battery system provides a new avenue for improving the reaction kinetics of rechargeable Li-O2 battery.
Collapse
Affiliation(s)
- Xin-Yuan Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Jian-You Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Cheng-Lin Miao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
3
|
Tang J, Feng S, Yang M. Anisotropy-dependent chirality transfer from cellulose nanocrystals to β-FeOOH nanowhiskers. Chem Sci 2025:d4sc07747d. [PMID: 40134654 PMCID: PMC11931430 DOI: 10.1039/d4sc07747d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Chiral iron oxides and hydroxides have garnered considerable interest owing to the unique combination of chirality and magnetism. However, improving their g-factor, which is critical for optimizing the chiral magneto-optical response, remains elusive. We demonstrated that the g-factor of β-FeOOH could be boosted by enhancing the anisotropy of nanostructures during a biomimetic mineralization process. Cellulose nanocrystals were used as both mineralization templates and chiral ligands, driving oriented attachment of β-FeOOH nanoparticles and inducing the formation of highly aligned chiral nanowhiskers. Circular dichroism spectra and time-dependent density-functional theory proved that chirality transfer was induced from cellulose nanocrystals to β-FeOOH through ligand-metal charge transfer. Interestingly, chirality transfer was significantly enhanced during the elongation of nanowhiskers. A nearly 34-fold increase in the g-factor was observed when the aspect ratio of nanowhiskers increased from 2.6 to 4.4, reaching a g-factor of 5.7 × 10-3, superior to existing dispersions of chiral iron oxides and hydroxides. Semi-empirical quantum calculations revealed that such a remarkable improvement in the g-factor could be attributed to enhanced dipolar interactions. Cellulose nanocrystals exert vicinal actions on highly anisotropic β-FeOOH with a large dipole moment, increasing structural distortions in the coordination geometry. This mechanism aligns with the static coupling principle of one-electron theory, highlighting the strong interaction potential of supramolecular templates. Furthermore, paramagnetic β-FeOOH nanowhiskers alter the magnetic anisotropy of cellulose nanocrystals, leading to a reversed response of helical photonic films to magnetic fields, promising for real-time optical modulation.
Collapse
Affiliation(s)
- Jinyu Tang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| | - Shouhua Feng
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| | - Ming Yang
- The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 Jilin China
| |
Collapse
|
4
|
Ren S, Pang S, Guan S, Sun YJ, Zhang TY, Jiang N, Guo J, Zheng H, Luo JW, Tan PH, Shen C, Zhang J. Cavity-Enhanced Circular Dichroism in a van der Waals Antiferromagnet. NANO LETTERS 2025; 25:2709-2715. [PMID: 39915009 DOI: 10.1021/acs.nanolett.4c05724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Broken symmetry plays a pivotal role in determining the macroscopic electrical, optical, magnetic, and topological properties of materials. Circular dichroism (CD) has been widely employed to probe broken symmetry in various systems, from small molecules to bulk crystals, but designing CD responses on demand remains a challenge, especially for antiferromagnetic materials. Here we develop a cavity-enhanced CD technique to sensitively probe the magnetic order and broken symmetry in the van der Waals antiferromagnet FePS3. By introducing interfacial inversion asymmetry in cavity-coupled FePS3 crystals, we demonstrate that the induced CD is strongly coupled with the zigzag antiferromagnetic order of FePS3 and can be tuned both spectrally and in magnitude by varying the cavity length (FePS3 thickness). Our findings open new avenues for using cavity-modulated CD as a sensitive diagnostic probe to detect weak broken symmetries, particularly at hidden interfaces, and in systems exhibiting hidden spin polarization or strong correlations.
Collapse
Affiliation(s)
- Shuliang Ren
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simin Pang
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Guan
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Jia Sun
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Yu Zhang
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nai Jiang
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Guo
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houzhi Zheng
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Wei Luo
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping-Heng Tan
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shen
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Lu H, Qi F, Wang H, He T, Sun B, Gao X, Comstock AH, Gull S, Zhang Y, Qiao T, Shao T, Zheng YX, Sun D, Chen Y, Zhang HL, Tang Z, Long G. Strong Magneto-Chiroptical Effects through Introducing Chiral Transition-Metal Complex Cations to Lead Halide. Angew Chem Int Ed Engl 2025; 64:e202415363. [PMID: 39630104 DOI: 10.1002/anie.202415363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/14/2024]
Abstract
The interplay between chirality with magnetism can break both the space and time inversion symmetry and have wide applications in information storage, photodetectors, multiferroics and spintronics. Herein, we report the chiral transition-metal complex cation-based lead halide, R-CDPB and S-CDPB. In contrast with the traditional chiral metal halides with organic cations, a novel strategy for chirality transfer from the transition-metal complex cation to the lead halide framework is developed. The chiral complex cations directly participate the band structure and introduce the d-d transitions and tunable magneto-chiroptical effects in both the ultraviolet and full visible range into R-CDPB and S-CDPB. Most importantly, the coupling between magnetic moment of the complex cation and chiroptical properties is confirmed by the magneto-chiral dichroism. For the band-edge transition, the unprecedented modulation of +514 % for S-CDPB and -474 % for R-CDPB was achieved at -1.3 Tesla. Our findings demonstrate a novel strategy to combine chirality with magnetic moment, and provide a versatile material platform towards magneto-chiroptical and chiro-spintronic applications.
Collapse
Affiliation(s)
- Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Fenglian Qi
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hebin Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei He
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Bing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Andrew H Comstock
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Sehrish Gull
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yunxin Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tianjiao Qiao
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tianyin Shao
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dali Sun
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
6
|
Xia S, Yin X, Chen Y, Zhang L, Yu J, Ding B, Yan J. Zeeman Effect-Boosted Spin-Polarized Band Splitting in Diluted Magnetic Photocatalysis Semiconductors for Efficient CO 2 Photoreduction. ACS NANO 2025; 19:1519-1529. [PMID: 39704446 DOI: 10.1021/acsnano.4c14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Magnetic field regulation is an effective strategy to improve the photocatalytic activity of magnetic semiconductor photocatalysts, but it is not suitable for widely used nonmagnetic photocatalytic semiconductors. Here, we report a Zeeman effect-driven spin-polarized band splitting phenomenon in diluted magnetic semiconductors that show efficient photocatalytic CO2 reduction under visible-light irradiation. A flexible Ni2+-doped BaTiO3 nanofiber film is used as the diluted magnetic semiconductor model to prove this concept. The interstitial Ni2+ dopant induces the spin-polarized bands in Ni-BaTiO3 nanofibers to split under light excitation, generating spin-excited electrons and holes. This Zeeman effect induced by the magnetic field is more obvious since it intensifies the spin-polarized band splitting and generates more spin-excited electrons and holes, suppressing the carrier recombination and extending the carrier lifetime for CO2 photoreduction. As a result, the evolution rates of CO and CH4 are as high as 86.47 and 96.06 μmol/g/h under a small magnetic field of 50 mT. The proposed mechanism of Zeeman effect-driven spin-polarized band splitting is feasible to improve the CO2 photoreduction efficiency of broadly applied diluted magnetic semiconductors.
Collapse
Affiliation(s)
- Shuhui Xia
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai 201620, China
| | - Xin Yin
- Nanotechnology Center, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, China
| | - Yuehui Chen
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai 201620, China
| | - Liang Zhang
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianhua Yan
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
7
|
Feng L, Yeh IH, Radovanovic PV. Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals. J Phys Chem Lett 2025; 16:168-174. [PMID: 39710964 DOI: 10.1021/acs.jpclett.4c02966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin-orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered Cs3Bi2X9 (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy. Our results indicate that the excitonic spectra are predominantly composed of direct and indirect band gap transitions and that the Zeeman splitting energy of the direct exciton increases from 0.50 to 0.63 meV at 7 T by substituting Br for Cl. Comparison with analogous results for Cs2AgBiCl6 nanocrystals, obtained by cation substitution, suggests an important effect of charge distribution within electronic bands on the excitonic Zeeman splitting. This work demonstrates that the magneto-optical properties of these materials can be effectively manipulated via chemical composition, suggesting promising applications in photonics, spintronics, and optoelectronics.
