1
|
Son W, Kim J, Kim JH, Lee JM, Seo H, Cho HE, Kim M, Park SC, Sim HJ, Min S, Kim CS, Lim SC, Baik S, Choi C. Stretchable Micro-Wrinkled Carbon Nanotube-Assembled Skin-Adhesive Patches with Suction-Cup Patterns for Human Breath-Derived Moisture Energy Harvesting. ACS NANO 2025; 19:20729-20743. [PMID: 40415305 DOI: 10.1021/acsnano.5c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
With significant advances in self-powered, stretchable, and skin-attachable electronics, harvesting energy from ubiquitous moisture has emerged as a promising method for powering wearable and adhesive devices. However, current moisture energy harvesting (MEH) devices still face challenges in direct application to skin surfaces, mainly due to insufficient stretchability and weak adhesion, particularly under wet conditions. Here, we construct a stretchable and skin-adhesive MEH patch by harnessing microwrinkled carbon nanotube (CNT) sheets featuring asymmetric oxygen content and a highly elastic silicone rubber-polymer substrate with suction-cup patterns (SP). The developed MEH patch (2 cm × 4 cm) achieves an open-circuit voltage of ∼102 mV and a short-circuit current of ∼1.75 mA/m2 under ambient humidity variations. Notably, it maintains stable electrical output even when stretched up to 300% strain. The SP architecture introduced in the patch ensures robust adhesion to both dry and wet skin surfaces with the application of preload. Consequently, the stretchable and adhesive MEH patch can effectively convert breath-induced moisture energy into electric output on the philtrum, enabling self-powered monitoring of various respiratory patterns.
Collapse
Affiliation(s)
- Wonkyeong Son
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeeeun Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Ji Hyeon Kim
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Myeong Lee
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunji Seo
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ha Eun Cho
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Minjeong Kim
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Cheol Park
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Jun Sim
- Department of Biomedical Engineering, Konkuk University, Chungju 27478, South Korea
| | - Sunghyun Min
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering Pusan National University Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seong Chu Lim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangyul Baik
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changsoon Choi
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Lee JM, Son W, Oh M, Han D, Seo H, Sim HJ, Kim SH, Shin DM, Kim CS, Kim SJ, Choi C. Dual-Scale Hydration-Induced Electrical and Mechanical Torsional Energy Harvesting in Heterophilically Designed CNT Yarns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501111. [PMID: 40289894 DOI: 10.1002/adma.202501111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Water holds vast potential for a useful energy source, yet traditional approaches capture only a fraction of it. This study introduces a heterophilically designed carbon nanotube (CNT) yarn with an asymmetric configuration. This yarn is capable of both electrical and mechanical torsional energy harvesting through dual-scale hydration. Fabricated via half-electrochemical oxidation, the yarn contains a hydrophilic region enriched with oxygen-containing functional groups and a hydrophobic pristine CNT region. Molecular-scale hydration triggers proton release in the hydrophilic region. Consequently, a concentration gradient is established that generates a peak open-circuit voltage of 106.0 mV and a short-circuit current of 20.6 mA cm-2. Simultaneously, microscale hydration induces water absorption into inter-bundle microchannels, resulting in considerable yarn volume expansion. This process leads to hydro-driven actuation with a torsional stroke of 78.8° mm-1 and a maximum rotational speed of 1012 RPM. The presented simultaneous harvesting results in electrical and mechanical power densities of 3.5 mW m-2 and 34.3 W kg-1, respectively, during a hydration cycle. By integrating molecular and microscale hydrations, the proposed heterophilic CNT yarns establish an unprecedented platform for simultaneous electrical and mechanical energy harvesting from water, representing a groundbreaking development for sustainable applications.
Collapse
Affiliation(s)
- Jae Myeong Lee
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Wonkyeong Son
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Myoungeun Oh
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Duri Han
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hyunji Seo
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hyeon Jun Sim
- Department of Biomedical Engineering, Konkuk University, Chungju, 27478, South Korea
| | - Shi Hyeong Kim
- Textile Innovation R&D Department, Korea Institute of Industrial Technology, Ansan, Gyeonggi-do, 15588, Republic of Korea
- Department of Advanced Material Engineering, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Seon Jeong Kim
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Changsoon Choi
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
3
|
Chen J, Zhang X, Cheng M, Li Q, Zhao S, Zhang M, Fu Q, Deng H. A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach. MATERIALS HORIZONS 2025; 12:2309-2318. [PMID: 39789936 DOI: 10.1039/d4mh01642d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO). This design generates a dual-gradient structure (ion density gradient and relative humidity gradient), enabling continuous power generation from the intrinsic moisture in the hydrogel. The device can operate for up to 16 days without external water and extend its operation to 45 days with added moisture. Remarkably, encapsulating this MEG maintains its high performance output even after nearly three months. The short-circuit current of MEG reaches 1695 μA, with an energy density of 809.2 μW h cm-2, which is considerably higher than those reported in previous studies on MEG. This work highlights a promising approach for long-term, self-sustained power generation, with potential applications in environmental sensing and low-power devices.
Collapse
Affiliation(s)
- Jie Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xuezhong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610065, P. R. China.
| | - Minhan Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qianyang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shuaijiang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Huang Z, Zhang T, Cao H, Xu Z, Ju A, Zhao Y. Flexible Moisture-Driven Electricity Generators Based on Heterogeneous Gels and Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7916-7928. [PMID: 39865592 DOI: 10.1021/acsami.4c21266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Recently developed asymmetric heterogeneous moisture-driven electricity generators (AHMEGs) are advantageous for harvesting energy from ubiquitous moisture due to their superior output performance and possible flexibility. However, the regeneration of AHMEG has seldom been explored. Here, we report the fabrication of flexible AHMEGs with regeneration ability simply by asymmetrically incorporating carbon nanotubes into a bilayer-structured gel with heterogeneities of both hygroscopicity and charge. The bilayered gel consists of a Na+-containing macroporous aerogel and a highly hygroscopic Cl--containing hydrogel. After assembly, the resulting flexible AHMEG unit shows excellent output performance, with a stable voltage of 1.03 V, a current density of 23.8 μA cm-2, a power density of up to 9.12 μW cm-2 and a high stability over 7 days, resulting from a synergistic effect between hygroscopicity and charge heterogeneities of the bilayered gel. The regeneration of the AHMEGs has been realized via light irradiation of the aerogel containing carbon nanotubes, and the regeneration can be repeated for at least 30 cycles, significantly expanding the lifecycle of moisture-driven electricity generators. Regeneration imposed by carbon nanotubes, combined with flexibility, simple preparation, and excellent electrical performance, enables the AHMEGs to be excellent moisture-driven electricity generators for advantageous applications.
Collapse
Affiliation(s)
- Zhihao Huang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Tao Zhang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
- China National Textile and Apparel Council Key Laboratory for Silk Functional Materials and Technology, Soochow University, Suzhou 215123, China
| | - Hui Cao
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, 889 Guangqiong Road, Jiaxing 314001, China
| | - Aiming Ju
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
5
|
Duan P, Wang C, Huang Y, Fu C, Lu X, Zhang Y, Yao Y, Chen L, He QC, Qian L, Yang T. Moisture-based green energy harvesting over 600 hours via photocatalysis-enhanced hydrovoltaic effect. Nat Commun 2025; 16:239. [PMID: 39747063 PMCID: PMC11696064 DOI: 10.1038/s41467-024-55516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Harvesting the energy from the interaction between hygroscopic materials and atmospheric water can generate green and clean energy. However, the ion diffusion process of moisture-induced dissociation leads to the disappearance of the ion concentration gradient gradually, and there is still a lack of moisture-based power generation devices with truly continuous operation, especially the duration of the current output still needs to be extended. Here, we propose a design for reconstructing the ion concentration gradient by coupling photocatalytic hydrogen evolution reaction with hydrovoltaic effect, to report a moisture-enabled electric generator (MEG) with continuous current output. We show that the introduction of the photocatalytic layer not only absorbs light energy to greatly increase the power generation of the MEG (500% power density enhancement), but more importantly, the photocatalytic hydrogen evolution process consumes the pre-stacked ions to restore the ion concentration gradient, allowing the MEG to continuously output current for more than 600 hours, which is 1 to 2 orders of magnitude higher than the great majority of existed MEGs in terms of the current output duration.
Collapse
Affiliation(s)
- Peng Duan
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Chenxing Wang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yinpeng Huang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Chunqiao Fu
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xulei Lu
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yong Zhang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yuming Yao
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Lei Chen
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Qi-Chang He
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
- MSME, Université Gustave Eiffel, CNRS UMR 8208, F-77454, Marne-la-Vallée, France
| | - Linmao Qian
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Tingting Yang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China.
