1
|
Zhang L, Liu C, Cao H, Erwin AJ, Fong DD, Bhattacharya A, Yu L, Stan L, Zou C, Tirrell MV, Zhou H, Chen W. Redox Gating for Colossal Carrier Modulation and Unique Phase Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308871. [PMID: 38183328 DOI: 10.1002/adma.202308871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Redox gating, a novel approach distinct from conventional electrolyte gating, combines reversible redox functionalities with common ionic electrolyte moieties to engineer charge transport, enabling power-efficient electronic phase control. This study achieves a colossal sheet carrier density modulation beyond 1016 cm-2, sustainable over thousands of cycles, all within the sub-volt regime for functional oxide thin films. The key advantage of this method lies in the controlled injection of a large quantity of carriers from the electrolyte into the channel material without the deleterious effects associated with traditional electrolyte gating processes such as the production of ionic defects or intercalated species. The redox gating approach offers a simple and practical means of decoupling electrical and structural phase transitions, enabling the isostructural metal-insulator transition and improved device endurance. The versatility of redox gating extends across multiple materials, irrespective of their crystallinity, crystallographic orientation, or carrier type (n- or p-type). This inclusivity encompasses functional heterostructures and low-dimensional quantum materials composed of sustainable elements, highlighting the broad applicability and potential of the technique in electronic devices.
Collapse
Affiliation(s)
- Le Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Changjiang Liu
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Hui Cao
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrew J Erwin
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Anand Bhattacharya
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Luping Yu
- Department of Chemistry and the James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Liliana Stan
- Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Matthew V Tirrell
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Wei Chen
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Park TJ, Deng S, Manna S, Islam ANMN, Yu H, Yuan Y, Fong DD, Chubykin AA, Sengupta A, Sankaranarayanan SKRS, Ramanathan S. Complex Oxides for Brain-Inspired Computing: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203352. [PMID: 35723973 DOI: 10.1002/adma.202203352] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The fields of brain-inspired computing, robotics, and, more broadly, artificial intelligence (AI) seek to implement knowledge gleaned from the natural world into human-designed electronics and machines. In this review, the opportunities presented by complex oxides, a class of electronic ceramic materials whose properties can be elegantly tuned by doping, electron interactions, and a variety of external stimuli near room temperature, are discussed. The review begins with a discussion of natural intelligence at the elementary level in the nervous system, followed by collective intelligence and learning at the animal colony level mediated by social interactions. An important aspect highlighted is the vast spatial and temporal scales involved in learning and memory. The focus then turns to collective phenomena, such as metal-to-insulator transitions (MITs), ferroelectricity, and related examples, to highlight recent demonstrations of artificial neurons, synapses, and circuits and their learning. First-principles theoretical treatments of the electronic structure, and in situ synchrotron spectroscopy of operating devices are then discussed. The implementation of the experimental characteristics into neural networks and algorithm design is then revewed. Finally, outstanding materials challenges that require a microscopic understanding of the physical mechanisms, which will be essential for advancing the frontiers of neuromorphic computing, are highlighted.
Collapse
Affiliation(s)
- Tae Joon Park
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sunbin Deng
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sukriti Manna
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A N M Nafiul Islam
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Haoming Yu
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yifan Yuan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Abhronil Sengupta
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Liu H, Dong Y, Galib M, Cai Z, Stan L, Zhang L, Suwardi A, Wu J, Cao J, Tan CKI, Sankaranarayanan SKRS, Narayanan B, Zhou H, Fong DD. Controlled Formation of Conduction Channels in Memristive Devices Observed by X-ray Multimodal Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203209. [PMID: 35796130 DOI: 10.1002/adma.202203209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Neuromorphic computing provides a means for achieving faster and more energy efficient computations than conventional digital computers for artificial intelligence (AI). However, its current accuracy is generally less than the dominant software-based AI. The key to improving accuracy is to reduce the intrinsic randomness of memristive devices, emulating synapses in the brain for neuromorphic computing. Here using a planar device as a model system, the controlled formation of conduction channels is achieved with high oxygen vacancy concentrations through the design of sharp protrusions in the electrode gap, as observed by X-ray multimodal imaging of both oxygen stoichiometry and crystallinity. Classical molecular dynamics simulations confirm that the controlled formation of conduction channels arises from confinement of the electric field, yielding a reproducible spatial distribution of oxygen vacancies across switching cycles. This work demonstrates an effective route to control the otherwise random electroforming process by electrode design, facilitating the development of more accurate memristive devices for neuromorphic computing.
