1
|
Liu Y, Su G, Lin J, Tan X, Wu C, Shen Q, Deng Z, Liu J, Han M, Lai JC, Dai R, Wang G, Zang G, Li Z, Zhao H. Macroporous hydrogel loaded with AIE-photosensitizer for enhanced antibacterial and wounds healing. Int J Biol Macromol 2025; 312:143977. [PMID: 40348218 DOI: 10.1016/j.ijbiomac.2025.143977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Effective wound healing requires precise immune regulation, including infection clearance to prevent excessive immune cell activation and polarization of macrophages. Therapeutic systems with combined immunomodulatory effects are crucial. Photodynamic therapy (PDT) is a promising antimicrobial treatment(AIE), with photosensitizers (PSs) playing a central role. The PSs with aggregation-induced emission can efficiently generate reactive oxygen species (ROS) in the aggregated state, making them workable in high concentration. Introduction of a biocompatible carrier is beneficial for the PSs' immobilization and distribution and hydrogels are excellent candidates. It is pursuing to design a PS-hydrogel system with synergetic effect. Type II PSs can generate singlet oxygen under sufficient oxygen. Macroporous hydrogels (MPHs) own superiorities in matter transport and immune cell adhesion reduction. Herein, an AIE-PS, TCSPy+ was designed. With its nanoparticles (NPs), an MPH dressing was developed using a facile extrusion-sequential-photo-crosslinking method based on PEGDA and GelMA. In vitro and in vivo studies demonstrated that TCSPy+@MPH dressing exhibited superior antibacterial activity compared to non-porous hydrogel-based one, significantly inhibiting excessive immune cell activation and polarization of macrophages. The macroporous structure also facilitated inflammatory exudates removal. The synergetic effect with the combined immunomodulation ability allows the dressing to efficiently treat infected wounds, offering an effective strategy to design advanced therapeutic systems for tissue regeneration and immune regulation.
Collapse
Affiliation(s)
- Yangkun Liu
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jingsong Lin
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Xudong Tan
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Chaoying Wu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Qing'an Shen
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Zishan Deng
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Jiankai Liu
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jian-Cheng Lai
- Tachin Technology Co., Ltd., Beijing 100094, China; Beijing Institute of Collaborative Innovation, Beijing 100094, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Guixue Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Guangchao Zang
- Biomedical Innovation and Entrepreneurship Practice Base, Lab Teaching & Management Center, Chongqing Medical University, China; Jinfeng Laboratory, Chongqing 401329, China; Western Institute of Digital-Intelligent Medicine, Chongqing 401329, China.
| | - Zhao Li
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
2
|
Luo Y, Liu Y, Chen W, Gao Y, Kan L, Chen H, Wang Y, Li M, Li S, Zhang XH. Regioisomerism in NIR-II-emissive semiconducting biradicals for high-performance bioimaging and phototheranostics of tumors. MATERIALS HORIZONS 2025; 12:3115-3126. [PMID: 39898369 DOI: 10.1039/d4mh01396d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Photothermal agents (PTAs) have received significant attention in medical therapeutic and diagnostic applications. Despite their tremendous development, developing PTAs is challenging when applied to a living body with deep tissue, as it usually leads to attenuated therapeutic efficiency and potential biosafety hazards. Here, we report a molecular isomerization strategy based on NIR-II semiconducting biradicals that boosts the performance of NIR-II phototheranostics. With a stereoisomeric design by precisely manipulating the substitution position of the alkyl side chain, the optimal isomer, α-TBTS, and its nanoparticles (NPs) provide enhanced NIR-II absorption and 63% photothermal conversion capabilities, resulting in efficient photoablation of tumor cells. Most importantly, the relationship between the molecular isomerism of these NIR-II theranostics enables enhanced NIR-II performance, which has been proven by theoretical and ultrafast spectroscopy studies. With all these advantages, the α-TBTS nanoplatform has simultaneously achieved high-resolution whole-body NIR-II angiography and trimodal tumor-targeted imaging in vivo. Moreover, α-TBTS NPs efficiently inhibited tumor growth without recurrence upon NIR-II light irradiation, providing good biosafety. This work demonstrates the feasibility of molecular isomerization in multimodal NIR-II biradical PTAs and thus provides a suitable theranostic agent for high-performance tumor phototheranostics.
Collapse
Affiliation(s)
- Yu Luo
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Ying Liu
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Yijian Gao
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Lijun Kan
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Huan Chen
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Yu Wang
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Mingde Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
3
|
Kamya E, Yi S, Lu Z, Yan J, Dawit H, Mehmood S, Cao Y, Pei R. AIE Photosensitizer with Tuned Membrane Interactions for Effective-Gram-Negative Bacteria Elimination. Bioconjug Chem 2025; 36:881-891. [PMID: 40145414 DOI: 10.1021/acs.bioconjchem.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Photodynamic antimicrobial therapy (PDAT) for efficient bacterial infection eradication critically relies on photosensitizers (PSs) that can specifically target and disrupt bacterial membranes. However, the complex membrane architecture of Gram-negative bacteria poses a significant challenge to the efficacy of most aggregation-induced emission (AIE) PSs. Herein, we introduce TPQ, an AIE PS meticulously designed to overcome this challenge by incorporating an outer membrane disruption ability, thereby boosting PDAT efficacy against Gram-negative bacteria. TPQ demonstrated excellent microbial imaging and potent PDAT activity against both Gram-positive and Gram-negative bacteria, attributed to its inherent fluorescence, high singlet oxygen generation, and balanced electrostatic and hydrophobic interactions with bacterial membranes. Notably, TPQ achieved exceptional PDAT activity (>97% efficacy) against Gram-negative bacteria while exhibiting minimal cytotoxicity to mammalian cells. Furthermore, TPQ-mediated PDAT effectively healed Escherichia coli-infected wounds on mice models with assured biosafety. This work provides valuable insights into the rational design of AIE PSs and highlights the synergistic effect of membrane disruption for advancing PDAT applications, particularly against recalcitrant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Edward Kamya
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shangzhao Yi
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hewan Dawit
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
4
|
Chen H, Zhao X, Halimov A, Fu M, Tu J, Liu H, Xu H, Liu J. Phototheranostic Zinc Porphyrin Nanoparticles Triggered by an 808 nm Laser: NIR-II Fluorescence/Photoacoustic Imaging-Guided Combined Photothermal/Photodynamic/NO Therapy. Bioconjug Chem 2025; 36:838-845. [PMID: 40194279 DOI: 10.1021/acs.bioconjchem.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Single-wavelength lasers that trigger intelligently designed multifunctional theranostic nanoplatforms are urgently needed for early cancer diagnosis and imaging-guided therapy. In this study, a novel zinc porphyrin, Por-TR, was fabricated by incorporating thiophene as a donor and introducing electron acceptors on both sides to expand the conjugation. The presence of multiple flexible chains in the molecular structure of Por-TR inhibits π-π stacking, which allows it to form J nanoaggregates when coassembled with DSPE-PEG2000, demonstrating maximum absorption at approximately 808 nm. These Por-TR NPs provide NIR-II fluorescence/PA dual-modal signals for imaging and serve as a combined PTT/PDT therapeutic agent, making them a suitable multifunctional theranostic nanoplatform. To further improve their therapeutic effects, we embedded a thermosensitive NO donor, BNN6, in the Por-TR nanosystem to achieve combined PDT/PTT/NO therapy. Intravenous injection of Por-TR-NO NPs into 4T1 tumor-bearing mice enabled the accurate observation of tumor location via NIR-II fluorescence/PA dual-modal imaging. In vivo therapy results show that the Por-TR-NO NPs exhibited remarkable antitumor efficacy in combined PTT/PDT/NO therapy, which was triggered by an 808 nm laser. Overall, this nanoplatform offers a versatile approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| | - Xiaobo Zhao
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| | - Akbar Halimov
- Physical-Technical Institute, Uzbekistan Academy of Sciences, 100084 Tashkent, Uzbekistan
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingkai Fu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Tu
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| | - Hui Liu
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| | - Huajun Xu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Jun Liu
- School of Pharmacy and Institute of Pharmacy, Medical Imaging Key Laboratory of Sichuan Province, Thyroid and Breast Surgery, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Sichuan 637100, China
| |
Collapse
|
5
|
He Z, Gao Y, Huang Z, Zhan M, Tian S, Fang F, Zhao D, Li Z, Meng F, Tang BZ, Luo L. Tuning the Near-Infrared J-Aggregate of a Multicationic Photosensitizer through Molecular Coassembly for Symbiotic Photothermal Therapy and Chemotherapy. ACS NANO 2025; 19:10220-10231. [PMID: 40053387 DOI: 10.1021/acsnano.4c17582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cationic photosensitizers (PSs) offer many intriguing advantages, in addition to generating heat or reactive oxygen species for cancer phototherapy. However, the preparation of cationic PSs with enhanced near-infrared (NIR) absorption remains a significant challenge. In this work, we have synthesized a PS TPBBT, which incorporates a strong electron-withdrawing unit, benzobisthiadiazole, and four terminal pyridinium groups. It self-assembles into a mixed H/J aggregated state with a maximal absorption peak at 620 nm but coassembles with negatively charged planar small molecules to form sole J-aggregates. Following this strategy, we coassemble TPBBT with rhein, a planar, anionic traditional Chinese medicine with an anticancer activity, which allows for a near 100 nm bathochromic shift of the maximal absorption of TPBBT and improves the photothermal conversion efficiency (PCE) of TPBBT from 6.4 to 60.4% under 808 nm laser irradiation. Additionally, coassembling with TPBBT significantly enhances the cellular uptake of rhein through the photothermal effect. The coassembly of TPBBT and rhein (TPBBTein) can completely eliminate 4T1 tumors on mouse models, validating that this facile strategy not only can tune the NIR J-aggregate of cationic PS through molecular coassembly but also promotes the efficient, symbiotic combination of photothermal therapy and chemotherapy.
