1
|
Zhu C, Wang H, Zhang Z, Han C, Hu H, Yang M. Robust H 2S Sensing with Pt/Fe-TiN Fuel Cell Sensors for Cold-Chain Meat Spoilage Monitoring. ACS Sens 2025. [PMID: 40327125 DOI: 10.1021/acssensors.5c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Food spoilage leads to significant waste and poses serious health risks, yet real-time monitoring solutions remain limited throughout the supply chain and storage. Herein, we develop a Pt/Fe-TiN-based fuel cell gas sensor for highly sensitive and selective detection of hydrogen sulfide (H2S), a key indicator of meat spoilage. Fe doping in TiN effectively modulates the electronic structure of Pt, enhancing H2S sensitivity and mitigating humidity interference. The Pt/Fe-TiN sensor achieves a detection limit of 100 ppb and remains fully operational even at -18 °C. Compared to commercial Pt/C electrodes, it exhibits superior stability, retaining over 97% of its sensitivity after 60 days under high humidity. Furthermore, a real-time H2S monitoring device integrated with a smartphone interface was developed for continuous spoilage detection in meat storage. This work provides a practical, real-time sensing platform for food safety monitoring, contributing to reduced waste and improved supply chain transparency.
Collapse
Affiliation(s)
- Chonghui Zhu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huan Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chenshuai Han
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Pallavolu MR, Muralee Gopi CVV, Prabu S, Ullapu PR, Jung JH, Joo SW, Ramesh R. Hierarchical nanoporous NiCoN nanoflowers with highly rough surface electrode material for high-performance asymmetric supercapacitors. RSC Adv 2025; 15:4619-4627. [PMID: 39935466 PMCID: PMC11811699 DOI: 10.1039/d4ra07757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/25/2024] [Indexed: 02/13/2025] Open
Abstract
This study presents a novel strategy to enhance the energy storage performance of asymmetric supercapacitors (ASCs) by utilizing nanoporous NiCoN flower structures as the positive electrode material. The NiCoN material is synthesized via a straightforward hydrothermal method, followed by calcination in a nitrogen atmosphere. The resulting electrode demonstrates exceptional electrochemical properties, including a high specific capacity of 773 C g-1 (1955 F g-1), excellent rate capability, and outstanding cycling stability. The hierarchical architecture of the NiCoN electrode, composed of interconnected porous nanosheets, facilitates efficient charge transfer and enhanced electrolyte ion diffusion. When paired with activated carbon (AC) as the negative electrode in the NiCoN//AC ASC configuration, the device achieves an impressive energy density of 36 W h kg-1 at a power density of 775 W kg-1. Moreover, the device exhibits remarkable cycling stability, retaining 85% of its initial capacitance after 5000 charge-discharge cycles. These findings underscore the potential of NiCoN as a high-performance electrode material for ASCs, offering a promising pathway for advancements in next-generation energy storage technologies.
Collapse
Affiliation(s)
- Mohan Reddy Pallavolu
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Chandu V V Muralee Gopi
- Department of Electrical Engineering, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Samikannu Prabu
- Graduate Institute of Environmental Engineering, National Central University Zhong-Da Road, Zhong-Li District Tao-Yuan City Taiwan
| | - Punna Reddy Ullapu
- School of Science and Technology (UST) 176 Gajung-dong, 217 Gajungro, Yuseong-gu Daejung 305-333 South Korea
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - R Ramesh
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| |
Collapse
|
3
|
Zhang W, Liu X, Zheng H, Zhang S, Gao F, Zheng S, Zhang Y, Zhang X, Yuan A, Zheng X, Du Y. Low Ru doping induced interface and defects engineering in 2D square micro-mesoporous CoNiRuO x nanosieves for advanced oxygen evolution electrocatalysis. J Colloid Interface Sci 2025; 679:1021-1028. [PMID: 39488021 DOI: 10.1016/j.jcis.2024.10.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Efficient oxygen evolution reaction (OER) catalysts require the reasonable integration of geometric architecture, defects construction and interfacial electronic structure, which is difficult to combine multiple advantages into one low-cost catalysts. Herein, we designed a novel low Ru doping 2D square CoNiRuOx nanosieves (NSs) with abundant surface micropore and mesopore structure, rich oxygen defects and heterophase interfaces. Owing to the Ru incorporation, the electrons in Ni2+ could partially spontaneously transfer to the Ru4+ species by the bridge O2- with π donation effect according to the proposed "Ni-O-Co-O-Ru-O-Ni" electron interaction model. Benefitting from the porous surface with rich mass transfer channel, increased oxygen defects concentration, well-optimized electron redistribution, the CoNiRuOx nanosieves possessed a low overpotential of 261 mV to reach the current density of 10 mA cm-2, which is better than that of counterpart CoNiOx NSs and commercial RuO2 catalysts. The CoNiRuOx NSs also possessed the favorable durability with 50 h. Moreover, the CoNiRuOx//Pt/C electrode couple exhibited enhanced overall water splitting performance. This work provides offers insightful significance to design 2D micro-mesoporous materials for the robust electrocatalysis processes related to energy conversion technologies.
Collapse
Affiliation(s)
- Wen Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xinye Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Haonan Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - ShanShan Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Fei Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yangping Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xiyue Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xiangjun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yukou Du
- China College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
4
|
Mao T, Fu H, Shen K. Structural engineering in hierarchical nanoarchitectures of metal-organic frameworks and their derivatives. NANOSCALE 2024; 16:18788-18804. [PMID: 39302136 DOI: 10.1039/d4nr02835j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Metal-organic frameworks (MOFs) have attracted much attention owing to their tuneable structures, high surface areas, and good functionalization. Nanoreactors derived from various MOFs are now widely used in heterogeneous catalysis, electrocatalysis and photocatalysis. The nanoarchitectures of MOFs and their derivatives have a great impact on mass and energy transfer pathways, thus affecting the activity and selectivity of the catalysts. In this review, we intend to provide a universal survey of reported methods to synthesize MOF-based core-satellite, core-shell, yolk-shell and hollow-shell structures or their derivatives in recent years and present a continuous evolution among them. We hope that this review could provide some perspectives for exploring new facile methods to prepare different hierarchical nanoarchitectures of MOFs or their derivatives.
Collapse
Affiliation(s)
- Tianzhu Mao
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hongchuan Fu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kui Shen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Guo L, Zhang Z, Mu Z, Da P, An L, Shen W, Hou Y, Xi P, Yan CH. Ceria-Optimized Oxygen-Species Exchange in Hierarchical Bimetallic Hydroxide for Electrocatalytic Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406682. [PMID: 38837816 DOI: 10.1002/adma.202406682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 06/07/2024]
Abstract
The utilization of rare earth elements to regulate the interaction between catalysts and oxygen-containing species holds promising prospects in the field of oxygen electrocatalysis. Through structural engineering and adsorption regulation, it is possible to achieve high-performance catalytic sites with a broken activity-stability tradeoff. Herein, this work fabricates a hierarchical CeO2/NiCo hydroxide for electrocatalytic oxygen evolution reaction (OER). This material exhibits superior overpotentials and enhanced stability. Multiple potential-dependent experiments reveal that CeO2 promotes oxygen-species exchange, especially OH- ions, between catalyst and environment, thereby optimizing the redox transformation of hydroxide and the adsorption of oxygen-containing intermediates during OER. This is attributed to the reduction in the adsorption energy barrier of Ni to *OH facilitated by CeO2, particularly the near-interfacial Ni sites. The less-damaging adsorbate evolution mechanism and the CeO2 hierarchical shell significantly enhance the structural robustness, leading to exceptional stability. Additionally, the observed "self-healing" phenomenon provides further substantiation for the accelerated oxygen exchange. This work provides a neat strategy for the synthesis of ceria-based complex hollow electrocatalysts, as well as an in-depth insight into the co-catalytic role of CeO2 in terms of oxygen transfer.