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611756, PR China.
| |
Collapse
|
6
|
Dai K, Wang Y, Li B, Li P, Wang X, Gao L. Advancements in Solid-Liquid Nanogenerators: A Comprehensive Review and Future Prospects. Molecules 2024; 29:5716. [PMID: 39683874 DOI: 10.3390/molecules29235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, the advent of the smart era has confronted a novel "energy crisis"-the challenge of distributed energy provision, necessitating an imperative for clean energy development. Encompassing 71% of the Earth's surface, water stands as the predominant conduit for energy transfer on our planet, effectively harnessing a fraction thereof to fulfill global energy demands. Modern hydropower technology primarily harnesses concentrated low-entropy water energy. However, the majority of natural water energy is widely dispersed in the environment as high-entropy distributed water energy, encompassing raindrop energy, stream energy, wave energy, evaporation energy, and other small-scale forms of water energy. While these energies are readily available, their collection poses significant challenges. Consequently, researchers initiated investigations into high-entropy water energy harvesting technology based on the electrodynamic effect, triboelectric effect, water volt effect, and other related phenomena. The present paper provides a comprehensive review of high-entropy water energy harvesting technologies, encompassing their underlying mechanisms, optimization strategies, and diverse applications. The current bottlenecks of these technologies are comprehensively analyzed, and their future development direction is prospectively discussed, thereby providing valuable guidance for future research on high-entropy water energy collection technology.
Collapse
Affiliation(s)
- Kejie Dai
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Yan Wang
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Baozeng Li
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Pengfei Li
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Xueqing Wang
- College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Lingxiao Gao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
7
|
Wu K, Yang W, Guo L, Yang Z, Jiao M. Two Birds with One Stone: Impedance-Voltage Dual-Mode Low Humidity Sensor Based on LiBr-MOF-801 with High Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404160. [PMID: 39175379 DOI: 10.1002/smll.202404160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Indexed: 08/24/2024]
Abstract
Dual-mode humidity sensors have received wide attention in recent years due to their great potential in multifunction applications. Herein, following a "two birds with one stone" strategy, a dual-mode and self-powered low humidity sensor based on LiBr-MOF-801 with high response and power generation is proposed. The optimized LiBr-MOF-801-based sensor exhibits impedance-voltage dual-mode sensitivity in the low humidity range of 0-23% relative humidity (RH) with high response (57.1 and 0.61 V), small hysteresis (0.3% RH) and good long-term stability at room temperature (20 °C). Moreover, an integrated humidity power generator is obtained by series connection of the self-powered humidity sensor within 15 cm2, and the output voltage reaches 2.6 V with an output power density of 110 nW cm-2, and can be used as energy, supplying power to commercial electronic equipment even in low humidity. This work provides a new sight for fabricating high-performance, dual-mode, and self-powered low-humidity sensors.
Collapse
Affiliation(s)
- Ke Wu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P. R. China
| | - Wenjie Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Lulu Guo
- Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, P. R. China
| | - Zhimin Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, P. R. China
| | - Mingzhi Jiao
- Research Center for Internet of Things, State and Local Joint Engineering Laboratory of Perception Mine, China University of Mining and Technology, Xuzhou, 221008, P. R. China
| |
Collapse
|
8
|
Yang L, Zhang L, Yong YC, Sun D. A Direct Current Self-Sustained Moisture-Electric Generator with 1 D/2D Hierarchical Nanostructure for Continuous Operation of Off-Grid Electronics. ACS NANO 2024; 18:28956-28967. [PMID: 39373661 DOI: 10.1021/acsnano.4c09494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ubiquitous moisture is a colossal reservoir of clean energy, and the emergence of moisture-electric generators (MEGs) is expected to provide direct power support for off-grid electronic devices anytime and anywhere. However, most MEGs rely on auxiliary energy storage devices and rectifier circuits to drive small electronic devices, which hinder scalability and widespread deployment, and the development of direct current (DC) MEGs with high power output that can directly drive off-grid electronic devices is highly promising but challenging. Herein, a self-sustained moisture-electric generator (SMEG) with a hierarchical nanostructure based on one-dimensional (1D) negatively charged nanofibers and two-dimensional (2D) conductive nanosheets was demonstrated to generate continuous DC electricity from atmospheric humidity. Sulfation of bacterial cellulose nanofibers lowers the surface potential and increases the surface charge energy, and reduced graphene oxide (rGO) provides a conduction pathway for electrons. The hierarchical nanostructures constructed by the combination of 1D nanofibers and 2D nanosheets endow the SMEG with self-sustained moisture gradients and structural anisotropy, which force the generation of a pseudocurrent. This combination also constructs microcapacitors that further enhance the moisture-electric power output. The SMEG can generate a continuous voltage in excess of 0.54 V for over 2160 h, with a power density of about 822 μW cm-3, demonstrating excellent operational durability. This research provides a feasible solution for the development of sustainable, versatile, and efficient power supplies for off-grid self-powered devices.
Collapse
Affiliation(s)
- Luyu Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| |
Collapse
|
9
|
Chen F, Zhang S, Guan P, Xu Y, Wan T, Lin CH, Li M, Wang C, Chu D. High-Performance Flexible Graphene Oxide-Based Moisture-Enabled Nanogenerator via Multilayer Heterojunction Engineering and Power Management System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304572. [PMID: 37528703 DOI: 10.1002/smll.202304572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Indexed: 08/03/2023]
Abstract
Recently, there has been a surge of interest in nanogenerators within the scientific community because their immense potential for extracting energy from the surrounding environment. A promising approach involves utilizing ambient moisture as an energy source for portable devices. In this study, moisture-enabled nanogenerators (MENGs) are devised by integrating heterojunctions of graphene oxide (GO) and reduced graphene oxide (rGO). Benefiting from the unique structure, a larger ion concentration gradient is achieved as well as a lower resistance, which leads to enhanced electricity generation. The resulting MENG generates a desirable open-circuit voltage of 0.76 V and a short-circuit current density of 73 µA cm-2 with a maximum power density of 15.8 µW cm-2. Notably, the designed device exhibits a high voltage retention of more than 90% after 3000 bending cycles, suggesting a high potential for flexible applications. Moreover, a large-scale integrated MENG array is developed by incorporating flexible printed circuit technology and connecting it to a power management system. This integrated system can provide ample energy to operate an electronic ink display and drive a heart rate sensor for health monitoring. The outcomes of this research present a novel framework for advancing next-generation self-powered flexible devices, thereby demonstrating significant promise for future wearable electronics.
Collapse
Affiliation(s)
- Fandi Chen
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Shuo Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yeqing Xu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollogong, 2500, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Caiyun Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollogong, 2500, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
10
|
Zhao Y, Liu J, Lu G, Zhang J, Wan L, Peng S, Li C, Wang Y, Wang M, He H, Xin JH, Ding Y, Zheng S. Diurnal humidity cycle driven selective ion transport across clustered polycation membrane. Nat Commun 2024; 15:7161. [PMID: 39169012 PMCID: PMC11339353 DOI: 10.1038/s41467-024-51505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
The ability to manipulate the flux of ions across membranes is a key aspect of diverse sectors including water desalination, blood ion monitoring, purification, electrochemical energy conversion and storage. Here we illustrate the potential of using daily changes in environmental humidity as a continuous driving force for generating selective ion flux. Specifically, self-assembled membranes featuring channels composed of polycation clusters are sandwiched between two layers of ionic liquids. One ionic liquid layer is kept isolated from the ambient air, whereas the other is exposed directly to the environment. When in contact with ambient air, the device showcases its capacity to spontaneously produce ion current, with promising power density. This result stems from the moisture content difference of ionic liquid layers across the membrane caused by the ongoing process of moisture absorption/desorption, which instigates selective transmembrane ion flux. Cation flux across the polycation clusters is greatly inhibited because of intensified charge repulsion. However, anions transport across polycation clusters is amplified. Our research underscores the potential of daily cycling humidity as a reliable energy source to trigger ion current and convert it into electrical current.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, China
- School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Ju Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gang Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Jinliang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Liyang Wan
- School of Computing, University of Connecticut, CT, Bridgeport, USA
| | - Shan Peng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
- College of Chemistry and Materials Science, Hebei University, Baoding, China
| | - Chao Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.
| | - Yanlei Wang
- Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, China.