Collapse
Affiliation(s)
- Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuting Gao
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhen Huang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fang Fang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhong'an Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Yin B, Chen J, Xiang G, Xu Z, Yang M, Wong SHD. Multiscale and stimuli-responsive biosensing in biomedical applications: Emerging biomaterials based on aggregation-induced emission luminogens. Biosens Bioelectron 2025; 271:117066. [PMID: 39689580 DOI: 10.1016/j.bios.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Biosensors play a critical role in the diagnosis, treatment, and prognosis of diseases, with diverse applications ranging from molecular diagnostics to in vivo imaging. Conventional fluorescence-based biosensors, however, often suffer from aggregation-caused emission quenching (ACQ), limiting their effectiveness in high concentrations and complex environments. In contrast, the phenomenon of aggregation-induced emission (AIE) has emerged as a promising alternative, where luminescent materials exhibit strong emission in the aggregated state with good photostability, biocompatibility, large Stokes shift, high quantum yield, and tunable emission. This review article discusses the development of AIEgen-based biosensors for multiscale biosensing in biomedical applications. The integration of AIEgens with nanomaterials, such as graphene oxide and stimuli-responsive nanomaterials, can further improve the selectivity and multifunctionality of biomolecule detection. By careful molecular design, the affinity between AIEgens and specific biomolecules can be tuned, enabling the selective detection of targets like DNA, RNA, and proteins ex vivo, in vitro and in vivo, which can be applied across multiple scales, from detecting biomolecules and cellular structures to analyzing tissues and organs, underscoring their growing importance in disease diagnosis. Furthermore, we explore the potential integration of AIEgen-based biosensors with artificial intelligence (AI) technologies, offering promising avenues for future advancements in this field.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Guangli Xiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zehui Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China.
| | - Siu Hong Dexter Wong
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Zhang C, Dong YX, Gao LX, Gan S, Gao W, Li J, Xiang DJ, Wang X, Zhou YB, Wang WL. 6 H-Indolo-[2,3- b]-quinoxaline derivatives as promising bifunctional SHP1 inhibitors. Org Biomol Chem 2025; 23:1394-1405. [PMID: 39744882 DOI: 10.1039/d4ob01492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Dysfunction in the SHP1 enzyme can cause cancers and many diseases, so it is of great significance to develop novel small molecule SHP1 inhibitors. Through continuous monitoring of metabolic and targeted processes of SHP1 inhibitors in real-time, we can evaluate the effectiveness and toxicity of the inhibitors, further optimize drug design, and explore SHP1 biology. Indoloquinoxaline is an important class of N-containing heterocycle, which has been studied and applied in the pharmacological field and in optoelectronic materials. In this work, the potential Src homology 2 domain-containing phosphatase 1 (SHP1) inhibitor 5a was developed with the help of the structural fusion and scaffold hop of a fluorophore, 6H-indolo-[2,3-b]-quinoxaline, and a bio-active skeleton, thieno[2,3-b]quinoline-procaine. Compound 5a selectively inhibited the SHP1PTP enzyme abilities (IC50 = 2.34 ± 0.06 μM), exhibited a significant fluorescence response (P = 0.007) in response to SHP1PTP activity, and emitted strong blue/green fluorescence in MDA-MB-231 cells. Furthermore, compound 5a showed irreversible binding with SHP1PTP in simulations and dialysis experiments. Altogether, compound 5a serves as a bifunctional SHP1 inhibitor, combining imaging and therapeutic functionalities, enhancing our understanding of SHP1 biological mechanisms, and positively impacting novel drug development.
Collapse
Affiliation(s)
- Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| | - Yi-Xin Dong
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| | - Suya Gan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| | - Wenran Gao
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Li
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City, Wuxi, Jiangsu, 214105, China.
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Yu-Bo Zhou
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
8
|
Barman D, Rajamalli P, Bidkar AP, Sarmah T, Ghosh SS, Zysman-Colman E, Iyer PK. Modulation of Donor in Purely Organic Triplet Harvesting AIE-TADF Photosensitizer for Image-guided Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409533. [PMID: 39780649 DOI: 10.1002/smll.202409533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively. Further, different donor strengths and unique aggregations (H-, J- and X-type packings) greatly influence their color-tunable up-converted luminescence and endow them with superb dispersibility in water. The confocal microscopy-based cellular uptake study confirms the successful internalization of the nano-probes, while BTMCz enables the generation of reactive oxygen species (singlet oxygen) under white-light irradiation, enabling the efficient killing of cancer cells.
Collapse
Affiliation(s)
- Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Anil Parsram Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
| | - Tapashi Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
9
|
Qin W, Li H, Chen J, Qiu Y, Ma L, Nie L. Amphiphilic hemicyanine molecular probes crossing the blood-brain barrier for intracranial optical imaging of glioblastoma. SCIENCE ADVANCES 2025; 11:eadq5816. [PMID: 39813352 PMCID: PMC11734739 DOI: 10.1126/sciadv.adq5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull. Abnormal leakage of IVTPO adjacent to the developing tumor is unambiguously observed at an early stage of tumor development prior to impairment of BBB integrity, as assessed by commercial Evans blue (EB). Compared with EB, IVTPO demonstrates enhanced optical imaging capability and improved tumor-targeting efficacy. These results offer encouraging insights into medical diagnosis of intracranial GBM.
Collapse
Affiliation(s)
- Wei Qin
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Honghui Li
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jiali Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yang Qiu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Limin Ma
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
| |
Collapse
|
10
|
Rakhi SF, Reza AHMM, Davies B, Wang J, Qin J, Tang Y. Improvement of growth and lipid accumulation in microalgae with aggregation-induced emission-based nanomaterials towards sustainable lipid production. NANOSCALE 2025; 17:1308-1316. [PMID: 39620719 DOI: 10.1039/d4nr02361g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microalgae are a hot research area owing to their promising applications for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content in algal biomass is still a challenge that needs to be resolved for commercial use. The current approaches are not satisfactory for achieving high growth and lipid accumulation in algal cells. This research aims to understand and evaluate the effects of light spectral shift on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. As a novel approach, an aggregation-induced emission luminogen (AIEgen), TPA-A (C21H19NO), was introduced into the culture media for tailoring the wavelength to a specific range to enhance photosynthesis and lipid production. Algal growth almost doubled at 10 μM TPA-A exposure compared to the control. A significant increase (*p < 0.05) in lipid accumulation was observed in the algal cells exposed to TPA-A. The elevated level of chlorophyll was attributed to fast algal growth. Furthermore, this luminogen was highly biocompatible (∼97% cell viability) on the HaCaT cell line at a concentration of 10 μM in under light conditions. No residues of TPA-A were detected after 7 days in culture media, indicating that this AIEgen was easily degradable. This AIE-based nanomaterial overcomes the conventional fluorophores' aggregation-caused quenching effect by providing increased fluorescence with AIEgen. This approach for lipid induction with increased algal growth provides potential for the algal biofactory to produce sustainable bioproducts and eco-friendly biofuels.
Collapse
Affiliation(s)
- Sharmin Ferdewsi Rakhi
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| | - Abdul Hakim Mohammad Mohsinul Reza
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| | - Brynley Davies
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
| | - Jianzhong Wang
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
| | - Youhong Tang
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| |
Collapse
|
11
|
Suo M, Zhang T, Liang XJ. Biomedical applications of the engineered AIEgen-lipid nanostructure in vitroand in vivo. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012006. [PMID: 39688206 DOI: 10.1088/2516-1091/ad9aeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Since the concept of aggregation-induced emission (AIE) was first coined by Tang and co-workers, AIE-active luminogens (AIEgens) have drawn widespread attention among chemists and biologists due to their unique advantages such as high fluorescence efficiency, large Stokes shift, good photostability, low background noise, and high biological visualization capabilities in the aggregated state, surpassing conventional fluorophores. A growing number of AIEgens have been engineered to possess multifunctional properties, including near-infrared emission, two-photon absorption, reactive oxygen species (ROS) generation and photothermal conversion, making them suitable for deep-tissue imaging and phototherapy. AIEgens show great potential in biomedical applicationsin vitroandin vivo. However, despite the favorable photophysical stability and ROS/heat generation capability in the aggregated state, limitations including uncontrolled size, low targeting efficiency, and unexpected dispersion in physiological environments have hindered their biomedical applications. The combination of AIEgens with lipids offers a simple, promising, and widely adopted solution to these challenges. This review article provides an overview of the synthesis methods of AIEgen-lipid nanostructures and their applications in the biomedical engineering field, aiming to serve as a guideline for developing these AIEgens-lipid nanostructures with promising biological applications.
