1
|
Liu Z, Li T, Yan Q, Zeng H, Li L, Dong Y. The development of multicolor carbon dots and their applications in the field of anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126046. [PMID: 40088846 DOI: 10.1016/j.saa.2025.126046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
The diversity of photoluminescence emission of multicolor carbon dots (mCDs) greatly broadens their application field. Counterfeiting is a problem that has serious consequences for individuals and society. The fluorescent ink based on mCDs has been developed due to their low toxicity and good resistance to photobleaching in the field of anti-counterfeiting. In the background, the preparation strategies of mCDs were discussed in detail, including top-down method and bottom-up method. The common carbon sources for the preparation of mCDs were further summarized, such as phenylenediamine class, amino-substituted naphthalene class, dihydroxyhenzene and benzoquinone class, biomass, and other common carbon sources. Furthermore, in order to understand the structure of CDs, this paper focused on the classification and common characterization techniques of CDs. In addition, the application of mCDs as fluorescent ink in the field of anti-counterfeiting was classified by simple anti-counterfeiting and good multiple anti-counterfeiting. Finally, the paper offered insight into the future development prospects of CDs-based fluorescent ink based on the current development trends.
Collapse
Affiliation(s)
- Zixin Liu
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Tianze Li
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Qiuyan Yan
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Hong Zeng
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Lihui Li
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Yuanyuan Dong
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China.
| |
Collapse
|
2
|
Shao W, Han F, Hu Y, Chen W, Xie Y, Wang L, Chen X, Zhang F, Ding L. Generation of dynamic oxygen vacancies in graphene quantum dots/NaNbO 3 heterojunction for boosting photocatalytic hydrogen evolution. J Colloid Interface Sci 2025; 689:137145. [PMID: 40086362 DOI: 10.1016/j.jcis.2025.02.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
The design and theoretical study of green, low-cost heterojunction photocatalysts with strong interfacial interactions are crucial for achieving efficient and stable photocatalytic hydrogen evolution (PHE). This study proposes a simple method to synthesizing graphene quantum dots (GQDs)/NaNbO3 heterojunction with dynamic oxygen vacancies. GQDs promote the formation of oxygen vacancies and increase the surface-active sites of NaNbO3, significantly enhancing light absorption efficiency. This results in superior separation of photogenerated charge carriers in the GQDs/NaNbO3 composite and improves PHE activity and stability. Under the reaction conditions of methanol as a sacrificial agent, the 0.5%GQDs/NaNbO3 catalyst exhibited the highest hydrogen production rate of 775.9 μmol·g-1·h-1. Notably, in cyclic stability tests, the catalyst demonstrated higher catalytic activity in subsequent cycles compared to the initial cycle. The activity of the second round was 1.5 times that of the first round, and the hydrogen evolution rate was 1204.9 μmol·g-1·h-1. This improvement is likely attributed to the fast electron transport channel between NaNbO3 and GQDs, which facilitated the transfer of photo-generated electrons from NaNbO3 to GQDs, thereby promoting the generation of dynamic oxygen vacancies and improving the PHE performance. Electron Spin Resonance (ESR) and X-ray Photoelectron Spectroscopy (XPS) analyses confirmed the crucial role of dynamic oxygen vacancies in enhancing catalytic activity. Furthermore, Density Functional Theory (DFT) calculations and experimental results elucidated the charge transfer mechanism and PHE process. This study provides valuable insights for the design of efficient and durable photocatalysts.
Collapse
Affiliation(s)
- Wei Shao
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China; Research Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Fei Han
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Yin Hu
- Research Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China.
| | - Wei Chen
- Research Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China.
| | - Yu Xie
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Lingling Wang
- Research Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China.
| | - Xuanye Chen
- Research Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Fen Zhang
- Research Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Lin Ding
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
3
|
Yang F, Qi X, Chen Y, Tang K, Fang M, Song Y, Liu J, Zhang L. A Novel Chiral Molecularly Imprinted Electrochemical Sensor Based on β-CD Functionalized Graphene Quantum Dots for Enantioselective Detection of D-Carnitine. Foods 2025; 14:1648. [PMID: 40361728 PMCID: PMC12071952 DOI: 10.3390/foods14091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
In this study, β-cyclodextrin (β-CD) functionalized graphene quantum dots (GQDs) was employed to augment the array of chiral recognition sites, thereby enhancing the affinity of GQDs/β-CD composite for imprinting molecules and realizing heightened chiral selectivity. The incorporation of GQDs/β-CD into the synthesis of molecularly imprinted polymers (MIPs), synergizing with the host-guest inclusion properties of β-CD and the abundant carboxyl groups of GQDs, enhanced the chiral recognition capacity of MIPs materials. Consequently, a novel MIPs/(GQDs/β-CD) sensor with chiral recognition capabilities tailored for D-carnitine was successfully fabricated. The binding mechanism between GQDs/β-CD and D-carnitine was elucidated via Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. The variation in the response signal (ΔI) of the probe molecule exhibited a linear correlation with the logarithm of D-carnitine concentration (lgC) in the range of 1.0 × 10-12 mol/L to 1.0 × 10-9 mol/L, and the detection limit (3δ/S) was calculated as 2.35 × 10-13 mol/L. These results underscore a 7.15-fold enhancement in the selectivity of MIPs/(GQDs/β-CD) sensor for D-carnitine recognition. Moreover, the sensor presented commendable efficacy in real-world scenarios, yielding recovery rates ranging from 98.5% to 103.0% during the determination of D-carnitine content in real samples.
Collapse
Affiliation(s)
- Feng Yang
- Haikou Key Laboratory of Marine Contaminants Monitoring Innovation and Application, Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Xin Qi
- Haikou Key Laboratory of Marine Contaminants Monitoring Innovation and Application, Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yan Chen
- Haikou Key Laboratory of Marine Contaminants Monitoring Innovation and Application, Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Kai Tang
- Haikou Key Laboratory of Marine Contaminants Monitoring Innovation and Application, Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Mengyang Fang
- Haikou Key Laboratory of Marine Contaminants Monitoring Innovation and Application, Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yanwei Song
- Haikou Key Laboratory of Marine Contaminants Monitoring Innovation and Application, Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Jiufen Liu
- Command Center for Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055, China
| | - Lianming Zhang
- College of Chemical and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
4
|
Rano N, Martsinovich N. Stability of sp 3 Carbons in Hydrogenated Graphene Quantum Dots and Their Electronic and Optical Properties Studied Using Density Functional Theory. J Phys Chem A 2025; 129:3790-3806. [PMID: 40241285 PMCID: PMC12051202 DOI: 10.1021/acs.jpca.4c07825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Graphene quantum dots (GQDs) are zero-dimensional nanomaterials composed of sp2-hybridized carbon atoms, which are widely researched because of their tunable optical properties. GQDs contain defects, such as sp3-hybridized carbon atoms, which may be introduced during synthesis and can affect these materials' properties. In this study, we use hydrogenated polycyclic aromatic hydrocarbons as models for GQDs containing sp3-hybridized carbon atoms. We analyze the effect of sp3 carbons on the stabilities and electronic and optical properties of GQDs using density functional theory (DFT) and time-dependent DFT calculations. We find that sp3 carbons can form stable arrangements as dimers or continuous chains along the edges of GQDs. Our results reveal that the presence of sp3 carbons can tune the HOMO-LUMO gap, dependent on the position of sp3 carbons within the GQD. Calculated optical absorption spectra show a reduction in intensity and a blue shift of the main absorption peak for most of the investigated sp3-containing structures; additionally, the presence of sp3 carbons can extend the optical absorption of these structures into the red and infrared regions of the solar spectrum (600 to 900 nm), depending on the concentration and arrangement of sp3 carbons. These results provide insight into structural factors responsible for the variation of the electronic and optical properties of GQD nanomaterials and suggest that controlling the amount of residual sp3 carbon atoms introduced during synthesis can be used to tailor the properties of GQDs.