Collapse
Affiliation(s)
- Lin Feng
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - I-Hsuan Yeh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pavle V Radovanovic
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
8
|
Zhang Z, Wu J, Lu H. Deciphering the electronic and structural origin of chiroptical activity of chiral 2D perovskites. Chem Sci 2024; 15:20440-20447. [PMID: 39583555 PMCID: PMC11582629 DOI: 10.1039/d4sc04915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Understanding the structure-chiroptical activity relationship in chiral perovskites is of great significance as it provides a pathway to control light-matter interactions. Although many reports have shown various chiral structures with distinctive chiroptical responses, a clear structure-property relationship is still missing, partially stemming from the poor understanding of the optical activity mechanism. For instance, it remains unclear if and how the chiroptical activity is related to exciton spin splitting. Herein, we used magnetic circular dichroism to probe the exciton spin splitting in a series of chiral 2D perovskites. Our results show that the anisotropy factor of circular dichroism is indeed proportional to the exciton spin splitting energy, with larger splitting energy yielding larger anisotropy factors. Further structural analysis showed that the splitting energy is closely correlated with both the in-plane and out-of-plane distortion structural parameters of the inorganic lattice. Our work provides an important mechanistic understanding of chiroptical activity and establishes the structure-property relationship for 2D chiral perovskites.
Collapse
Affiliation(s)
- Zixuan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jin Wu
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
9
|
Fusè M, Mazzeo G, Ghidinelli S, Evidente A, Abbate S, Longhi G. Experimental and theoretical aspects of magnetic circular dichroism and magnetic circularly polarized luminescence in the UV, visible and IR ranges: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124583. [PMID: 38850611 DOI: 10.1016/j.saa.2024.124583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
A historical sketch of the MCD (magnetic circular dichroism) spectroscopy is reported in its experimental and theoretical aspects. MCPL (magnetic circularly polarized luminescence) is also considered. The main studies are presented encompassing porphyrinoid systems, aggregates and materials, as well as simple organic molecules useful for the advancement of the interpretation. The MCD of chiral systems is discussed with special attention to new studies of natural products with potential pharmaceutical valence, including Amaryllidaceae alkaloids and related isocarbostyrils. Finally, the vibrational form of MCD, called MVCD, which is recorded in the IR part of the spectrum is also discussed. A final brief note on perspectives is given.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Simone Ghidinelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70185 Bari, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy; Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy; Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| |
Collapse
|
10
|
Chen JN, Huang KX, Cheng PM, Qi MQ, Xu H, Chen J, Duan Y, Kong XJ, Zheng LS, Long LS. Strong NIR-II Magneto-Optical Activity of a Chiral Sm 15Cu 54 Cage. J Am Chem Soc 2024; 146:22913-22917. [PMID: 39110062 DOI: 10.1021/jacs.4c07346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The magneto-optical response of chiral materials holds significant potential for applications in physics, chemistry, and biology. However, exploration of the near-infrared (NIR) magneto-optical response remains limited. Herein, we report the synthesis and strong NIR-II magneto-optical activity of three pairs of chiral 3d-4f clusters of R/S-Ln15Cu54 (Ln = Sm, Gd, and Dy). Structural analysis reveals that R/S-Ln15Cu54 features a triangular prism cage with C3 symmetry. Interestingly, magnetic circular dichroism (MCD) spectra exhibit remarkable magneto-optical response in the NIR-II region, driven by the f-f transition. The maximum g-factor of R/S-Sm15Cu54 reaches 5.5 × 10-3 T-1 around 1300-1450 nm, surpassing values associated with DyIII and CuII ions. This remarkable NIR-II magneto-optical activity may be attributed to strong magnetic-dipole-allowed f-f transitions and helix chirality of the structure. This work not only presents the largest Ln-Cu clusters to date but also demonstrate the key role of magnetic-dipole-allowed transitions on magneto-optical activity.
Collapse
Affiliation(s)
- Jia-Nan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kai-Xin Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Ming Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ming-Qiang Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Han Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiaye Chen
- School of Chemical Science and Engineering, Tongji University 1239 Siping Road, Shanghai, 200092, China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University 1239 Siping Road, Shanghai, 200092, China
| | - Xiang-Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
11
|
Zohaib HM, Saqlain M, Khan MA, Masood S, Gul I, Irfan M, Li H. Exploring enantioselective recognition of dTMP-Co-bpe coordination polymer for natural amino acids using molecular simulations and circular dichroism. Dalton Trans 2024; 53:13076-13086. [PMID: 39034765 DOI: 10.1039/d4dt01245c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The 1D homochiral coordination polymer (CP-1) {[Co(dTMP)(bpe)2(H2O)3]·9H2O}n was constructed by using 2'-deoxy thymidine 5'-monophosphate disodium salt (dTMP·2Na), and auxiliary ligand bpe (1,2-bis(4-pyridyl)ethene) and characterized by single-crystal XRD, PXRD, IR, UV-visible, CD and TGA analyses. Molecular simulations revealed the selective chiral behaviour of CP-1 towards phenylalanine and histidine, as indicated by their higher binding free energies compared to other amino acids. Theoretical parameters were also compared with experimental UV-visible verdicts. Notably, the D-enantiomers of phenylalanine and histidine demonstrated strong bonding abilities and optimal configurations for probing and distinguishing them from their L-counterparts. These findings led to propositions suggesting that the dissimilarities between these D and L amino acid forms and their binding orientations with CP-1 may contribute to alterations in the CD signal. CP-1 exhibited a robust inherent circular dichroism (CD) signal in aqueous solutions, modulated by the presence of specific amino acids, namely D/L phenylalanine and D/L histidine. Leveraging the measurement of CD signal intensity, a sensor capable of detecting unmodified amino acids has been developed. Unlike previously reported approaches that relied on complex chemical reactions between initially CD-silent molecules and probed amino acids, this new method offers a more straightforward means of amplifying the CD signal. Consequently, this change facilitates a more accurate differentiation between the enantiomers of these specific amino acids compared to others.
Collapse
Affiliation(s)
- Hafiz Muhammad Zohaib
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Madiha Saqlain
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Maroof Ahmad Khan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228 Haikou, P. R. China
| | - Sara Masood
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Muhammad Irfan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
12
|
Li Z, Zhang JH, Li J, Wang S, Zhang L, He CY, Lin P, Melhi S, Yang T, Yamauchi Y, Xu X. Dynamical Janus-Like Behavior Excited by Passive Cold-Heat Modulation in the Earth-Sun/Universe System: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309397. [PMID: 38644343 DOI: 10.1002/smll.202309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Indexed: 04/23/2024]
Abstract
The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.
Collapse
Affiliation(s)
- Zhengtong Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot, 010021, China
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiaoyang Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Song Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Lvfei Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Peng Lin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Tao Yang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Xingtao Xu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
13
|
Zheng H, Ghosh A, Swamynadhan MJ, Zhang Q, Wong WPD, Wu Z, Zhang R, Chen J, Cimpoesu F, Ghosh S, Campbell BJ, Wang K, Stroppa A, Mahendiran R, Loh KP. Chiral multiferroicity in two-dimensional hybrid organic-inorganic perovskites. Nat Commun 2024; 15:5556. [PMID: 38956033 PMCID: PMC11220029 DOI: 10.1038/s41467-024-49708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Chiral multiferroics offer remarkable capabilities for controlling quantum devices at multiple levels. However, these materials are rare due to the competing requirements of long-range orders and strict symmetry constraints. In this study, we present experimental evidence that the coexistence of ferroelectric, magnetic orders, and crystallographic chirality is achievable in hybrid organic-inorganic perovskites [(R/S)-β-methylphenethylamine]2CuCl4. By employing Landau symmetry mode analysis, we investigate the interplay between chirality and ferroic orders and propose a novel mechanism for chirality transfer in hybrid systems. This mechanism involves the coupling of non-chiral distortions, characterized by defining a pseudo-scalar quantity, ξ = p ⋅ r ( p represents the ferroelectric displacement vector and r denotes the ferro-rotational vector), which distinguishes between (R)- and (S)-chirality based on its sign. Moreover, the reversal of this descriptor's sign can be associated with coordinated transitions in ferroelectric distortions, Jahn-Teller antiferro-distortions, and Dzyaloshinskii-Moriya vectors, indicating the mediating role of crystallographic chirality in magnetoelectric correlations.