Collapse
Affiliation(s)
- Meng Suo
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Tianfu Zhang
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Xing-Jie Liang
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Huang JD, Mei LJ, Kuang W, Zhu FY, Tian R, Wei W, Li C, Wang YL, Zhou Y, Zhu MQ. Super-resolution fluorescence imaging of PEDOT:PSS films. MATERIALS HORIZONS 2024; 11:6497-6503. [PMID: 39404621 DOI: 10.1039/d4mh01223b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a popular conduction polymer and widely used in organic electronics, bioelectronics and printed electronics. It is believed that PEDOT:PSS has a core-shell colloidal structure dispersed in the formulation. However, the size and surface functional groups of the PEDOT:PSS dispersion and films remain to be visualized. Here, we have introduced the concept of aggregation-induced emission (AIE) to super-resolution imaging for designing the cationic probe TPE-4N+ and accomplished the nanoscale optical visualization of PEDOT:PSS films through reversible electrostatic interactions. Information on the PEDOT:PSS size and surface charge has been successfully collected via super-resolution imaging. The full-width at half-maximum (FWHM) of PSS nanoparticles was observed to be approximately 30-40 nm. The super-resolution fluorescence imaging method can also be used to monitor the PEDOT:PSS film after acid treatment. It was observed that PSS chains were washed away when exposed to concentrated sulfuric acid, which explains why concentrated sulfuric acid treatment greatly improves the conductivity of the PEDOT:PSS film. Super-resolution imaging is promising as an effective method for characterizing PEDOT:PSS films.
Collapse
Affiliation(s)
- Jun-Dan Huang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Li-Jun Mei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Weibing Kuang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Feng-Yu Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Wanxia Wei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
13
|
Liu MX, Liu YC, Cai YT, Gu YY, Zhu YQ, Zhang N, Zhu WZ, Liu YH, Yu L, Zhang QT, Zhang XL. Self-Produced O 2 CNs-Based Nanocarriers of DNA Hydrophobization Strategy Triggers Photodynamic and Mitochondrial-Derived Ferroptosis for Hepatocellular Carcinoma Combined Treatment. Adv Healthc Mater 2024; 13:e2402110. [PMID: 39205543 DOI: 10.1002/adhm.202402110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hypoxia can aggravate tumor occurrence, development, invasion, and metastasis, and greatly inhibit the photodynamic therapy (PDT) effect. Herein, carbon nitride (CNs)-based DNA and photosensitizer co-delivery systems (BPSCNs) with oxygen-producing functions are developed to address this problem. Selenide glucose (Seglu) is used as the dopant to prepare red/NIR-active CNs (SegluCNs). The tumor-targeting unit Bio-PEG2000 is utilized to construct BPSCNs nanoparticles through esterification reactions. Furthermore, DNA hydrophobization is realized via mixing P53 gene with a positively charged mitochondrial-targeted near-infrared (NIR) emitting photosensitizer (MTTPY), which is encapsulated in non-cationic BPSCNs for synergistic delivery. Ester bonds in BPSCNs@MTTPY-P53 complexes can be disrupted by lipase in the liver to facilitate P53 release, upregulated P53 expression, and promoted HIF-1α degradation in mitochondria. In addition, the oxygen produced by the complexes improved the hypoxic microenvironment of hepatocellular carcinoma (HCC), synergistically downregulated HIF-1α expression in mitochondria, promoted mitochondrial-derived ferroptosis and enhanced the PDT effect of the MTTPY unit. Both in vivo and in vitro experiments indicated that the transfected P53-DNA, produced O2 and ROS by these complexes synergistically led to mitochondrial-derived ferroptosis in hepatoma cells through the HIF-1α/SLC7A11 pathway, and completely avoiding PDT resistance caused by hypoxia, exerting a significant therapeutic role in HCC treatment.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yan-Chao Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yu-Ting Cai
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Ya-Qi Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Nan Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Wei-Zhong Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yong-Hong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Qi-Tao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
14
|
Zhuang J, Pan Q, Zhou C, Cai Z, Li N, Zhao N. The cyano positional isomerism strategy for constructing mitochondria-targeted AIEgens with type I reactive oxygen species generation capability. J Mater Chem B 2024; 12:11359-11367. [PMID: 39405092 DOI: 10.1039/d4tb01847h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
In this work, a series of cationic luminogens (designated as PSMP isomers) were developed based on the cyano positional isomerism strategy. The isomerism of the cyano substituent on the molecular skeleton can finely regulate the optical behaviour, the type of photoinduced reactive oxygen species (ROS), and mitochondria-targeted capability of isomers. Interestingly, PSMP-4, with the cyano group installed at an appropriate location, exhibits a special aggregation-induced emission effect and potent O2˙- generation efficacy through the type I photochemistry pathway. Notably, PSMP-4 can accumulate in mitochondria with high specificity. Taking advantage of its excellent photostability, PSMP-4 realizes in situ mitochondria imaging in a washing-free manner and sensitive response to the change of mitochondrial membrane potential. The integration of comprehensive photophysical properties and mitochondrial specificity enable PSMP-4 to successfully trigger the death of cancer cells through an efficient type I photodynamic therapy process both in vitro and in multicellular tumor spheroid models.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Quan Pan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Chunli Zhou
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Ziying Cai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| |
Collapse
|
15
|
Quan YY, Pan T, Zhang Z, Wang S, Wang G, Yu L, Wang Y, Zang XF, Zhang F, Ye X, Pan X, Huang ZS. Three-in-One: Molecular Engineering of D-A-π-A Featured Type I and Type II Near-Infrared AIE Photosensitizers for Efficient Photodynamic Cancer Therapy and Bacteria Killing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402854. [PMID: 39087384 DOI: 10.1002/smll.202402854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Bacterial infections are closely correlated with the genesis and progression of cancer, and the elimination of cancer-related bacteria may improve the efficacy of cancer treatment. However, the combinatorial therapy that utilizes two or more chemodrugs will increase potential adverse effects. Image-guided photodynamic therapy is a highly precise and potential therapy to treat tumor and microbial infections. Herein, four donor-acceptor-π-bridge-acceptor (D-A-π-A) featured near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) (TQTPy, TPQTPy, TQTC, and TPQTC) with type I and type II reaction oxygen species (ROS) generation capabilities are synthesized. Notably, TQTPy shows mitochondria targeted capacity, the best ROS production efficiency, long-term tumor retention capacity, and more importantly, the three-in-one fluorescence imaging guided therapy against both tumor and microbial infections. Both in vitro and in vivo results validate that TQTPy performs well in practical biomedical application in terms of NIR-fluorescence imaging-guided photodynamic cancer diagnosis and treatment. Moreover, the amphiphilic and positively charged TQTPy is able to specific and ultrafast discrimination and elimination of Gram-positive (G+) Staphylococcus aureus from Gram-negative (G-) Escherichia coli and normal cells. This investigation provides an instructive way for the construction of three-in-one treatment for image-guided photodynamic cancer therapy and bacteria elimination.
Collapse
Affiliation(s)
- Yun-Yun Quan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tingting Pan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Taizhou Traditional Chinese Medicine Hospital, Taizhou, 318001, China
| | - Zhongda Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shihua Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guiyun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lichao Yu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ye Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xu-Feng Zang
- College of Science, Huzhou University, Huzhou, 313000, China
| | - Fangjun Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoxia Ye
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuebo Pan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zu-Sheng Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
16
|
You Y, Lin S, Tang C, Li Y, Yan D, Wang D, Chen X. Dual-/multi-organelle-targeted AIE probes associated with oxidative stress for biomedical applications. J Mater Chem B 2024; 12:8812-8824. [PMID: 39150370 DOI: 10.1039/d4tb01440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In situ monitoring of biological processes between different organelles upon oxidative stress is one of the most important research hotspots. Fluorescence imaging is especially suitable for biomedical applications due to its distinct advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and in situ monitoring capabilities. However, most fluorescent probes can only achieve light-up imaging of single organelles, thus the combined use of two or more probes is usually required for monitoring biological processes between organelles, which can suffer from tedious staining and washing procedures, increased cytotoxicity and poor photostability. Exogenetic oxidants can affect broad-spectrum subcellular organelles, which are not conducive to in situ monitoring of biological processes between specific organelles. To tackle these challenges, a series of dual-/multi-organelle-targeted aggregation-induced emission (AIE) probes associated with oxidative stress have been designed and developed in the past few years. Herein, the recent progress of these AIE probes is summarized in biomedical applications, such as apoptosis monitoring, interplay between organelles, microenvironmental changes of organelles, organelle morphology tracking, precise cancer therapy, and so forth. Moreover, the further outlook for dual-/multi-organelle-targeted AIE probes is discussed, aiming to promote innovative research in biomedical applications.