Collapse
Affiliation(s)
- Nasiru
Aminu Rano
- Chemistry, School of Mathematical
and Physical Sciences, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Natalia Martsinovich
- Chemistry, School of Mathematical
and Physical Sciences, University of Sheffield, Sheffield S3 7HF, U.K.
| |
Collapse
|
5
|
Pal D, Das P, Ghosh P, Mondal S, Halder S, Basak P, Nandi SK. Waste-derived marigold flower carbon dot spray and gel formulations exhibit enhanced wound healing in deep excisional cutaneous and burn wounds. J Mater Chem B 2025. [PMID: 40308184 DOI: 10.1039/d5tb00323g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Bioactive carbon dots have shown significant progress in biomedical therapeutics due to their unique physicochemical characteristics and exceptional biocompatibility. This work focuses on the synthesis, characterization, and biomedical evaluation of carbon dots (CDs) extracted from waste and discarded marigold flowers for wound healing applications. The synthesized CDs exhibited a uniform size distribution of 2-5 nm and a zeta potential of -15.8 mV, indicating moderate stability against aggregation. Excitation-dependent photoluminescence was observed, with maximum intensity at 380 nm. In comparison, the UV-Vis adsorption spectrum showed a peak at 278 nm, corresponding to the π-π* transition of sp2 carbon domains. Additional FTIR and XPS analyses revealed the presence of functional groups, including hydroxyl, carbonyl, and aromatic domains, and confirmed nitrogen and oxygen doping, which enhanced hydrophilicity and reactivity, respectively. In vitro cytocompatibility assays using MTT and FDA showed maximum cell viability at 500 μg mL-1. Macroscopic examination of the scratch assay showed promising results, with cells and fibroblasts achieving a 98.97% wound healing rate at 48 h compared to control values. In vivo experiments on deep excisional full-thickness and burn injuries exhibited enhanced wound contraction, ECM deposition, angiogenesis, and faster healing with CD gel and spray compared to the control and standard treatments. Histology and immunohistochemistry supported enhanced collagen synthesis and remodeling in the treated tissue; however, the gel demonstrated marginally superior results compared to the spray, as it adhered more securely. These results show that the developed marigold-derived CDs are biocompatible, promote angiogenesis, and enhance healing of deep excisional and burn wounds.
Collapse
Affiliation(s)
- Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Pratik Das
- ICAR Project, Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Purnendu Ghosh
- Department of Biotechnology Project, Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Samar Halder
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| |
Collapse
|
6
|
Li J, Hu J, Liu AA, Liu C, Pang DW. Quantum Dots for Chemical Metrology. Anal Chem 2025; 97:6891-6910. [PMID: 40152213 DOI: 10.1021/acs.analchem.4c06794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Affiliation(s)
- Jing Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Zhou Y, Zhang C, Liu J, Mou Y. Nanochannel confined graphene quantum dots/platinum nanoparticles boosts electrochemiluminescence of luminal-O 2 system for sensitive immunoassay. Talanta 2025; 285:127223. [PMID: 39613487 DOI: 10.1016/j.talanta.2024.127223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/06/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Sensitive detection of tumor biomarkers is of great significance for early cancer diagnosis, treatment evaluation, and recurrence monitoring. Development of convenient electrochemiluminescence (ECL) immunosensor using dissolved oxygen (O2) as an endogenous co-reactant of luminol combined with efficient nanocatalysts to boost ECL signal in neutral media is highly desirable. Herein, sensitive detection of tumor biomarker using ECL of luminal-O2 enhanced by confinement of nitrogen-doped graphene quantum dots (N-GQDs) and platinum nanoparticles (PtNPs) on nanochannel array was demonstrated. A high-density nanochannel array-modified electrode was achieved by rapidly growing an amino-functionalized. Vertically-ordered mesoporous silica film (NH2-VMSF) on the inexpensive and readily available indium tin oxide (ITO) electrode. Through simple electrodeposition, N-GQDs were confined and PtNPs were in-situ synthesized in nanochannels of NH2-VMSF. These confined nanocomposites catalyzed the electroreduction of O2 at negative potentials to generate a large amount of reactive oxygen species (ROS) and facilitated luminol oxidation, enhancing the ECL signal of luminol by 25 times. Two immunosensors were fabricated after covalent immobilization of the recognition antibody of carbohydrate antigen 199 (CA199) or carbohydrate antigen 125 (CA125) on the outer surface of the NH2-VMSF and blocking of non-specific sites. When tumor biomarkers bind to the corresponding antibodies on the recognition interface, the formed immunocomplex hindered the diffusion of luminol to the underlying electrode, resulting in a decrease in the ECL signal and sensitive detection of tumor biomarker. The constructed CA199 immunosensor exhibited a linear detection range for CA199 from 0.5 mU mL-1 to 50 U mL-1, with a detection limit (DL) of 0.03 mU mL-1. For CA125 detection, linear detection ranged from 0.5 mU mL-1 to 500 U mL-1, with a DL of 0.005 mU mL-1. The fabricated immunosensors demonstrated good selectivity and high reproducibility. This study provides great potential for the development of efficient luminol ECL systems in neutral media and expands the biological application in sensitive detection of tumor biomarker.
Collapse
Affiliation(s)
- Yucheng Zhou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Chaoyan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
8
|
Zhang Y, Yang Y, Ding S, Zeng X, Li T, Hu Y, Lu S. Exploring Carbon Dots for Biological Lasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418118. [PMID: 40066477 DOI: 10.1002/adma.202418118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Indexed: 04/24/2025]
Abstract
Biological lasers, representing innovative miniaturized laser technology, hold immense potential in the fields of biological imaging, detection, sensing, and medical treatment. However, the reported gain media for biological lasers encounter several challenges complex preparation procedures, high cost, toxicity concerns, limited biocompatibility, and stability issues along with poor processability and tunability. These drawbacks have impeded the sustainable development of biological lasers. Carbon dots (CDs), as a novel solution-processable gain materials characterized by facile preparation, low cost, low toxicity, excellent biocompatibility, high stability, easy modification, and luminescence tuning capabilities along with outstanding luminescence performance. Consequently, they find extensive applications in diverse fields such as biology, sensing, photoelectricity, and lasers. Henceforth, they are particularly suitable for constructing biological lasers. This paper provides a comprehensive review on the classification and application of existing biological lasers while emphasizing the advantages of CDs compared to other gain media. Furthermore, it presents the latest progress made by utilizing CDs as gain media and forecasts both promising prospects and potential challenges for biological lasers based on CDs. This study aims to enhance understanding of CD lasers and foster advancements in the field of biological lasers.
Collapse
Affiliation(s)
- Yongqiang Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Yuzhuo Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Shurong Ding
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Xiao Zeng
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Ting Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Yongsheng Hu
- School of Physics and Microelectronics, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Tadawattana P, Kawashima K, Sittiwanichai S, T-Thienprasert J, Mori T, Pongprayoon P. Exploring the Capabilities of Nanosized Graphene Oxide as a Pesticide Nanosorbent: Simulation Studies. ACS OMEGA 2025; 10:8951-8959. [PMID: 40092792 PMCID: PMC11904685 DOI: 10.1021/acsomega.4c06036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
The pesticide contamination in the environment has become a global concern. So far, pesticide adsorption from waste solution is one of the most economic strategies for pesticide removal. Carbon-based nanomaterials were reported to be potential pesticide sorbents. To date, nanosized graphene oxide (GO) has been discovered. Its nanosize, which is comparable to pesticide sizes, is attractive enough to explore its performance to be the pesticide sorbent. Thus, herein, the adsorption mechanisms of a single pesticide on GO were studied by comparing 6-pesticide systems. Three types of common pesticides (cyfluthrin (CFT) (pyrethroid), ivermectin (IVM) (avermectin), and diazinon (DZ) (organophosphate)) were used as pesticide models. All pesticides rapidly adhere to GO at the graphene-like region. The π-π and π-alkyl interactions contribute most to pesticide adhesion. The adsorption of CFT and DZ is led by the π-π stacking, whereas bulky IVM uses the π-alkyl forces. Having more pesticides results in self-clustering. Pesticides pile up and avoid lying on the oxygenated area. IVM is the most favorable for GO and shows tight self-packing via dispersion force and hydrogen bonding. Overall, this work displays the encouraging ability of nanosized GO to effectively absorb all pesticides which will benefit future applications in pest control.