Collapse
Affiliation(s)
- Haining Zheng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Arup Ghosh
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - M J Swamynadhan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Qihan Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhenyue Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Rongrong Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Fanica Cimpoesu
- Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest, 060021, Romania
| | - Saurabh Ghosh
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Branton J Campbell
- Department of Physics & Astronomy, Brigham Young University, Provo, UT, 84602, USA
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering and Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, 100044, China.
| | - Alessandro Stroppa
- CNR-SPIN, c/o Dip.to di Scienze Fisiche e Chimiche - University of L'Aquila, Via Vetoio, Coppito (AQ), 67100, Italy.
| | - Ramanathan Mahendiran
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
14
|
Cao H, Yang E, Kim Y, Zhao Y, Ma W. Biomimetic Chiral Nanomaterials with Selective Catalysis Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306979. [PMID: 38561968 PMCID: PMC11187969 DOI: 10.1002/advs.202306979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/20/2024] [Indexed: 04/04/2024]
Abstract
Chiral nanomaterials with unique chiral configurations and biocompatible ligands have been booming over the past decade for their interesting chiroptical effect, unique catalytical activity, and related bioapplications. The catalytic activity and selectivity of chiral nanomaterials have emerged as important topics, that can be potentially controlled and optimized by the rational biochemical design of nanomaterials. In this review, chiral nanomaterials synthesis, composition, and catalytic performances of different biohybrid chiral nanomaterials are discussed. The construction of chiral nanomaterials with multiscale chiral geometries along with the underlying principles for enhancing chiroptical responses are highlighted. Various biochemical approaches to regulate the selectivity and catalytic activity of chiral nanomaterials for biocatalysis are also summarized. Furthermore, attention is paid to specific chiral ligands, materials compositions, structure characteristics, and so on for introducing selective catalytic activities of representative chiral nanomaterials, with emphasis on substrates including small molecules, biological macromolecule, and in-site catalysis in living systems. Promising progress has also been emphasized in chiral nanomaterials featuring structural versatility and improved chiral responses that gave rise to unprecedented chances to utilize light for biocatalytic applications. In summary, the challenges, future trends, and prospects associated with chiral nanomaterials for catalysis are comprehensively proposed.
Collapse
Affiliation(s)
- Honghui Cao
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyNo. 100 Haiquan RoadShanghai201418China
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
| | - En Yang
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
| | - Yoonseob Kim
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong SAR999077China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
| | - Wei Ma
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
15
|
Aibibula M, Song YH, Xu H, Chen MT, Kong XJ, Long LS, Zheng LS. Magneto-optical Properties of Chiral Co 2Ln and Co 3Ln 2 (Ln = Dy and Er) Clusters. Inorg Chem 2024; 63:8003-8007. [PMID: 38647013 DOI: 10.1021/acs.inorgchem.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A series of chiral heterometallic Ln-Co clusters, denoted as Co2Ln and Co3Ln2 (Ln = Dy and Er), were synthesized by reacting the chiral chelating ligand (R/S)-2-(1-hydroxyethyl)pyridine (Hmpm), CoAc2·4H2O, and Ln(NO3)3·6H2O. Co2Ln and Co3Ln2 exhibit perfect mirror images in circular dichroism within the 320-700 nm range. Notably, the Co2Er and Co3Er2 clusters display pronounced magnetic circular dichroism (MCD) responses of the hypersensitive f-f transitions 4I15/2-4G11/2 at 375 nm and 4I15/2-2H11/2 at 520 nm of ErIII ions. This study highlights the strong magneto-optical activity associated with hypersensitive f-f transitions in chiral 3d-4f magnetic clusters.
Collapse
Affiliation(s)
- Mukeremu Aibibula
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Hong Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Han Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Man-Ting Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Fujian Key Laboratory of Rare-earth Functional Materials, Fujian Shanhai Collaborative Innovation Center of Rare-earth Functional Materials, Longyan 366300, China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Sun C, Zhang X, Xie Y, Zhou Y, Gao X. True and False Chirality in Chiral Magnetic Nanoparticles. J Phys Chem Lett 2024; 15:4679-4685. [PMID: 38656159 DOI: 10.1021/acs.jpclett.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Determining the true or false chirality of a system is essential for the design of advanced chiral materials and for improving their applications. Typically, a magnetic field would cause false optical activity in the chiral material system, thus confusing the true chirality's influence. Here, we provide a simple way to uncover the true and false chirality in chiral ferrimagnetic nanoparticles (FNPs) by using the gel as a rigid frame. The remnant local magnetic field of the FNP gel can be easily adjusted by an external magnetic field or by controlling the concentration of the FNPs. Moreover, the potential application of the FNP gel is detected by induced magnetic circularly polarized luminescence. This work provides deep insight into the true and false chirality in magnetic nanosystems and offers a strategy to construct new optic elements with an adjustable local magnetic field.
Collapse
Affiliation(s)
- Chao Sun
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xueyan Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yuyu Xie
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yunlong Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
17
|
Han X, Jiang C, Hou B, Liu Y, Cui Y. Covalent Organic Frameworks with Tunable Chirality for Chiral-Induced Spin Selectivity. J Am Chem Soc 2024; 146:6733-6743. [PMID: 38418379 DOI: 10.1021/jacs.3c13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Chiral covalent organic frameworks (CCOFs) have attracted extensive interest for their potential applications in various enantioselective processes. However, the exploitation of chirality-induced spin selectivity (CISS) that enables a new technology for the injection of spin polarized current without the need for a permanent magnetic layer within CCOFs remains a largely untapped area of research. Here, we demonstrate that, for the first time, COFs can be an attractive platform to develop spin filter materials with efficient CISS. This facilitates the design and synthesis of a new family of Zn(salen)-based 2D CCOFs, namely, CCOFs-9-12, by imine condensation of chiral 1,2-diaminocyclohexane and tri- or tetra(salicylaldehyde) derivatives. CCOF-9, distinguished by its unique C2 symmetric "armchair" tetrasubstituted pyrene conformation, exhibits the most pronounced chirality among these materials and serves as a solid-state host, enabling the enantioselective adsorption of racemic drugs with an enantiomeric excess (ee) of up to 97%. After substituting diamagnetic zinc(II) ions for paramagnetic cobalt(II), the resulting CCOF-9-Co not only retains its high crystallinity, porosity, and exceptional chirality but also exhibits enhanced conductivity, a crucial factor for the effective observation of CISS. Magnetic conductive atomic force microscopy showed that CCOF-9-Co exhibited a remarkable CISS effect with up to an 88-94% spin polarization ratio. This phenomenon is further confirmed by the increased intensity in the magnetic circular dichroism (MCD) when CCOF-9-Co is under an external magnetic field. This work therefore shows the tremendous potential of CCOFs for controlling spin selectivity and will stimulate the creation of new types of crystalline polymers with strong CISS effects for spin filters.
Collapse
Affiliation(s)
- Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Turner EE, Pham TN, Smith SP, Ward KN, Rosenthal J, Rack JJ. Electron-Withdrawing meso-Substituents Turn On Magneto-Optical Activity in Porphyrins. Inorg Chem 2024; 63:3630-3636. [PMID: 38359443 DOI: 10.1021/acs.inorgchem.3c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A series of square planar metalloporphyrins (M(TPP), TPP is 5,10,15,20-tetraphenylporphyrin and M(TPFPP), TPFPP is 5,10,15,20-tetrapentafluorophenylporphyrin; M is Zn2+, Ni2+, Pd2+, or Pt2+) with distinct meso-substituents were prepared, and their magneto-optical activity (MOA) was characterized by magnetic circular dichroism (MCD) and magneto-optical rotary dispersion spectroscopy (MORD; also known as Faraday rotation spectroscopy). MOA is crucial in the development of next-generation magneto-optical devices and quantum computing. The data show that the presence of meso-pentafluorophenyl substituents results in significant increase in MOA in comparison to the homologous phenyl group. Differences in the MOA of these metalloporphyrins are rationalized using the Gouterman four-orbital model and pave the way for rational design of improved and tailorable magneto-optical materials.
Collapse
Affiliation(s)
- Emigdio E Turner
- Department of Chemistry and Chemical Biology, Laboratory for Magneto-Optic Spectroscopy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, United States
| | - Samuel Peter Smith
- Department of Chemistry and Chemical Biology, Laboratory for Magneto-Optic Spectroscopy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kaytlin N Ward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, Laboratory for Magneto-Optic Spectroscopy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
19
|
Liu X, Zhang D, Deng Y, Jiang N, Zhang E, Shen C, Chang K, Wang K. Tunable Spin Textures in a Kagome Antiferromagnetic Semimetal via Symmetry Design. ACS NANO 2024; 18:1013-1021. [PMID: 38147457 DOI: 10.1021/acsnano.3c10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Kagome antiferromagnetic semimetals such as Mn3Sn have attracted extensive attention for their potential application in antiferromagnetic spintronics. Realizing high manipulation of kagome antiferromagnetic spin states at room temperature can reveal rich emergent phenomena resulting from the quantum interactions between topology, spin, and correlation. Here, we achieved tunable spin textures of Mn3Sn through symmetry design by controlling alternate Mn3Sn and heavy-metal Pt thicknesses. The various topological spin textures were predicted with theoretical simulations, and the skyrmion-induced topological Hall effect, strong spin-dependent scattering, and vertical gradient of spin states were obtained by magnetotransport and magnetic circular dichroism (MCD) spectroscopy measurements in Mn3Sn/Pt heterostructures. Our work provides an effective strategy for the innovative design of topological antiferromagnetic spintronic devices.