Collapse
Affiliation(s)
- Yuanyuan You
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Songling Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Chengwei Tang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuchao Li
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohui Chen
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
17
|
Feng N, Peng Z, Zhang X, Lin Y, Hu L, Zheng L, Tang BZ, Zhang J. Strategically engineered Au(I) complexes for orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. Nat Commun 2024; 15:8187. [PMID: 39294133 PMCID: PMC11410803 DOI: 10.1038/s41467-024-52458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Cancer is a significant cause of death around the world, and for many varieties, treatment is not successful. Therefore, there is a need for the development of innovative, efficacious, and precisely targeted treatments. Here, we develop a series of Au(I) complexes (1-4) through rational manipulation of ligand structures, thereby achieving tumor cell specific targeting and orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. A comprehensive exploration based on in vitro and in vivo female mice experimentation shows that complex 4 exhibits proficiency in specific tumor imaging, endoplasmic reticulum targeting, and has robust therapeutic capabilities. Mechanistic elucidation indicates that the anticancer effect derives from the synergistic actions of thioredoxin reductase inhibition, highly efficient reactive oxygen species production and immunogenic cell death. This work presents a report on a robust Au(I) complex integrating three therapeutic modalities within a singular system. The strategy presented in this work provides a valuable reference for the development of high-performance therapeutic agents.
Collapse
Affiliation(s)
- Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Peng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yiling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Obaid G, Celli JP, Broekgaarden M, Bulin AL, Uusimaa P, Pogue B, Hasan T, Huang HC. Engineering photodynamics for treatment, priming and imaging. NATURE REVIEWS BIOENGINEERING 2024; 2:752-769. [PMID: 39927170 PMCID: PMC11801064 DOI: 10.1038/s44222-024-00196-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 02/11/2025]
Abstract
Photodynamic therapy (PDT) is a photochemistry-based treatment approach that relies on the activation of photosensitizers by light to locally generate reactive oxygen species that induce cellular cytotoxicity, in particular for the treatment of tumours. The cytotoxic effects of PDT are depth-limited owing to light penetration limits in tissue. However, photodynamic priming (PDP), which inherently occurs during PDT, can prime the tissue microenvironment to adjuvant therapies beyond the direct PDT ablative zone. In this Review, we discuss the underlying mechanisms of PDT and PDP, and their application to the treatment of cancer, outlining how PDP can permeabilize the tumour vasculature, overcome biological barriers, modulate multidrug resistance, enhance immune responses, increase tumour permeability and enable the photochemical release of drugs. We further examine the molecular engineering of photosensitizers to improve their pharmacodynamic and pharmacokinetic properties, increase their molecular specificity and allow image guidance of PDT, and investigate engineered cellular models for the design and optimization of PDT and PDP. Finally, we discuss alternative activation sources, including ultrasound, X-rays and self-illuminating compounds, and outline key barriers to the clinical translation of PDT and PDP.
Collapse
Affiliation(s)
- Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | - Mans Broekgaarden
- Grenoble Alpes University, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Laure Bulin
- Grenoble Alpes University, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | | | - Brian Pogue
- Department of Medical Physics, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
19
|
Zhang Y, Miao R, Sha H, Ma W, Huang Y, Chen H. A universal strategy for constructing high-performance silica-based AIE materials for biomedical application. J Colloid Interface Sci 2024; 669:419-429. [PMID: 38723531 DOI: 10.1016/j.jcis.2024.04.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
As an emerging fluorophore, aggregation-induced emission luminogens (AIEgens) have received widespread attention in recent years, but the inherent drawbacks of AIEgens, such as the poor water-solubility and insufficient fluorescence stability in complex environments, restrict their performance in practical applications. Herein, we report a universal strategy based on hydrophobic dendritic mesoporous silica (HMSN) that can integrate different AIE molecules to construct multi-color fluorescent AIE materials. Specifically, HMSN with central radial pores was used as a powerful carrier for direct loading AIE molecules and restricting their intramolecular motions. Due to the pore-domain restriction effect and hydrophobic interaction, the obtained silica-based AIE materials have bright fluorescence with a maximum quantum yield of 68.38%, high colloidal/fluorescence stability, and excellent biosafety. Further, these silica-based AIE materials can be conjugated with functional antibodies to obtain probes with different targetability. After integration with immunomagnetic beads, the prepared detection probes achieved the quantitative detection of cardiac troponin I with the limit of detection (LOD) of 0.508 ng/mL. Overall, the targeting probes stemming from silica-based AIE materials can not only achieve cell-specific imaging, but quantify the number of Jurkat cells (LOD = 270 cells/mL) to further determine the specific etiology of the disease.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Runjie Miao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Haifeng Sha
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China
| | - Wenyan Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yuefeng Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
20
|
Qin B, Fu SJ, Xu XF, Yang JJ, Wang Y, Wang LN, Huang BX, Zhong J, Wu WY, Lu HA, Law BYK, Wang N, Wong IN, Wong VKW. Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine? Pharmacol Res 2024; 208:107349. [PMID: 39151679 DOI: 10.1016/j.phrs.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.
Collapse
Affiliation(s)
- Bo Qin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shi-Jie Fu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiong-Fei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Jiu-Jie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Breast, Thyroid and Vascular Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Lin-Na Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Bai-Xiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Wan-Yu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Heng-Ao Lu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Nick Wang
- New Age Technology (Asia) Limited, TML Tower, 3 Hoi Shing Road, Tsuen Wan, Hong Kong
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macao.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| |
Collapse
|
21
|
Li X, Zhang L, Liu Z, Wang R, Jiao T. Recent progress in hydrogels combined with phototherapy for bacterial infection: A review. Int J Biol Macromol 2024; 274:133375. [PMID: 38914386 DOI: 10.1016/j.ijbiomac.2024.133375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Phototherapy has become one of the most effective antibacterial methods due to its associated lack of drug resistance and its good antibacterial effect. For the purpose of avoiding the aggregation and premature release of photosensitive/photothermal agents during phototherapy, they can be mixed into three-dimensional hydrogels. The combination of hydrogels and phototherapy combines the merits of both hydrogels and phototherapy, overcomes the disadvantages of traditional antibacterial methodologies, and has broad application prospects. This review presents recent advancements in phototherapeutic antibacterial hydrogels including photodynamic antibacterial hydrogels, photothermal antibacterial hydrogels, photodynamic and photothermal synergistic antibacterial hydrogels, and other synergistic antibacterial hydrogels involving phototherapy.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
22
|
Singh D, Ghorpade M, Regar R, Collot M, Soppina V, Kanvah S. Fluorescent styrenes for mitochondrial imaging and viscosity sensing. Photochem Photobiol 2024; 100:936-945. [PMID: 38385897 DOI: 10.1111/php.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Fluorophores bearing cationic pendants, such as the pyridinium group, tend to preferentially accumulate in mitochondria, whereas those with pentafluorophenyl groups display a distinct affinity for the endoplasmic reticulum. In this study, we designed fluorophores incorporating pyridinium and pentafluorophenyl pendants and examined their impact on sub-cellular localization. Remarkably, the fluorophores exhibited a notable propensity for the mitochondrial membrane. Furthermore, these fluorophores revealed dual functionality by facilitating the detection of viscosity changes within the sub-cellular environment and serving as heavy-atom-free photosensitizers. With easy chemical tunability, wash-free imaging, and a favorable signal-to-noise ratio, these fluorophores are valuable tools for imaging mitochondria and investigating their cellular processes.
Collapse
Affiliation(s)
- Deepmala Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Mohini Ghorpade
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Ramprasad Regar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies UMR 7021, CNRS/Université de Strasbourg, Strasbourg, France
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
23
|
Dong YX, Gao LX, Cao Q, Cao ZT, Gan SY, Li J, Zhu YL, Zhou YB, Zhang C, Wang WL. Synthesis, Fluorescence, and Bioactivity of Novel Isatin Derivatives. J Phys Chem B 2024; 128:6123-6133. [PMID: 38875519 DOI: 10.1021/acs.jpcb.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The isatin group is widespread in nature and is considered to be a privileged building block for drug discovery. In order to develop novel SHP1 inhibitors with fluorescent properties as tools for SHP1 biology research, this work designed and synthesized a series of isatin derivatives. The presentive compound 5a showed good inhibitory activity against SHP1PTP with IC50 of 11 ± 3 μM, displayed about 92% inhibitory rate against MV-4-11 cell proliferation at the concentration of 20 μM, exhibited suitable fluorescent properties with a long emission wavelength and a large Stokes shift, and presented blue fluorescent imaging in HeLa cells with low cytotoxicity. This study could offer chemical tool to further understand SHP1 biology and develop novel SHP1 inhibitors in therapy.