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| | - Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - John H Xin
- School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China.
| | - Yulong Ding
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Shuang Zheng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Tian Z, Chang Q, Liu Z, Xue C, Li N, Jia S, Fan X, Yang J, Hu S. Electricity Harvesting from Water Evaporation on Hierarchical Pore Gradient Silica Aerogel-Based Generators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42468-42475. [PMID: 39080261 DOI: 10.1021/acsami.4c07729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In this study, the electric energy harvesting capability of the hierarchical pore gradient silica aerogel (HPSA) is demonstrated due to its unique porous structure and inherent hydroxyl groups on the surface. Taking advantage of the positively charged surface of unwashed HPSA credited by the preparation strategy, poly(4-styrene sulfonic acid) (PSS) can be spontaneously adsorbed onto unwashed HPSA and shows gradient distribution due to the pore-gradient structure of HPSA. By virtue of the gradient distribution and the stronger ionization of PSS, PSS-modified HPSA (PSS-HPSA) shows enhanced electricity generation performance from natural water evaporation with an average output voltage of 0.77 V on an individual device. The water evaporation-induced electricity property of PSS-HPSA can be maintained in the presence of a low concentration of salt. The desirable salt resistance capability benefits from the unique 3D hierarchical porous structure of HPSA which ensures rapid water replenishment so as to effectively avoid the salt accumulation. The HPSA-based devices with the advantages of unique porous structure, easy functionalization, good physicochemical stability, good salt resistance capability, and eco-friendliness show great potential as water evaporation-induced electricity generators.
Collapse
Affiliation(s)
- Zheyu Tian
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Qing Chang
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Zhenghong Liu
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Chaorui Xue
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Ning Li
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Suping Jia
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Xiangqian Fan
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| | - Jinlong Yang
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Shengliang Hu
- Research Group of New Energy Materials and Devices, State Key Laboratory of Coal and CBM Co-Mining, North University of China, Taiyuan 030051, China
| |
Collapse
|
12
|
Li Z, Zhang JH, Li J, Wang S, Zhang L, He CY, Lin P, Melhi S, Yang T, Yamauchi Y, Xu X. Dynamical Janus-Like Behavior Excited by Passive Cold-Heat Modulation in the Earth-Sun/Universe System: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309397. [PMID: 38644343 DOI: 10.1002/smll.202309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Indexed: 04/23/2024]
Abstract
The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.
Collapse
Affiliation(s)
- Zhengtong Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot, 010021, China
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiaoyang Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Song Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Lvfei Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Peng Lin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Tao Yang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Xingtao Xu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
13
|
Zang S, Chen J, Yamauchi Y, Sharshir SW, Huang H, Yun J, Wang L, Wang C, Lin X, Melhi S, Kim M, Yuan Z. Moisture Power Generation: From Material Selection to Device Structure Optimization. ACS NANO 2024. [PMID: 39052842 DOI: 10.1021/acsnano.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Moisture power generation (MPG) technology, producing clean and sustainable energy from a humid environment, has drawn significant attention and research efforts in recent years as a means of easing the energy crisis. Despite the rapid progress, MPG technology still faces numerous challenges with the most significant one being the low power-generating performance of individual MPG devices. In this review, we introduce the background and underlying principles of MPG technology while thoroughly explaining how the selection of suitable materials (carbons, polymers, inorganic salts, etc.) and the optimization of the device structure (pore structure, moisture gradient structure, functional group gradient structure, and electrode structure) can address the existing and anticipated challenges. Furthermore, this review highlights the major scientific and engineering hurdles on the way to advancing MPG technology and offers potential insights for the development of high-performance MPG systems.
Collapse
Affiliation(s)
- Shuo Zang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junbo Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Swellam W Sharshir
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hongqiang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juhua Yun
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwei Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Chong Wang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangfeng Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Wang L, Wang H, Wu C, Bai J, He T, Li Y, Cheng H, Qu L. Moisture-enabled self-charging and voltage stabilizing supercapacitor. Nat Commun 2024; 15:4929. [PMID: 38858397 PMCID: PMC11165001 DOI: 10.1038/s41467-024-49393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Supercapacitor is highly demanded in emerging portable electronics, however, which faces frequent charging and inevitable rapid self-discharging of huge inconvenient. Here, we present a flexible moisture-powered supercapacitor (mp-SC) that capable of spontaneously moisture-enabled self-charging and persistently voltage stabilizing. Based on the synergy effect of moisture-induced ions diffusion of inner polyelectrolyte-based moist-electric generator and charges storage ability of inner graphene electrochemical capacitor, this mp-SC demonstrates the self-charged high areal capacitance of 138.3 mF cm-2 and ~96.6% voltage maintenance for 120 h. In addition, a large-scale flexible device of 72 mp-SC units connected in series achieves a self-charged 60 V voltage in air, efficiently powering various commercial electronics in practical applications. This work will provide insight into the design self-powered and ultra-long term stable supercapacitors and other energy storage devices.
Collapse
Affiliation(s)
- Lifeng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, PR China
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, PR China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chunxiao Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, PR China
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiaxin Bai
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tiancheng He
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, PR China.
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, PR China.
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
15
|
Han BB, Luo P, Xue YB, Cao YM, Li W, Dong XX, Sun J, Zheng M, Zhao YD, Wu B, Zhuo S, Zheng M, Wang ZS, Zhuo MP. Hydrophilic 1T-WS 2 Nanosheet Arrays toward Conductive Textiles for High-Efficient and Continuous Hydroelectric Generation and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308527. [PMID: 38221686 DOI: 10.1002/smll.202308527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Flexible hydroelectric generators (HEGs) are promising self-powered devices that spontaneously derive electrical power from moisture. However, achieving the desired compatibility between a continuous operating voltage and superior current density remains a significant challenge. Herein, a textile-based van der Waals heterostructure is rationally designed between conductive 1T phase tungsten disulfide@carbonized silk (1T-WS2@CSilk) and carbon black@cotton (CB@Cotton) fabrics with an asymmetric distribution of oxygen-containing functional groups, which enhances the proton concentration gradients toward high-performance wearable HEGs. The vertically staggered 1T-WS2 nanosheet arrays on the CSilk fabric provide abundant hydrophilic nanochannels for rapid carrier transport. Furthermore, the moisture-induced primary battery formed between the active aluminum (Al) electrode and the conductive textiles introduces the desired electric field to facilitate charge separation and compensate for the decreased streaming potential. These devices exhibit a power density of 21.6 µW cm-2, an open-circuit voltage (Voc) of 0.65 V sustained for over 10 000 s, and a current density of 0.17 mA cm-2. This performance makes them capable of supplying power to commercial electronics and human respiratory monitoring. This study presents a promising strategy for the refined design of wearable electronics.
Collapse
Affiliation(s)
- Bin-Bin Han
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Peng Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yang-Biao Xue
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yuan-Ming Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Xin-Xin Dong
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jing Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Mi Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yu-Dong Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sheng Zhuo
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Min Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
- Jiangsu Naton Science & Technology Co., Ltd, Suzhou, 215123, China
| | - Zuo-Shan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Naton Science & Technology Co., Ltd, Suzhou, 215123, China
| | - Ming-Peng Zhuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
He W, Li P, Wang H, Hu Y, Lu B, Weng C, Cheng H, Qu L. Robustly and Intrinsically Stretchable Ionic Gel-Based Moisture-Enabled Power Generator with High Human Body Conformality. ACS NANO 2024; 18:12096-12104. [PMID: 38687972 DOI: 10.1021/acsnano.3c08543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Direct harvesting of energy from moist air will be a promising route to supply electricity for booming wearable and distributed electronics, with the recent rapid development of the moisture-enabled electricity generator (MEG). However, the easy spatial distortion of rigid MEG materials under severe deformation extremely inconveniences the human body with intense physical activity, seriously hindering the desirable applications. Here, an intrinsically stretchable moisture-enabled electricity generator (s-MEG) is developed based on a well-fabricated stretchable functional ionic gel (SIG) with a flexible double-network structure and reversible cross-linking interactions, demonstrating stable electricity output performance even when stretched up to 150% strain and high human body conformality. This SIG exhibits ultrahigh tensile strain (∼600%), and a 1 cm × 1 cm SIG film-based s-MEG can generate a voltage of ∼0.4 V and a current of ∼5.7 μA when absorbing water from humidity air. Based on the strong adhesion and the excellent interface combination of SIG and rough fabric electrodes induced by the fabrication process, s-MEG is able to realize bending or twisting deformation and shows outstanding electricity output stability with ∼90% performance retention after 5000 cycles of bending tests. By connecting s-MEG units in series or parallel, an integrated device of "moisture-powered wristband" is developed to wear on the wrist of humans and drive a flexible sensor for tracking finger motions. Additionally, a comfortable "moisture-powered sheath" based on s-MEGs is created, which can be worn like clothing on human arms to generate energy while walking and flexing the elbow, which is promising in the field of wearable electronics.