Collapse
Affiliation(s)
- Prin Tadawattana
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Kyohei Kawashima
- Institute
for Material Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 8168580, Japan
| | - Sirin Sittiwanichai
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Jiraroj T-Thienprasert
- Department
of Physics, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Toshifumi Mori
- Institute
for Material Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 8168580, Japan
- Interdisciplinary
Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 8168580, Japan
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Li BY, She CY, Deng JC, Shu WM, Yu WC. Magnetic Hyperthermia Method Synthesis of Water-Soluble Silicon-Carbon Dots: Excitation-Independent Fluorescence Materials. Molecules 2025; 30:1222. [PMID: 40141999 PMCID: PMC11944629 DOI: 10.3390/molecules30061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Carbon dots (CDs) have attracted widespread attention in recent years due to their synthetic simplicity, biocompatibility, and unique photoluminescent behavior. In this work, water-soluble silicon-carbon dots (SiCDs) were synthesized, and their properties were evaluated. First, a series of SiCDs was prepared by using a novel magnetic hyperthermia method from citric acid (CA) and 3-(2-aminoethylamino) propyldimethoxymethylsilane (AEAMPS). Then, based on the Stöber method, silica (SiO2) was loaded onto the SiCDs in a one-pot reaction to obtain SiCDs@SiO2 microspheres. This synthesis strategy is safe, efficient, and simple, allowing gram-scale production in a short time. The resulting SiCDs@SiO2 microspheres exhibited excellent fluorescent performance, along with high water solubility and independence of excitation fluorescence. The SiCDs@SiO2 microspheres possessed good thermal resistance and acid-base stability. The influence of storage time and different metal ions on the microsphere suspension was minimal. The SiCDs@SiO2 microspheres show potential applications for water detection in horizontal wells as fluorescent markers.
Collapse
Affiliation(s)
| | | | | | - Wen-Ming Shu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China; (B.-Y.L.); (C.-Y.S.); (J.-C.D.)
| | - Wei-Chu Yu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China; (B.-Y.L.); (C.-Y.S.); (J.-C.D.)
| |
Collapse
|
11
|
Guo J, Chen Y, Weng X, Wang Y, Qu J, Song J, Liu L. Novel nitrogen-doped carbon dots with triple targetability as a fluorescent probe for bioimaging of living cells. Anal Chim Acta 2025; 1342:343625. [PMID: 39919855 DOI: 10.1016/j.aca.2025.343625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Investigating the interactions between various organelles can effectively reveal the corresponding biological problems. Currently, studies of organelle interactions typically employ multiple fluorescent probes that can concurrently target different organelles. However, the simultaneous use of multiple probes is complicated to operate, and the probes can interact with each other, affecting the imaging results. Therefore, targeting multiple organelles using a single probe can enhance the process of studying organelle interactions. Carbon dots (CDs), with their abundant surface groups, are expected to solve the abovementioned problems. Herein, we successfully used m-aminophenol and ethylenediamine to prepare high anti-interference capability and triple targetability CDs (n-CDs) with hydrothermal method. The co-localization experiments with commercial probes confirmed that it can target nucleolus, mitochondria and Lysosome at the same time. The preparation of n-CDs provides a new and convenient strategy to study the interaction between various organelles for solving corresponding biological problems, thus revealing the mysteries of life.
Collapse
Affiliation(s)
- Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
12
|
Singh H, Saima, Aggarwal V, Kachore A, Bala E, Kumar R, Sharma RK, Verma PK. Carbon dots: An emerging food analysis nanoprobes for detection of contaminants. Food Chem 2025; 485:143180. [PMID: 40367681 DOI: 10.1016/j.foodchem.2025.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/31/2025] [Indexed: 05/16/2025]
Abstract
Carbon dots are the new class of nanomaterials with a size range of 10 nm or less. These are associate with the important material properties such as good biocompatibility, fluorescent nature, small size and easy to synthesize with low toxicity which make them the first choice over the fluorescent inorganic materials and dyes, to be used as biocompatible nanoprobes for the detection of food adulterations. Herein, we have focused on the methods of synthesis of these tiny zero dimensions, fluorescent nanomaterials (CDs), their properties, mechanism of fluorescence, and lastly their wide applications in food analysis which include the detection of additives, heavy metal ions, organic pollutants, foodborne microbes, antibiotic and pesticides. Further, these nanomaterials open the scope to be used as nanoprobes in the food safety concern. Additionally, we discussed the challenges and future scope of CDs as an auspicious and emerging nanomaterial to be used in the food industries.
Collapse
Affiliation(s)
- Hemant Singh
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Saima
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India.
| | - Varun Aggarwal
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Ankit Kachore
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Ekta Bala
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Rakesh Kumar
- Laboratory of Organic Chemistry, Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Praveen Kumar Verma
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
13
|
Gholamali I, Yadollahi M. Development and characterization of hydrogel beads with carboxymethyl chitosan/graphene quantum dots@Pectin/MIL-88 for targeted doxorubicin delivery: An adaptable nanocomposite approach. Int J Biol Macromol 2025; 290:139044. [PMID: 39716711 DOI: 10.1016/j.ijbiomac.2024.139044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method. The hydrogel beads were then analyzed using various techniques including FE-SEM, EDX, FT-IR, XRD, BET surface area, DLS, and zeta potential measurements. The hydrogel beads showed great swelling ability and controlled breakdown in different pH environments, mimicking the conditions of the gastrointestinal tract and body. Research on drug loading and release showed that the hydrogel components can be adjusted to control the release of DOX. Cytotoxicity tests in a lab setting using K562 cells demonstrated successful delivery of DOX and the ability to target cancer cells specifically while reducing negative effects. Adding GQDs improved both the imaging abilities and the stability and mechanical characteristics of the hydrogel. This research indicates that the CMCS/GQDs@Pe/MIL-88 combination hydrogel beads show great potential for advanced drug delivery systems, especially in cancer treatment.
Collapse
Affiliation(s)
- Iman Gholamali
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Department of Chemistry, North Tehran Branch, Islamic Azad University, P.O. Box 19585/936, Tehran, Iran.
| | - Mehdi Yadollahi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| |
Collapse
|
14
|
Xiao Y, Long X, Zhang X, Mu J, Chen Q, Mai Y, Li Y, Xue H, Song P, Yang X, Zheng H. Enhanced chemiluminescence by carbon dots for rapid detection of bisphenol A and nitrite. Food Chem 2025; 463:141374. [PMID: 39326318 DOI: 10.1016/j.foodchem.2024.141374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Herein, a novel chemiluminescence (CL) sensor was successfully developed based on chlorine doped carbon dots (Cl/CDs) for the rapid determination of bisphenol A (BPA) and nitrite. The Cl/CDs were synthesized through a hydrothermal method, using ascorbic acid as the precursor and hydrochloric acid as the dopant. It was found that Cl/CDs significantly enhanced the CL intensity of the acid-KMnO4 system, while BPA and nitrite quenched the CL intensity of the Cl/CDs-sensitized acid-KMnO4 system. Under optimal conditions, BPA exhibited a linear detection range of 0.05-10 μM, with limits of detection (LOD) and quantification (LOQ) of 0.86 nM and 2.8 nM, respectively. Nitrite showed a linear detection range of 0.7-100 μM, with LOD and LOQ of 22.5 nM and 75 nM, respectively. The CL sensor was successfully use to determine BPA in water samples and nitrite in pickles, ham and celery, with spike recovery rates of 96.3 %-104.8 % and 96.0 %-104.9 %, respectively.
Collapse
Affiliation(s)
- Yujie Xiao
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaoqin Long
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xue Zhang
- College of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Junjie Mu
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiuxiong Chen
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuxian Mai
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying Li
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Hao Xue
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Pengyang Song
- Chongqing Wansheng Economic and Technological Development Zone Planning and Natural Resources Bureau, Chongqing 401147, China
| | - Xian Yang
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Hong Zheng
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
15
|
Tarigan AM, Rinawati M, Aulia S, Chang LY, Chang CY, Su WN, Haw SC, Huang WH, Setyawan H, Yeh MH. Dual-Driven Activation of High-Valence States in Prussian Blue Analogues Via Graphene-Quantum Dots and Ozone-Induced Surface Restructuring for Superior Hydrogen Evolution Electrocatalyst. SMALL METHODS 2025:e2401708. [PMID: 39748633 DOI: 10.1002/smtd.202401708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts. However, modulating their properties and functionalities is crucial to overcome their conductivity issue. Herein, a reconfiguration strategy for the dual-driven surface restructuring of the CoFe PBA involving graphene quantum dots (GQD) and UV/ozone is proposed. X-ray absorption spectroscopy (XAS) analysis revealed that dual-driven reconstruction plays a pivotal role in promoting the high-valence metal ions, effectively reducing charge transfer resistance-a key limitation in HER. The optimized CoFe PBA/GQD-UV exhibits remarkable electrocatalytic performance toward HER, with a low overpotential of 77 mV to reach a current density of 10 mA cm-2 with excellent durability for 12 h under an extremely high current density of 500 mA cm-2 in an acidic solution. This dual-combination strategy offering a new pathway to develop highly active electrocatalysts.