Collapse
Affiliation(s)
- Yi-Xin Dong
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Cao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Zi-Tong Cao
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Ya Gan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Jia Li
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan 528400, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu 214122, China
| |
Collapse
|
24
|
Khatun MN, Nandy S, Roy H, Ghosh SS, Kumar S, Iyer PK. Sulphur-atom positional engineering in perylenimide: structure-property relationships and H-aggregation directed type-I photodynamic therapy. Chem Sci 2024; 15:9298-9317. [PMID: 38903228 PMCID: PMC11186329 DOI: 10.1039/d4sc01180e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
An innovative design strategy of placing sulfur (S)-atoms within the pendant functional groups and at carbonyl positions in conventional perylenimide (PNI-O) has been demonstrated to investigate the condensed state structure-property relationship and potential photodynamic therapy (PDT) application. Incorporation of simply S-atoms at the peri-functionalized perylenimide (RPNI-O) leads to an aggregation-induced enhanced emission luminogen (AIEEgen), 2-hexyl-8-(thianthren-1-yl)-1H-benzo[5,10]anthra[2,1,9-def]isoquinoline-1,3(2H)-dione (API), which achieves a remarkable photoluminescence quantum yield (Φ PL) of 0.85 in aqueous environments and established novel AIE mechanisms. Additionally, substitution of the S-atom at the carbonyl position in RPNI-O leads to thioperylenimides (RPNI-S): 2-hexyl-8-phenyl-1H-benzo[5,10]anthra[2,1,9-def]isoquinoline-1,3(2H)-dithione (PPIS), 8-([2,2'-bithiophen]-5-yl)-2-hexyl-1H-benzo[5,10]anthra[2,1,9-def]isoquinoline-1,3(2H)-dithione (THPIS), and 2-hexyl-8-(thianthren-1-yl)-1H-benzo[5,10]anthra[2,1,9-def]isoquinoline-1,3(2H)-dithion (APIS), with distinct photophysical properties (enlarged spin-orbit coupling (SOC) and Φ PL ≈ 0.00), and developed diverse potent photosensitizers (PSs). The present work provides a novel SOC enhancement mechanism via pronounced H-aggregation. Surprisingly, the lowest singlet oxygen quantum yield (Φ Δ) and theoretical calculation suggest the specific type-I PDT for RPNI-S. Interestingly, RPNI-S efficiently produces superoxide (O2˙-) due to its remarkably lower Gibbs free energy (ΔG) values (THPIS: -40.83 kcal mol-1). The non-toxic and heavy-atom free very specific thio-based PPIS and THPIS PSs showed selective and efficient PDT under normoxia, as a rare example.
Collapse
Affiliation(s)
- Mst Nasima Khatun
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-3612582349
| | - Satyendu Nandy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Hirakjyoti Roy
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-3612582349
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati 781039 Assam India
| |
Collapse
|
25
|
Wang Z, Zhou Y, Hao Y, Zhao Z, Gao A, Ma H, Zhang P, Shen Q, Xu R, Xu Y, Dang D, Meng L. One Stone, Two Birds: High-Brightness Aggregation-Induced Emission Photosensitizers for Super-Resolution Imaging and Photodynamic Therapy. NANO LETTERS 2024; 24:3005-3013. [PMID: 38416810 DOI: 10.1021/acs.nanolett.3c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yu Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ying Hao
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Zhiqin Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Anran Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Qifei Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ruohan Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
26
|
Zhang D, Wang X, Fan Z, Zhao Y, Xia X, Li F. In Situ-Grown 2D Perovskite Based on π-Conjugated Aggregation-Induced Emission Organic Spacer Boosting the Efficiency and Stability of 2D-3D Heterostructured Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38436971 DOI: 10.1021/acsami.3c15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The two-dimensional-three-dimensional (2D-3D) heterostructured perovskite solar cells (PSCs) have drawn widespread interest, wherein the organic spacer plays a significant role in the photovoltaic performance. Herein, a novel π-conjugated organic spacer with the aggregation-induced emission (AIE) property, (Z)-2-([1,1'-biphenyl]-4-yl)-3-(5-(4-(3-aminopropoxy)phenyl)thiophen-2-yl)acrylonitrile (BPCSA-S), is designed and synthesized, which is successfully applied for the in situ construction of 2D-3D heterostructured PSCs via the two-step solution method. By virtue of the functional groups (i.e., cyano, thiophene, and amino) in BPCSA-S, the BPCSA-S organic spacer can trigger the in situ growth of 2D perovskites, which will serve as the template for the heteroepitaxial growth of 3D perovskites, thus obtaining a 2D-3D heterostructured film with high-quality and few defects. More pleasingly, benefiting from the AIE property and delocalized π-electrons in the π-conjugated BPCSA-S organic spacer, excellent photosensitization process and carrier transport can be achieved. Consequently, the resultant 2D-3D heterostructured PSCs yield a pleasing PCE of 22.07%, accompanied by mitigatory hysteresis, as well as enhanced stability. Our research shows a hopeful multifunctional organic spacer approach using the novel π-conjugated AIE organic spacer for high-performance PSCs.
Collapse
Affiliation(s)
- Dan Zhang
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaofeng Wang
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Zhiping Fan
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yixing Zhao
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xuefeng Xia
- School of Electrical Engineering, Nanchang Institute of Technology, 289 Tianxiang Avenue, Nanchang 330099, China
| | - Fan Li
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| |
Collapse
|
27
|
Liang J, Han J, Zhuang Y, Chen G, Li Y. Mitochondria-Associated Transcriptome Profiling via Localizable Aggregation-Induced Emission Photosensitizers in Live Cells. ACS Chem Biol 2024; 19:419-427. [PMID: 38264802 DOI: 10.1021/acschembio.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In recent decades, there has been increasing interest in studying mitochondria through transcriptomic research. Various exogenous fusion protein-based proximity labeling methods have been reported that focus on the site of one particular protein/peptide and might also influence the corresponding localization or interactome. To enable unbiased and high spatial-resolution profiling of mitochondria-associated transcriptomes in live cells, a flexible RNA proximity labeling approach was developed using aggregation-induced emission (AIE) type photosensitizers (PSs) that possess great mitochondria-targeting capabilities. Their accumulation in an enclosed mitochondrial environment tends to enhance the fluorescence emission and reactive oxygen species generation. By comparing the in vitro optical properties, photosensitization processes, as well as the in cellulo mitochondrial specificity and RNA labeling performance of four AIE PSs, high-throughput sequencing analysis was conducted using TFPy-mediated RNA proximity labeling in live HeLa cells. This approach successfully captured a comprehensive list of transcripts, including mitochondria-encoded RNAs, as well as some nuclear-derived RNAs located at the outer mitochondrial membrane and interacting organelles. This small molecule-based proximity labeling method bypasses complex genetic manipulation and transfection steps, making it readily applicable for diverse research purposes.
Collapse
Affiliation(s)
- Jiying Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jinghua Han
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yuan Zhuang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, China
| | - Ying Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong 999077, China
| |
Collapse
|
28
|
Zhu W, Huang L, Wu C, Liu L, Li H. Reviewing the evolutive ACQ-to-AIE transformation of photosensitizers for phototheranostics. LUMINESCENCE 2023. [PMID: 38148620 DOI: 10.1002/bio.4655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Photodynamic therapy (PDT) represents an emerging noninvasive treatment technique for cancers and various nonmalignant diseases, including infections. During the process of PDT, the physical and chemical properties of photosensitizers (PSs) critically determine the effectiveness of PDT. Traditional PSs have made great progress in clinical applications. One of the challenges is that traditional PSs suffer from aggregation-caused quenching (ACQ) due to their discotic structures. Recently, aggregation-induced emission PSs (AIE-PSs) with a twisted propeller-shaped conformation have been widely concerned because of high reactive oxygen species (ROS) generation efficiency, strong fluorescence efficiency, and resistance to photobleaching. However, AIE-PSs also have some disadvantages, such as short absorption wavelengths and insufficient molar absorption coefficient. When the advantages and disadvantages of AIE-PSs and ACQ-PSs are complementary, combining ACQ-PSs and AIE-PSs is a "win-to-win" strategy. As far as we know, the conversion of traditional representative ACQ-PSs to AIE-PSs for phototheranostics has not been reviewed. In the review, we summarize the recent progress on the ACQ-to-AIE transformation of PSs and the strategies to achieve desirable theranostic applications. The review would be helpful to design more efficient ACQ-AIE-PSs in the future and to accelerate the development and clinical application of PDT.
Collapse
Affiliation(s)
- Wei Zhu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Shengfa Textiles Printing and Dyeing Co., Ltd., Huzhou, China
| | - Lin Huang
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chao Wu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lingli Liu
- Transfar Zhilian Co. Ltd., Hangzhou, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi, China
| |
Collapse
|
29
|
Dong Y, Liu Y, Tu Y, Yuan Y, Wang J. AIEgens Cross-linked Iron Oxide Nanoparticles Synchronously Amplify Bimodal Imaging Signals in Situ by Tumor Acidity-Mediated Click Reaction. Angew Chem Int Ed Engl 2023; 62:e202310975. [PMID: 37950819 DOI: 10.1002/anie.202310975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
Activatable dual-modal molecular imaging probes present a promising tool for the diagnosis of malignant tumors. However, synchronously enhancing dual-modal imaging signals under a single stimulus is challenging. Herein, we propose an activatable bimodal probe that integrates aggregation-induced emission luminogens (AIEgens) and iron oxide nanoparticles (IOs) to synergistically enhance near-infrared fluorescence (NIRF) intensity and magnetic resonance (MR) contrast through a tumor acidity-mediated click reaction. Tumor acidity-responsive IOs containing dibenzocyclooctyne groups (termed cDIOs) and AIEgens containing azide groups (termed AATs) can be covalently cross-linked in response to tumor acidity, which leads to a simultaneous enhancement in NIRF intensity (≈12.4-fold) and r2 relaxivity (≈2.8-fold). cDIOs and AATs were effectively activated in mice orthotropic breast tumor, and the cross-linking prolonged their retention in tumor, further augmenting the bimodal signals and expanding imaging time frame. This facile strategy leverages the inherent properties of probes themselves and demonstrates promise in future translational studies.