Collapse
Affiliation(s)
- Linchuan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhuang Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhaori Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Shen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yichao Hou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
6
|
Chen Z, Dong X, Sun ZX, An X, Li C, Liu S, Shen J, Wu C, Wang J, Wang Z, Zhu Z, Zhou Y, Yu K, Ma Y, He J, Feng K, He L, Hu Z. Hierarchical Carbon Nanocages as Superior Supports for Photothermal CO 2 Catalysis. ACS NANO 2024. [PMID: 39016025 DOI: 10.1021/acsnano.4c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The exploitation of hierarchical carbon nanocages with superior light-to-heat conversion efficiency, together with their distinct structural, morphological, and electronic properties, in photothermal applications could provide effective solutions to long-standing challenges in diverse areas. Here, we demonstrate the discovery of pristine and nitrogen-doped hierarchical carbon nanocages as superior supports for highly loaded, small-sized Ru particles toward enhanced photothermal CO2 catalysis. A record CO production rate of 3.1 mol·gRu-1·h-1 with above 90% selectivity in flow reactors was reached for hierarchical nitrogen-doped carbon-nanocage-supported Ru clusters under 2.4 W·cm-2 illumination without external heating. Detailed studies reveal that the enhanced performance originates from the strong broadband sunlight absorption and efficient light-to-heat conversion of nanocage supports as well as the excellent intrinsic catalytic reactivity of sub-2 nm Ru particles. Our study reveals the great potential of hierarchical carbon nanocages in photothermal catalysis to reduce the fossil fuel consumption of various industrial chemical processes and stimulates interest in their exploitation for other demanding photothermal applications.
Collapse
Affiliation(s)
- Zhijie Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xudong Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zi-Xuan Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiahui Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Chunpeng Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiaqi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zidi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuxuan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Kewei Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yueru Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiari He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
7
|
Patil R, Rajput A, Matsagar BM, Chen NCR, Ujihara M, Salunkhe RR, Yadav P, Wu KCW, Chakraborty B, Dutta S. Elevated temperature-driven coordinative reconstruction of an unsaturated single-Ni-atom structure with low valency on a polymer-derived matrix for the electrolytic oxygen evolution reaction. NANOSCALE 2024; 16:7467-7479. [PMID: 38511345 DOI: 10.1039/d4nr00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A high-temperature pyrolysis-controlled coordination reconstruction resulted in a single-Ni-atom structure with a Ni-Nx-C structural unit (x = N atom coordinated to Ni). Pyrolysis of Ni-phen@ZIF-8-RF at 700 °C resulted in NiNP-NC-700 with predominantly Ni nanoparticles. Upon elevating the pyrolysis temperature from 700 to 900 °C, a coordination reconstruction offers Ni-Nx atomic sites in NiSA-NC-900. A combined investigation with X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and soft X-ray L3-edge spectroscopy suggests the stabilization of low-valent Niδ+ (0 < δ < 2) in the Ni-N-C structural units. The oxygen evolution reaction (OER) is a key process during water splitting in fuel cells. However, OER is a thermodynamically uphill reaction with multi-step proton-coupled electron transfer and sluggish kinetics, due to which there is a need for a catalyst that can lower the OER overpotentials. The adsorption energy of a multi-step reaction on a single metal atom with coordination unsaturation tunes the adsorption of each oxygenated intermediate. The promising OER activity of the NiSA-NC-900/NF anode on nickel foam was followed by the overall water splitting (OWS) using using NiSA-NC-900/NF as anode and Pt coil as the cathodic counterpart, wherein a cell potential of 1.75 V at 10 mA cm-2 was achieved. The cell potential recorded with Pt(-)/(+)NiSA-NC-900/NF was much lower than that obtained for other cells, i.e., Pt(-)/NF and NF(-)/(+)NF, which enhances the potentials of low-valent NiSAs for insightful understanding of the OER. At a constant applied potential of 1.61 V (vs. RHE) for 12 h, an small increase in current for initial 0.6 h followed by a constant current depicts the fair stability of catalyst for 12 h. Our results offer an insightful angle into the OER with a coordinatively reconstructed single-Ni-atom structure at lower valency (<+2).
Collapse
Affiliation(s)
- Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| | - Anubha Rajput
- Department of Chemistry, Indian Institute of Technology, New Delhi, India.
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Norman C R Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program Academia Sinica, Taiwan
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taiwan
| | - Masaki Ujihara
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Rahul R Salunkhe
- Materials Research Laboratory Department of Physics, Indian Institute of Technology, Jammu, India
| | - Praveen Yadav
- Synchrotron X-ray Facility, Raja Ramanna Centre for Advanced Technology, Rajendra Nagar, Indore, Madhya Pradesh 452013, India
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| |
Collapse
|
8
|
Cao Y, Li Z, Yin X, Gan Y, Ye Y, Cai R, Wang Q, Feng B, Dai X, Song W. Electronic modulation and reaction-pathway optimization on three-dimensional seaweed-like NiSe@NiMn LDH heterostructure to trigger effective oxygen evolution reaction. J Colloid Interface Sci 2024; 658:528-539. [PMID: 38128196 DOI: 10.1016/j.jcis.2023.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The development of low-cost and high-efficiency electrocatalysts for the oxygen evolution reaction (OER) is essential to produce high-purity hydrogen in large scale. Herein, a three-dimensional (3D) seaweed-like hierarchical structure was fabricated using two-dimensional (2D) NiMn LDH nanosheets wrapped on one-dimensional (1D) NiSe nanowires with nickel foam (NF) as a substrate (NiSe@NiMn LDH/NF) via hydrothermal and electrodeposition processes. Owing to the strong interfacial synergy, 3D seaweed-like hierarchical structure, higher conductivity, and strong structural stability, the NiSe@NiMn LDH/NF exhibited superior OER performance with an overpotential of 287 mV at 100 mA cm-2, and stably operated for 160 h at large current. Moreover, the overall water splitting system with NiSe@NiMn LDH/NF as the anode and Pt/C/NF as the cathode exhibited a low cell voltage of 1.59/1.64 V to reach 50/100 mA cm-2, and excellent stability for 110 h at 300 mA cm-2. The density function theory (DFT) calculations unveiled that NiSe@NiMn LDH enabled the interfacial synergy, reallocating the electron density at the interface, and further weakening the energy barrier of OH* by strengthening chemical bonds with OH* intermediates to improve the intrinsic OER activity.
Collapse
Affiliation(s)
- Yihua Cao
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Zhi Li
- College of Science, China University of Petroleum, Beijing 102249, China
| | - Xueli Yin
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yonghao Gan
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Ying Ye
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Run Cai
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Qi Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Bo Feng
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xiaoping Dai
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Weiyu Song
- College of Science, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
9
|
Kazemi A, Manteghi F, Tehrani Z. Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS OMEGA 2024; 9:7310-7335. [PMID: 38405471 PMCID: PMC10882616 DOI: 10.1021/acsomega.3c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
The rising demand for fossil fuels and the resulting pollution have raised environmental concerns about energy production. Undoubtedly, hydrogen is the best candidate for producing clean and sustainable energy now and in the future. Water splitting is a promising and efficient process for hydrogen production, where catalysts play a key role in the hydrogen evolution reaction (HER). HER electrocatalysis can be well performed by Pt with a low overpotential close to zero and a Tafel slope of about 30 mV dec-1. However, the main challenge in expanding the hydrogen production process is using efficient and inexpensive catalysts. Due to electrocatalytic activity and electrochemical stability, transition metal compounds are the best options for HER electrocatalysts. This study will focus on analyzing the current situation and recent advances in the design and development of nanostructured electrocatalysts for noble and non-noble metals in HER electrocatalysis. In general, strategies including doping, crystallization control, structural engineering, carbon nanomaterials, and increasing active sites by changing morphology are helpful to improve HER performance. Finally, the challenges and future perspectives in designing functional and stable electrocatalysts for HER in efficient hydrogen production from water-splitting electrolysis will be described.
Collapse
Affiliation(s)
- Amir Kazemi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Faranak Manteghi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Zari Tehrani
- The
Future Manufacturing Research Institute, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| |
Collapse
|
10
|
She C, Hong S, Song N, Zhao Z, Li J, Niu Y, Li C, Dong H. In Situ Creation of Surface Defects on Pd@NiPd with Core-shell Hierarchical Structure Toward Boosting Electrocatalytic Activity. Inorg Chem 2024; 63:3199-3206. [PMID: 38286822 DOI: 10.1021/acs.inorgchem.3c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
A deep insight into surface structural evolution of the catalyst is a challenging issue to reveal the structure-activity relationship. In this contribution, based on a surface alloying strategy, the dual-functional Pd@NiPd catalyst with a unique core-shell hierarchical structure is developed through selective crystal growth, surface cocrystallization, directional self-assembly, and reduction process. The surface defects are created in situ on the outer NiPd alloy layer in the electrochemical redox processes, which endow the Pd@NiPd catalyst with excellent electrocatalytic activity of hydrogen generation reaction (HER) and oxygen generation reaction (OER) in alkaline media. The optimal Pd@NiPd-2 catalyst requires an overpotential of only 18 mV that is far lower than Pt/C benchmark (43 mV) at the current density of 10 mA cm-2 for the HER, and 210 mV that is far lower than RuO2 benchmark (430 mV) at 50 mA cm-2 for the OER. Density functional theory (DFT) calculations reveal that the outstanding electrocatalytic activity is originated from the creation of surface defect structure that induces a significant reduction in the adsorption and dissociation energy barriers of H2O molecules in the HER and a decrease in the conversion energy from O* to OOH* that resulted from the synergy of two adjacent Pd sites by forming O-bridge. This work affords a typical paradigm for exploiting efficient catalysts and investigating the dependence of electrocatalytic activity on the surface structural evolution.