Collapse
Affiliation(s)
- Angelina Melanita Tarigan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Mia Rinawati
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Sofiannisa Aulia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Ling-Yu Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chia-Yu Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Wei-Nien Su
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Heru Setyawan
- Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Sepuluh Nopember Institute of Technology, Surabaya, 60111, Indonesia
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
16
|
Traiphothon D, Awang T, Kuntip N, Japrung D, Pongprayoon P. How a mixture of microRNA-29a (miR-29a) and microRNA-144 (miR-144) cancer biomarkers interacts with a graphene quantum dot. J Mol Graph Model 2025; 134:108881. [PMID: 39418887 DOI: 10.1016/j.jmgm.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
MicroRNAs (miRNAs) which are small non-coding RNAs have been reported to be potential cancer biomarker. However, it is difficult to extract such short RNA from a sample matrix. New effective strategies are required. Recently, graphene quantum dots (GQDs) have been used to detect nucleotides in many biosensor platforms, but their applications for miRNA extraction remain limited. GQD was reported to be able to collect short miRNA, but its performance to collect miRNAs with different structure remains unknown. Thus, in this work, the capability of GQD to interact with two different miRNAs is investigated. A mixture of hairpin-like miR-29a and circular miR-144 molecules are used as a representative of two miRNA morphologies. Two systems (a miRNA mixture, comprising 4 of miR-29a and 4 of miR-144, with (miR_GQD) and without GQD (miR)) were studied in comparison. MiRNAs in a mixture (miR) can aggregate, but no permanent miRNA assembly is captured. In contrast, the presence of GQD can rapidly and spontaneously activate the permanent miRNA/GQD clustering. This finding highlights the ability of GQD to be a miRNA collector. Interestingly, all GQD-bound miRNAs do not unfold. This allows the easy accessibility for probes. Also, nano-sized GQD seems to prefer hairpin miR-29a. The free 5' terminus of miR-29a acts as the sticky end to adhere on GQD. This work highlights the importance of RNA secondary structure on GQD/miRNA aggregation capability. An insight obtained here will be useful for further design of miRNA isolation strategies.
Collapse
Affiliation(s)
- Darunee Traiphothon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Nattapon Kuntip
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, 12120, Thailand.
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studied in Nanotechnology for Chemical, Food, and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900 Thailand.
| |
Collapse
|
17
|
Zhao J, Shi Z, Chen M, Xi F. Highly active nanozyme based on nitrogen-doped graphene quantum dots and iron ion nanocomposite for selective colorimetric detection of hydroquinone. Talanta 2025; 281:126817. [PMID: 39245006 DOI: 10.1016/j.talanta.2024.126817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Inspired by the iron porphyrin structure of natural horseradish peroxidase (HRP), an efficient carbon-based nanozyme was fabricated using nitrogen-doped graphene quantum dots (NGQDs) and iron ion (Fe3+) nanocomposite, enabling selective distinguishment of hydroquinone (HQ) from its isomers. NGQDs with good dispersibility and uniform size were synthesized via a one-step hydrothermal process. NGQDs lacked peroxidase-like activity but the formed nanocomposite (Fe3+-NGQDs) upon Fe3+ addition possessed high peroxidase-like activity. Fe3+-NGQDs nanocomposite exhibited shuttle-shaped structure (∼30 nm), the lattice structure of NGQDs and electron transfer between Fe3+ and NGQDs. The Fe3+-NGQDs nanocomposite can catalyze the production of superoxide radicals (•O2-) from H2O2. The Michaelis constant (Km) of Fe3+-NGQDs (0.115 mM) was lower than that of natural HRP (0.434 mM) with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate and the maximum initial reaction rate (Vmax, 16.47 × 10-8 M/s) was nearly 4 times higher than that of HRP using H2O2 substrate. HQ, unlike its isomers catechol (CC) and resorcinol (RE), could consume •O2- generated from the decomposition of H2O2 catalyzed by Fe3+-NGQDs nanocomposite, reducing the oxidation of TMB. This principle enabled selective colorimetric determination of HQ ranged from 1 μM to 70 μM and a limit of detection (LOD) of 0.2 μM. Successful determination of HQ in pond water was also realized.
Collapse
Affiliation(s)
- Jingwen Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhuxuan Shi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mixia Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Yue Y, Chen C, Liu Y, Kong D, Wei D. Multifunctional Integrated Biosensors Based on Two-Dimensional Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70160-70173. [PMID: 39661741 DOI: 10.1021/acsami.4c18412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
In recent years, field-effect transistor (FET) sensing technology has attracted significant attention owing to its noninvasive, label-free, real-time, and user-friendly detection capabilities. Owing to the large specific surface area, high flexibility, and excellent conductivity of two-dimensional (2D) materials, FET biosensors based on 2D materials have demonstrated unique potential in biomarker analysis and healthcare applications, driving continuous innovation and transformation in the field. Here, we review recent trends in the development of 2D FET biosensors based on key performance metrics and main characteristics, and we also discuss structural designs and modification strategies for biosensing devices utilizing graphene, transition metal dichalcogenides, black phosphorus, and other 2D materials to enhance key performance metrics. Finally, we offer insights into future directions for biosensor advancements, discuss potential improvements, and present new recommendations for practical clinical applications.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Department of Material Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Department of Material Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Wang Y, Wang Y, Liu D, Feng Y, Yang D, Wu S, Jiang H, Wang D, Bi S. Study on the Synthesis and Electrochemical Properties of Nitrogen-Doped Graphene Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6163. [PMID: 39769764 PMCID: PMC11678781 DOI: 10.3390/ma17246163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Nitrogen-doped graphene quantum dots (N-GQDs) are widely used in biosensing, catalysis, and energy storage due to their excellent conductivity, high specific surface area, unique quantum size effects, and optical properties. In this paper, we successfully synthesized N-GQDs using a facile hydrothermal approach and investigated the effects of different hydrothermal temperatures and times on the morphology and structure of N-GQDs. The results indicated that the size of N-GQDs gradually increased and they eventually aggregated into graphene fragments with increasing temperature or reaction time. Notably, N-GQDs synthesized at 180 °C for 6 h exhibited the most uniform size, with an average diameter of approximately 3.48 nm, a height of 5-6 graphene layers, as well as favorable fluorescence properties. Moreover, the surface of N-GQDs contained abundant oxygen- and nitrogen-containing functional groups, which could provide numerous active sites for electrode reactions. The assembled electrode exhibited typical pseudocapacitive behavior with exceptional electrochemical performance, achieving a specific capacitance of 102 F g-1 at a current density of 1 A g-1. In a 10,000-cycle test, the electrode demonstrated excellent cycling stability with a capacitance retention rate of 78.5%, which laid the foundation for practical application of the electrode. This work successfully applied N-GQDs in supercapacitors, offering new insights into their development for the energy storage field.
Collapse
Affiliation(s)
- Yongbo Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250061, China; (Y.W.)
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yanxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250061, China; (Y.W.)
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Dongming Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250061, China; (Y.W.)
| | - Yanqiu Feng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250061, China; (Y.W.)
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Deli Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250061, China; (Y.W.)
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Simeng Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250061, China; (Y.W.)
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Haotian Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250061, China; (Y.W.)