Collapse
Affiliation(s)
- Xionghua Liu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongcheng Deng
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nai Jiang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enze Zhang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Chang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyou Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
20
|
Gabbani A, Taddeucci A, Bertuolo M, Pineider F, Aronica LA, Di Bari L, Pescitelli G, Zinna F. Magnetic Circular Dichroism Elucidates Molecular Interactions in Aggregated Chiral Organic Materials. Angew Chem Int Ed Engl 2024; 63:e202313315. [PMID: 37962845 DOI: 10.1002/anie.202313315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
Chiral materials formed by aggregated organic compounds play a fundamental role in chiral optoelectronics, photonics and spintronics. Nonetheless, a precise understanding of the molecular interactions involved remains an open problem. Here we introduce magnetic circular dichroism (MCD) as a new tool to elucidate molecular interactions and structural parameters of a supramolecular system. A detailed analysis of MCD together with electronic circular dichroism spectra combined to ab initio calculations unveils essential information on the geometry and energy levels of a self-assembled thin film made of a carbazole di-bithiophene chiral molecule. This approach can be extended to a generality of chiral organic materials and can help rationalizing the fundamental interactions leading to supramolecular order. This in turn could enable a better understanding of structure-property relationships, resulting in a more efficient material design.
Collapse
Affiliation(s)
- Alessio Gabbani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Department of Physics and Astronomy, University of Florence, via Sansone 1, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Current affiliation: Diamond Light Source Ltd., Fermi Avenue, Chilton, Didcot OX11 0DE, UK
| | - Marco Bertuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Pineider
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Department of Physics and Astronomy, University of Florence, via Sansone 1, 50019, Sesto Fiorentino, FI, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
21
|
Li C, Zhao J, Gao X, Hao C, Hu S, Qu A, Sun M, Kuang H, Xu C, Xu L. Chiral Iron Oxide Supraparticles Enable Enantiomer-Dependent Tumor-Targeted Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2308198. [PMID: 37721365 DOI: 10.1002/adma.202308198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Indexed: 09/19/2023]
Abstract
The chemical, physical and biological effects of chiral nanomaterials have inspired general interest and demonstrated important advantages in fundamental science. Here, chiral iron oxide supraparticles (Fe3 O4 SPs) modified by chiral penicillamine (Pen) molecules with g-factor of ≈2 × 10-3 at 415 nm are fabricated, and these SPs act as high-quality magnetic resonance imaging (MRI) contrast agents. Therein, the transverse relaxation efficiency and T2 -MRI results demonstrated chiral Fe3 O4 SPs have a r2 relaxivity of 157.39 ± 2.34 mM-1 ·S-1 for D-Fe3 O4 SPs and 136.21 ± 1.26 mM-1 ·S-1 for L-Fe3 O4 SPs due to enhanced electronic transition dipole moment for D-Fe3 O4 SPs compared with L-Fe3 O4 SPs. The in vivo MRI results show that D-Fe3 O4 SPs exhibit two-fold lower contrast ratio than L-Fe3 O4 SPs, which enhances targeted enrichment in tumor tissue, such as prostate cancer, melanoma and brain glioma tumors. Notably, it is found that D-Fe3 O4 SPs have 7.7-fold higher affinity for the tumor cell surface receptor cluster-of-differentiation 47 (CD47) than L-Fe3 O4 SPs. These findings uncover that chiral Fe3 O4 SPs act as a highly effective MRI contrast agent for targeting and imaging broad tumors, thus accelerating the practical application of chiral nanomaterials and deepening the understanding of chirality in biological and non-biological environments.
Collapse
Affiliation(s)
- Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory, Wenzhou, Zhejiang, 325001, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
22
|
Li CY, Xu H, Cheng PM, Du MH, Long LS, Zheng LS, Kong XJ. From Helices to Crystals: Multiscale Representation of Chirality in Double-Helix Structures. J Am Chem Soc 2023; 145:22176-22183. [PMID: 37779382 DOI: 10.1021/jacs.3c08257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Single crystals with chiral shapes aroused the interest of chemists due to their fascinating polarization rotation properties. Although the formation of large-scale spiral structures is considered to be a potential factor in chiral crystals, the precise mechanism behind their formation remains elusive. Herein, we present a rare phenomenon involving the multitransfer and expression of chirality at micro-, meso-, and macroscopic levels, starting from chiral carbon atoms and extending to the double-helical secondary structure, ultimately resulting in the chiral geometry of crystals. The assembly of the chiral double helices is facilitated by the dual characteristics of amide groups derived from amino acids, which serve as both hydrogen bond donors and receptors, similar to the assembly pattern observed in DNA. Crystal face analysis and theoretical morphology reveal two critical factors for the mechanism of the chiral crystal: inherent intrinsically symmetrical distribution of crystal faces and their acquired growth. Importantly, the magnetic circular dichroism (MCD) study reveals the strong magneto-optical response of the hypersensitive f-f transition in the UV-vis-NIR region, which is much stronger than previously observed signals. Remarkably, an external magnetic field can reverse the CD signal. This research highlights the potential of lanthanide-based chiral helical structures as promising magneto-optical materials.
Collapse
Affiliation(s)
- Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Andersen JH, Coriani S, Hättig C. Efficient Protocol for Computing MCD Spectra in a Broad Frequency Range Combining Resonant and Damped CC2 Quadratic Response Theory. J Chem Theory Comput 2023; 19:5977-5987. [PMID: 37650779 DOI: 10.1021/acs.jctc.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Coupled cluster response theory offers a path to high-accuracy calculations of spectroscopic properties, such as magnetic circular dichroism (MCD). However, divergence or slow convergence issues are often encountered for electronic transitions in high-energy regions with a high density of states. This is here addressed for MCD by an implementation of damped quadratic response theory for resolution-of-identity coupled cluster singles-and-approximate-doubles (RI-CC2), along with an implementation of the MCD A term from resonant response theory. Combined, damped and resonant response theory calculations provide an efficient strategy to obtain MCD spectra over a broad frequency range and for systems that include highly symmetric molecules with degenerate excited states. The protocol is illustrated by application to zinc tetrabenzoporphyrin in the energy region of 2-8 eV and comparison to experimental data. Timings are reported for the resonant and damped approaches, showing that a greater part of the calculation time is consumed by the construction of the building blocks for the final MCD ellipticity. A recommendation on how to use the procedure is outlined.
Collapse
Affiliation(s)
- Josefine H Andersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Christof Hättig
- Arbeitsgruppe Quantenchemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
24
|
Han Z, Ali W, Mao T, Wang F, Wang X. Magnetoplasmonic gold nanorods for the sensitive and label-free detection of glutathione. NANOSCALE ADVANCES 2023; 5:4670-4674. [PMID: 37705783 PMCID: PMC10496891 DOI: 10.1039/d3na00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
This work exploits the magneto-optical activity of gold nanorods for the detection of sub-micromolar concentrations of glutathione using magnetic circular dichroism spectroscopy. Modulations of the magnetoplasmonic response of nanorods serve as the basis of the sensing methodology, whereby the presence of glutathione induces the end-to-end assembly of nanorods. In particular, the nanorod self-assembly enables a localized electric field in the nanocavities with adsorbed thiol molecules, whose field strength is amplified by the external magnetic field as confirmed by finite-element modeling, enabling their high-sensitivity detection. Our simple magnetoplasmonic sensor for glutathione requires no specific chemical tags and exhibits an impressive limit of detection of 97 nM.