Collapse
Affiliation(s)
- Wenya He
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Puying Li
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Haiyan Wang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yajie Hu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Bing Lu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Chuanxin Weng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liangti Qu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
17
|
Li Q, Wang F, Zhang Y, Shi M, Zhang Y, Yu H, Liu S, Li J, Tan SC, Chen W. Biopolymers for Hygroscopic Material Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209479. [PMID: 36652538 DOI: 10.1002/adma.202209479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The effective management of atmospheric water will create huge value for mankind. Diversified and sustainable biopolymers that are derived from organisms provide rich building blocks for various hygroscopic materials. Here, a comprehensive review of recent advances in developing biopolymers for hygroscopic materials is provided. It is begun with a brief introduction of species diversity and the processes of obtaining various biopolymer materials from organisms. The fabrication of hygroscopic materials is then illustrated, with a specific focus on the use of biopolymer-derived materials as substrates to produce composites and the use of biopolymers as building blocks to fabricate composite gels. Next, the representative applications of biopolymer-derived hygroscopic materials for dehumidification, atmospheric water harvesting, and power generation are systematically presented. An outlook on future challenges and key issues worthy of attention are finally provided.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Fei Wang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Mengjiao Shi
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
18
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|
19
|
Xu T, Ding X, Cheng H, Han G, Qu L. Moisture-Enabled Electricity from Hygroscopic Materials: A New Type of Clean Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209661. [PMID: 36657097 DOI: 10.1002/adma.202209661] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/14/2023] [Indexed: 05/12/2023]
Abstract
Water utilization is accompanied with the development of human beings, whereas gaseous moisture is usually regarded as an underexploited resource. The advances of highly efficient hygroscopic materials endow atmospheric water harvesting as an intriguing solution to convert moisture into clean water. The discovery of hygroelectricity, which refers to the charge buildup at a material surface dependent on humidity, and the following moisture-enabled electric generation (MEG) realizes energy conversion and directly outputs electricity. Much progress has been made since then to optimize MEG performance, pushing forward the applications of MEG into a practical level. Herein, the evolvement and development of MEG are systematically summarized in a chronological order. The optimization strategies of MEG are discussed and comprehensively evaluated. Then, the latest applications of MEG are presented, including high-performance powering units and self-powered devices. In the end, a perspective on the future development of MEG is given for inspiring more researchers into this promising area.
Collapse
Affiliation(s)
- Tong Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoteng Ding
- College of Life Sciences, Qingdao University, Qingdao, 266071, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Gaoyi Han
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 237016, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
20
|
Shi P, Chen Y, Feng J, Sareh P. Highly stretchable graphene kirigami with tunable mechanical properties. Phys Rev E 2024; 109:035002. [PMID: 38632728 DOI: 10.1103/physreve.109.035002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024]
Abstract
In recent years, kirigami techniques have inspired the design of graphene-based nanodevices with exceptional stretchability and ductility. Based on an I-shaped cutting pattern, here we propose a graphene kirigami that exhibits remarkable stretchability and ductility in two independent planar directions along with negative Poisson's ratios. The deformation mechanism underlying the high stretchability of the structure is the flipping and rotation of its cutting ligaments during elongation. Molecular dynamics simulations show that the yield and fracture strains of graphene kirigami can be enhanced by factors of 6 and 10 in the two planar directions. In addition, the mechanical properties of the graphene kirigami can be tuned by altering the cutting geometric parameters as well as incorporating distinct cutting patterns in series. We develop a numerical algorithm to predict the stress-strain response of the series-connected graphene kirigami, and verify its accuracy using appropriate simulations. On this basis, the stress-strain response of the series-connected graphene kirigami can be tuned by altering its geometric parameters and the number of building blocks. This graphene kirigami could be applied to the design and development of next-generation flexible electronics such as stretchable electrodes and strain sensors.
Collapse
Affiliation(s)
- Pan Shi
- Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education and National Prestress Engineering Research Center, Southeast University, Nanjing 211189, China
| | - Yao Chen
- Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education and National Prestress Engineering Research Center, Southeast University, Nanjing 211189, China
- School of Civil Engineering, Southeast University, Wuxi Campus, Wuxi 214082, China
| | - Jian Feng
- Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education and National Prestress Engineering Research Center, Southeast University, Nanjing 211189, China
| | - Pooya Sareh
- Creative Design Engineering Lab (Cdel), School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid (UPM), Madrid 28012, Spain
| |
Collapse
|
21
|
Tan J, Wang X, Chu W, Fang S, Zheng C, Xue M, Wang X, Hu T, Guo W. Harvesting Energy from Atmospheric Water: Grand Challenges in Continuous Electricity Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211165. [PMID: 36708103 DOI: 10.1002/adma.202211165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric water is ubiquitous on earth and extensively participates in the natural water cycle through evaporation and condensation. This process involves tremendous energy exchange with the environment, but very little of the energy has so far been harnessed. The recently emerged hydrovoltaic technology, especially moisture-induced electricity, shows great potential in harvesting energy from atmospheric water and gives birth to moisture energy harvesting devices. The device performance, especially the long-term operational capacity, has been significantly enhanced over the past few years. Further development; however, requires in-depth understanding of mechanisms, innovative materials, and ingenious system designs. In this review, beginning with describing the basic properties of water, the key aspects of the water-hygroscopic material interactions and mechanisms of power generation are discussed. The current material systems and advances in promising material development are then summarized. Aiming at the chief bottlenecks of limited operational time, advanced system designs that are helpful to improve device performance are listed. Especially, the synergistic effect of moisture adsorption and water evaporation on material and system levels to accomplish sustained electricity generation is discussed. Last, the remaining challenges are analyzed and future directions for developing this promising technology are suggested.
Collapse
Affiliation(s)
- Jin Tan
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiang Wang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Weicun Chu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Sunmiao Fang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chunxiao Zheng
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiaofan Wang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Tao Hu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute for Frontier Science of Nanjing University of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
22
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Han Y, Wang Y, Wang M, Dong H, Nie Y, Zhang S, He H. Nanofluid-Guided Janus Membrane for High-Efficiency Electricity Generation from Water Evaporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312209. [PMID: 38262622 DOI: 10.1002/adma.202312209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/25/2023] [Indexed: 01/25/2024]
Abstract
Harvesting electricity from widespread water evaporation provides an alternative route to cleaner power generation technology. However, current evaporation power generation (EPG) mainly depends on the dissociation process of certain functional groups (e.g., SO3 H) in water, which suffers from low power density and short-term output. Herein, the Janus membrane is prepared by combining nanofluid and water-grabbing material for EPG, where the nanoconfined ionic liquids (NCILs) serve as ion sources instead of the functional groups. Benefiting from the selective and fast transport of anions in NCILs, such EPG demonstrates excellent power performance with a voltage of 0.63 V, a short-circuit current of 140 µA, and a maximum power density of 16.55 µW cm-2 while operating for at least 180 h consistently. Molecular dynamics (MD) simulation and surface potential analysis reveal the molecular mechanism, that is, the diffusion of Cl- anions during evaporation is much faster than that of cations, generating the voltage and current across the membrane. Furthermore, the device performs well in varying environmental conditions, including different water temperatures and sources of evaporating water, showcasing its adaptability and integrability. Overall, the nanofluid-guided Janus membrane can efficiently transform low-grade thermal energy in evaporation into electricity, showing a competitive advantage over other sustainable applied approaches.