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Donglong Wang
- Shandong Jinhong New Material Co. Ltd., Weifang 262100, China
| | - Shishuai Bi
- Shandong Jinhong New Material Co. Ltd., Weifang 262100, China
| |
Collapse
|
20
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
21
|
Li F, Li G, Lougou BG, Zhou Q, Jiang B, Shuai Y. Upcycling biowaste into advanced carbon materials via low-temperature plasma hybrid system: applications, mechanisms, strategies and future prospects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:364-388. [PMID: 39236471 DOI: 10.1016/j.wasman.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
This review focuses on the recent advances in the sustainable conversion of biowaste to valuable carbonaceous materials. This study summarizes the significant progress in biowaste-derived carbon materials (BCMs) via a plasma hybrid system. This includes systematic studies like AI-based multi-coupling systems, promising synthesis strategies from an economic point of view, and their potential applications towards energy, environment, and biomedicine. Plasma modified BCM has a new transition lattice phase and exhibits high resilience, while fabrication and formation mechanisms of BCMs are reviewed in plasma hybrid system. A unique 2D structure can be designed and formulated from the biowaste with fascinating physicochemical properties like high surface area, unique defect sites, and excellent conductivity. The structure of BCMs offers various activated sites for element doping and it shows satisfactory adsorption capability, and dynamic performance in the field of electrochemistry. In recent years, many studies have been reported on the biowaste conversion into valuable materials for various applications. Synthesis methods are an indispensable factor that directly affects the structure and properties of BCMs. Therefore, it is imperative to review the facile synthesis methods and the mechanisms behind the formation of BCMs derived from the low-temperature plasma hybrid system, which is the necessity to obtain BCMs having desirable structure and properties by choosing a suitable synthesis process. Advanced carbon-neutral materials could be widely synthesized as catalysts for application in environmental remediation, energy conversion and storage, and biotechnology.
Collapse
Affiliation(s)
- Fanghua Li
- National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Gaotingyue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bachirou Guene Lougou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qiaoqiao Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, China
| | - Boshu Jiang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
22
|
Pechnikova NA, Domvri K, Porpodis K, Istomina MS, Iaremenko AV, Yaremenko AV. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. AGGREGATE 2024. [DOI: 10.1002/agt2.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
ABSTRACTCarbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard‐to‐reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long‐term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry & Biotechnology University of Thessaly Volos Greece
- Laboratory of Chemical Engineering A’ Department of Chemical Engineering Faculty of Engineering Aristotle University of Thessaloniki Thessaloniki Greece
- Saint Petersburg Pasteur Institute Saint Petersburg Russia
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Histology‐Embryology School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Pathology Department George Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria S. Istomina
- Institute of Experimental Medicine Almazov National Medical Research Centre Saint‐Peterburg Russia
| | | | - Alexey V. Yaremenko
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Center for Nanomedicine Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
23
|
Izquierdo-García P, Fernández-García JM, Martín N. Twenty Years of Graphene: From Pristine to Chemically Engineered Nano-Sized Flakes. J Am Chem Soc 2024; 146:32222-32234. [PMID: 39537345 PMCID: PMC11613509 DOI: 10.1021/jacs.4c12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
It is a celebratory moment for graphene! This year marks the 20th anniversary of the discovery of this amazing material by Geim and Novoselov. Curiously, it coincides with the century mark of graphite's layered structure discovery. Since the discovery of graphene with the promise that its outstanding properties would change the world, society often wonders where is graphene? In this context, their discoverers said in 2005, "despite the reigning optimism about graphene-based electronics, "graphenium" microprocessors are unlikely to appear for the next 20 years". Today, possibilities for graphene are endless! It can be used in electronics, photonics, fuel cells, energy storage, artificial intelligence, biomedicine, and even cultural heritage or sports. Additionally, the electronic properties of this material have been modified in fascinating ways. Bilayer graphene sheets have been found to be superconductive when twisted at a "magic angle", leading to a new and exciting field of research known as "moiré quantum materials" or "twistronics". Additionally, small graphene fragments with nanometer sizes undergo a quantum confinement effect of electrons, affording semiconductive materials with applications in optoelectronics. Organic synthesis allows the preparation of molecules with a graphene-like pattern with total control of the shape and size, exhibiting a big catalog of chiroptical and optoelectronic properties. This Perspective shows some of the fascinating milestones raised in the field of graphene-like materials from a chemical point of view, including functionalization strategies employed to chemically modify the topology and the properties of pristine graphene as well as the rising molecular graphenes.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Jesús M. Fernández-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Nazario Martín
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
24
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
25
|
Luo Y, Gu Z, Perez-Aguilar JM, Luo Y. Potential toxicity of Graphene (Oxide) quantum dots to human intestinal fatty acid binding protein (HIFABP) via obstructing the protein's openings. Sci Rep 2024; 14:24899. [PMID: 39438505 PMCID: PMC11496655 DOI: 10.1038/s41598-024-73037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
Graphene quantum dots (GQDs) have garnered significant attention across numerous fields due to their ultrasmall size and exceptional properties. However, their extensive applications may lead to environmental exposure and subsequent uptake by humans. Yet, conflicting reports exist regarding the potential toxicity of GQDs based on experimental investigations. Therefore, a comprehensive understanding of GQD biosafety requires further microscopic and molecular-level investigations. In this study, we employed molecular dynamics (MD) simulations to explore the interactions between GQDs and graphene oxide quantum dots (GOQDs) with a protein model, the human intestinal fatty acid binding protein (HIFABP), that plays a crucial role in mediating the carrier of fatty acids in the intestine. Our MD simulation results reveal that GQDs can be adsorbed on the opening of HIFABP, which serves as an entrance for the fatty acid molecules into the protein's interior cavity. This adsorption has the potential to obstruct the opening of HIFABP, leading to the loss of its normal biological function and ultimately resulting in toxicity. The adsorption of GQDs is driven by a combination of van der Waals (vdW), π-π stacking, cation-π, and hydrophobic interactions. Similarly, GOQDs also exhibit the ability to block the opening of HIFABP, thereby potentially causing toxicity. The blockage of GOQDs to HIFABP is guided by a combination of vdW, Coulomb, π-π stacking, and hydrophobic interactions. These findings not only highlight the potential harmful effects of GQDs on HIFABP but also elucidate the underlying molecular mechanism, which provides crucial insights into GQD toxicology.
Collapse
Affiliation(s)
- Yanbo Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, 72570, Puebla, Mexico
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
26
|
Osorio HM, Castillo-Solís F, Barragán SY, Rodríguez-Pólit C, Gonzalez-Pastor R. Graphene Quantum Dots from Natural Carbon Sources for Drug and Gene Delivery in Cancer Treatment. Int J Mol Sci 2024; 25:10539. [PMID: 39408866 PMCID: PMC11476599 DOI: 10.3390/ijms251910539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapy is constantly evolving, with a growing emphasis on targeted and efficient treatment options. In this context, graphene quantum dots (GQDs) have emerged as promising agents for precise drug and gene delivery due to their unique attributes, such as high surface area, photoluminescence, up-conversion photoluminescence, and biocompatibility. GQDs can damage cancer cells and exhibit intrinsic photothermal conversion and singlet oxygen generation efficiency under specific light irradiation, enhancing their effectiveness. They serve as direct therapeutic agents and versatile drug delivery platforms capable of being easily functionalized with various targeting molecules and therapeutic agents. However, challenges such as achieving uniform size and morphology, precise bandgap engineering, and scalability, along with minimizing cytotoxicity and the environmental impact of their production, must be addressed. Additionally, there is a need for a more comprehensive understanding of cellular mechanisms and drug release processes, as well as improved purification methods. Integrating GQDs into existing drug delivery systems enhances the efficacy of traditional treatments, offering more efficient and less invasive options for cancer patients. This review highlights the transformative potential of GQDs in cancer therapy while acknowledging the challenges that researchers must overcome for broader application.