Collapse
Affiliation(s)
- Zexiang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Wajid Ali
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Ting Mao
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Fei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
25
|
Ikram M, Li Y, Zhang Z. Magnetic field caused enhanced absorption and circular dichroism of an achiral plasmonic nanostructure. APPLIED OPTICS 2023; 62:5386-5393. [PMID: 37706854 DOI: 10.1364/ao.492636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 09/15/2023]
Abstract
In this paper, modulation of light-matter interactions by a magnetic field is used to generate circular dichroism (CD) from an achiral plasmonic nanostructure. Theoretical investigations show an increase in light absorption by the nanostructure in the presence of a magnetic field. The achiral nanostructure exhibits CD in external magnetic field parallel to circularly polarized light (CPL) incidence. The CD emergence is caused by modulation of electron motion to reduced/enhanced frequencies under CPL incidence. Compared to previous studies, in this paper the mechanism of CD emergence, and the physical reasoning behind the change in CD due to change in magnetic field direction and intensity, are explained. CD intensity increases with increasing magnetic field intensity, while CD sign changes on magnetic field direction reversal. Varying structural parameters significantly influences CD intensity. This study can be helpful in magneto-optics and in magneto-chiral applications.
Collapse
|
26
|
Li Z, Fan Q, Ye Z, Wu C, Wang Z, Yin Y. A magnetic assembly approach to chiral superstructures. Science 2023; 380:1384-1390. [PMID: 37384698 DOI: 10.1126/science.adg2657] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Colloidal assembly into chiral superstructures is usually accomplished with templating or lithographic patterning methods that are only applicable to materials with specific compositions and morphologies over narrow size ranges. Here, chiral superstructures can be rapidly formed by magnetically assembling materials of any chemical compositions at all scales, from molecules to nano- and microstructures. We show that a quadrupole field chirality is generated by permanent magnets caused by consistent field rotation in space. Applying the chiral field to magnetic nanoparticles produces long-range chiral superstructures controlled by field strength at the samples and orientation of the magnets. Transferring the chirality to any achiral molecules is enabled by incorporating guest molecules such as metals, polymers, oxides, semiconductors, dyes, and fluorophores into the magnetic nanostructures.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zhongxiang Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
27
|
Hu R, Lu X, Hao X, Qin W. An Organic Chiroptical Detector Favoring Circularly Polarized Light Detection from Near-Infrared to Ultraviolet and Magnetic-Field-Amplifying Dissymmetry in Detectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211935. [PMID: 36916071 DOI: 10.1002/adma.202211935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Circularly polarized light detection has attracted growing attention because of its unique application in security surveillance and quantum optics. Here, through designing a chiral polymer as a donor, a high-performance circularly polarized light detector is fabricated, successfully enabling detection from ultraviolet (300 nm) to near-infrared (1100 nm). The chiroptical detector presents an excellent ability to distinguish right-handed and left-handed circularly polarized light, where dissymmetries in detectivity, responsivity, and electric current are obtained and then optimized. The dissymmetry in electric current can be increased from 0.18 to 0.23 once an external magnetic field is applied. This is a very rare report on the dissymmetry tunability by an external field in chiroptical detectors. Moreover, the chirality-generated orbital angular momentum is one of the key factors determining the performance of the circularly polarized light detection. Overall, the organic chiroptical detector presents excellent stability in detection, which provides great potential for future flexible and compact integrated platforms.
Collapse
Affiliation(s)
- Renjie Hu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
28
|
Adhikari S, Li J, Wang Y, Ruijs L, Liu J, Koopmans B, Orrit M, Lavrijsen R. Optical Monitoring of the Magnetization Switching of Single Synthetic-Antiferromagnetic Nanoplatelets with Perpendicular Magnetic Anisotropy. ACS PHOTONICS 2023; 10:1512-1518. [PMID: 37215319 PMCID: PMC10197163 DOI: 10.1021/acsphotonics.3c00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 05/24/2023]
Abstract
Synthetic antiferromagnetic nanoplatelets (NPs) with a large perpendicular magnetic anisotropy (SAF-PMA NPs) have a large potential in future local mechanical torque-transfer applications for e.g., biomedicine. However, the mechanisms of magnetization switching of these structures at the nanoscale are not well understood. Here, we have used a simple and relatively fast single-particle optical technique that goes beyond the diffraction limit to measure photothermal magnetic circular dichroism (PT MCD). This allows us to study the magnetization switching as a function of applied magnetic field of single 122 nm diameter SAF-PMA NPs with a thickness of 15 nm. We extract and discuss the differences between the switching field distributions of large ensembles of NPs and of single NPs. In particular, single-particle PT MCD allows us to address the spatial and temporal heterogeneity of the magnetic switching fields of the NPs at the single-particle level. We expect this new insight to help understand better the dynamic torque transfer, e.g., in biomedical and microfluidic applications.
Collapse
Affiliation(s)
- S. Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, LION, 2300 RA Leiden, Netherlands
| | - J. Li
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Y. Wang
- Huygens-Kamerlingh
Onnes Laboratory, LION, 2300 RA Leiden, Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology, Harbin 150001, P. R. China
| | - L. Ruijs
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - J. Liu
- School
of Mechatronics Engineering, Harbin Institute
of Technology, Harbin 150001, P. R. China
| | - B. Koopmans
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - M. Orrit
- Huygens-Kamerlingh
Onnes Laboratory, LION, 2300 RA Leiden, Netherlands
| | - R. Lavrijsen
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
29
|
Kim M, Kim J, Lee HJ, Kim H, Nam KT, Kim DH. Block Copolymer Enabled Synthesis and Assembly of Chiral Metal Oxide Nanoparticle. ACS NANO 2023; 17:7611-7623. [PMID: 37011403 DOI: 10.1021/acsnano.3c00047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chiral metal oxide nanostructures have received tremendous attention in nanotechnological applications owing to their intriguing chiroptical and magnetic properties. Current synthetic methods mostly rely on the use of amino acids or peptides as chiral inducers. Here, we report a general approach to fabricate chiral metal oxide nanostructures with tunable magneto-chiral effects, using block copolymer (BCP) inverse micelle and R/S-mandelic acid (MA). Diverse chiral metal oxide nanostructures are prepared by the selective incorporation of precursors within micellar cores followed by the oxidation process, exhibiting intense chiroptical properties with a g-factor up to 7.0 × 10-3 in the visible-NIR range for the Cr2O3 nanoparticle multilayer. The BCP inverse micelle is found to inhibit the racemization of MA, allowing MA to act as a chiral dopant that imparts chirality to nanostructures via hierarchical chirality transfer. Notably, for paramagnetic nanostructures, magneto-chiroptical modulation is realized by regulating the direction of the external magnetic field. This BCP-driven approach can be extended to the mass production of chiral nanostructures with tunable architectures and optical activities, which may provide insights into the development of chiroptical functional materials.
Collapse
Affiliation(s)
- Minju Kim
- Department of Chemistry and Nano Science, Division of Molecular and Life Sciences, College of Natural Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jiweon Kim
- Department of Chemistry and Nano Science, Division of Molecular and Life Sciences, College of Natural Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyun Jeong Lee
- Department of Chemistry and Nano Science, Division of Molecular and Life Sciences, College of Natural Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
- Basic Sciences Research Institute, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
- Nanobio Energy Materials Center (National Research Facilities and Equipment Center), Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
30
|
Cao J, Ye L, He D, Zheng X, Mukamel S. Magnet-Free Time-Resolved Magnetic Circular Dichroism with Pulsed Vector Beams. J Phys Chem Lett 2022; 13:11300-11306. [PMID: 36449825 DOI: 10.1021/acs.jpclett.2c03370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic circular dichroism (MCD) is a widely used spectroscopic technique which reveals valuable information about molecular geometry and electronic structure. However, the weak signal and the necessary strong magnets impose major limitations on its application. We propose a novel protocol to overcome these limitations by using pulsed vector beams (VBs), which consist of nanosecond gigahertz pump and femtosecond UV-vis probe pulses. By virtue of the strong longitudinal electromagnetic fields, the MCD signal detected by using the pulsed VBs is greatly enhanced compared to conventional MCD performed with plane waves. Furthermore, varying the pump-probe time delay allows monitoring the ultrafast variation of molecular properties.