Collapse
Affiliation(s)
- Yansong Dong
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ye Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yalan Tu
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
30
|
Li XL, Han N, Zhang RZ, Niu KK, Dong RZ, Liu H, Yu S, Wang YB, Xing LB. Host-Guest Photosensitizer of a Cationic BODIPY Derivative and Cucurbit[7]uril for High-Efficiency Visible Light-Induced Photooxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55803-55812. [PMID: 37983520 DOI: 10.1021/acsami.3c12827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability. It can form a 1:1 complex (TMB-CB[7]) with cucurbit[7]uril (CB[7]) through host-guest interactions in the aqueous solution and shows obvious fluorescence enhancement. The reactive oxygen species (ROS) including superoxide anion radical (O2·-) and singlet oxygen (1O2) generation ability of TMB-CB[7] were promoted compared with that of TMB in the aqueous solution. More interestingly, the ROS generated from TMB-CB[7] can be used as PCs for aerobic cross dehydrogenation coupling reactions and photooxidation reactions in water with high yields of 89 and 95%, respectively. Therefore, the utilization of a host-guest PS presents a novel and environmentally friendly approach for conducting photocatalyzed organic processes under ambient conditions using visible light.
Collapse
Affiliation(s)
- Xin-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
31
|
Liu Q, Zhuang W, Chen J, Li S, Li C, Ma D, Chen M. A turn-on fluorescent probe for lipid-targeting imaging in human arterial aneurysm and fibrocalcific stenotic aortic valve. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123030. [PMID: 37354855 DOI: 10.1016/j.saa.2023.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Fluorescence imaging techniques have shown remarkable performance in studying the biological functions of lipid droplets (LDs). However, the biological applications of the commercially available LDs probes suffer from insufficient specificity and low signal/noise ratio (SNR). Herein, we presented a novel near-infrared (NIR) lipid activatable fluorescence probe, namely Me2NND, with extremely low emission in water but significantly enhanced emission in the lipid environment. Me2NND presented good biocompatibility and impressive LDs-specific imaging ability in cells and tissues. Moreover, Me2NND has also shown good photostability and it could efficiently locate the distribution of LDs in human pathological samples of aortic aneurysms and fibrocalcific stenotic aortic valves. This study provided a novel turn-on probe Me2NND and would improve the bio-applications of LDs-specific probes.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China.
| | - Jingruo Chen
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Shufen Li
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Chengming Li
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Di Ma
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Mao Chen
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China.
| |
Collapse
|
32
|
Li D, Shi H, Qi Q, Chang B, Jiang Y, Qian K, Guan X, Kang P, Ma N, Zhang Y, Zhang Z, Shi X, Qu C, Wu Y, Chen W, Chen H, Li B, Chen L, Li Z, Ma S, Xu L, Zhang Y, Tian J, Hu Z, Jia W, Cheng Z. Clinically Translatable Solid-State Dye for NIR-II Imaging of Medical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303491. [PMID: 37946702 PMCID: PMC10754084 DOI: 10.1002/advs.202303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Indexed: 11/12/2023]
Abstract
Medical devices are commonly implanted underneath the skin, but how to real-time noninvasively monitor their migration, integrity, and biodegradation in human body is still a formidable challenge. Here, the study demonstrates that benzyl violet 4B (BV-4B), a main component in the FDA-approved surgical suture, is found to produce fluorescence signal in the first near-infrared window (NIR-I, 700-900 nm) in polar solutions, whereas BV-4B self-assembles into highly crystalline aggregates upon a formation of ultrasmall nanodots and can emit strong fluorescence in the second near-infrared window (NIR-II, 1000-1700 nm) with a dramatic bathochromic shift in the absorption spectrum of ≈200 nm. Intriguingly, BV-4B-involved suture knots underneath the skin can be facilely monitored during the whole degradation process in vivo, and the rupture of the customized BV-4B-coated silicone catheter is noninvasively diagnosed by NIR-II imaging. Furthermore, BV-4B suspended in embolization glue achieves hybrid fluorescence-guided surgery (hybrid FGS) for arteriovenous malformation. As a proof-of-concept study, the solid-state BV-4B is successfully used for NIR-II imaging of surgical sutures in operations of patients. Overall, as a clinically translatable solid-state dye, BV-4B can be applied for in vivo monitoring the fate of medical devices by NIR-II imaging.
Collapse
|
33
|
Huang X, Chu C, Shi C, Zhang J, Yan B, Shan F, Wang D, Shi Y, Peng C, Tang BZ. Seeing is believing: Efficiency evaluation of multifunctional ionic-dependent AIEgens for tuberculosis. Biomaterials 2023; 302:122301. [PMID: 37690379 DOI: 10.1016/j.biomaterials.2023.122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant public health threat with high rates of infection and mortality. Rapid and reliable theranostics of TB are essential to control transmission and shorten treatment duration. In this study, we report two cationic aggregation-inducing emission luminogens (AIEgens) named TTVP and TTPy, which have different functional charged moieties, to investigate their potential for simultaneous tracing and photodynamic therapy in TB infection. TTVP and TTPy exhibit intrinsic positive charges, excellent water solubility, and near-infrared (NIR) emission. Based on ionic-function relationships, TTVP, with more positive charges, demonstrates a stronger binding affinity to Mycobacterium marinum (M.m), (a close genetic relative of Mtb), compared to TTPy. Both TTVP and TTPy exhibit high efficiency in generating reactive oxygen species (ROS) when exposed to white light irradiation, enabling effective photodynamic killing of M.m in vitro. Additionally, we achieved long-term, real-time, noninvasive, continuous tracing, and evaluated therapeutic performance in vivo. Notably, TTVP outperformed TTPy in intracellular killing of M.m, suggesting a possible correlation between the labeling and photodynamic killing abilities of AIEgens. These findings provide valuable insights and a design basis for cationic AIEgens in TB research, offering potential advancements in TB theranostics.
Collapse
Affiliation(s)
- Xueni Huang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China; Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Chengshengze Chu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Chunzi Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiulong Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Bo Yan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Chen Peng
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
34
|
Wu Y, Chen X, Zhu L, Wang D, Li X, Song J, Wang D, Yu X, Li Y, Tang BZ. Endoplasmic Reticulum-Targeted Aggregation-Induced Emission Luminogen for Synergetic Tumor Ablation with Glibenclamide. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903083 DOI: 10.1021/acsami.3c10940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Photodynamic therapy based on fluorescence illumination of subcellular organelles and in situ bursts of reactive oxygen species (ROS) has been recognized as a promising strategy for cancer theranostics. However, the short life of ROS and unclarified anticancer mechanism seriously restrict the application. Herein, we rationally designed and facilely synthesized a 2,6-dimethylpyridine-based triphenylamine (TPA) derivative TPA-DMPy with aggregation-induced emission (AIE) features and production of type-I ROS. Except for its selective binding to the endoplasmic reticulum (ER), TPA-DMPy, in synergy with glibenclamide, a medicinal agent used against diabetes, induced significant apoptosis of cancer cells in vitro and in vivo. Additionally, TPA-DMPy greatly incited the release of calcium from ER upon light irradiation to further aggravate the depolarization of ER membrane potential caused by glibenclamide, thus inducing fatal ER stress and crosstalk between ER and mitochondria. Our study extends the biological design and application of AIE luminogens and provides new insights into discovering novel anticancer targets and agents.
Collapse
Affiliation(s)
- Yifan Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaohui Chen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Liwei Zhu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Xue Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiyong Yu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
35
|
Zhou X, Wang X, Zhang TY, Shen L, Yang XJ, Zhang QL, Xu H, Redshaw C, Feng X. Pyrene-Based Cationic Fluorophores with High Affinity for BF 4-, PF 6-, and ClO 4- Anions: Detection and Removal. J Org Chem 2023; 88:13520-13527. [PMID: 37677077 DOI: 10.1021/acs.joc.3c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Anions play an indispensable role in the balance and regulation of the ecological environment and human health; however, excess anions can cause serious ecological and environment problems. Therefore, the detection and removal of excess anions in aqueous solution is not only a technological problem but also crucial for environmental protection. Herein, a set of water-soluble pyrene-based cationic fluorophores were synthesized, which exhibit high sensitivity for the detection of the anions BF4-, PF6-, and ClO4- via electrostatic interactions. Such fluorescent probes exhibit "turn-on" emission characteristics even at low concentrations of anions due to anion-π+ interactions. Moreover, these fluorescence probes act as efficient precipitating agents for the removal of the BF4-, PF6-, and ClO4- anions from an aqueous environment. This work opens up new avenues for future research on pyrene-based fluorophores as turn-on fluorescence probes for anion detection and as excellent precipitating agents in environmental settings.