Collapse
Affiliation(s)
- Henrry M. Osorio
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Fabián Castillo-Solís
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| | - Selena Y. Barragán
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| |
Collapse
|
27
|
Ghaffarkhah A, Hashemi SA, Isari AA, Panahi-Sarmad M, Jiang F, Russell TP, Rojas OJ, Arjmand M. Chemistry, applications, and future prospects of structured liquids. Chem Soc Rev 2024; 53:9652-9717. [PMID: 39189110 DOI: 10.1039/d4cs00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Structured liquids are emerging functional soft materials that combine liquid flowability with solid-like structural stability and spatial organization. Here, we delve into the chemistry and underlying principles of structured liquids, ranging from nanoparticle surfactants (NPSs) to supramolecular assemblies and interfacial jamming. We then highlight recent advancements related to the design of intricate all-liquid 3D structures and examine their reconfigurability. Additionally, we demonstrate the versatility of these soft functional materials through innovative applications, such as all-liquid microfluidic devices and liquid microreactors. We envision that in the future, the vast potential of the liquid-liquid interface combined with human creativity will pave the way for innovative platforms, exemplified by current developments like liquid batteries and circuits. Although still in its nascent stages, the field of structured liquids holds immense promise, with future applications across various sectors poised to harness their transformative capabilities.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
28
|
Mollazadeh M, Fakhari A, Mortezazadeh T, Mofrad FB, Nazarie AJ. Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent. RADIOCHIM ACTA 2024; 112:663-677. [DOI: 10.1515/ract-2023-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Abstract
In this study, a new nano-structure, N,P-doped graphene quantum dots (N,P-GQDs), were synthesized as multipurpose imaging agent for performing scintigraphy and magnetic resonance imaging (MRI). Some standard characterization methods were used to identify the nano-structure. In vitro cytotoxicity evaluation using MTT assay revealed that N,P-GQDs nanoparticles had no significant cytotoxicity after 24 and 48 h against normal (MCF-10A) and cancerous (MCF 7) human breast cell line in concentration up to 200 μg/mL. The N,P-GQDs were radiolabeled with Technetium-99m as 99mTc-(N,P-GQDs) and the radiochemical purity was assayed by ITLC concluding RCP ≥ 95 %. The passing of 99mTc-(N,P-GQDs) through 0.1 µm filter demonstrated that 70.8 % of particles were <0.1 µm. In order to perform scintigraphy, the 99mTc-(N,P-GQDs) were injected to female healthy Wistar rats. The results showed that the radio-complex was captured and eliminated just by kidneys. Moreover, in vitro T1-weighted phantom MRI imaging showed that the N,P-GQDs have proper relaxivity in comparison to Dotarem® as a clinically available contrast agent. The results showed that the N,P-GQDs have potential to be considered as a novel and encouraging agent for both molecular MRI and nuclear medicine imagings.
Collapse
Affiliation(s)
- Morteza Mollazadeh
- Department of Medical Radiation Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ashraf Fakhari
- Medical Radiation Sciences Research Team , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farshid Babapour Mofrad
- Department of Medical Radiation Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ali Jamali Nazarie
- Department of Engineering, Shahrood Branch , Islamic Azad University , Shahrood , Iran
| |
Collapse
|
29
|
Li J, Zhao H, Zhao X, Gong X. Aggregation-Induced Enhanced Red Emission Graphene Quantum Dots for Integrated Fabrication of Luminescent Solar Concentrators. NANO LETTERS 2024; 24:11722-11729. [PMID: 39248378 DOI: 10.1021/acs.nanolett.4c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Graphene quantum dots (GQDs) commonly suffer from the fluorescence problem of aggregation-caused quenching under high-concentration loading or in the solid state, which seriously hinders the application. Here we report a type of GQDs with red aggregation-induced enhanced emission (AIEE). It is confirmed that the aggregation state of the AIEE GQDs is a J-aggregate. The GQDs/poly(methyl methacrylate) film presented a photoluminescence quantum yield as high as 60.81%, and the record-high performance of luminescent solar concentrators (LSCs) was achieved. The power conversion efficiency (ηPCE) is up to 8.35% and the external optical efficiency (ηext) is ∼8.99% for the GQD-based LSCs (45 mW/cm2). Even under one sun illumination (100 mW/cm2), the corresponding ηPCE and ηext values are 3.12% and 4.52%, respectively. The internal photon efficiency (ηint) of an LSC device is about 5.02%. The synthesis of AIEE GQDs bridges the research gap in the emission mechanism of AIEE in GQDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Haiguang Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
30
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
31
|
Selva Sharma A, Lee NY. Comprehensive review on fluorescent carbon dots and their applications in nucleic acid detection, nucleolus targeted imaging and gene delivery. Analyst 2024; 149:4095-4115. [PMID: 39007289 DOI: 10.1039/d4an00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Carbon dots (CDs), including carbon quantum dots, graphene quantum dots, carbon nanodots, and polymer dots, have gained significant attention due to their unique structural and fluorescence characteristics. This review provides a comprehensive overview of the classification, structural characteristics, and fluorescence properties of CDs, followed by an exploration of various fluorescence sensing mechanisms and their applications in gene detection, nucleolus imaging, and gene delivery. Furthermore, the functionalization of CDs with diverse surface ligand molecules, including dye molecules, nucleic acid probes, and metal derivatives, for sensitive nucleic acid detection is systematically examined. Fluorescence imaging of the cell nucleolus plays a vital role in examining intracellular processes and the dynamics of subcellular structures. By analyzing the mechanism of fluorescence and structure-function relationships inherent in CDs, the nucleolus targeting abilities of CDs in various cell lines have been discussed. Additionally, challenges such as the insufficient organelle specificity of CDs and the inconsistent mechanisms underlying nucleolus targeting have also been highlighted. The unique physical and chemical properties of CDs, particularly their strong affinity toward deoxyribonucleic acid (DNA), have spurred interest in gene delivery applications. The use of nuclear-targeting peptides, polymers, and ligands in conjunction with CDs for improved gene delivery applications have been systematically reviewed. Through a comprehensive analysis, the review aims to contribute to a deeper understanding of the potential and challenges associated with CDs in biomedical applications.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- Department of Nanoscience and Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
| |
Collapse
|
32
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
33
|
Wang K, Margolis S, Cho JM, Wang S, Arianpour B, Jabalera A, Yin J, Hong W, Zhang Y, Zhao P, Zhu E, Reddy S, Hsiai TK. Non-Invasive Detection of Early-Stage Fatty Liver Disease via an On-Skin Impedance Sensor and Attention-Based Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400596. [PMID: 38887178 PMCID: PMC11336938 DOI: 10.1002/advs.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Indexed: 06/20/2024]
Abstract
Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.
Collapse
Affiliation(s)
- Kaidong Wang
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| | - Samuel Margolis
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jae Min Cho
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Brian Arianpour
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Alejandro Jabalera
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Wen Hong
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Yaran Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Peng Zhao
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Enbo Zhu
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Srinivasa Reddy
- Department of Molecular and Medical PharmacologyUniversity of California Los AngelesLos AngelesCA90095USA
| | - Tzung K. Hsiai
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| |
Collapse
|
34
|
Jamil S, Afzal R, Khan SR, Shabbir M, Alhokbany N, Li S, Saeed Ashraf Janjua MR. Photocatalytic degradation of indigo carmine dye by hydrothermally synthesized graphene nanodots (GNDs): investigation of kinetics and thermodynamics. RSC Adv 2024; 14:23973-23986. [PMID: 39086519 PMCID: PMC11289714 DOI: 10.1039/d4ra02476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Graphene nano dots (GNDs) are an intriguing emerging class of materials at the nano scale with distinctive characteristics and exciting potential applications. Graphene oxide was synthesized in a lab setting using a modified version of Hummers' approach and used as a precursor for synthesis of graphene nano dots. Graphene oxide is then treated through hydrothermal treatment to produce GNDs with exact control over their size and form. Synthesized graphene nano dots were subjected to various instruments to study morphology, crystallinity, size and other properties. UV-visible spectroscopy was used to detect the maximum absorbance of light. For functional group identification, FTIR analysis was conducted. X-ray diffraction analysis explained structural composition and various other parameters i.e., crystal size and diameter, which was further verified by Vesta software. Surface morphology of GNDs was analyzed by scanning electron microscopy. AFM analysis of GNDs demonstrates the topography of the surface. The photo degradation of the indigo carmine dye by the GNDs also demonstrates their superiority as UV-visible light driven photo catalysts. To evaluate the results, the thermodynamics and kinetics of the degradation reactions are examined. The effects of several factors, such as temperature, initial concentration, time, pH and catalyst concentration, are also investigated. The data will be analyzed statistically by regression and correlation analysis using dependent and independent variables, regression coefficient and other statistical techniques.
Collapse
Affiliation(s)
- Saba Jamil
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rabia Afzal
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Shanza Rauf Khan
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Mehwish Shabbir
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Songnan Li
- Harbin Normal University, Songbei Campus Harbin 150026 China
| | | |
Collapse
|
35
|
Mohammad A, Srivastava M, Ahmad I, Singh R, Deen PR, Rai A, Lal B, Srivastava N, Gupta VK. WITHDRAWN: Prospects of graphene quantum dots preparation using lignocellulosic wastes for application in photofermentative hydrogen production. CHEMOSPHERE 2024:142804. [PMID: 39029708 DOI: 10.1016/j.chemosphere.2024.142804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024]
Abstract
This paper has been withdrawn.