Collapse
Affiliation(s)
- Jiaan Cao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dawei He
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
31
|
Yang LS, Lin EC, Hua YH, Hsu CA, Chiu HZ, Lo PH, Chao YC. Circularly Polarized Photoluminescence of Chiral 2D Halide Perovskites at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54090-54100. [PMID: 36420750 DOI: 10.1021/acsami.2c16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral halide perovskites have attracted considerable attention because of their chiroptical, second-harmonic generation, and ferroelectricity properties and their potential application in chiroptoelectronics and chiral spintronics. However, the fundamental research of these properties is insufficient. In this work, chiral perovskites were synthesized using precursor solutions with various stoichiometric ratios ⟨n⟩. The chiral perovskite film prepared from the solution with ⟨n⟩ = 1 is composed of (R-/S-/rac-MBA)2PbBr4, whereas the films prepared from the solutions with ⟨n⟩ larger than 1 are a mixture of (R-/S-/rac-MBA)2(CsMA)n-1PbnBr3n+1 with n = 1 and large n values. A photoluminescence quantum yield of approximately 90 was obtained. Symmetric circular dichroism (CD) spectra were observed without an external magnetic field. Under various magnetic fields, magnetic field-induced CD features are superimposed with the intrinsic chirality-induced CD features. For the ⟨n⟩ = 1 chiral perovskite film, the energy level splitting induced by chiral molecules are a few 10 μeV, whereas the energy level splitting induced by magnetic fields are at the range of ∼-250 to ∼250 μeV. Circularly polarized photoluminescence spectra were observed at room temperature and associated with the spin-preserved energy funneling from highly energetic phases to the lower energetic phases.
Collapse
Affiliation(s)
- Lan-Sheng Yang
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - En-Chi Lin
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Yi-Hsiu Hua
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Chin-An Hsu
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Hao-Zhe Chiu
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Pei-Hsuan Lo
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
| | - Yu-Chiang Chao
- Department of Physics, National Taiwan Normal University, Taipei11677, Taiwan, R.O.C
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu300093, Taiwan
| |
Collapse
|
32
|
Gabbani A, Sangregorio C, Tandon B, Nag A, Gurioli M, Pineider F. Magnetoplasmonics beyond Metals: Ultrahigh Sensing Performance in Transparent Conductive Oxide Nanocrystals. NANO LETTERS 2022; 22:9036-9044. [PMID: 36346871 PMCID: PMC9706655 DOI: 10.1021/acs.nanolett.2c03383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Active modulation of the plasmonic response is at the forefront of today's research in nano-optics. For a fast and reversible modulation, external magnetic fields are among the most promising approaches. However, fundamental limitations of metals hamper the applicability of magnetoplasmonics in real-life active devices. While improved magnetic modulation is achievable using ferromagnetic or ferromagnetic-noble metal hybrid nanostructures, these suffer from severely broadened plasmonic response, ultimately decreasing their performance. Here we propose a paradigm shift in the choice of materials, demonstrating for the first time the outstanding magnetoplasmonic performance of transparent conductive oxide nanocrystals with plasmon resonance in the near-infrared. We report the highest magneto-optical response for a nonmagnetic plasmonic material employing F- and In-codoped CdO nanocrystals, due to the low carrier effective mass and the reduced plasmon line width. The performance of state-of-the-art ferromagnetic nanostructures in magnetoplasmonic refractometric sensing experiments are exceeded, challenging current best-in-class localized plasmon-based approaches.
Collapse
Affiliation(s)
- Alessio Gabbani
- INSTM
and Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124Pisa, Italy
- Department
of Physics and Astronomy, Università
degli Studi di Firenze, via Sansone 1, 50019Sesto Fiorentino, FI, Italy
- CNR-ICCOM, Via Madonna
del Piano 10, 50019Sesto Fiorentino, FI, Italy
| | - Claudio Sangregorio
- CNR-ICCOM, Via Madonna
del Piano 10, 50019Sesto Fiorentino, FI, Italy
- INSTM
and Department of Chemistry “U. Schiff”, Università degli Studi di Firenze, via della Lastruccia 3, 50019Sesto Fiorentino, FI, Italy
| | - Bharat Tandon
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune411008, India
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune411008, India
| | - Massimo Gurioli
- Department
of Physics and Astronomy, Università
degli Studi di Firenze, via Sansone 1, 50019Sesto Fiorentino, FI, Italy
| | - Francesco Pineider
- INSTM
and Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124Pisa, Italy
- Department
of Physics and Astronomy, Università
degli Studi di Firenze, via Sansone 1, 50019Sesto Fiorentino, FI, Italy
| |
Collapse
|
33
|
Kuszynski JE, Kays JC, Conti CR, McGill SA, Dennis AM, Strouse GF. Effective Mass for Holes in Paramagnetic, Plasmonic Cu 5FeS 4 Semiconductor Nanocrystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:12669-12679. [PMID: 37560086 PMCID: PMC10410696 DOI: 10.1021/acs.jpcc.2c03459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The impact of a magneto-structural phase transition on the carrier effective mass in Cu5FeS4 plasmonic semiconductor nanocrystals was examined using Magnetic Circular Dichroism (MCD). Through MCD, the sample was confirmed as p-type from variable temperature studies from 1.8 - 75 K. Magnetic field dependent behavior is observed, showing an asymptotic behavior at high field with an m ∗ value 5.98 m ∗ ∕ m e at 10 T and 2.73 m ∗ ∕ m e at 2 T. Experimentally obtained results are holistically compared to SQUID magnetization data and DFT results, highlighting a dependency on vacancy driven polaronic coupling, magnetocrystalline anisotropy, and plasmon coupling of the magnetic field all contributing to an overall decrease in the hole mean free path dependent on the magnetic field applied to Cu5FeS4.
Collapse
Affiliation(s)
- Jason E. Kuszynski
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee FL 32306, USA
| | - Joshua C. Kays
- Department of Biomedical Engineering, Boston University, Boston MA 02215, USA
| | - Carl R. Conti
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee FL 32306, USA
| | | | - Allison M. Dennis
- Department of Biomedical Engineering, Boston University, Boston MA 02215, USA
- Division of Materials Science & Engineering, Boston University, Boston MA 02215, USA
| | - Geoffrey F. Strouse
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee FL 32306, USA
| |
Collapse
|
34
|
Edelstein S, Garcia-Martin A, Serena PA, Marqués MI. Circular dichroism in magneto-optical forces. OPTICS EXPRESS 2022; 30:28668-28685. [PMID: 36299057 DOI: 10.1364/oe.464252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
In this article we use an exact method to resolve the fields scattered by a spherical magneto-optical particle and calculate the optical forces exerted on it. The resulting force and the contributing components, i.e. magneto-optical gradient force and magneto-optical extinction force, are presented in an analytical form. We also derive analytical expressions for the scattering and extinction cross sections of a magneto-optical particle, expressions which intuitively demonstrate the effect of circular dichroism in magneto-optical scattering and forces. Finally, we demonstrate that the magneto-optical extinction force is the result of circular dichroism in magneto-optical scattering. We show that it is possible to completely cancel the scattering in the forward or in the backward direction, when the incident field is composed of a circularly-polarized reflected beam. Moreover, the directional scattering is interrelated to the direction of the force exerted on the particle.
Collapse
|
35
|
Foglia NO, Maganas D, Neese F. Going beyond the Electric-Dipole Approximation in the Calculation of Absorption and (Magnetic) Circular Dichroism Spectra including Scalar Relativistic and Spin-Orbit Coupling Effects. J Chem Phys 2022; 157:084120. [DOI: 10.1063/5.0094709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, a time-dependent density functional theory (TD-DFT) scheme for computing optical spectroscopic properties in the framework of linearly and circularly polarized light is presented. The scheme is based on a previously formulated theory for predicting optical absorption and magnetic circular dichroism (MCD) spectra. The scheme operates in the framework of the full semi-classical field-matter interaction operator, thus generating a powerful and general computational scheme capable of computing the absorption (ABS), circular dichroism (CD), and MCD spectra. In addition, our implementation includes the treatment of relativistic effects in the framework of quasidegenerate perturbation theory, which accounts for scalar relativistic effects (in the self-consistent field step) and spin-orbit coupling (in the TD-DFT step), as well as external magnetic field perturbations. Hence, this formalism is also able to probe spin-forbidden transitions. The random orientations of molecules are taken into account by a semi-numerical approach involving a Lebedev numerical quadrature alongside analytical integration. It is demonstrated the numerical quadrature requires as few as 14 points for satisfactory converged results thus leading to a highly efficient scheme, while the calculation of the exact transition moments creates no computational bottlenecks. It is demonstrated that at zero magnetic field, the CD spectrum is recovered while the sum of left and right circularly polarized light contributions provides the linear absorption spectrum. The virtues of this efficient and general protocol are demonstrated on a selected set of organic molecules where the various contributions to the spectral intensities have been analyzed in detail.