Collapse
Affiliation(s)
- Xu Zhou
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Tian-Yu Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Lingyi Shen
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Xian-Jiong Yang
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Qi-Long Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Hong Xu
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, PR China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, PR China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
36
|
Li S, Zhang G, Peng Y, Chen P, Li J, Wang X, Wang Z. Tyrosinase-activated Nanocomposites for Double-Modals Imaging Guided Photodynamic and Photothermal Synergistic Therapy. Adv Healthc Mater 2023; 12:e2300327. [PMID: 37003298 DOI: 10.1002/adhm.202300327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Tyrosinase (TYR) is an important biomarker of melanoma. The exploration of fluorescent pr-obes-based composites is beneficial to build an integrative platform for the diagnosis and treatment of melanoma. Herein, a multifunctional nanocomposite IOBOH@BSA activated by TYR is developed for selective imaging and ablation of melanoma. The chemical structure of IOBOH enables the fluorescence (FL) imaging activated by TYR, photoacoustic (PA) imaging, and photodynamic-photothermal activity by regulating the balance between radiative decay and non-radiative decay. IOBOH combined with bovine serum albumin (IOBOH@BSA) presents the response to TYR and realizes FL imaging with mitochondria-targeting in melanoma. Moreover, IOBOH@BSA shows excellent photothermal ability and is applied for PA imaging. After IOBOH@BSA is activated by TYR, the singlet oxygen generation increases obviously. IOBOH@BSA can realize TYR-activated imaging and photodynamic-photothermal therapy of melanoma. The development of TYR-activated multifunctional nanocomposites promotes the precise imaging and improves the therapeutic effect of melanoma.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanghan Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiguang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuefei Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
37
|
Liu J, Chen H, Yang Y, Wang Q, Zhang S, Zhao B, Li Z, Yang G, Deng G. Aggregation-induced type I&II photosensitivity and photodegradability-based molecular backbones for synergistic antibacterial and cancer phototherapy via photodynamic and photothermal therapies. MATERIALS HORIZONS 2023; 10:3791-3796. [PMID: 37409589 DOI: 10.1039/d3mh00688c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The clinical applications of phototherapy nanomaterials are still limited due to concerns regarding their phototoxicity and efficacy. Herein, we report a novel type of D-π-A molecular backbone that induces type I/II photosensitivity and photodegradability by forming J-aggregates. The photodegradation rate can be regulated by changing the donor groups to regulate the photosensitivity of their aggregates because the photodegradability performance results from their oxidation by 1O2 generated by their type II photosensitivity. AID4 NPs possess faster photodegradation because of their better type I&II photosensitivity, which can also self-regulate by inhibiting type II and improving type I under hypoxic conditions. Moreover, they exhibited good photothermal and photoacoustic performance for improving their therapeutic effect by a synergistic effect and achieving photoacoustic imaging in vivo. The experimental result also showed that they can be effective for antibacterial and anti-tumor treatment and the photodegradation products of AID4 NPs possess low biological toxicity in the dark or under light. This study could provide a novel strategy for improving the safety and treatment effects of phototherapy.
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan, China.
| | - Hongyu Chen
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan, China.
| | - Yongsheng Yang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan, China.
| | - Qihui Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China.
| | - Shilu Zhang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan, China.
| | - Bo Zhao
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan, China.
| | - Zhonghui Li
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan, China.
| | - Guoqiang Yang
- Institute of Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China.
| |
Collapse
|
38
|
Liu L, Li C, Gong J, Zhang Y, Ji W, Feng L, Jiang G, Wang J, Tang BZ. A Highly Water-Soluble Aggregation-Induced Emission Luminogen with Anion-π + Interactions for Targeted NIR Imaging of Cancer Cells and Type I Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202307776. [PMID: 37358791 DOI: 10.1002/anie.202307776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The low oxygen dependence of type I photosensitizers (PSs) has made them a popular choice for treating solid tumors. However, the drawbacks of poor water solubility, short emission wavelength, poor stability, and inability to distinguish cancer cells from normal cells limit the application of most type I PSs in clinical therapy. Thereby, developing novel type I PSs for overcoming these problems is an urgent but challenging task. Herein, by utilizing the distinctive structural characteristics of anion-π+ interactions, a highly water-soluble type I PS (DPBC-Br) with aggregation-induced emission (AIE) characteristic and near-infrared (NIR) emission is fabricated for the first time. DPBC-Br displays remarkable water solubility (7.3 mM) and outstanding photobleaching resistance, enabling efficient and precise differentiation between tumor cells and normal cells in a wash-free and long-term tracking manner via NIR-I imaging. Additionally, the superior type I reactive oxygen species (ROS) produced by DPBC-Br provide both specific killing of cancer cells in vitro and inhibition of tumor growth in vivo, with negligible systemic toxicity. This study rationally constructs a highly water-soluble type I PS, which has higher reliability and controllability compared with conventional nanoparticle formulating procedures, offering great potential for clinical cancer treatment.
Collapse
Affiliation(s)
- Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ying Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Weiwei Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
39
|
Pan W, Shao H, Ma L, Tong X, Zhang Z, Li Q, Yang X, Liu K, Gao M, Wang Y. Photoactivatable Sequential Destruction of Multiorganelles for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37121-37129. [PMID: 37523306 DOI: 10.1021/acsami.3c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Organelle-targeted therapy guided by fluorescence imaging is promising for precise cancer treatment. However, most current organelle-targeted therapeutics can only destruct single organelles, which suffer from limited therapeutic efficacy. To address this challenge, a photoactivatable probe was developed for sequential photodynamic destruction of multiorganelles in cancer cells, including lysosomes, lipid droplets, and mitochondria. This photoactivatable probe not only exhibits efficient cancer cell eradication in vitro but also can suppress tumor growth in vivo. Simultaneously, the photoactivatable probe enables sequential destruction of multiple organelles in cancer cells, which can be observed in situ through the conversion of green-to-red fluorescence facilitated by a photooxidative dehydrogenation reaction. We believe this photoactivatable probe for sequential destruction of multiple organelles associated with fluorescence color conversion provides a new strategy for cancer treatment with greatly improved efficacy.
Collapse
Affiliation(s)
- Wenping Pan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Hongwei Shao
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Limin Ma
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xubo Tong
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zicong Zhang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Qian Li
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xin Yang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Meng Gao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
40
|
Shen Z, Zhu W, Huang Y, Zhang J, Wu Y, Pan Y, Yang G, Wang D, Li Y, Tang BZ. Visual Multifunctional Aggregation-Induced Emission-Based Bacterial Cellulose for Killing of Multidrug-Resistant Bacteria. Adv Healthc Mater 2023; 12:e2300045. [PMID: 37042250 DOI: 10.1002/adhm.202300045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Indexed: 04/13/2023]
Abstract
Multidrug-resistant (MDR) bacteria-related wound infections are a thorny issue. It is urgent to develop new antibacterial wound dressings that can not only prevent wounds from MDR bacteria infection but also promote wound healing. Herein, an aggregation-induced emission (AIE) molecule BITT-composited bacterial cellulose (BC) is presented as wound dressings. BC-BITT composites have good transparency, making it easy to monitor the wound healing process through the composite membrane. The BC-BITT composites retain the advantages of biocompatible BC, and display photodynamic and photothermal synergistic antibacterial effects under irradiation of a 660 nm laser. Furthermore, the BC-BITT composites show excellent wound healing performance in a mouse full-thickness skin wound model infected by MDR bacteria, simultaneously with negligible toxicity. This work paves a way for treating clinically troublesome wound infections.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing and Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yajia Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen, Guangdong, 518055, China
| | - Yifan Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
41
|
Fu L, Zhao W, Tan Y, Ding Y, Wang Y, Qing W. Rational design of water-soluble mitochondrial-targeting near-infrared fluorescent probes with large Stokes shift for distinguishing cancerous cells and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122869. [PMID: 37209481 DOI: 10.1016/j.saa.2023.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
In the paper, two new near-infrared fluorescent probes (TTHPs) with D-π-A structure were successfully synthesized. TTHPs exhibited polarity and viscosity sensitivity and mitochondrial targeting under physiological conditions. The emission spectra of TTHPs showed strong polarity/viscosity dependence with more than a large Stokes shift of 200 nm. Based on their unique merits, TTHPs were used to distinguish cancerous and normal cells, which could be new tools for cancer diagnosis. Moreover, TTHPs were the first to achieve biological imaging of Caenorhabditis elegans, which could be labeling probes to apply in multicellular organisms.
Collapse
Affiliation(s)
- Lixian Fu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China
| | - Wei Zhao
- School of Basic Medical Science, Henan University, Kaifeng 475004, PR China
| | - Yiyun Tan
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China
| | - Yue Ding
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China
| | - Yong Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China.