Collapse
Affiliation(s)
- Yongxiang Han
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
| | - Mi Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
| |
Collapse
|
24
|
Yang Y, Wang J, Wang Z, Shao C, Han Y, Wang Y, Liu X, Sun X, Wang L, Li Y, Guo Q, Wu W, Chen N, Qu L. Moisture-Electric-Moisture-Sensitive Heterostructure Triggered Proton Hopping for Quality-Enhancing Moist-Electric Generator. NANO-MICRO LETTERS 2023; 16:56. [PMID: 38108916 PMCID: PMC10728039 DOI: 10.1007/s40820-023-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/21/2023] [Indexed: 12/19/2023]
Abstract
Moisture-enabled electricity (ME) is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression. However, ME can be unreliable in numerous applications due to its sluggish response to moisture, thus sacrificing the value of fast energy harvesting and highly accurate information representation. Here, by constructing a moisture-electric-moisture-sensitive (ME-MS) heterostructure, we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO, which modulates the heterostructure built-in interfacial potential, enables quick response (0.435 s), an unprecedented ultra-fast response rate of 972.4 mV s-1, and a durable electrical signal output for 8 h without any attenuation. Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator, which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
Collapse
Affiliation(s)
- Ya'nan Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Jiaqi Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhe Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Changxiang Shao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuyang Han
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Ying Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoting Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Xiaotong Sun
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Liru Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Qiang Guo
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Wenpeng Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China.
| | - Liangti Qu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
25
|
Entezari A, Esan OC, Yan X, Wang R, An L. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210957. [PMID: 36869587 DOI: 10.1002/adma.202210957] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Freshwater scarcity is a global challenge posing threats to the lives and daily activities of humankind such that two-thirds of the global population currently experience water shortages. Atmospheric water, irrespective of geographical location, is considered as an alternative water source. Sorption-based atmospheric water harvesting (SAWH) has recently emerged as an efficient strategy for decentralized water production. SAWH thus opens up a self-sustaining source of freshwater that can potentially support the global population for various applications. In this review, the state-of-the-art of SAWH, considering its operation principle, thermodynamic analysis, energy assessment, materials, components, different designs, productivity improvement, scale-up, and application for drinking water, is first extensively explored. Thereafter, the practical integration and potential application of SAWH, beyond drinking water, for wide range of utilities in agriculture, fuel/electricity production, thermal management in building services, electronic devices, and textile are comprehensively discussed. The various strategies to reduce human reliance on natural water resources by integrating SAWH into existing technologies, particularly in underdeveloped countries, in order to satisfy the interconnected needs for food, energy, and water are also examined. This study further highlights the urgent need and future research directions to intensify the design and development of hybrid-SAWH systems for sustainability and diverse applications.
Collapse
Affiliation(s)
- Akram Entezari
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Oladapo Christopher Esan
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiaohui Yan
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ruzhu Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
26
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
27
|
Maity D, Fussenegger M. An Efficient Ambient-Moisture-Driven Wearable Electrical Power Generator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300750. [PMID: 37203294 PMCID: PMC10401086 DOI: 10.1002/advs.202300750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Existing devices for generating electrical power from water vapor in ambient air require high levels of relative humidity (RH), cannot operate for prolonged periods, and provide insufficient output for most practical applications. Here a heterogeneous moisture-driven electrical power generator (MODEG) is developed in the form of a free-standing bilayer of polyelectrolyte films, one consisting of a hygroscopic matrix of graphene oxide(GO)/polyaniline(PANI) [(GO)PANI] and the other consisting of poly(diallyldimethylammonium chloride)(PDDA)-modified fluorinated Nafion (F-Nafion (PDDA)). One MODEG unit (1 cm2 ) can deliver a stable open-circuit output of 0.9 V at 8 µA for more than 10 h with a matching external load. The device works over a wide range of temperature (-20 to +50 °C) and relative humidity (30% to 95% RH). It is shown that series and parallel combinations of MODEG units can directly supply sufficient power to drive commercial electronic devices such as light bulbs, supercapacitors, circuit boards, and screen displays. The (GO)PANI:F-Nafion (PDDA) hybrid film is embedded in a mask to harvest the energy from exhaled water vapor in human breath under real-life conditions. The device could consistently generate 450-600 mV during usual breathing, and provides sufficient power to drive medical devices, wearables, and emergency communication.
Collapse
Affiliation(s)
- Debasis Maity
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
28
|
Abstract
In recent years, excessive exploitation and rapid population growth have posed numerous challenges. The climate crisis is deepening because of the unabated use of fossil fuels and the ascendance of greenhouse gas levels, so there is still an urgent need to seek different clean energy sources and electricity generating methods with the purpose of adjusting energy structures and solving environmental problems. In the ubiquitous hydrologic cycle, at least 60 petawatts (1015 W) energy can be supplied, but little of it has yet been utilized. Nowadays, hydrovoltaic intelligence has emerged and exhibited an ecofriendly concept of electricity generation compared with traditional methods with the rise of nanoscience and nanomaterials. Hence, it provides the prospect of upgrading the mode of water energy use, constructing a renewable energy industry, and alleviating environmental issues. In this review, starting by introducing different types of hydrovoltaic effect mechanisms─energy harvesting based on drawing potential of liquids; energy harvesting based on water evaporation, and energy harvesting based on moisture adsorption─we summarize the fabrication processes, material classifications, intelligent applications, and representative advances in detail. Moreover, the future development trends of hydrovoltaic intelligence and the challenges for improvement in electrical output are further discussed.
Collapse
Affiliation(s)
- Luomin Wang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Weifeng Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
29
|
Santos LP, Lermen D, Yoshimura RG, da Silva BL, Galembeck A, Burgo TAL, Galembeck F. Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5840-5850. [PMID: 37053576 DOI: 10.1021/acs.langmuir.3c00186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic analysis shows that water dehydrogenation is a non-spontaneous reaction under standard conditions, but it can occur within an open, non-electroneutral system, thus supporting the experimental results. That is a new example of chemical reactivity modification in charged interfaces, analogous to the hydrogen peroxide formation in charged aqueous aerosol droplets. Extension of the experimental methods and the thermodynamic analysis used in this work may allow the prediction of interesting new chemical reactions that are otherwise unexpected. On the other hand, this adds a new facet to the complex behavior of interfaces. Hygroelectric cells shown in this work are built from commodity materials, using standard laboratory or industrial processes that are easily scaled up. Thus, hygroelectricity may eventually become a source of energy and valuable chemicals.
Collapse
Affiliation(s)
- Leandra P Santos
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | - Diana Lermen
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | - Rafael Galiza Yoshimura
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | | | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife 50740-560, Brazil
| | - Thiago A L Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Fernando Galembeck
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| |
Collapse
|
30
|
Liu Z, Liu C, Chen Z, Huang H, Liu Y, Xue L, Sun J, Wang X, Xiong P, Zhu J. Recent advances in two-dimensional materials for hydrovoltaic energy technology. EXPLORATION (BEIJING, CHINA) 2023; 3:20220061. [PMID: 37324031 PMCID: PMC10191061 DOI: 10.1002/exp.20220061] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Hydrovoltaic energy technology that generates electricity directly from the interaction of materials with water has been regarded as a promising renewable energy harvesting method. With the advantages of high specific surface area, good conductivity, and easily tunable porous nanochannels, two-dimensional (2D) nanomaterials have promising potential in high-performance hydrovoltaic electricity generation applications. Herein, this review summarizes the most recent advances of 2D materials for hydrovoltaic electricity generation, including carbon nanosheets, layered double hydroxide (LDH), and layered transition metal oxides and sulfides. Some strategies were introduced to improve the energy conversion efficiency and the output power of hydrovoltaic electricity generation devices based on 2D materials. The applications of these devices in self-powered electronics, sensors, and low-consumption devices are also discussed. Finally, the challenges and perspectives on this emerging technology are outlined.
Collapse
Affiliation(s)
- Zhihang Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Chao Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Zhaotian Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Honglan Huang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yifan Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Liang Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
| |
Collapse
|
31
|
Zhao K, Lee JW, Yu ZG, Jiang W, Oh JW, Kim G, Han H, Kim Y, Lee K, Lee S, Kim H, Kim T, Lee CE, Lee H, Jang J, Park JW, Zhang YW, Park C. Humidity-Tolerant Moisture-Driven Energy Generator with MXene Aerogel-Organohydrogel Bilayer. ACS NANO 2023; 17:5472-5485. [PMID: 36779414 DOI: 10.1021/acsnano.2c10747] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Free-standing and film-type moisture-driven energy generators (MEGs) that harness the preferential interaction of ionized moisture with hydrophilic materials are interesting because of their wearability and portability without needing a water container. However, most such MEGs work in limited humidity conditions, which provide a substantial moisture gradient. Herein, we present a high-performance MEG with sustainable power-production capability in a wide range of environments. The bilayer-based device comprises a negatively surface-charged, hydrophilic MXene (Ti3C2Tx) aerogel and polyacrylamide (PAM) ionic hydrogel. The preferential selection on the MXene aerogel of positive charges supplied from the salts and water in the hydrogel is predicted by the first-principle simulation, which results in a high electric output in a wide relative humidity range from 20% to 95%. Furthermore, by replacing the hydrogel with an organohydrogel of PAM that has excellent water retention and structural stability, a device with long-term electricity generation is realized for more than 15 days in a broad temperature range (from -20 to 80 °C). Our MXene aerogel MEGs connected in series supply sufficient power for commercial electronic components in various outdoor environments. Moreover, an MXene aerogel MEG works as a self-powered sensor for recognizing finger bending and facial expression.