Collapse
Affiliation(s)
- Nicolas Oscar Foglia
- Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Germany
| | | | - Frank Neese
- Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Germany
| |
Collapse
|
36
|
Spaeth P, Adhikari S, Lahabi K, Baaske MD, Wang Y, Orrit M. Imaging the Magnetization of Single Magnetite Nanoparticle Clusters via Photothermal Circular Dichroism. NANO LETTERS 2022; 22:3645-3650. [PMID: 35420830 PMCID: PMC9101077 DOI: 10.1021/acs.nanolett.2c00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Indexed: 05/30/2023]
Abstract
Magnetic imaging is a versatile tool in biological and condensed-matter physics. Existing magnetic imaging techniques either require demanding experimental conditions which restrict the range of their applications or lack the spatial resolution required for single-particle measurements. Here, we combine photothermal (PT) microscopy with magnetic circular dichroism (MCD) to develop a versatile magnetic imaging technique using visible light. Unlike most magnetic imaging techniques, photothermal magnetic circular dichroism (PT MCD) microscopy works particularly well for single nanoparticles immersed in liquids. As a proof of principle, we demonstrate magnetic CD imaging of superparamagnetic magnetite nanoparticulate clusters immersed in microscope immersion oil. The sensitivity of our method allowed us to probe the magnetization curve of single ∼400-nm-diameter magnetite nanoparticulate clusters.
Collapse
Affiliation(s)
- Patrick Spaeth
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Kaveh Lahabi
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Martin Dieter Baaske
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Yonghui Wang
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology, Harbin 150001, P. R. China
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
37
|
Chen D, Zhao Z, Jiang N, Zhu H, Zhao S, Tan P, Wei D, Zheng H, Shen C. Tunable Polarized Microcavity Characterized by Magnetic Circular Dichroism Spectrum. J Phys Chem Lett 2022; 13:3244-3250. [PMID: 35385286 DOI: 10.1021/acs.jpclett.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tunable resonator is a powerful building block in fields like color filtering and optical sensing. The control of its polarization characteristics can significantly expand the applications. Nevertheless, the methods for resonator dynamic tuning are limited. Here, a magnetically regulated circular polarized resonant microcavity is demonstrated with an ultrathin ferrimagnetic composite metal layer Ta/CoTb. We successfully tuned the cavity resonant frequency and polarization performance. A huge magnetic circular dichroism (MCD) signal (∼3.41%) is observed, and the microcavity valley position shifts 5.41 nm when a small magnetic field is applied. This resonant cavity has two-stable states at 0 T due to the magnetic remanence of CoTb film and can be switched using a tiny magnetic field (∼0.01 T). Our result shows that the ferrimagnetic film-based tunable microcavity can be a highly promising candidate for on-chip magneto-optical (MO) devices.
Collapse
Affiliation(s)
- Dingwei Chen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Zhao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nai Jiang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Shuai Zhao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingheng Tan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahai Wei
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houzhi Zheng
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Wang Y, Shen R, Wang S, Zhang YM, Zhang SXA. Dynamic Metal-Ligand Interaction of Synergistic Polymers for Bistable See-Through Electrochromic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104413. [PMID: 34894163 DOI: 10.1002/adma.202104413] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Bistable electrochromic materials are a promising alternative solution to reduce energy consumption in displays. Limited by the mechanism and lack of a design strategy, only a few electrochromic materials have truly been able achieve bistability. Herein, a novel strategy is proposed to design bistable electrochromic materials based on polymer-assisted dynamic metal-ligand coordination. The mechanism and materials of such unconventional electrochromic systems are proved by sufficient characterization. Synergistic stabilization of polymerized switchable dyes and the ionic ligand polymer are attracted to each other by supramolecular forces. The color states of the dye molecules are controlled and stabilized by valence changes of the metal ions. Meanwhile, through the polymerization of the electrochromic material and the nearby metal-ligand material, the metal ions of the electroinduced valence change are tightly fixed, and the related diffusion problem of the active EC component is also almost completely suppressed. This strategy successfully enables preparation of the corresponding transparent electrochromic displays with good performances, such as, the display information is clearly visible for more than 1.5 h without consuming energy. Furthermore, the new way of dynamic coordination or dissociation bistable displays could likely prosper the development of the electrochromic area and inspire other fields.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Ruipeng Shen
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Shuo Wang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Yu-Mo Zhang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Sean Xiao-An Zhang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| |
Collapse
|
39
|
Li C, Li S, Zhao J, Sun M, Wang W, Lu M, Qu A, Hao C, Chen C, Xu C, Kuang H, Xu L. Ultrasmall Magneto-chiral Cobalt Hydroxide Nanoparticles Enable Dynamic Detection of Reactive Oxygen Species in Vivo. J Am Chem Soc 2022; 144:1580-1588. [DOI: 10.1021/jacs.1c09986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Weiwei Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Meiru Lu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
40
|
Kumar TSJ, Arumugam M. Optical Properties of Magnetic Nanoalloys and Nanocomposites. HANDBOOK OF MAGNETIC HYBRID NANOALLOYS AND THEIR NANOCOMPOSITES 2022:547-573. [DOI: 10.1007/978-3-030-90948-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
41
|
|
42
|
Kumar TSJ, Arumugam M. Optical Properties of Magnetic Nanoalloys and Nanocomposites. HANDBOOK OF MAGNETIC HYBRID NANOALLOYS AND THEIR NANOCOMPOSITES 2022:1-27. [DOI: 10.1007/978-3-030-34007-0_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 06/16/2023]
|
43
|
Du M, Xu S, Li G, Xu H, Lin Y, Liu W, Long L, Zheng L, Kong X. Modification of Multi‐Component Building Blocks for Assembling Giant Chiral Lanthanide‐Titanium Molecular Rings. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ming‐Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Su‐Hui Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Guan‐Jun Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yang Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei‐Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - La‐Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lan‐Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiang‐Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
44
|
Sewid FA, Annas KI, Dubavik A, Veniaminov AV, Maslov VG, Orlova AO. Chitosan nanocomposites with CdSe/ZnS quantum dots and porphyrin. RSC Adv 2021; 12:899-906. [PMID: 35425094 PMCID: PMC8978810 DOI: 10.1039/d1ra08148a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Water-soluble nanocomposites based on CdSe/ZnS quantum dots (QDs) and hydrophobic tetraphenylporphyrin (TPP) molecules passivated by chitosan (CS) have been formed. Magnetic circular dichroism (MCD) spectra evidence TPP presence in both monomeric and agglomerated forms in the nanocomposites. The nanocomposites demonstrate more pronounced singlet oxygen generation compared to free TPP in CS at the same concentration due to the intracomplex Förster resonance energy transfer (FRET) with a 45% average efficiency.
Collapse
Affiliation(s)
- F A Sewid
- ITMO University St. Petersburg 197101 Russia
- Faculty of Science, Mansoura University Egypt
| | - K I Annas
- ITMO University St. Petersburg 197101 Russia
| | - A Dubavik
- ITMO University St. Petersburg 197101 Russia
| | | | - V G Maslov
- ITMO University St. Petersburg 197101 Russia
| | - A O Orlova
- ITMO University St. Petersburg 197101 Russia
| |
Collapse
|
45
|
Du MH, Xu SH, Li GJ, Xu H, Lin Y, Liu WD, Long LS, Zheng LS, Kong XJ. Modification of Multi-Component Building Blocks for Assembling Giant Chiral Lanthanide-Titanium Molecular Rings. Angew Chem Int Ed Engl 2021; 61:e202116296. [PMID: 34921501 DOI: 10.1002/anie.202116296] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 01/15/2023]
Abstract
Building blocks with multiple components are promising for the synthesis of complex molecular assemblies, but are rarely available. Herein, we report a modification procedure for a multi-component building block [Ln3 Ti(HSA)6 (SA)4 (H2 O)]- ({Ln3 Ti-SA}, H2 SA=salicylic acid, Ln=Eu/Gd) to form new building blocks {Ln3 Tix -MSA} (H2 MSA=5-methoxysalicylic acid, x=1, 2, 3) by constructing [Ti(MSA)3 ]2- units. The obtained {Ln3 Tix -MSA} can further assemble into a chiral Ln22 Ti14 ring with the formulae [Eu22 Ti14 (MSA)48 (HMSA)22 (CH3 COO)4 (H2 O)10 (iPrOH)] and [Gd22 Ti14 (MSA)46 (HMSA)26 (CH3 COO)4 (H2 O)8 ]. Parallel experiments without Ti4+ result in linear Ln chains. Detailed analysis shows that the [Ti(MSA)4 ]4- unit makes the originally variable Ln chains become available building blocks and the modified [Ti(MSA)3 ]2- further triggers interesting chiral-sorting behavior. Finally, the electronic adsorption and magneto-optic responses of these molecular rings are investigated.