| | - Weixia Qing
- School of Basic Medical Science, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
42
|
Lu B, Wang L, Tang H, Cao D. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. J Mater Chem B 2023; 11:4600-4618. [PMID: 37183673 DOI: 10.1039/d3tb00545c] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) with an oxygen-dependent character is a noninvasive therapeutic method for cancer treatment. However, its clinical therapeutic effect is greatly restricted by tumor hypoxia. What's more, both PDT-mediated oxygen consumption and microvascular damage aggravate tumor hypoxia, thus, further impeding therapeutic outcomes. Compared to type II PDT with high oxygen dependence and high oxygen consumption, type I PDT with less oxygen consumption exhibits great potential to overcome the vicious hypoxic plight in solid tumors. Type I photosensitizers (PSs) are significantly important for determining the therapeutic efficacy of PDT, which performs an electron transfer photochemical reaction with the surrounding oxygen/substrates to generate highly cytotoxic free radicals such as superoxide radicals (˙O2-) as type I ROS. In particular, the primary precursor (˙O2-) would progressively undergo a superoxide dismutase (SOD)-mediated disproportionation reaction and a Haber-Weiss/Fenton reaction, yielding higher cytotoxic species (˙OH) with better anticancer effects. As a result, developing high-performance type I PSs to treat hypoxic tumors has become more and more important and urgent. Herein, the latest progress of organic type I PSs (such as AIE-active cationic/neutral PSs, cationic/neutral PSs, polymer-based PSs and supramolecular self-assembled PSs) for monotherapy or synergistic therapeutic modalities is summarized. The molecular design principles and strategies (donor-acceptor system, anion-π+ incorporation, polymerization and cationization) are highlighted. Furthermore, the future challenges and prospects of type I PSs in hypoxia-overcoming PDT are proposed.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
43
|
Wang Y, Zhuang W, Wu S, Duan Z, Li S, Chen J, Zhou L, Zhou Y, Li C, Chen M. Aggregation-induced bioprobe for plasma membrane-specific imaging and photodynamic cancer cell ablation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122486. [PMID: 36801737 DOI: 10.1016/j.saa.2023.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Selective labelling of the plasma membrane (PM) by fluorescence imaging techniques enables an intuitive analysis of cell status together with dynamic changes, and therefore is of great value. We herein disclose a novel carbazole-based probe, CPPPy, that shows aggregation-induced emission (AIE) property and is observed to selectively accumulate at the PM of living cells. Benefiting from its good biocompatibility and PM-targeted specificity, CPPPy can light up the PM of cells by high-resolution imaging even at a low concentration of 200 nM. Simultaneously, CPPPy is capable of generating both singlet oxygen and free radical-dominated species upon visible light irradiation, which further induces irreversible growth inhibition and necrocytosis of tumor cells. This study thus provides new insight into the construction of multifunctional fluorescence probes with PM-specific bioimaging and photodynamic therapy.
Collapse
Affiliation(s)
- Yinchan Wang
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Sisi Wu
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Shufen Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Jingruo Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China
| | - Linsen Zhou
- Institute of Materials, Chinese Academy of Engineering Physics, Jiangyou 621908, PR China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Chengming Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, PR China.
| |
Collapse
|
44
|
Zhang D, Teng KX, Zhao L, Niu LY, Yang QZ. Ultra-Small Nano-Assemblies as Tumor-Targeted and Renal Clearable Theranostic Agent for Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209789. [PMID: 36861334 DOI: 10.1002/adma.202209789] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Indexed: 05/12/2023]
Abstract
It is a challenge to design photosensitizers to balance between the tumor-targeting enrichment for precise treatment and efficient clearance within a reasonable timescale for reducing side effects. Herein, an ultra-small nano-photosensitizer 1a with excellent tumor-specific accumulation and renal clearance is reported. It is formed from the self-assembly of compound 1 bearing three triethylene glycol (TEG) arms and two pyridinium groups in water. The positively charged surface with neutral TEG coating enables 1a to efficiently target the tumor, with the signal-to-background ratio reaching as high as 11.5 after tail intravenous injection. The ultra-small size of 1a with an average diameter of 5.6 nm allows its fast clearance through kidney. Self-assembly also endows 1a with an 18.2-fold enhancement of reactive oxygygen species generation rate compared to compound 1 in organic solution. Nano-PS 1a manifests an excellent photodynamic therapy efficacy on tumor-bearing mouse models. This work provides a promising design strategy of photosensitizers with renal clearable and tumor-targeting ability.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kun-Xu Teng
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
45
|
Farag N, Đorđević M, Del Grosso E, Ricci F. Dynamic and Reversible Decoration of DNA-Based Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211274. [PMID: 36739507 DOI: 10.1002/adma.202211274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Indexed: 05/05/2023]
Abstract
An approach to achieving dynamic and reversible decoration of DNA-based scaffolds is demonstrated here. To do this, rationally engineered DNA tiles containing enzyme-responsive strands covalently conjugated to different molecular labels are employed. These strands are designed to be recognized and degraded by specific enzymes (i.e., Ribonuclease H, RNase H, or Uracil DNA Glycosylase, UDG) inducing their spontaneous de-hybridization from the assembled tile and replacement by a new strand conjugated to a different label. Multiple enzyme-responsive strands that specifically respond to different enzymes allow for dynamic, orthogonal, and reversible decoration of the DNA structures. As a proof-of-principle of the strategy, the possibility to orthogonally control the distribution of different labels (i.e., fluorophores and small molecules) on the same scaffold without crosstalk is demonstrated. By doing so, DNA scaffolds that display different antibody recognition patterns are obtained. The approach offers the possibility to control the decoration of higher-order supramolecular assemblies (including origami) with several functional moieties to achieve functional biomaterials with improved adaptability, precision, and sensing capabilities.
Collapse
Affiliation(s)
- Nada Farag
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Milan Đorđević
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Erica Del Grosso
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy
| |
Collapse
|
46
|
Gao J, Jiang H, Chen P, Zhang R, Liu N. Photosensitizer-based small molecule theranostic agents for tumor-targeted monitoring and phototherapy. Bioorg Chem 2023; 136:106554. [PMID: 37094481 DOI: 10.1016/j.bioorg.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
Small molecule theranostic agents for tumor treatment exhibited triadic properties in tumor targeting, imaging, and therapy, which have attracted increasing attention as a potential complement for, or improved to, classical small molecule antitumor drugs. Photosensitizer have dual functions of imaging and phototherapy, and have been widely used in the construction of small molecule theranostic agents over the last decade. In this review, we summarized representative agents that have been studied in the field of small molecule theranostic agents based on photosensitizer in the last decade, and highlighted their characteristics and application in tumor-targeted monitoring and phototherapy. The challenges and future perspectives of photosensitizers in building small molecule theranostic agents for diagnosis and therapy of tumors were also discussed.
Collapse
Affiliation(s)
- Jiake Gao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
47
|
Ingle J, Basu S. Mitochondria Targeted AIE Probes for Cancer Phototherapy. ACS OMEGA 2023; 8:8925-8935. [PMID: 36936289 PMCID: PMC10018722 DOI: 10.1021/acsomega.3c00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 06/01/2023]
Abstract
In recent years, mitochondrion (powerhouse of the cells) gained lots of interest as one of the unorthodox targets for futuristic cancer therapy. As a result, novel small molecules were developed to damage and image mitochondria in cancer models. In this context, aggregation-induced emission probes (AIEgens) received immense attention due to their applications in mitochondria-targeted biosensing, imaging, and biomedical theranostics. On the other hand, phototherapy (photodynamic and photothermal) has emerged as a powerful alternative to manage cancer due to its less invasive nature. However, merging these two areas to engineer mitochondria-targeted phototherapeutic probes for cancer diagnosis and treatment has remained a major challenge. In this mini-review, we will outline the development of novel mitochondria-targeted small molecule AIEgens as imaging agents and photosensitizers for photodynamic therapy along with dual photodymanic-phototheramal therapy and chemo-photodynamic therapy. We will also highlight the current challenges in developing mitochondria-targeted photothermal therapy probes for future biomedical theranostic applications to manage cancer.
Collapse
|
48
|
Li H, Jin B, Wang Y, Deng B, Wang D, Tang BZ. As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210085. [PMID: 36479736 DOI: 10.1002/adma.202210085] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) have recently been developed at a tremendous pace in the area of organic luminescent materials by virtue of their superior properties. However, the practical applications of AIEgens still face the challenge of transforming AIEgens from molecules into materials. Till now, many AIEgens have been integrated into fiber, endowing the fiber with prominent fluorescence and/or photosensitizing capacities. AIEgens and fiber complement each other for making progress in flexible smart materials, in which the utilization of AIEgens creates new application possibilities for fiber, and the fiber provides an excellent carrier for AIEgens towards realizing the conversion from molecule to materials and an ideal platform to research the aggregate state of AIEgens in mesoscale and macroscale. This review begins with a brief summary of the recent advances related to some typical AIEgens with various functions and the technology for the fabrication of AIEgen-functionalized fiber. The most representative applications are then highlighted by focusing on energy conversion, personal protective equipment, biomedical, sensor, and fluorescence-related fields. Finally, the challenges, opportunities, and tendencies in future development are discussed in detail. This review hopes to inspire innovation in AIEgens and fiber from the view of mesoscale and macroscale.
Collapse
Affiliation(s)
- Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bingqi Jin
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanwei Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
49
|
Xie S, Cong Z, Wang W, Qin S, Weng X, Song H, Zhou X. Mitochondria-targeting NIR AIEgens with cationic amphiphilic character for imaging and efficient photodynamic therapy. Chem Commun (Camb) 2023; 59:2592-2595. [PMID: 36753236 DOI: 10.1039/d2cc06457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A new dual-cationic amphiphilic AIEgen TPhBT-PyP with NIR emission and efficient 1O2 generation was designed. The amphiphilicity of TPhBT-PyP was tuned with dual-positive charges of pyridinium and TPP groups, efficiently targeting mitochondria and distinguishing Gram-positive bacteria. TPhBT-PyP performed well in photodynamic therapy, inducing cancer cell apoptosis and killing S. aureus bacteria.
Collapse
Affiliation(s)
- Shengjie Xie
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Zisong Cong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Weihua Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Heng Song
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
50
|
Li X, Tan W, Bai X, Li F. Stable Near-infrared-emitting Radical Nanoparticles for Fluorescence Imaging. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|