Collapse
Affiliation(s)
- Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jae Won Lee
- Department of Materials Science and Engineering, Kangwon National University, Samcheok 25913, Korea
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Gwanho Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Yeonji Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Taebin Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Chang Eun Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jong Woong Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
32
|
Liu X, Lu H, Zhu S, Cui Z, Li Z, Wu S, Xu W, Liang Y, Long G, Jiang H. Alloying-Triggered Phase Engineering of NiFe System via Laser-Assisted Al Incorporation for Full Water Splitting. Angew Chem Int Ed Engl 2023; 62:e202300800. [PMID: 36720713 DOI: 10.1002/anie.202300800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18 Fe12 Al70 , consisting of Ni2 Al3 and Ni3 Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18 Fe12 Al70 delivers an extremely low overpotential to trigger both HER (η100 =188 mV) and OER (η100 =345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2 Al3 and Ni3 Fe alloys on the HER process is confirmed based on theoretical calculation.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Haolin Lu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China.,School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Wence Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Guankui Long
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin, 300350, China
| |
Collapse
|
33
|
Yang L, Zhang L, Sun D. Harvesting Electricity from Atmospheric Moisture by Engineering an Organic Acid Gradient in Paper. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53615-53626. [PMID: 36437545 DOI: 10.1021/acsami.2c12777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Moisture-activated electric generators (MEGs) that harvest clean energy from atmospheric humidity offer exciting opportunities for upgraded energy conversions. However, it is challenging to obtain MEGs that are both easy to fabricate and of high output power, due to the requirement for particular functional materials and the cumbersome manufacturing process. Herein, a simple and general method is adopted to prepare MEGs with chemically gradient structures. As a specific example, a gradient distribution of citric acid was successfully constructed inside an A4 printer paper by asymmetric drying, which can generate a continuous voltage of tens of millivolts by ambient humidity, and even to volts (275 mV and 7.6 μA cm-2) under asymmetric humidity stimulation, and the maximum power density output was 2.1 μW cm-2. The driving force behind this energy conversion is a self-maintained ionic gradient created within the paper by the asymmetric ionization of gradient organic acids when exposed to gradient or nongradient humid air. This work broadens the class of materials and possibilities for the rapid development of MEGs, shedding new light on the revolution of generators that harvest green and sustainable energy for power generation.
Collapse
Affiliation(s)
- Luyu Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, China
| |
Collapse
|
34
|
Yang C, Wang H, Bai J, He T, Cheng H, Guang T, Yao H, Qu L. Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat Commun 2022; 13:6819. [PMID: 36357386 PMCID: PMC9649687 DOI: 10.1038/s41467-022-34496-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
Harvesting energy from spontaneous water flow within artificial nanochannels is a promising route to meet sustainable power requirements of the fast-growing human society. However, large-scale nanochannel integration and the multi-parameter coupling restrictive influence on electric generation are still big challenges for macroscale applications. In this regard, long-range (1 to 20 cm) ordered graphene oxide assembled framework with integrated 2D nanochannels have been fabricated by a rotational freeze-casting method. The structure can promote spontaneous absorption and directional transmission of water inside the channels to generate considerable electric energy. A transfer learning strategy is implemented to address the complicated multi-parameters coupling problem under limited experimental data, which provides highly accurate performance optimization and efficiently guides the design of 2D water flow enabled generators. A generator unit can produce ~2.9 V voltage or ~16.8 μA current in a controllable manner. High electric output of ~12 V or ~83 μA is realized by connecting several devices in series or parallel. Different water enabled electricity generation systems have been developed to directly power commercial electronics like LED arrays and display screens, demonstrating the material's potential for development of water enabled clean energy.
Collapse
Affiliation(s)
- Ce Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Jiaxin Bai
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China.
| | - Tianlei Guang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, 100084, Beijing, P. R. China.
| |
Collapse
|
35
|
Guan P, Zhu R, Hu G, Patterson R, Chen F, Liu C, Zhang S, Feng Z, Jiang Y, Wan T, Hu L, Li M, Xu Z, Xu H, Han Z, Chu D. Recent Development of Moisture-Enabled-Electric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204603. [PMID: 36135971 DOI: 10.1002/smll.202204603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Power generation by converting energy from the ambient environment has been considered a promising strategy for developing decentralized electrification systems to complement the electricity supply for daily use. Wet gases, such as water evaporation or moisture in the atmosphere, can be utilized as a tremendous source of electricity by emerging power generation devices, that is, moisture-enabled-electric nanogenerators (MEENGs). As a promising technology, MEENGs provided a novel manner to generate electricity by harvesting energy from moisture, originating from the interactions between water molecules and hydrophilic functional groups. Though the remarkable progress of MEENGs has been achieved, a systematic review in this specific area is urgently needed to summarize previous works and provide sharp points to further develop low-cost and high-performing MEENGs through overcoming current limitations. Herein, the working mechanisms of MEENGs reported so far are comprehensively compared. Subsequently, a systematic summary of the materials selection and fabrication methods for currently reported MEENG construction is presented. Then, the improvement strategies and development directions of MEENG are provided. At last, the demonstrations of the applications assembled with MEENGs are extracted. This work aims to pave the way for the further MEENGs to break through the performance limitations and promote the popularization of future micron electronic self-powered equipment.
Collapse
Affiliation(s)
- Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Renbo Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Guangyu Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Robert Patterson
- Australian Centre for Advanced Photovoltaics, School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Chao Liu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Shuo Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yue Jiang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Zhemi Xu
- Chemistry and Material Engineering College, Beijing Technology and Business University, Beijing, 100048, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Zhaojun Han
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
36
|
Eun J, Jeon S. Performance Enhancement of Moisture-driven Power Generators by Photofragmentation of Inorganic Salt Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45289-45295. [PMID: 36173290 DOI: 10.1021/acsami.2c10922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We developed a novel method based on the photofragmentation of inorganic salt particles for improving the moisture-electric energy transformation performance of a moisture-driven power generator (MPG). Infrared laser irradiation on cellulose nanofiber films (CNFs) prepared by a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation of bleached pulp induced a photothermal conversion of CNFs to porous graphitic carbon films (GCFs) with the catalyst-derived Na2O2 particles. Since the laser beam was focused on the top surface of CNF, the gradients of the photothermal conversion of CNFs and Na2O2 concentration were created along the thickness direction. Subsequent irradiation with ultraviolet (UV) light induced the photofragmentation of the micrometer-sized Na2O2 particles into smaller ones, which increased the surface area of the salt particles in contact with the GCFs and consequently increased the number of effective dissociable charge carriers. When the GCF was exposed to moisture, the dissociated sodium ions migrated along the preformed concentration gradient, producing continuous outputs of current and voltage. At 90% relative humidity, the maximum voltage and current density outputs of the MPG increased from 0.91 V and 18.7 μA/cm2 before UV irradiation to 1.10 V and 56.2 μA/cm2 after UV irradiation, respectively. Additionally, we demonstrated that a green light-emitting diode could be turned on without capacitors or rectifiers during normal breathing while wearing a face mask with three GCF arrays attached (each 3 mm × 3 mm × 0.1 mm in size).
Collapse
Affiliation(s)
- Jakyung Eun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk, Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk, Republic of Korea
| |
Collapse
|
37
|
Yang C, Wang H, Yang J, Yao H, He T, Bai J, Guang T, Cheng H, Yan J, Qu L. A Machine-Learning-Enhanced Simultaneous and Multimodal Sensor Based on Moist-Electric Powered Graphene Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205249. [PMID: 36007144 DOI: 10.1002/adma.202205249] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous multimodal monitoring can greatly perceive intricately multiple stimuli, which is important for the understanding and development of a future human-machine fusion world. However, the integrated multisensor networks with cumbersome structure, huge power consumption, and complex preparation process have heavily restricted practical applications. Herein, a graphene oxide single-component multimodal sensor (GO-MS) is developed, which enables simultaneous monitoring of multiple environmental stimuli by a single unit with unique moist-electric self-power supply. This GO-MS can generate a sustainable moist-electric potential by spontaneously adsorbing water molecules in air, which has a characteristic response behavior when exposed to different stimuli. As a result, the simultaneous monitoring and decoupling of the changes of temperature, humidity, pressure, and light intensity are achieved by this single GO-MS with machine-learning (ML) assistance. Of practical importance, a moist-electric-powered human-machine interaction wristband based on GO-MS is constructed to monitor pulse signals, body temperature, and sweating in a multidimensional manner, as well as gestures and sign language commanding communication. This ML-empowered moist-electric GO-MS provides a new platform for the development of self-powered single-component multimodal sensors, showing great potential for applications in the fields of health detection, artificial electronic skin, and the Internet-of-Things.