Collapse
Affiliation(s)
- Chen She
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shihuan Hong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ning Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihui Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiayao Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaling Niu
- Baicheng Normal University, Baicheng 137000, PR China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
11
|
Xiong D, He X, Liu X, Gong S, Xu C, Tu Z, Wu D, Wang J, Chen Z. 1D/3D Heterogeneous Assembling Body of Cobalt Nitrides for Highly Efficient Overall Hydrazine Splitting and Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306100. [PMID: 37817367 DOI: 10.1002/smll.202306100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Herein, the construction of a heterostructured 1D/3D CoN-Co2 N@NF (nickel foam) electrode used for thermodynamically favorable hydrazine oxidation reaction (HzOR), as an alternative to sluggish anodic oxygen evolution reaction (OER) in water splitting for hydrogen production, is reported. The electrode exhibits remarkable catalytic activities, with an onset potential of -0.11 V in HzOR and -71 mV for a current density of 10 mA cm-2 in hydrogen evolution reaction (HER). Consequently, an extraordinary low cell voltage of 53 mV is required to achieve 10 mA cm-2 for overall hydrazine splitting in a two-electrode system, demonstrating significant energy-saving advantages over conventional water splitting. The HzOR proceeds through the 4e- reaction pathway to release N2 while the 1e- pathway to emit NH3 is uncompetitive, as evidenced by differential electrochemical mass spectrometric measurements. The X-ray absorption spectroscopy, in situ Raman spectroscopy, and theoretical calculations identify cobalt nitrides rather than corresponding oxides/(oxy)hydroxides as catalytic species for HzOR and illustrate advantages of heterostructured CoN-Co2 N in optimizing adsorption energies of intermediates/reagents and promoting catalytic activities toward both HzOR and HER. The CoN-Co2 N@NF is also an excellent supercapacitive material, exhibiting an increased specific capacity (938 F g-1 at 1 A g-1 ) with excellent cycling stability (95.8%, 5000 cycles).
Collapse
Affiliation(s)
- Dengke Xiong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoyang He
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuaiqi Gong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chen Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhentao Tu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jianying Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zuofeng Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
12
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
13
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Zhu L, Zhang S, Ai Z, Zhang Y, Wang B, Zou R, Sun W. Investigation of seawater electrolyte on hydrogen evolution reaction from the perspective of kinetics and energy consumption using an Ni-based electrocatalyst supported on carbon nanotubes. Phys Chem Chem Phys 2023; 25:29774-29782. [PMID: 37885420 DOI: 10.1039/d3cp03064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In this study, a Ni-based composite incorporating Ni4N and La2O3 supported on carbon nanotubes (Ni-La-Ni4N/CNT) was synthesized as an efficiency electrocatalyst towards the hydrogen evolution reaction in different electrolytes with the kinetics and energy consumption investigated in detail. The Ni-La-Ni4N/CNT exhibits overpotentials of 124 mV and 200 mV at the current density of 10 mA cm-2 in 1.0 M KOH and alkaline seawater, respectively. As quantitative comparison, the exchange current density (j°) based on Volmer-Heyrovsky-Tafel mechanism was calculated from various polarization curves, which indicated that the addition of NaCl in alkaline medium or using seawater alone reduced the reactivity of the catalyst. The activity of Ni-La-Ni4N/CNT in alkaline seawater was equal to 91% of that in 1.0 M KOH. Furthermore, dynamic polarization resistance and corresponding current were obtained by the analysis of the equivalent circuit model with the extended Kalman filter algorithm. The analysis of the resistance power at 1 mW also shows that the current between the conditions in KOH and in seawater is 2.76 times. Adding alkaline substances to seawater can narrow it to 1.19 times. These strategies provide novel approaches for inspecting the activity changes of materials in different electrochemical environments.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China.
- Key State Laboratory of Industrial Vent Gas Reuse, The Southwest Research & Design Institute of the Chemical Industry, Chengdu 610225, People's Republic of China
| | - Siyue Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China.
| | - Zheng Ai
- Key State Laboratory of Industrial Vent Gas Reuse, The Southwest Research & Design Institute of the Chemical Industry, Chengdu 610225, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China.
| | - Baoli Wang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China.
- College of Health Sciences, Hainan Technology and Business College, Haikou 570203, P. R. China
| | - Ruyi Zou
- School of Chemistry and Environment, Shangrao Normal University, Shangrao 334001, People's Republic of China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China.
| |
Collapse
|
15
|
Ma Y, Zhou Y, Xie Y, Jin N, Cui Y, Qin Y, Ge H. Open-Microcolumn Array: A Novel Approach for Enhanced Electrocatalytic Bubble Desorption in Microreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47790-47798. [PMID: 37769290 DOI: 10.1021/acsami.3c09901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
High-efficiency electrocatalytic water splitting requires high intrinsic activity of catalysts and even more importantly favorable mass transfer. However, gas bubbles adhering to the surface of catalysts limit the re-expose of catalytic active sites to the electrolyte and reduce the catalytic activities. The efficient desorption of bubbles can be facilitated by a hierarchical multiscale structure of the electrode surface. Herein, we report an opened periodic three-dimensional electrode composed of iron (Fe)-cobalt (Co)-nickel (Ni) (oxy)hydroxide nanorods (NRs) grown in situ on a high aspect ratio nickel microcolumn array (NCA) for electrocatalytic water splitting. Compared with the flat nickel plate, the NCA not only increases the surface area for catalyst loading but also improves the wettability of the electrolyte on the electrode surface, exhibiting superhydrophilicity/superaerophobicity (the electrolyte and the bubble contact angles were about ∼0 and 163°, respectively), which accelerates the bubble evolution and desorption process. The X-ray photoelectron spectroscopy indicates that the synergy of Fe-Co-Ni could enhance the ratio of Co3+/Co2+ and Ni3+/Ni2+ and promote the electrocatalytic activity. Benefiting from the microstructure design and synergistic effects, the Co4Fe0.5Ni0.5OOH-NR@NCA electrode achieves a superior OER performance with an overpotential of 199 mV at 10 mA·cm-2.
Collapse
Affiliation(s)
- Yibing Ma
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Yaya Zhou
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Yaqing Xie
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Ningxuan Jin
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Yushuang Cui
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Yiqiang Qin
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| | - Haixiong Ge
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing 210093, China
| |
Collapse
|
16
|
Fan C, Dong W, Saira Y, Tang Y, Fu G, Lee JM. Rare-Earth-Modified Metal-Organic Frameworks and Derivatives for Photo/Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302738. [PMID: 37291982 DOI: 10.1002/smll.202302738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have attracted much attention in the field of photo/electrocatalysis owing to their ultrahigh porosity, tunable properties, and superior coordination ability. Regulating the valence electronic structure and coordination environment of MOFs is an effective way to enhance their intrinsic catalytic performance. Rare earth (RE) elements with 4f orbital occupancy provide an opportunity to evoke electron rearrangement, accelerate charged carrier transport, and synergize the surface adsorption of catalysts. Therefore, the integration of RE with MOFs makes it possible to optimize their electronic structure and coordination environment, resulting in enhanced catalytic performance. In this review, progress in current research on the use of RE-modified MOFs and their derivatives for photo/electrocatalysis is summarized and discussed. First, the theoretical advantages of RE in MOF modification are introduced, with a focus on the roles of 4f orbital occupancy and RE ion organic coordination ligands. Then, the application of RE-modified MOFs and their derivatives in photo/electrocatalysis is systematically discussed. Finally, research challenges, future opportunities, and prospects for RE-MOFs are also discussed.