Collapse
Affiliation(s)
- Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Su-Hui Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guan-Jun Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
46
|
Kuttruff J, Gabbani A, Petrucci G, Zhao Y, Iarossi M, Pedrueza-Villalmanzo E, Dmitriev A, Parracino A, Strangi G, De Angelis F, Brida D, Pineider F, Maccaferri N. Magneto-Optical Activity in Nonmagnetic Hyperbolic Nanoparticles. PHYSICAL REVIEW LETTERS 2021; 127:217402. [PMID: 34860084 DOI: 10.1103/physrevlett.127.217402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical activity in nonmagnetic hyperbolic nanoparticles. We demonstrate that the magneto-optical response is driven by the hyperbolic dispersion via the coupling of metallic-induced electric and dielectric-induced magnetic dipolar optical modes with static magnetic fields. Magnetic circular dichroism experiments confirm the theoretical predictions and reveal tunable magneto-optical activity across the visible and near infrared spectral range.
Collapse
Affiliation(s)
- Joel Kuttruff
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faincerie, 1511, Luxembourg, Luxembourg
- Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz, Germany
| | - Alessio Gabbani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gaia Petrucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Yingqi Zhao
- Plasmon Nanotechnologies Unit, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Marzia Iarossi
- Plasmon Nanotechnologies Unit, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS). Università degli Studi di Genova, Via Balbi 5, 16126 Genova, Italy
| | - Esteban Pedrueza-Villalmanzo
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, 405 30, Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Göteborg, Sweden
| | - Alexandre Dmitriev
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, 405 30, Gothenburg, Sweden
| | - Antonietta Parracino
- Department of Chemistry, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 10600 Euclid Avenue, 44106, Cleveland, Ohio, USA
- CNR-NANOTEC Istituto di Nanotecnologia and Department of Physics, University of Calabria, Via Pietro Bucci 87036, Rende, Italy
| | - Francesco De Angelis
- Plasmon Nanotechnologies Unit, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Daniele Brida
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faincerie, 1511, Luxembourg, Luxembourg
| | - Francesco Pineider
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Nicolò Maccaferri
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faincerie, 1511, Luxembourg, Luxembourg
- Department of Physics, Umeå University, Linnaeus väg 20, 907 36 Umeå, Sweden
| |
Collapse
|
47
|
Maqbool Q, Jung A, Won S, Cho J, Son JG, Yeom B. Chiral Magneto-Optical Properties of Supra-Assembled Fe 3O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54301-54307. [PMID: 34748312 DOI: 10.1021/acsami.1c16954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Research on the chiral magneto-optical properties of inorganic nanomaterials has enabled novel applications in advanced optical and electronic devices. However, the corresponding chiral magneto-optical responses have only been studied under strong magnetic fields of ≥1 T, which limits the wider application of these novel materials. In this paper, we report on the enhanced chiral magneto-optical activity of supra-assembled Fe3O4 magnetite nanoparticles in the visible range at weak magnetic fields of 1.5 mT. The spherical supra-assembled particles with a diameter of ∼90 nm prepared by solvothermal synthesis had single-crystal-like structures, which resulted from the oriented attachment of nanograins. They exhibited superparamagnetic behavior even with a relatively large supraparticle diameter that exceeded the size limit for superparamagnetism. This can be attributed to the small size of nanograins with a diameter of ∼12 nm that constitute the suprastructured particles. Magnetic circular dichroism (MCD) measurements at magnetic fields of 1.5 mT showed distinct chiral magneto-optical activity from charge transfer transitions of magnetite in the visible range. For the supraparticles with lower crystallinity, the MCD peaks in the 250-550 nm range assigned as the ligand-to-metal charge transfer (LMCT) and the inter-sublattice charge transfer (ISCT) show increased intensities in comparison to those with higher crystallinity samples. On the contrary, the higher crystallinity sample shows higher MCD intensities near 600-700 nm for the intervalence charge transfer (IVCT) transition. The differences in MCD responses can be attributed to the crystallinity determined by the reaction time, lattice distortion near grain boundaries of the constituent nanocrystals, and dipolar interactions in the supra-assembled structures.
Collapse
Affiliation(s)
- Qysar Maqbool
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Arum Jung
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sojeong Won
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Gon Son
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
48
|
Bootharaju MS, Baek W, Lee S, Chang H, Kim J, Hyeon T. Magic-Sized Stoichiometric II-VI Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2002067. [PMID: 33164322 DOI: 10.1002/smll.202002067] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/21/2020] [Indexed: 05/26/2023]
Abstract
Metal chalcogenide nanomaterials have gained widespread interest in the past two decades for their potential optoelectronic, energy, and catalytic applications. The colloidal growth of various forms of these materials, such as nanowires, platelets, and lamellar assemblies, proceeds through certain thermodynamically stable, ultrasmall (<2 nm) intermediates called magic-sized nanoclusters (MSCs). Due to quantum confinement and its resultant intriguing properties, isolation or direct synthesis of MSCs and their structure characterization, which is very much challenging, are current topics of fundamental and applied scientific research. By comprehensive understanding of the structure-activity relationships in MSCs, the nucleation and growth processes can be manipulated, resulting in the synthesis of novel metal chalcogenide materials for various applications. This review focuses on recent advances in the chemical synthesis, characterization, and theoretical calculations of CdSe and its related II-VI nanoclusters. It highlights the studies of photophysical and magneto-optical properties as well as heteroatom doping of MSCs followed by their chemical transformation to high-dimensional nanostructures. At the end of the review, future directions and possible ways to overcome the challenges in the research of semiconductor MSCs are also presented.
Collapse
Affiliation(s)
- Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woonhyuk Baek
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghwa Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junhee Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
49
|
Suchitta A, Suri P, Xie Z, Xu X, Ghosh A. Chiro-optical response of a wafer scale metamaterial with ellipsoidal metal nanoparticles. NANOTECHNOLOGY 2021; 32:315705. [PMID: 33857929 DOI: 10.1088/1361-6528/abf877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We report a large chiro-optical response from a nanostructured film of aperiodic dielectric helices decorated with ellipsoidal metal nanoparticles. The influence of the inherent fabrication variation on the chiro-optical response of the wafer-scalable nanostructured film is investigated using a computational model which closely mimics the material system. From the computational approach, we found that the chiro-optical signal is strongly dependent on the ellipticities of the metal nanoparticles and the developed computational model can account for all the variations caused by the fabrication process. We report the experimentally realized dissymmetry factor ∼1.6, which is the largest reported for wafer scalable chiro-plasmonic samples till now. The calculations incorporate strong multipolar contributions of the plasmonic interactions to the chiro-optical response from the tightly confined ellipsoidal nanoparticles, improving upon the previous studies carried in the coupled dipole approximation regime. Our analyzes confirm the large chiro-optical response in these films developed by a scalable and simple fabrication technique, indicating their applicability pertaining to manipulation of optical polarization, enantiomer selective identification and enhanced sensing and detection of chiral molecules.
Collapse
Affiliation(s)
- Aakansha Suchitta
- Department of Electrical Engineering, Indian Institute Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyanka Suri
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Zhuolin Xie
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Xianfan Xu
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States of America
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
50
|
Bai T, Ai J, Liao L, Luo J, Song C, Duan Y, Han L, Che S. Chiral Mesostructured NiO Films with Spin Polarisation. Angew Chem Int Ed Engl 2021; 60:9421-9426. [PMID: 33554464 DOI: 10.1002/anie.202101069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 12/17/2022]
Abstract
Spin polarisation is found in the centrosymmetric nonferromagnetic crystals, chiral mesostructured NiO films (CMNFs), fabricated through the symmetry-breaking effect of a chiral molecule. Two levels of chirality were identified: primary nanoflakes with atomically twisted crystal lattices and secondary helical stacking of the nanoflakes. Spin polarisation of the CMNFs was confirmed by chirality-dependent magnetic-tip conducting atomic force microscopy (mc-AFM) and magnetic field-independent magnetic circular dichroism (MCD). Electron transfer in the symmetry-breaking electric field was speculated to create chirality-dependent effective magnetic fields. The asymmetric spin-orbit coupling (SOC) generated by effective magnetic fields selectively modifies the opposite spin motion in the antipodal CMNFs. Our findings provide fundamental insights for directional spin control in unprecedented functional inorganic materials.
Collapse
Affiliation(s)
- Te Bai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Jing Ai
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Liyang Liao
- Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Junwei Luo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P.R. China
| | - Cheng Song
- Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China.,School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|