Collapse
Affiliation(s)
- Ce Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiawei Yang
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiaxin Bai
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianlei Guang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianfeng Yan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
38
|
Cai T, Lan L, Peng B, Zhang C, Dai S, Zhang C, Ping J, Ying Y. Bilayer Wood Membrane with Aligned Ion Nanochannels for Spontaneous Moist-Electric Generation. NANO LETTERS 2022; 22:6476-6483. [PMID: 35929970 DOI: 10.1021/acs.nanolett.2c00919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-enabled electricity generation (WEG) technologies are considered to be an attractive and renewable approach to meet energy crisis and environmental pollution globally. However, the existing WEG technologies still face tremendous challenges including high material cost, harmful components, and specific environmental requirements. Herein, a high-performance wood-based moisture-enabled electric generator (WMEG) is fabricated. Natural wood is cut perpendicular to the tree growth direction and engineered by simple chemical modification. The obtained bilayer wood membrane has robust mechanical framework with aligned ion nanochannels, abundant dissociated functional groups, and spontaneous water adsorption in the air. At the relative humidity of 85%, one WMEG can generate a voltage of 0.57 V. The device can also effectively sense biological water information as a self-powered sensor. The biophile design contributes a practical moist-electric generation strategy that offers clean energy, especially for undeveloped and disaster-relief regions where electricity is limited by high cost or crippled power facilities.
Collapse
Affiliation(s)
- Tailong Cai
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, P.R. China
| | - Lingyi Lan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Bo Peng
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Chao Zhang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Shufen Dai
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Chi Zhang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, P.R. China
| |
Collapse
|
39
|
Wang L, Yao H, Chi F, Yan J, Cheng H, Li Y, Jiang L, Qu L. Spatial-Interleaving Graphene Supercapacitor with High Area Energy Density and Mechanical Flexibility. ACS NANO 2022; 16:12813-12821. [PMID: 35914233 DOI: 10.1021/acsnano.2c04989] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The booming portable electronics market has raised huge demands for the development of supercapacitors with mechanical flexibility and high power density in the finite area; however, this is still unsatisfied by the currently thickness-confined sandwich design or the in-plane interdigital configuration with limited mechanical features. Here, a spatial-interleaving supercapacitor (SI-SC) is first designed and constructed, in which the graphene microelectrodes are reversely stacked layer by layer within a three-dimensional (3D) space. Because each microelectrode matches well with four counter microelectrodes and all 3D spatial-interleaving microelectrodes have narrow interspaces that maintain the efficient ions transport in the whole device, this SI-SC has a prominent liner capacitance increase along with the device thickness. As a result, the high specific areal capacitance of 36.46 mF cm-2 and 5.34 μWh cm-2 energy density is achieved on the 100 μm thick device. Especially, the microelectrodes in each layer are interdigitated, ensuring the outstanding mechanical flexibility of SI-SC, with ∼98.7% performance retention after 104 cycles of bending tests, realizing the excellent integration of high area energy density and mechanical flexibility in the finite area. Furthermore, the SI-SC units can be easily integrated into wearable electronics to power wristwatches, light-emitting diodes (LEDs), calculators, and so on for practical applications.
Collapse
Affiliation(s)
- Lifeng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Fengyao Chi
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jianfeng Yan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Lan Jiang
- Laser Micro-/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
40
|
Liu H, Sun Z, Chen Y, Zhang W, Chen X, Wong CP. Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes. ACS NANO 2022; 16:10088-10129. [PMID: 35786945 DOI: 10.1021/acsnano.2c02812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible in-plane architecture micro-supercapacitors (MSCs) are competitive candidates for on-chip miniature energy storage applications owing to their light weight, small size, high flexibility, as well as the advantages of short charging time, high power density, and long cycle life. However, tedious and time-consuming processes are required for the manufacturing of high-resolution interdigital electrodes using conventional approaches. In contrast, the laser processing technique enables high-efficiency high-precision patterning and advanced manufacturing of nanostructured electrodes. In this review, the recent advances in laser manufacturing and patterning of nanostructured electrodes for applications in flexible in-plane MSCs are comprehensively summarized. Various laser processing techniques for the synthesis, modification, and processing of interdigital electrode materials, including laser pyrolysis, reduction, oxidation, growth, activation, sintering, doping, and ablation, are discussed. In particular, some special features and merits of laser processing techniques are highlighted, including the impacts of laser types and parameters on manufacturing electrodes with desired morphologies/structures and their applications on the formation of high-quality nanoshaped graphene, the selective deposition of nanostructured materials, the controllable nanopore etching and heteroatom doping, and the efficient sintering of nanometal products. Finally, the current challenges and prospects associated with the laser processing of in-plane MSCs are also discussed. This review will provide a useful guidance for the advanced manufacturing of nanostructured electrodes in flexible in-plane energy storage devices and beyond.
Collapse
Affiliation(s)
- Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhijian Sun
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat Commun 2022; 13:4168. [PMID: 35851036 PMCID: PMC9293931 DOI: 10.1038/s41467-022-31987-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023] Open
Abstract
The effective acquisition of clean water from atmospheric water offers a potential sustainable solution for increasing global water and energy shortages. In this study, an asymmetric amphiphilic surface incorporating self-driven triboelectric adsorption was developed to obtain clean water from the atmosphere. Inspired by cactus spines and beetle elytra, the asymmetric amphiphilic surface was constructed by synthesizing amphiphilic cellulose ester coatings followed by coating on laser-engraved spines of fluorinated ethylene propylene. Notably, the spontaneous interfacial triboelectric charge between the droplet and the collector was exploited for electrostatic adsorption. Additionally, the droplet triboelectric nanogenerator converts the mechanical energy generated by droplets falling into electrical energy through the volume effect, achieving an excellent output performance, and further enhancing the electrostatic adsorption by means of external charges, which achieved a water harvesting efficiency of 93.18 kg/m2 h. This strategy provides insights for the design of water harvesting system. The effective acquisition of clean water from atmospheric water offers a potential sustainable solution for increasing global water shortages. Here, authors developed a bioinspired asymmetric amphiphilic surface incorporating self-driven triboelectric adsorption to obtain clean water.
Collapse
|
42
|
Tan J, Fang S, Zhang Z, Yin J, Li L, Wang X, Guo W. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat Commun 2022; 13:3643. [PMID: 35752621 PMCID: PMC9233698 DOI: 10.1038/s41467-022-31221-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Generating sustainable electricity from ambient humidity and natural evaporation has attracted tremendous interest recently as it requires no extra mechanical energy input and is deployable across all weather and geography conditions. Here, we present a device prototype for enhanced power generation from ambient humidity. This prototype uses both heterogenous materials assembled from a LiCl-loaded cellulon paper to facilitate moisture adsorption and a carbon-black-loaded cellulon paper to promote water evaporation. Exposing such a centimeter-sized device to ambient humidity can produce voltages of around 0.78 V and a current of around 7.5 μA, both of which can be sustained for more than 10 days. The enhanced electric output and durability are due to the continuous water flow that is directed by evaporation through numerous, negatively charged channels within the cellulon papers. The voltage and current exhibit an excellent scaling behavior upon device integration to sufficiently power commercial devices including even cell phones. The results open a promising prospect of sustainable electricity generation based on a synergy between spontaneous moisture adsorption and water evaporation. Generating electricity from air opens a promising way for green energy harvesting. Here, authors present a prototype driven by the integration of moisture adsorption with evaporation to generate continuous electricity for a long duration.
Collapse
Affiliation(s)
- Jin Tan
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Sunmiao Fang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China.,Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Jun Yin
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Luxian Li
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Xiang Wang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China. .,Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China.
| |
Collapse
|
43
|
Ahn D, Sun J, Han S, Lee J, Jeong S, Cha S, Noh S, Choi H, Ren B, Yoon H, Kim H, Park J. Controllable Physical Synergized Triboelectricity, Shape Memory, Self-Healing, and Optical Sensing with Rollable Form Factor by Zn cluster. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200441. [PMID: 35451234 PMCID: PMC9366568 DOI: 10.1002/advs.202200441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
To build devices offering users comfortable experience, it is important to focus on form factor and multifunctionality. In this study, for the first time, multifunctional Zn clusters with shape memory, self-healing, triboelectricity, and optical sensing synergized with rollable form factor are designed and fabricated by coordinating COO- and Zn2+ . As pore forming agent, Zn clusters produce hierarchical porous structure depending on Zn amount. Zn clusters are applied as message transmitters and charge containers in optical sensing and corona charge injection, respectively. Moreover, Zn clusters in PVB-COO-Zn serve as positive tribomaterial due to Zn ion doping effect, increasing the output performance as the Zn amount reaches 20 wt%. In addition, injecting positive charge into PVB-COO-Zn 20 lead to more than 24 times increase in output performance compared to those of non-porous structures. The reversibility of Zn clusters endows shape memory and self-healing, synergized with the rollable form factor. The rollability is implemented using the long alkyl chain and the energy absorption of porous structure, providing damage resistance. The advancements in this work provide opportunities for multifunctional and unique applications (shape memory rotating-triboelectric nanogenerator, rollable self-healing touchpad, hidden tag) synergized with rollability that accomplishes working in broadened condition in near future.