Collapse
Affiliation(s)
- Chuang Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenrou Dong
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yousaf Saira
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technology University, Singapore, 637459, Singapore
| |
Collapse
|
17
|
Sun M, Li Y, Wang S, Wang Z, Li Z, Zhang T. Non-precious metal-based heterostructure catalysts for hydrogen evolution reaction: mechanisms, design principles, and future prospects. NANOSCALE 2023; 15:13515-13531. [PMID: 37580995 DOI: 10.1039/d3nr01836a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
As a highly promising clean energy source to replace fossil fuels in the 21st century, hydrogen energy has garnered considerable attention, with water electrolysis emerging as a key hydrogen production technology. The development of highly active and stable non-precious metal-based catalysts for the hydrogen evolution reaction (HER) is crucial for achieving efficient and low-cost hydrogen production through electrolysis. Recently, heterostructure composite catalysts comprising two or more non-precious metals have demonstrated outstanding catalytic performance. First, we introduced the basic mechanism of the HER and, based on the reported HER theory, discussed the essence of constructing heterostructures to improve the catalytic activity of non-noble metal-based catalysts, that is, the coupling effect between components effectively regulates the electronic structure and the position of d-band centers. Then three catalytic effects of non-precious metal-based heterogeneous catalysts are described: synergistic effect, electron transfer effect and support effect. Lastly, we emphasized the potential of non-precious metal-based heterogeneous catalysts to replace precious metal-based catalysts, and summarized the future prospects and challenges.
Collapse
Affiliation(s)
- Mojie Sun
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Yalin Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Shijie Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ziquan Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Zhi Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ting Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| |
Collapse
|
18
|
Zhang S, Zhou X, Zhou G, He B, Pang H, Xu L, Tang Y. Template-assisted Fabrication of O-doped CoP Microflowers with Optimal Electronic Modulation for Electrochemical Hydrogen Evolution. Chemistry 2023; 29:e202301252. [PMID: 37194695 DOI: 10.1002/chem.202301252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Exploring efficient, affordable and stable electrocatalyst toward hydrogen evolution reaction (HER) is of great scientific significance for the practical implementation of the water splitting. The heteroatom doping represents a serviceable strategy to further elevate the catalytic performance for a transition metal-based electrocatalyst because of the electronic regulation effect. Herein, a reliable self-sacrificial template-engaged approach is proposed to synthesize O-doped CoP (denoted as O-CoP) microflowers, which simultaneously considers the regualtion of electronic configuration via anion doping and sufficient exposure of active sites via nanostructure engineering. The suitable O incorporation content in CoP matrix could tremendously modify the electronic configuration, accelerate the charge transfer, promote the exposure of active sites, strengthen the electrical conductivity, and adjust the adsorption state of H*. Consequently, the optimized O-CoP microflowers with optimal O concentration display a remarkable HER property with a small overpotential of 125 mV to afford a current density of 10 mA cm-2 , a low Tafel slope of 68 mV dec-1 and long-term durability for 32 h under alkaline electrolyte, manifesting a considerable potential application for hydrogen production at large scale. The integration of anion incorporation and architecture engineering in this work will bring in a depth insight for the design of low-cost and effective electrocatalysts in energy conversion and storage systems.
Collapse
Affiliation(s)
- Shoulin Zhang
- Department Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xue Zhou
- Department Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Guangyao Zhou
- College of Science, Jinling Institute of Technology, Nanjing, 211169, P. R. China
| | - Bin He
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Lin Xu
- Department Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Department Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
19
|
Chen X, Le F, Lu Z, Zhou D, Yao H, Jia W. Ultrafine Electrospun Cobalt-Molybdenum Bimetallic Nitride as a Durable Electrocatalyst for Hydrogen Evolution. Inorg Chem 2023. [PMID: 37392193 DOI: 10.1021/acs.inorgchem.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Transition metal nitrides are promising electrocatalysts for hydrogen evolution reaction (HER) owing to their Pt-like electronic structure. However, the harsh nitriding conditions greatly limit their large-scale applications. Herein, ultrafine Co3Mo3N-Mo2C (<1 nm)-decorated carbon nanofibers (Co3Mo3N-Mo2C/CNFs) were prepared by electrostatic spinning followed by pyrolysis treatment, in which the MoCo-MOF simultaneously serves as the precursor and nitrogen source. The generated synergistic interactions between Mo2C and Co3Mo3N significantly adjust the electronic structure of Mo2C and afford a fast charge transfer, which endows the resultant hybrid with superior HER electrocatalytic performances. Specifically, the as-obtained Co3Mo3N-Mo2C/CNF delivers a low overpotential of only 76 mV to achieve a current density of 10 mA cm-2 and superior durability with no obvious degradation for 200 h in acidic media. This performance outperforms most of the transition metal-based electrocatalysts reported to date. This work paves a new way for the design of catalysts with ultrasmall size and high efficiency in energy conversion.
Collapse
Affiliation(s)
- Xianhao Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Fuhe Le
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830017, China
- Xinjiang Uygur Autonomous Region Research Institute of Measurement and Testing, Urumqi 830011, China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Dehuo Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Haibin Yao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Wei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
20
|
Chen L, Liu F, Li X, Tao Q, Huang Z, Zuo Q, Chen Y, Li T, Fu M, Ye D. Surface adsorbed and lattice oxygen activated by the CeO 2/Co 3O 4 interface for enhancive catalytic soot combustion: Experimental and theoretical investigations. J Colloid Interface Sci 2023; 638:109-122. [PMID: 36736113 DOI: 10.1016/j.jcis.2023.01.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Metal oxide-oxide interface on supported catalyst has been rarely studied due to the complex interfacial structure and synthetic challenge. Herein, different Ag-supported CeO2/Co3O4 samples with various covered-state of CeO2 were prepared for catalytic soot oxidation. In comparison, catalytic activity was significantly improved by grafting CeO2 on Co3O4, in which the best performing Ag/CoCe-2 exhibited remarkable catalytic performance towards soot oxidation with a T50 of 290.5 ℃ under 10 % O2/N2. Catalyst characterization investigated by Scanning Electron Microscope (SEM), quasi in-situ X-ray Photoelectron Spectroscopy (XPS), in-situ Raman, etc. revealed that this outstanding promotion in catalytic activity can be principally ascribed to the formation of the CeO2/Co3O4 interface. An appropriate CeO2 dosage maximized the contact and interaction between Co3O4 and CeO2, resulting in the largest CeO2/Co3O4 interface featured with abundant generated superoxide species and activated surface lattice oxygen. Density functional theory (DFT) calculations were also carried out for the oxygen vacancy formation energy, Gibbs free energy, etc. In presence of the CeO2/Co3O4 interface, a charge density redistribution around the adsorbed reactants at oxygen vacancies could be formed, owing to the efficient charge transfer enhanced by the electron-appealing effect. The change in electronic structure favored reducing the oxygen vacancy formation energy and boosting the lattice oxygen activation induced by the hybridized Co-O-Ce bonds, finally lowering the adsorption and activation barriers for reactive species and accelerating the reaction kinetics.
Collapse
Affiliation(s)
- Longwen Chen
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Feng Liu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Xiaoqian Li
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Qiuzhen Tao
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Zhaoqin Huang
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Qi Zuo
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Yanwu Chen
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China.
| | - Tan Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
21
|
Dong Y, Zhang X, Wang X, Liu F, Ren J, Wang H, Wang R. Kirkendall effect Strengthened-Superhydrophilic/superaerophobic Co-Ni 3N/NF heterostructure as electrode catalyst for High-current hydrogen production. J Colloid Interface Sci 2023; 636:657-667. [PMID: 36680956 DOI: 10.1016/j.jcis.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The development of efficient electrocatalysts for large-scale water electrolysis is crucial and challenging. Research efforts towards interface engineering and electronic structure modulation can be leveraged to enhance the electrochemical performance of the developed catalysts. In this work, a surface-engineered Co-Ni3N/NF heterostructure electrode was prepared based on Kirkendall effect for high-current water electrolysis. In the experiments, the textural feature and intrinsic activity of the Co-Ni3N/NF heterostructure were tuned through cobalt-doping and the creation of structural defects. As a result, the increased surface energy endowed Co-Ni3N/NF heterostructure with superhydrophilic and superaerophobic properties. Meanwhile, the contact area of the gas-liquid-solid three phases was optimized. With a large underwater bubble contact angle (CA) of 169°, the electrolyte solution can infiltrate the Co-Ni3N/NF electrode within 150 ms. Sequentially, the generated gas bubbles were able to detach at high frequency, which ensured the rapid mass exchange. The performance tests showed that the optimal Co-Ni3N/NF electrode sample reached current densities of 100 mA cm-2 and 500 mA cm-2 at the overpotentials of 98 mV and 123 mV, respectively. Benefiting from the reduction of hydrogen embrittlement, the HER performance of the prepared Co-Ni3N/NF electrode sample decreased slightly after 100 h durability test, but the overall structure remained well. Those results allowed us to conclude that the prepared Co-Ni3N/NF electrocatalyst holds the promises for large-scale water electrolysis in industries. More specifically, this work provided a new perspective that the efficiency of electrocatalysts for large-scale water electrolysis can be enhanced by constructing a heterostructure with good wettability and gas repellency.