Collapse
Affiliation(s)
- Akbar Mohammad
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Manish Srivastava
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Irfan Ahmad
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Rajeev Singh
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Prakash Ranjan Deen
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Ashutosh Rai
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Basant Lal
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Neha Srivastava
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Vijai Kumar Gupta
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom.
| |
Collapse
|
36
|
Saylan Y, Aliyeva N, Eroglu S, Denizli A. Nanomaterial-Based Sensors for Coumarin Detection. ACS OMEGA 2024; 9:30015-30034. [PMID: 39035881 PMCID: PMC11256117 DOI: 10.1021/acsomega.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nilufer Aliyeva
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Seckin Eroglu
- Department
of Biological Sciences, Middle East Technical
University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
37
|
Luo Y, Kasturi PR, Barwa TN, Dempsey E, Breslin CB. Amplifying Flutamide Sensing through the Synergetic Combination of Actinidia-Derived Carbon Particles and WS 2 Platelets. ACS OMEGA 2024; 9:29598-29608. [PMID: 39005762 PMCID: PMC11238225 DOI: 10.1021/acsomega.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The development of electrochemical sensors for flutamide detection is a crucial step in biomedical research and environmental monitoring. In this study, a composite of Actinidia-derived carbon particles (CPs) and tungsten disulfide (WS2) was formed and used as an electrocatalyst for the electrochemical detection of flutamide. The CPs had an average diameter of 500 nm and contained surface hydroxyl and carbonyl groups. These groups may help anchor the CPs onto the WS2 platelets, resulting in the formation of a CPs-WS2 nanocomposite with a high surface area and a conducting network, enabling electron transfer. Using the CPs-WS2 composite supported at a glassy carbon electrode, a linear concentration range extending from 1 nM to 104 μM, a limit of detection of 0.74 nM, and a sensitivity of 26.9 ± 0.7 μA μM-1 cm-2 were obtained in the detection of flutamide in a phosphate buffer. The sensor showed good recovery, ranging from 88.47 to 95.02%, in river water samples, and exhibited very good selectivity in the presence of inorganic ions, including Al3+, Co2+, Cu2+, Fe3+, Zn2+, NO3 -, SO4 2-, CO3 2-, and Cl-.
Collapse
Affiliation(s)
- Yiran Luo
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - P Rupa Kasturi
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Tara N Barwa
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Eithne Dempsey
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
- Kathleen Lonsdale Institute, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Carmel B Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
- Kathleen Lonsdale Institute, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| |
Collapse
|
38
|
Majdoub M, Sengottuvelu D, Nouranian S, Al-Ostaz A. Graphitic Carbon Nitride Quantum Dots (g-C 3N 4 QDs): From Chemistry to Applications. CHEMSUSCHEM 2024; 17:e202301462. [PMID: 38433108 DOI: 10.1002/cssc.202301462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Since their emergence in 2014, graphitic carbon nitride quantum dots (g-C3N4 QDs) have attracted much interest from the scientific community due to their distinctive physicochemical features, including structural, morphological, electrochemical, and optoelectronic properties. Owing to their desirable characteristics, such as non-zero band gap, ability to be chemically functionalized or doped, possessing tunable properties, outstanding dispersibility in different media, and biocompatibility, g-C3N4 QDs have shown promise for photocatalysis, energy devices, sensing, bioimaging, solar cells, optoelectronics, among other applications. As these fields are rapidly evolving, it is very strenuous to pinpoint the emerging challenges of the g-C3N4 QDs development and application during the last decade, mainly due to the lack of critical reviews of the innovations in the g-C3N4 QDs synthesis pathways and domains of application. Herein, an extensive survey is conducted on the g-C3N4 QDs synthesis, characterization, and applications. Scenarios for the future development of g-C3N4 QDs and their potential applications are highlighted and discussed in detail. The provided critical section suggests a myriad of opportunities for g-C3N4 QDs, especially for their synthesis and functionalization, where a combination of eco-friendly/single step synthesis and chemical modification may be used to prepare g-C3N4 QDs with, for example, enhanced photoluminescence and production yields.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Dineshkumar Sengottuvelu
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Sasan Nouranian
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, MS 38677, United States
| | - Ahmed Al-Ostaz
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Civil Engineering, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
39
|
Fois L, Stagi L, Carboni D, Alboushi M, Khaleel A, Anedda R, Innocenzi P. The Formation of Carbon Dots from D-Glucose Studied by Infrared Spectroscopy. Chemistry 2024; 30:e202400158. [PMID: 38619533 DOI: 10.1002/chem.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Carbon dots (C-dots) obtained from D-glucose have attracted great interest because of their properties and as a model for understanding the synthesis process and the origin of photoluminescence in carbon-based nanostructures. Synthesising C-dots under hydrothermal conditions has become one of the most common methods for their preparation. Understanding the details of this process is quite difficult. To tackle this challenge, we have adopted a multi-technique approach in our present work. We have correlated different spectroscopic analyses, such as infrared, Raman, fluorescence, NMR, and UV-Vis, to connect the emissions with specific chemical groups. In particular, in situ infrared analysis as a function of temperature has allowed following the formation of C=C, C=O, and COOH species and the rise of specific emissions. Only weak emissions due to n-π* transitions are detected upon post-synthesis thermal annealing.
Collapse
Affiliation(s)
- Livia Fois
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of Sassari, 07100, Sassari, Italy
| | - Luigi Stagi
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of Sassari, 07100, Sassari, Italy
| | - Davide Carboni
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of Sassari, 07100, Sassari, Italy
| | - Meera Alboushi
- College of Science, Department of Chemistry, United Arab Emirates University., Al Ain., United Arab Emirates
| | - Abbas Khaleel
- College of Science, Department of Chemistry, United Arab Emirates University., Al Ain., United Arab Emirates
| | - Roberto Anedda
- Porto Conte Ricerche, Strada Provinciale 55, Porto Conte Capo Caccia, km. 8,400., 07041, Alghero (SS, Italy
| | - Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of Sassari, 07100, Sassari, Italy
| |
Collapse
|
40
|
Wang R, Zhang S, Zhang J, Wang J, Bian H, Jin L, Zhang Y. State-of-the-art of lignin-derived carbon nanodots: Preparation, properties, and applications. Int J Biol Macromol 2024; 273:132897. [PMID: 38848826 DOI: 10.1016/j.ijbiomac.2024.132897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Lignin-derived carbon nanodots (LCNs) are nanometer-scale carbon spheres fabricated from naturally abundant lignin. Owing to rich and highly heritable graphene like π-π conjugated structure of lignin, to fabricate LCNs from it not only endows LCNs with on-demand tunable size and optical features, but also further broadens the green and chemical engineering of carbon nanodots. Recently, they have become increasingly popular in sensing, bioimaging, catalysis, anti-counterfeiting, energy storage/conversion, and others. Despite the enormous research efforts put into the ongoing development of lignin value-added utilization, few commercial LCNs are available. To have a deeper understanding of this issue, critical impacts on the preparation, properties, and applications of state-of-the-art LCNs are carefully reviewed and discussed. A concise analysis of their unique advantages, limitations for specific applications, and current challenges and outlook is conducted. We hope that this review will stimulate further advances in the functional material-oriented production of lignin.
Collapse
Affiliation(s)
- Ruibin Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jing Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jiahai Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Huiyang Bian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Linghua Jin
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Ye Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China.