Collapse
Affiliation(s)
- Dahye Ahn
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Jingzhe Sun
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Seunghye Han
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Jiwoo Lee
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Songah Jeong
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Seokjun Cha
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Seonmyeong Noh
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Hyeongsub Choi
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Bingqi Ren
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Hyeonseok Yoon
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Hyungwoo Kim
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| | - Jong‐Jin Park
- Department of Polymer Science and EngineeringChonnam National UniversityGwangju61186Republic of Korea
| |
Collapse
|
44
|
Yang S, Tao X, Chen W, Mao J, Luo H, Lin S, Zhang L, Hao J. Ionic Hydrogel for Efficient and Scalable Moisture-Electric Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200693. [PMID: 35358352 DOI: 10.1002/adma.202200693] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The progress of spontaneous energy generation from ubiquitous moisture is hindered the low output current and intermittent operating voltage of the moisture-electric generators. Herein a novel and efficient ionic hydrogel moisture-electric generator (IHMEG) is developed by rational combination of poly(vinyl alcohol), phytic acid, and glycerol-water binary solvent. Thanks to the synergistic effect of notable moisture-absorption capability and fast ion transport capability in the ionic hydrogel network, a single IHMEG unit of 0.25 cm2 can continuously generate direct-current electricity with a constant open-circuit voltage of ≈0.8 V for over 1000 h, a high short-current density of 0.24 mA cm-2 , and power density of up to 35 µW cm-2 . Of great importance is that large-scale integration of IHMEG units can be readily accomplished to offer a device with voltage up to 210 V, capable of directly driving numerous commercial electronics, including electronic ink screen, metal electrodeposition setup, and light-emitting-diode arrays. Such prominent performance is mainly attributed to the enhanced moisture-liberated proton diffusion proved by experimental observation and theoretical analysis. The ionic hydrogel with high cost-efficiency, easy-to-scaleup fabrication, and high power-output opens a brand-new perspective to develop a green, versatile, and efficient power source for Internet-of-Things and wearable electronics.
Collapse
Affiliation(s)
- Su Yang
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoming Tao
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Chen
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Heng Luo
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shuping Lin
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lisha Zhang
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
45
|
Komazaki Y, Kanazawa K, Nobeshima T, Hirama H, Watanabe Y, Suemori K, Uemura S. Mathematical Modeling of Hygroelectric Cell Based on Deliquescent Electrolyte Solution Partitioned by Cation-Exchange Membrane. CHEM LETT 2022. [DOI: 10.1246/cl.210497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Komazaki
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kenji Kanazawa
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Taiki Nobeshima
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hirotada Hirama
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuichi Watanabe
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kouji Suemori
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Sei Uemura
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
46
|
Bai J, Huang Y, Wang H, Guang T, Liao Q, Cheng H, Deng S, Li Q, Shuai Z, Qu L. Sunlight-Coordinated High-Performance Moisture Power in Natural Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103897. [PMID: 34965320 DOI: 10.1002/adma.202103897] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/31/2021] [Indexed: 05/24/2023]
Abstract
It is a challenge to spontaneously harvest multiple clean sources from the environment for upgraded energy-converting systems. The ubiquitous moisture and sunlight in nature are attractive for sustainable power generation especially. A high-performance light-coordinated "moist-electric generator" (LMEG) based on the rational combination of a polyelectrolyte and a phytochrome is herein developed. By spontaneous adsorption of gaseous water molecules and simultaneous exposure to sunlight, a piece of 1 cm2 composite film offers an open-circuit voltage of 0.92 V and a considerable short-circuit current density of up to 1.55 mA cm-2 . This record-high current density is about two orders of magnitude improvement over that of most conventional moisture-enabled systems, which is caused by moisture-induced charge separation accompanied with photoexcited carrier migration, as confirmed by a dynamic Monte Carlo device simulation. Flexible devices with customizable size are available for large-scale integration to effectively work under a wide range of relative humidity (about 20-100%), temperature (10-80 °C), and light intensity (30-200 mW cm-2 ). The wearable and portable LMEGs provide ample power supply in natural conditions for indoor and outdoor electricity-consuming systems. This work opens a novel avenue to develop sustainable power generation through collecting multiple types of natural energy by a single hybrid harvester.
Collapse
Affiliation(s)
- Jiaxin Bai
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yaxin Huang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianlei Guang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qihua Liao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huhu Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shanhao Deng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qikai Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhigang Shuai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liangti Qu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Chen KY, Xu YT, Zhao Y, Li JK, Wang XP, Qu LT. Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Abstract
Electro-responsive actuators (ERAs) hold great promise for cutting-edge applications in e-skins, soft robots, unmanned flight, and in vivo surgery devices due to the advantages of fast response, precise control, programmable deformation, and the ease of integration with control circuits. Recently, considering the excellent physical/chemical/mechanical properties (e.g., high carrier mobility, strong mechanical strength, outstanding thermal conductivity, high specific surface area, flexibility, and transparency), graphene and its derivatives have emerged as an appealing material in developing ERAs. In this review, we have summarized the recent advances in graphene-based ERAs. Typical the working mechanisms of graphene ERAs have been introduced. Design principles and working performance of three typical types of graphene ERAs (e.g., electrostatic actuators, electrothermal actuators, and ionic actuators) have been comprehensively summarized. Besides, emerging applications of graphene ERAs, including artificial muscles, bionic robots, human-soft actuators interaction, and other smart devices, have been reviewed. At last, the current challenges and future perspectives of graphene ERAs are discussed.
Collapse
|
49
|
Devendar L, Shijeesh MR, Sakorikar T, Ganapathi KL, Jaiswal M. Intercalated water mediated electromechanical response of graphene oxide films on flexible substrates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:025001. [PMID: 34584030 DOI: 10.1088/1361-648x/ac2ad0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The confinement of water between sub-nanometer bounding walls of layered two-dimensional materials has generated tremendous interest. Here, we examined the influence of confined water on the mechanical and electromechanical response of graphene oxide films, prepared with variable oxidative states, casted on polydimethylsiloxane substrates. These films were subjected to uniaxial strain under controlled humid environments (5 to 90% RH), while dc transport studies were performed in tandem. Straining resulted in the formation of quasi-periodic linear crack arrays. The extent of water intercalation determined the density of cracks formed in the system thereby, governing the electrical conductance of the films under strain. The crack density at 5% strain, varied from 0 to 3.5 cracks mm-1for hydrated films and 8 to 22 cracks mm-1for dry films, across films with different high oxidative states. Correspondingly, the overall change in the electrical conductance at 5% strain was observed to be ∼5 to 20 folds for hydrated films and ∼20 to 35 folds for the dry films. The results were modeled with a decrease in the in-plane elastic modulus of the film upon water intercalation, which was attributed to the variation in the nature of hydrogen bonding network in graphene oxide lamellae.
Collapse
Affiliation(s)
- Lavudya Devendar
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - M R Shijeesh
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - Tushar Sakorikar
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - K Lakshmi Ganapathi
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| | - Manu Jaiswal
- Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
50
|
Wang H, Sun Y, He T, Huang Y, Cheng H, Li C, Xie D, Yang P, Zhang Y, Qu L. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. NATURE NANOTECHNOLOGY 2021; 16:811-819. [PMID: 33903750 DOI: 10.1038/s41565-021-00903-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
Environmentally adaptive power generation is attractive for the development of next-generation energy sources. Here we develop a heterogeneous moisture-enabled electric generator (HMEG) based on a bilayer of polyelectrolyte films. Through the spontaneous adsorption of water molecules in air and induced diffusion of oppositely charged ions, one single HMEG unit can produce a high voltage of ~0.95 V at low (25%) relative humidity (RH), and even jump to 1.38 V at 85% RH. A sequentially aligned stacking strategy is created for large-scale integration of HMEG units, to offer a voltage of more than 1,000 V under ambient conditions (25% RH, 25 °C). Using origami assembly, a small section of folded HMEGs renders an output of up to 43 V cm-3. Such integration devices supply sufficient power to illuminate a lamp bulb of 10 W, to drive a dynamic electronic ink screen and to control the gate voltage for a self-powered field effect transistor.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Yilin Sun
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Yaxin Huang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China.
| | - Chun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Dan Xie
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, P. R. China
| | - Pengfei Yang
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Yanfeng Zhang
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|