Collapse
Affiliation(s)
- Yucheng Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xichun Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuyun Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fangfang Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, Weifang 262700, China
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092 Johannesburg, South Africa.
| | - Hui Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Rongfang Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
22
|
Liu Z, He H, Liu Y, Zhang Y, Shi J, Xiong J, Zhou S, Li J, Fan L, Cai W. Soft-template derived Ni/Mo 2C hetero-sheet arrays for large current density hydrogen evolution reaction. J Colloid Interface Sci 2023; 635:23-31. [PMID: 36577352 DOI: 10.1016/j.jcis.2022.12.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Practical structural design and electronic regulation are significant for synthesising efficient electrocatalysts. Therefore, a facile soft-template approach has been applied to successfully grow Ni/Mo2C heterojunction nanosheet arrays on nickel foam (NF) skeleton (NS-Ni/Mo2C@NF) using polyvinylpyrrolidone (PVP) as a soft template. The density functional theory (DFT) calculations reveal that abundant Ni/Mo2C heterojunction in NS-Ni/Mo2C@NF can provide many active sites with a moderate hydrogen adsorption free energy (ΔGH*, 0.037 eV). Benefiting from this nanosheet array structure and abundant Ni/Mo2C heterojunctions, the NS-Ni/Mo2C@NF catalyst can efficiently catalyze HER, especially at large current densities. As a result, only 151 and 271 mV overpotentials are needed to deliver 100 and 1000 mA/cm2 HER, respectively. More importantly, the hydrogen production testing with NS-Ni/Mo2C@NF as the working electrode can run stably for 500 h without activity decay under the current density of 500 mA/cm2 commonly used in industrial water electrolyzers, indicating that NS-Ni/Mo2C@NF has broad application prospects.
Collapse
Affiliation(s)
- Zhao Liu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huawei He
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuxuan Liu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yi Zhang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jiawei Shi
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jie Xiong
- College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang 277160, Shandong, China.
| | - Shunfa Zhou
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Liyuan Fan
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville QLD 4811, Australia
| | - Weiwei Cai
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China.
| |
Collapse
|
23
|
Recent developments on iron and nickel-based transition metal nitrides for overall water splitting: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Parvin S, Bothra N, Dutta S, Maji M, Mura M, Kumar A, Chaudhary DK, Rajput P, Kumar M, Pati SK, Bhattacharyya S. Inverse 'intra-lattice' charge transfer in nickel-molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center. Chem Sci 2023; 14:3056-3069. [PMID: 36937581 PMCID: PMC10016623 DOI: 10.1039/d2sc04617b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse' charge transfer from Mo to Ni in two systems, Ni73Mo alloy electrodeposited on Cu nanowires and NiMo-hydroxide (Ni : Mo = 5 : 1) on Ni foam. The inverse charge transfer deciphered by X-ray absorption fine structure studies and X-ray photoelectron spectroscopy has been understood by the Bader charge and projected density of state analyses. The undercoordinated Mo-center pushes the Mo 4d-orbitals close to the Fermi energy in the valence band region while Ni 3d-orbitals lie in the conduction band. Since electrons are donated from the electron-rich Mo-center to the electron-poor Ni-center, the inverse charge transfer effect navigates the Mo-center to become positively charged and vice versa. The reverse charge distribution in Ni73Mo accelerates the electrochemical hydrogen evolution reaction in alkaline and acidic media with 0.35 and 0.07 s-1 turnover frequency at -33 ± 10 and -54 ± 8 mV versus the reversible hydrogen electrode, respectively. The corresponding mass activities are 10.5 ± 2 and 2.9 ± 0.3 A g-1 at 100, and 54 mV overpotential, respectively. Anodic potential oxidizes the Ni-center of NiMo-hydroxide for alkaline water oxidation with 0.43 O2 s-1 turnover frequency at 290 mV overpotential. This extremely durable homologous couple achieves water and urea splitting with cell voltages of 1.48 ± 0.02 and 1.32 ± 0.02 V, respectively, at 10 mA cm-2.
Collapse
Affiliation(s)
- Sahanaz Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Neha Bothra
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Mamoni Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Maglu Mura
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Ashwani Kumar
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Dhirendra K Chaudhary
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
- Centre for Renewable Energy, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University Jaunpur 222003 India
| | - Parasmani Rajput
- Beamline Development and Application Section, Bhabha Atomic Research Center Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushakti Nagar Mumbai-400094 India
| | - Manvendra Kumar
- Department of Physics, Institute of Science, Shri Vaishnav Vidyapeeth Viswavidyalaya Indore 453111 India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
25
|
Li Y, Ren L, Wang T, Wu Z, Wang Z. Efficient removal of bromate from contaminated water using electrochemical membrane filtration with metal heteroatom interface. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130688. [PMID: 36608582 DOI: 10.1016/j.jhazmat.2022.130688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Efficient utilization of atomic hydrogen (H*) is of great importance for achieving efficient bromate reduction using electrochemical technologies. Herein, an electrochemical membrane with metal heteroatom interface of Ru and Ni was developed to enhance the utilization efficiency of H* via the membrane filtration process. The RuNi membrane demonstrated 91.3% of bromate removal at 5 mA cm-2 under the flow-through operation (40 L m-2 h-1). Cyclic voltammetry (CV) curves and electron spin resonance (ESR) spectra elucidated that the bromate reduction was mainly attributed to H* -mediated reduction rather than the direct electron transfer between bromate and RuNi active layer. The quenching experiments revealed a significant contribution of adsorbed H* to the bromate removal during the membrane filtration. Based on X-ray photoelectron spectrometry and X-ray diffraction analyses, we found that the resultant Ru0Ni0 structure on the electrochemical membrane could facilitate the generation of H* during the bromate reduction reaction. Besides, the higher pH might suppress the formation of H* and increase the energy barrier for breaking the Br-O bond, resulting in dramatic increase of energy consumption for removing bromate. Our work highlights the potential of utilizing H* in electrochemical membrane for removing bromate in water treatment and remediation.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
26
|
Zhao Y, Zhao S, Chen J, Zhou Y, Zhao P, Dai R, Zhou W, Yang P, Zhang H, Chen A. Interface engineering of Fe 2P@CoMnP 4 heterostructured nanoarrays for efficient and stable overall water splitting. J Colloid Interface Sci 2023; 633:897-906. [PMID: 36508397 DOI: 10.1016/j.jcis.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Electrocatalytic water splitting to generate high-quality hydrogen is an attractive renewable energy storage technology; however, it is still far from becoming a real-world application. In this study, we developed an effective and stable nickel foam-supported Fe2P@CoMnP4 heterostructure electrocatalyst for overall water splitting. As expected, the as-obtained Fe2P@CoMnP4/NF electrocatalyst exhibits superb bifunctional catalytic activity and only requires extremely low overpotentials of 53 and 249 mV to achieve a current density of 10 mA cm-2 for the hydrogen and oxygen evolution reactions, respectively. Moreover, a two-electrode electrolyzer assembled using Fe2P@CoMnP4/NF as electrodes operates at the low cell voltage of 1.54 V at 10 mA cm-2, showing excellent long-term stability for 140 h. Theoretical calculations indicate that the surface electronic structure is effectively adjusted by the generated heterointerfaces between the Fe2P and CoMnP4 in a two-phase matrix, resulting in a Gibbs free energy of hydrogen adsorption close to zero and high intrinsic activity. This innovative strategy is a valuable route for producing low-cost high-performance bifunctional electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Shuwen Zhao
- School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Ji Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Yao Zhou
- School of Engineering, The University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK.
| | - Peilong Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450066, PR China
| | - Ruijie Dai
- School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Weijie Zhou
- School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Peizhi Yang
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650092, PR China.
| | - Hua Zhang
- School of Materials and Energy, Yunnan University, Kunming 650091, PR China.