Collapse
Affiliation(s)
- Huajun Liu
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Yongqi Dong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mirza Galib
- Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40208, USA
| | - Zhonghou Cai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Liliana Stan
- Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Lei Zhang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jing Wu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jing Cao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Chee Kiang Ivan Tan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | | | - Badri Narayanan
- Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40208, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
4
|
Lu Q, Liu Z, Yang Q, Cao H, Balakrishnan P, Wang Q, Cheng L, Lu Y, Zuo JM, Zhou H, Quarterman P, Muramoto S, Grutter AJ, Chen H, Zhai X. Engineering Magnetic Anisotropy and Emergent Multidirectional Soft Ferromagnetism in Ultrathin Freestanding LaMnO 3 Films. ACS NANO 2022; 16:7580-7588. [PMID: 35446560 DOI: 10.1021/acsnano.1c11065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combination of small coercive fields and weak magnetic anisotropy makes soft ferromagnetic films extremely useful for nanoscale devices that need to easily switch spin directions. However, soft ferromagnets are relatively rare, particularly in ultrathin films with thicknesses of a few nanometers or less. We have synthesized large-area, high-quality, ultrathin freestanding LaMnO3 films on Si and found unexpected soft ferromagnetism along both the in-plane and out-of-plane directions when the film thickness was reduced to 4 nm. We argue that the vanishing magnetic anisotropy between the two directions is a consequence of two coexisting magnetic easy axes in different atomic layers of the LaMnO3 film. Spectroscopy measurements reveal a change in Mn valence from 3+ in the film interior to approximately 2+ at the surfaces where considerable hydrogen infiltration occurs due to the water dissolving process. First-principles calculations show that protonation of LaMnO3 decreases the Mn valence and switches the magnetic easy axis from in-plane to out-of-plane as the Mn valence approaches 2+ from its 3+ bulk value. Our work demonstrates that ultrathin freestanding films can exhibit functional properties that are absent in homogeneous materials, concomitant with their convenient compatibility with Si-based devices.
Collapse
Affiliation(s)
- Qinwen Lu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiwei Liu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, East China Normal University, Shanghai 200241, China
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai 200122, China
| | - Qun Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Cao
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Purnima Balakrishnan
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yalin Lu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Patrick Quarterman
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shin Muramoto
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alexander J Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Hanghui Chen
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai 200122, China
- Department of Physics, New York University, New York, New York 10012, United States
| | - Xiaofang Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Bian Z, Zhao J, Cao H, Dong Y, Luo Z. Reversible Rapid Hydrogen Doping of WO 3 in Non-Acid Solution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13419-13424. [PMID: 33709704 DOI: 10.1021/acsami.1c01165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogenation, an effective way to tune the properties of transition metal oxide (TMO) thin films, has been long awaited to be performed safely and without an external energy input. Recently, metal-acid-TMO has been reported to be an effective approach for hydrogenation, but the requirement of acid limits its application. In this work, the reversible and rapid hydrogen doping of WO3 in NaOH(aq) | Al(s) | WO3(s) is revealed by structural and electrical measurements. Accompanied by the structural phase transition identified by in situ X-ray diffraction, the electric resistance of the WO3 film is found to be able to change by 5 orders of magnitude. A significant electrical response of touching, 8-fold in amplitude and 3 s in a cycle, can be achieved in the low-resistance state. These reactions are reversible at room temperature. This study unambiguously proves that the hydrogenation-driven dynamic phase transition of WO3 in metal-solution-WO3 systems could occur not only in acid solutions but also in some non-acid environments. Unlike the monotonic increase of resistance revealed during HδWO3 to WO3 transition, an intriguing non-monotonic evolution was found for crystal lattice parameter c, indicating that the mechanism of WO3 hydrogenation involves a series of metastable states, more comprehensive and reasonable. This work sheds light on the potential applications of metal-solution-TMO hydrogenation in touching sensors, circuits survey, and information storage.
Collapse
Affiliation(s)
- Zhiping Bian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Jiangtao Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Heng Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yongqi Dong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
6
|
Gu Y, Xu K, Song C, Zhong X, Zhang H, Mao H, Saleem MS, Sun J, Liu W, Zhang Z, Pan F, Zhu J. Oxygen-Valve Formed in Cobaltite-Based Heterostructures by Ionic Liquid and Ferroelectric Dual-Gating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19584-19595. [PMID: 31056893 DOI: 10.1021/acsami.9b02442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Manipulation of oxygen vacancies via electric-field-controlled ionic liquid gating has been reported in many model systems within the emergent fields of oxide electronics and iontronics. It is then significant to investigate the oxygen vacancy formation/annihilation and migration across an additional ferroelectric layer with ionic liquid gating. Here, we report that via a combination of ionic liquid and ferroelectric gating, the remote control of oxygen vacancies and magnetic phase transition can be achieved in SrCoO2.5 films capped with an ultrathin ferroelectric BaTiO3 layer at room temperature. The ultrathin BaTiO3 layer acts as an atomic oxygen valve and is semitransparent to oxygen-ion transport due to the competing interaction between vertical electron tunneling and ferroelectric polarization plus surface electrochemical changes in itself, thus resulting in the striking emergence of new mixed-phase SrCoO x. The lateral coexistence of brownmillerite phase SrCoO2.5 and perovskite phase SrCoO3-δ was directly observed by transmission electron microscopy. Besides the fundamental significance of long-range interaction in ionic liquid gating, the ability to control the flow of oxygen ions across the heterointerface by the oxygen valve provides a new approach on the atomic scale for designing multistate memories, sensors, and solid-oxide fuel cells.
Collapse
Affiliation(s)
- Youdi Gu
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shenyang 110016 , China
| | | | | | | | - Hongrui Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, University of Chinese Academy of Science, Chinese Academy of Sciences , Beijing 100190 , China
| | - Haijun Mao
- College of Aerospace Science and Engineering , National University of Defense Technology , Changsha 410073 , China
| | | | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, University of Chinese Academy of Science, Chinese Academy of Sciences , Beijing 100190 , China
| | - Wei Liu
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shenyang 110016 , China
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shenyang 110016 , China
| | | | | |
Collapse
|