| | - Anran Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
27
|
Liu H, Jiang Y, Mao Y, Jiang Y, Shen W, Li M, He R. The role of various components in Ru-NiCo alloys in boosting the performance of overall water splitting. J Colloid Interface Sci 2023; 633:189-198. [PMID: 36446211 DOI: 10.1016/j.jcis.2022.11.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Understanding the synergistic mechanism of multi-component alloys is crucial and challenging for overall water splitting. Herein, Ru-NiCo0.5-600 °C and Ru-Ni0.75Co with excellent electrocatalytic activity are designed and synthesized. The Ru-NiCo0.5-600 °C alloy exhibits remarkable HER activity with an overpotential of 42, 77 and 93 mV at 10 mA cm-2 in alkaline, acidic and neutral conditions, and the Ru-Ni0.75Co electrocatalyst presents outstanding OER activity with an overpotential of 176 mV at 10 mA cm-2 in 1.0 M KOH. The Ru-NiCo0.5-600 °C ||Ru-Ni0.75Co cell requires only 1.48 and 1.69 V to reach 10 and 100 mA cm-2 towards overall water splitting. A series of experiments reveal that the strong electronic coupling among Ru, Ni and Co regulates the electronic structure and enhances the intrinsic catalytic activity and stability of the as-synthesized Ru-NiCo electrocatalysts. Systematic experimental and theoretical results prove that Ni atoms act as the active sites of dissociating water, while Ru and Co are respectively the active centers of proton and hydroxyl adsorption for HER and OER. Our work provides a new perspective for profoundly understanding the synergistic effect of multi-component alloys towards water splitting.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yong Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yini Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
28
|
Wu Y, Gao D, Huang L, Shi H, Yang P, Guo J, Zhou M, Xiao P, Zhang Y. In situ electrochemical construction of Co/CoP crystalline-amorphous hetero-phase catalysts for highly efficient electrocatalytic hydrogen evolution. Chem Commun (Camb) 2023; 59:2429-2432. [PMID: 36753051 DOI: 10.1039/d2cc06959h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein we develop a facile, one-step electrochemical approach for the in situ construction of a Co/CoP crystalline-amorphous hetero-phase catalyst towards the hydrogen evolution reaction (HER). The unique catalyst demonstrates a low overpotential of 83 mV at 10 mA cm-2 with a small Tafel slope of 55.3 mV dec-1 in 1.0 M KOH. The Co/CoP crystalline-amorphous hetero-phase is highly conducive to regulating the Co-P electronic structure and weakening the H atom adsorption, thus markedly boosting the HER performance. This work offers an innovative strategy to develop a highly efficient transition metal phosphide electrocatalyst with a novel structure.
Collapse
Affiliation(s)
- Yali Wu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Di Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Lu Huang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Huihui Shi
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Peixin Yang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Jiangna Guo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Ming Zhou
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Peng Xiao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Yunhuai Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
29
|
In-situ synthesis of NixCo4-xN/N-doped carbon ultrathin nanosheet arrays by supramolecular pyrolysis for boosting electrocatalytic hydrogen evolution in universal pH range water and natural seawater. J Colloid Interface Sci 2023; 629:873-881. [DOI: 10.1016/j.jcis.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022]
|
30
|
Xu H, Yuan J, He G, Chen H. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Dong F, Zhang M, Xu X, Pan J, Zhu L, Hu J. Orbital Modulation with P Doping Improves Acid and Alkaline Hydrogen Evolution Reaction of MoS 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4273. [PMID: 36500899 PMCID: PMC9740413 DOI: 10.3390/nano12234273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
There has been great interest in developing and designing economical, stable and highly active electrocatalysts for the hydrogen evolution reaction (HER) via water splitting in an aqueous solution at different pH values. Transition-metal dichalcogenides (TMDCs), e.g., MoS2, are identified to be promising catalysts for the HER due to the limited active sites at their edges, while the large basal plane of MoS2 is inert and shows poor performance in electrocatalytic hydrogen production. We theoretically propose orbital modulation to improve the HER performance of the basal plane of MoS2 through non-metal P doping. The substitutional doping of P provides empty 3pz orbitals, perpendicular to the basal plane, can enhance the hydrogen adsorption for acid HER and can promote water dissociation for alkaline HER, which creates significant active sites and enhances the electronic conductivity as well. In addition, 3P-doped MoS2 exhibits excellent HER catalytic activity with ideal free energy at acid media and low reaction-barrier energy in alkaline media. Thus, the doping of P could significantly boost the HER activity of MoS2 in such conditions. Our study suggests an effective strategy to tune HER catalytic activity of MoS2 through orbital engineering, which should also be feasible for other TMDC-based electrocatalysts.
Collapse
Affiliation(s)
- Fuyu Dong
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Minghao Zhang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Xiaoyong Xu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Jing Pan
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Liyan Zhu
- School of Physics and Electronic & Electrical Engineering, Huaiyin Normal University, Huai’an 223300, China
| | - Jingguo Hu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
32
|
Meng G, Chen Y, Wang R, Zhu L, Yao H, Chen C, Chang Z, Tian H, Kong F, Cui X, Shi J. CoW Bimetallic Carbide Nanocatalysts: Computational Exploration, Confined Disassembly-Assembly Synthesis and Alkaline/Seawater Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204443. [PMID: 36257819 DOI: 10.1002/smll.202204443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Earth-abundant tungsten carbide exhibits potential hydrogen evolution reaction (HER) catalytic activity owing to its Pt-like d-band electronic structure, which, unfortunately, suffers from the relatively strong tungsten-hydrogen binding, deteriorating its HER performance. Herein, a catalyst design concept of incorporating late transition metal into early transition metal carbide is proposed for regulating the metal-H bonding strength and largely enhancing the HER performance, which is employed to synthesize CoW bi-metallic carbide Co6 W6 C by a "disassembly-assembly" approach in a confined environment. Such synthesized Co6 W6 C nanocatalyst features the optimal Gibbs free energy of *H intermediate and dissociation barrier energy of H2 O molecules as well by taking advantage of the electron complementary effect between Co and W species, which endows the electrocatalyst with excellent HER performance in both alkaline and seawater/alkaline electrolytes featuring especially low overpotentials, elevated current densities, and much-enhanced operation durability in comparison to commercial Pt/C catalyst. Moreover, a proof-of-concept Mg/seawater battery equipped with Co6 W6 C-2-600 as cathode offers a peak power density of 9.1 mW cm-2 and an open-circuit voltage of ≈1.71 V, concurrently realizing hydrogen production and electricity output.
Collapse
Affiliation(s)
- Ge Meng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yafeng Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Rongyan Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Libo Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziwei Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Han Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fantao Kong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiangzhi Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Yang X, Liu Y, Guo R, Xiao J. Coupling Transition Metal Catalysts with Ir for Enhanced Electrochemical Water Splitting Activity. CHEM REC 2022; 22:e202200176. [PMID: 36000851 DOI: 10.1002/tcr.202200176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Developing advanced electrocatalysts is of great significance for boosting electrochemical water splitting to produce hydrogen. The electrocatalytic activity of a catalyst is associated with the surface/interface, geometric structure, and electronic properties. Coupling Ir with transition metal compounds is an effective strategy to improve their electrocatalytic performance. In this review, we summarize the recent progress of Ir coupled transition metal compound catalysts for the application in driving electrochemical water splitting. The significant role of Ir played in the promotion of electrocatalytic performance is firstly illustrated. Then, the applications of Ir-based catalysts in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are comprehensively discussed, with an emphasis on correlating the structure-function relationships. Lastly, the challenges and future directions for the fabrication of more advanced Ir coupled electrocatalysts are also presented.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Yan Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Ruike Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, PR China
| |
Collapse
|
34
|
Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Zhu J, Xia F, Guo Y, Lu R, Gong L, Chen D, Wang P, Chen L, Yu J, Wu J, Mu S. Electron Accumulation Effect over Osmium/Erlichmanite Heterointerfaces for Intensified pH-Universal Hydrogen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Fanjie Xia
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Yao Guo
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ruihu Lu
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinsong Wu
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
36
|
Tan C, Wang F, Lv K, Shi Y, Dong B, Hao L, Yin L, Xu X, Xian Y, Agathopoulos S. TiN ceramic membrane supported nitrogen-incorporating NiCo2 nanowires as bifunctional electrode for overall water splitting in alkaline solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Wu S, Wang X, Bai J, Zhu Y, Yu X, Qin F, He P, Ren L. Influence of Nitrogen-Doped Carbon Quantum Dots on the Electrocatalytic Performance of the CoP Nanoflower Catalyst for OER. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11210-11218. [PMID: 36084196 DOI: 10.1021/acs.langmuir.2c01225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cobalt phosphides modified by nitrogen-doped carbon quantum dots (CoP-NCQDs) were successfully constructed by a facile and low-cost hydrothermal treatment, which is expected to replace traditional noble-metal oxygen evolution reaction electrode materials. Detailed experiments and findings show that nitrogen-doped carbon quantum dots (NCQDs) have a significant impact on the morphology of the CoP catalyst, and nitrogen doping can regulate the surface-active sites to obtain the catalyst with abundant structural defects. Simultaneously, nitrogen doping can regulate the content of pyridinic N and pyrrolic N, which exerts positive effects on the formation of the bond structure and electron conduction between NCQDs and CoP.
Collapse
Affiliation(s)
- Shuang Wu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyu Wang
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jianliang Bai
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yaqing Zhu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xu Yu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fu Qin
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Pinyi He
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lili Ren
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
38
|
Li X, Liang H, Liu X, Zhang Y, Liu Z, Fan H. Zeolite Imidazolate Frameworks (ZIFs) Derived Nanomaterials and their Hybrids for Advanced Secondary Batteries and Electrocatalysis. CHEM REC 2022; 22:e202200105. [PMID: 35959942 DOI: 10.1002/tcr.202200105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022]
Abstract
Zeolite imidazolate frameworks (ZIFs), as a typical class of metal-organic frameworks (MOFs), have attracted a great deal of attention in the field of energy storage and conversation due to their chemical structure stability, facile synthesis and environmental friendliness. Among of ZIFs family, the zinc-based imidazolate framework (ZIF-8) and cobalt-based imidazolate framework (ZIF-67) have considered as promising ZIFs materials, which attributed to their tunable porosity, stable structure, and desirable electrical conductivity. To date, various ZIF-8 and ZIF67 derived materials, including carbon materials, metal oxides, sulfides, selenides, carbides and phosphides, have been successfully synthesized using ZIFs as templates and evaluated as promising electrode materials for secondary batteries and electrocatalysis. This review provides an effective guide for the comprehension of the performance optimization and application prospects of ZIFs derivatives, specifically focusing on the optimization of structure and their application in secondary batteries and electrocatalysis. In detail, we present recent advances in the improvement of electrochemical performance of ZIF-8, ZIF-67 and ZIF-8@ZIF-67 derived nanomaterials and their hybrids, including carbon materials, metal oxides, carbides, oxides, sulfides, selenides, and phosphides for high-performance secondary batteries and electrocatalysis.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China.,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huajian Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| | - Zili Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
39
|
Chen M, Liu Y, Fan J, Liu B, Shi N, Lin Y, Li X, Song W, Xu D, Xu X, Han M. Phase-Controlled Synthesis of Nickel-Iron Nitride Nanocrystals Armored with Amorphous N-Doped Carbon Nanoparticles Nanocubes for Enhanced Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203042. [PMID: 35908802 DOI: 10.1002/smll.202203042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Transition metal nitrides (TMNs) nanostructures possess distinctive electronic, optical, and catalytic properties, showing great promise to apply in clean energy, optoelectronics, and catalysis fields. Nonetheless, phase-regulation of NiFe-bimetallic nitrides nanocrystals or nanohybrid architectures confronts challenges and their electrocatalytic overall water splitting (OWS) performances are underexplored. Herein, novel pure-phase Ni2+ x Fe2- x N nanocrystals armored with amorphous N-doped carbon (NC) nanoparticles nanocubes (NPNCs) are obtained by controllable nitridation of NiFe-Prussian-blue analogues derived oxides/NC NPNCs under Ar/NH3 atmosphere. Such Ni2+ x Fe2- x N/NC NPNCs possess mesoporous structures and show enhanced electrocatalytic activity in 1 m KOH electrolyte with the overpotential of 101 and 270 mV to attain 10 and 50 mA cm-2 current toward hydrogen and oxygen evolution reactions, outperforming their counterparts (mixed-phase NiFe2 O4 /Ni3 FeN/NC and NiFe oxides/NC NPNCs). Remarkably, utilizing them as bifunctional catalysts, the assembled Ni2+ x Fe2- x N/NC||Ni2+ x Fe2- x N/NC electrolyzer only needs 1.51 V cell voltage for driving OWS to approach 10 mA cm-2 water-splitting current, exceeding their counterparts and the-state-of-art reported bifunctional catalysts-based devices, and Pt/C||IrO2 couples. Additionally, the Ni2+ x Fe2- x N/NC||Ni2+ x Fe2- x N/NC manifests excellent durability for OWS. The findings presented here may spur the development of advanced TMNs nanostructures by combining phase, structure engineering, and hybridization strategies and stimulate their applications toward OWS or other clean energy fields.
Collapse
Affiliation(s)
- Mingyu Chen
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Ying Liu
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiayao Fan
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bingxue Liu
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Naien Shi
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xianzeng Li
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Wenqi Song
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiangxing Xu
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Han
- Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
40
|
Highly Efficient Hydrogen Evolution in Alkaline Medium by Ternary Cobalt Molybdenum Nitride on Self-standing Porous Copper Foam. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
41
|
Das C, Sinha N, Roy P. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202033. [PMID: 35703063 DOI: 10.1002/smll.202202033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The identification of hydrogen as green fuel in the near future has stirred global realization toward a sustainable outlook and thus boosted extensive research in the field of water electrolysis focusing on the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). A huge class of compounds consisting of transition metal-based nitrides, carbides, chalcogenides, phosphides, and borides, which can be collectively termed transition metal non-oxides (TMNOs), has emerged recently as an efficient class of electrocatalysts in terms of performance and longevity when compared to transition metal oxides (TMOs). Moreover, the superiority of TMNOs over TMOs to effectively catalyze not only OERs but also HERs and ORRs renders bifunctionality and even trifunctionality in some cases and therefore can replace conventional noble metal electrocatalysts. In this review, the crystal structure and phases of different classes of nanostructured TMNOs are extensively discussed, focusing on recent advances in design strategies by various regulatory synthetic routes, and hence diversified properties of TMNOs are identified to serve as next-generation bi/trifunctional electrocatalysts. The challenges and future perspectives of materials in the field of energy conversion and storage aiding toward a better hydrogen economy are also discussed in this review.
Collapse
Affiliation(s)
- Chandni Das
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nibedita Sinha
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poulomi Roy
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
42
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 320] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
43
|
Xu Q, Wang P, Wan L, Xu Z, Sultana MZ, Wang B. Superhydrophilic/Superaerophobic Hierarchical NiP 2@MoO 2/Co( Ni)MoO 4 Core-Shell Array Electrocatalysts for Efficient Hydrogen Production at Large Current Densities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19448-19458. [PMID: 35469395 DOI: 10.1021/acsami.2c01808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rationally constructing low-cost, high-efficiency, and durable electrocatalysts toward the hydrogen evolution reaction at large current densities is imperative for water splitting, especially for large-scale industrial applications. Herein, a hierarchical core-shell NiP2@MoO2/Co(Ni)MoO4 cuboid array electrode with superhydrophilic/superaerophobic properties is successfully fabricated and the formation mechanism of the core-shell structure is systematically investigated. Through an in situ partially converted gas-solid reaction during the phosphating process, Ni and Co elements are leached and rearranged to form NiP2 particles and amorphous CoO as the shell layer and the inner undecomposed Co(Ni)MoO4 crystals serve as the core layer. Because of its seamless core-shell structure and superhydrophilicity/superaerophobicity of hierarchical cuboid arrays, NiP2@MoO2/Co(Ni)MoO4 exhibits superior HER activity in 1 M KOH with only an overpotential of 297 mV to deliver 1000 mA cm-2 and can work steadily for 650 h at 200 mA cm-2. Remarkably, when coupled with NiFe LDH for overall water splitting, it can drive an AA battery with an ultralow cell voltage of 1.49 V to deliver 10 mA cm-2. This work sheds new light on designing large-current-density efficient HER electrocatalysts for large-scale industrial applications.
Collapse
Affiliation(s)
- Qin Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Peican Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Wan
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziang Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Mst Zakia Sultana
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
44
|
Hu L, Shi J, Peng Z, Zheng Z, Dong H, Wang T. A high-density nickel-cobalt alloy embedded in nitrogen-doped carbon nanosheets for the hydrogen evolution reaction. NANOSCALE 2022; 14:6202-6211. [PMID: 35394479 DOI: 10.1039/d2nr00053a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of novel non-noble electrocatalysts is critical for an efficient electrochemical hydrogen evolution reaction (HER). In this study, high-density nickel-cobalt alloy nanoparticles embedded in the bent nitrogen-doped carbon nanosheets are prepared as a high-performance catalyst. The optimized Ni7Co3/NC-500 catalyst displays quite a low overpotential of 90 mV at a current density of 10 mA cm-2, and a small Tafel slope of 64 mV dec-1 in alkaline medium, and even performs better than commercial 20% Pt/C at a high current density (η150 = 233 mV for Ni7Co3/NC-500 and η150 = 267 mV for 20% Pt/C). Specifically, the high-density nickel-cobalt alloy (with an average size of 6.2 nm and a distance of <3.0 nm) embedded in the bent carbon nanosheets provides plentiful active sites. Furthermore, in situ visualization of the produced hydrogen bubbles shows that the small size of hydrogen bubbles (d = 0.2 mm for Ni7Co3/NC-500 vs. d = 0.8 mm for 20% Pt/C) resulting from the small water contact angle and the bent nanosheet structure would inhibit the aggregation of H2 bubbles on the surface to facilitate efficient mass diffusion. Density functional theory calculations reveal that the formation of the nickel-cobalt alloy can effectively lower water dissociation energy barriers and optimize hydrogen adsorption Gibbs free energy, manifesting a high HER activity.
Collapse
Affiliation(s)
- Lihua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jialing Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhiguang Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zefeng Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Tiejun Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
- Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
45
|
Niu S, Fang Y, Rao D, Liang G, Li S, Cai J, Liu B, Li J, Wang G. Reversing the Nucleophilicity of Active Sites in CoP 2 Enables Exceptional Hydrogen Evolution Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106870. [PMID: 35166446 DOI: 10.1002/smll.202106870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Precisely constructing the local configurations of active sites to achieve on-demand catalytic functions is highly critical yet challenging. Herein, an anion-deficient strategy to precisely capture Ru single atoms on the anion vacancies of CoP2 (Ru-SA/Pv-CoP2 ) is developed. Refined structural characterizations reveal that the Ru single atoms preferably bind to the anion vacancy sites and consequently build a superior catalytic surface with neighboring CoP and CoRu coordination states for the hydrogen evolution reaction (HER) catalysis. The prepared Ru-SA/Pv-CoP2 nanowires exhibit an unprecedented overpotential of 17 mV at 10 mA cm-2geo , and the corresponding mass activity is 52.2 times higher than the benchmark Pt/C catalyst at the overpotential of 50 mV. Theoretical analysis illustrates that the introduced Ru-SAs can reverse electrons state distribution (from nucleophilic P sites to electrophilic Ru sites) and boost the activation of water molecules and hydrogen production. More importantly, such a construction strategy is also applicable for Pt single atom coupling, suggesting its generality in building catalytic sites. The capability to precisely construct active sites offers a powerful platform to manipulate the catalytic performance of HER catalysts and beyond.
Collapse
Affiliation(s)
- Shuwen Niu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanyan Fang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guangjie Liang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Senyang Li
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinyan Cai
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bo Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jianming Li
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing, 100083, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
46
|
Gujral HS, Singh G, Baskar AV, Guan X, Geng X, Kotkondawar AV, Rayalu S, Kumar P, Karakoti A, Vinu A. Metal nitride-based nanostructures for electrochemical and photocatalytic hydrogen production. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:76-119. [PMID: 35309252 PMCID: PMC8928826 DOI: 10.1080/14686996.2022.2029686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 05/19/2023]
Abstract
The over-dependence on fossil fuels is one of the critical issues to be addressed for combating greenhouse gas emissions. Hydrogen, one of the promising alternatives to fossil fuels, is renewable, carbon-free, and non-polluting gas. The complete utilization of hydrogen in every sector ranging from small to large scale could hugely benefit in mitigating climate change. One of the key aspects of the hydrogen sector is its production via cost-effective and safe ways. Electrolysis and photocatalysis are well-known processes for hydrogen production and their efficiency relies on electrocatalysts, which are generally noble metals. The usage of noble metals as catalysts makes these processes costly and their scarcity is also a limiting factor. Metal nitrides and their porous counterparts have drawn considerable attention from researchers due to their good promise for hydrogen production. Their properties such as active metal centres, nitrogen functionalities, and porous features such as surface area, pore-volume, and tunable pore size could play an important role in electrochemical and photocatalytic hydrogen production. This review focuses on the recent developments in metal nitrides from their synthesis methods point of view. Much attention is given to the emergence of new synthesis techniques, methods, and processes of synthesizing the metal nitride nanostructures. The applications of electrochemical and photocatalytic hydrogen production are summarized. Overall, this review will provide useful information to researchers working in the field of metal nitrides and their application for hydrogen production.
Collapse
Affiliation(s)
- Harpreet Singh Gujral
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Arun V. Baskar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Abhay V. Kotkondawar
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Sadhana Rayalu
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, University Drive, Callaghan, 2308, Australia
| |
Collapse
|
47
|
Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107072. [PMID: 34846082 DOI: 10.1002/adma.202107072] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Design and construction of low-cost electrocatalysts with high catalytic activity and long-term stability is a challenging task in the field of catalysis. Metal-organic frameworks (MOF) are promising candidates as precursor materials in the development of highly efficient electrocatalysts for energy conversion and storage applications. This review starts with a summary of basic concepts and key evaluation parameters involved in the electrochemical water-splitting reaction. Then, different synthesis approaches reported for the cobalt-based Zeolitic imidazolate framework (ZIF-67) and its derivatives are critically reviewed. Additionally, several strategies employed to enhance the electrocatalytic activity and stability of ZIF-67-based electrocatalysts are discussed in detail. The present review provides a succinct insight into the ZIF-67 and its derivatives (oxides, hydroxides, sulfides, selenides, phosphide, nitrides, telluride, heteroatom/metal-doped carbon, noble metal-supported ZIF-67 derivatives) reported for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting applications. Finally, this review concludes with the associated challenges and the perspectives on developing the best economic, durable electrocatalytic materials.
Collapse
Affiliation(s)
- Harsharaj S Jadhav
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
48
|
Yang X, Guo R, Cai R, Shi W, Liu W, Guo J, Xiao J. Engineering transition metal catalysts for large-current-density water splitting. Dalton Trans 2022; 51:4590-4607. [PMID: 35231082 DOI: 10.1039/d2dt00037g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrochemical water splitting plays a crucial role in transferring electricity to hydrogen fuel and appropriate electrocatalysts are crucial to satisfy the strict industrial demand. However, the successfully developed non-noble metal catalysts have a small tested range and the current density is usually less than 100 mA cm-2, which is still far away from the practical application standards. Aiming to provide guidance for the fabrication of more advanced electrocatalysts with a large current density, we herein systematically summarize the recent progress achieved in the field of cost-efficient and large-current-density electrocatalyst design. Beginning by illustrating the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) mechanisms, we elaborate on the concurrent issues of non-noble metal catalysts that are required to be addressed. In view of large-current-density operating conditions, some distinctive features with regard to good electrical conductivity, high intrinsic activity, rich active sites, and porous architecture are also summarized. Next, some representative large-current-density electrocatalysts are classified. Finally, we discuss the challenges associated with large-current-density water electrolysis and future pathways in the hope of guiding the future development of more efficient non-noble-metal catalysts to boost large-scale hydrogen production with less electricity consumption.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Ruike Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Rui Cai
- International Office of Huaihua University, Huaihua University, Huaihua 418000, PR China
| | - Wei Shi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Wenzhu Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Jian Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China
| |
Collapse
|
49
|
Cai C, Liu K, Zhu Y, Li P, Wang Q, Liu B, Chen S, Li H, Zhu L, Li H, Fu J, Chen Y, Pensa E, Hu J, Lu Y, Chan T, Cortés E, Liu M. Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202113664. [PMID: 34822728 PMCID: PMC9300137 DOI: 10.1002/anie.202113664] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/06/2023]
Abstract
Ruthenium (Ru)-based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru-H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru-H binding energy is the strong interaction between the 4 d z 2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4 d z 2 -band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy-nanosheets (RuCo ANSs). They were prepared via a fast co-precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z-direction asymmetric coordination structure, obtaining an optimal 4 d z 2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru-H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra-low overpotential of 10 mV at 10 mA cm-2 and a Tafel slope of 20.6 mV dec-1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal-H binding energy of active sites.
Collapse
Affiliation(s)
- Chao Cai
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Kang Liu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Yuanmin Zhu
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Pengcheng Li
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Qiyou Wang
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Bao Liu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Shanyong Chen
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Huangjingwei Li
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Li Zhu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Hongmei Li
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Junwei Fu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Yu Chen
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Evangelina Pensa
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Junhua Hu
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Ying‐Rui Lu
- National Synchrotron Radiation Research CenterHsinchu300Taiwan
| | - Ting‐Shan Chan
- National Synchrotron Radiation Research CenterHsinchu300Taiwan
| | - Emiliano Cortés
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Min Liu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| |
Collapse
|
50
|
Zhu Y, Zhang J, Qian Q, Li Y, Li Z, Liu Y, Xiao C, Zhang G, Xie Y. Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidation‐Assisted High‐Efficiency H
2
Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jihua Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science Guizhou Education University Guiyang Guizhou 550018 P. R. China
| | - Qizhu Qian
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yapeng Li
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Ziyun Li
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chong Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Genqiang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| |
Collapse
|