| |
Collapse
|
41
|
Su Y, Ye K, Hu J, Zhang Z, Wang Y, Geng B, Pan D, Shen L. Graphene Quantum Dots Eradicate Resistant and Metastatic Cancer Cells by Enhanced Interfacial Inhibition. Adv Healthc Mater 2024; 13:e2304648. [PMID: 38597827 DOI: 10.1002/adhm.202304648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Indexed: 04/11/2024]
Abstract
Drug-resistant and metastatic cancer cells such as a small population of cancer stem cells (CSCs) play a crucial role in metastasis and relapse. Conventional small-molecule chemotherapeutics, however, are unable to eradicate drug-resistant CSCs owing to limited interface inhibitory effects. Herein, it is reported that enhanced interfacial inhibition leading to eradication of drug-resistant CSCs can be dramatically induced by self-insertion of bioactive graphene quantum dots (GQDs) into DNA major groove (MAG) sites in cancer cells. Since transcription factors regulate gene expression at the MAG site, MAG-targeted GQDs exert greatly enhanced interfacial inhibition, downregulating the expression of a collection of cancer stem genes such as ALDH1, Notch1, and Bmi1. Moreover, the nanoscale interface inhibition mechanism reverses cancer multidrug resistance (MDR) by inhibiting MDR1 gene expression when GQDs are used at a nontoxic concentration (1/4 × half-maximal inhibitory concentration (IC50)) as the MDR reverser. Given their high efficacy in interfacial inhibition, CSC-mediated migration, invasion, and metastasis of cancer cells can be substantially blocked by MAG-targeted GQDs, which can also be harnessed to sensitize clinical cytotoxic agents for improved efficacy in combination chemotherapy. These findings elucidate the inhibitory effects of the enhanced nano-bio interface at the MAG site on eradicating CSCs, thus preventing cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Yan Su
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kai Ye
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| |
Collapse
|
42
|
Zheng Z, Liu K, Zhou Y, Xu K, Debliquy M, Zhang C. Room-Temperature Sensing Mechanism of GQDs/BiSbO 4 Nanorod Clusters: Experimental and Density Functional Theory Study. ACS Sens 2024; 9:3346-3356. [PMID: 38898684 DOI: 10.1021/acssensors.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Creating high-performance gas sensors for heptanal detection at room temperature demands the development of sensing materials that incorporate distinct spatial configurations, functional components, and active surfaces. In this study, we employed a straightforward method combining hydrothermal strategy with ultrasonic processing to produce mesoporous graphene quantum dots/bismuth antimonate (GQDs/BiSbO4) with nanorod cluster forms. The BiSbO4 was incorporated with appropriate contents of GQDs resulting in significantly improved attributes such as heightened sensitivity (59.6@30 ppm), a lower threshold for detection (356 ppb), and quicker period for response (40 s). A synergistic mechanism that leverages the inherent advantages of BiSbO4 was proposed, while its distinctive mesoporous hollow cubic structure, the presence of oxygen vacancies, and the catalytic enhancement provided by GQDs lead to a marked improvement in heptanal detection. This work introduces a straightforward and effective method for crafting sophisticated micro-nanostructures that optimize spatial design, functionality, and active mesoporous surfaces, showing great promise for heptanal sensing applications.
Collapse
Affiliation(s)
- Zichen Zheng
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, P. R. China
| | - Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, P. R. China
| | - Yiwen Zhou
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, P. R. China
| | - Kaichun Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, P. R. China
| | - Marc Debliquy
- Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons 7000, Belgium
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, P. R. China
| |
Collapse
|
43
|
Qureshi ZA, Dabash H, Ponnamma D, Abbas M. Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond. Heliyon 2024; 10:e31634. [PMID: 38832274 PMCID: PMC11145243 DOI: 10.1016/j.heliyon.2024.e31634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Carbon dots (CDs) have emerged as a versatile and promising carbon-based nanomaterial with exceptional optical properties, including tunable emission wavelengths, high quantum yield, and photostability. CDs are appropriate for various applications with many benefits, such as biocompatibility, low toxicity, and simplicity of surface modification. Thanks to their tunable optical properties and great sensitivity, CDs have been used in sensing as fluorescent probes for detecting pH, heavy metal ions, and other analytes. In addition, CDs have demonstrated potential as luminescence converters for white organic light-emitting diodes and light emitters in optoelectronic devices due to their superior optical qualities and exciton-independent emission. CDs have been used for drug administration and bioimaging in the biomedical field due to their biocompatibility, low cytotoxicity, and ease of functionalization. Additionally, due to their stability, efficient charge separation, and low recombination rate, CDs have shown interesting uses in energy systems, such as photocatalysis and energy conversion. This article highlights the growing possibilities and potential of CDs as adaptable nanomaterials in a variety of interdisciplinary areas related to sensing and imaging, at the same time addressing the major challenges involved in the current research and proposing scientific solutions to apply CDs in the development of a super smart society.
Collapse
Affiliation(s)
| | - Hanan Dabash
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| | - Deepalekshmi Ponnamma
- Materials Science and Technology Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - M.K.G. Abbas
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
44
|
Hossein Karami M, Abdouss M. Cutting-edge tumor nanotherapy: Advancements in 5-fluorouracil Drug-loaded chitosan nanoparticles. INORG CHEM COMMUN 2024; 164:112430. [DOI: 10.1016/j.inoche.2024.112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Ayisha Naziba T, Praveen Kumar D, Karthikeyan S, Sriramajayam S, Djanaguiraman M, Sundaram S, Ghamari M, Prasada Rao R, Ramakrishna S, Ramesh D. Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current Progress and Prospects. CHEM REC 2024; 24:e202400030. [PMID: 38837295 DOI: 10.1002/tcr.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Indexed: 06/07/2024]
Abstract
Biomass resources are often disposed of inefficiently and it causes environmental degradation. These wastes can be turned into bio-products using effective conversion techniques. The synthesis of high-value bio-products from biomass adheres to the principles of a sustainable circular economy in a variety of industries, including agriculture. Recently, fluorescent carbon dots (C-dots) derived from biowastes have emerged as a breakthrough in the field, showcasing outstanding fluorescence properties and biocompatibility. The C-dots exhibit unique quantum confinement properties due to their small size, contributing to their exceptional fluorescence. The significance of their fluorescent properties lies in their versatile applications, particularly in bio-imaging and energy devices. Their rapid and straight-forward production using green/chemical precursors has further accelerated their adoption in diverse applications. The use of green precursors for C-dot not only addresses the biomass disposal issue through a scientific approach, but also establishes a path for a circular economy. This approach not only minimizes biowaste, which also harnesses the potential of fluorescent C-dots to contribute to sustainable practices in agriculture. This review explores recent developments and challenges in synthesizing high-quality C-dots from agro-residues, shedding light on their crucial role in advancing technologies for a cleaner and more sustainable future.
Collapse
Affiliation(s)
- T Ayisha Naziba
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - D Praveen Kumar
- Bannari Amman Institute of Technology, Sathya Mangalam, 638 401, Tamil Nadu, India
| | - S Karthikeyan
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - S Sriramajayam
- Department of Agricultural Engineering, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, 628 252., Tamil Nadu, India
| | - M Djanaguiraman
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - Mehrdad Ghamari
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - R Prasada Rao
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - D Ramesh
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
46
|
Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, Rezaei A, Moghaddam SP, Hajjafari K, Simab PA, Kharaba Z, Borji H, Pandey S. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. INORG CHEM COMMUN 2024; 164:112409. [DOI: 10.1016/j.inoche.2024.112409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
|
47
|
Rasheed PA, Ankitha M, Pillai VK, Alwarappan S. Graphene quantum dots for biosensing and bioimaging. RSC Adv 2024; 14:16001-16023. [PMID: 38765479 PMCID: PMC11099990 DOI: 10.1039/d4ra01431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Graphene Quantum Dots (GQDs) are low dimensional carbon based materials with interesting physical, chemical and biological properties that enable their applications in numerous fields. GQDs possess unique electronic structures that impart special functional attributes such as tunable optical/electrical properties in addition to heteroatom-doping and more importantly a propensity for surface functionalization for applications in biosensing and bioimaging. Herein, we review the recent advancements in the top-down and bottom-up approaches for the synthesis of GQDs. Following this, we present a detailed review of the various surface properties of GQDs and their applications in bioimaging and biosensing. GQDs have been used for fluorescence imaging for visualizing tumours and monitoring the therapeutic responses in addition to magnetic resonance imaging applications. Similarly, the photoluminescence based biosensing applications of GQDs for the detection of hydrogen peroxide, micro RNA, DNA, horse radish peroxidase, heavy metal ions, negatively charged ions, cardiac troponin, etc. are discussed in this review. Finally, we conclude the review with a discussion on future prospects.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Menon Ankitha
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Vijayamohanan K Pillai
- Department of Chemistry, Indian Institute of Science Education and Research Rami Reddy Nagar Mangalam Tirupati AP 517507 India
| | - Subbiah Alwarappan
- Electrodics & Electrocatalysis Division, CSIR-Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| |
Collapse
|
48
|
Fu M, Critchley K. Inkjet printing of heavy-metal-free quantum dots-based devices: a review. NANOTECHNOLOGY 2024; 35:302002. [PMID: 38640903 DOI: 10.1088/1361-6528/ad40b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Inkjet printing (IJP) has become a versatile, cost-effective technology for fabricating organic and hybrid electronic devices. Heavy-metal-based quantum dots (HM QDs) play a significant role in these inkjet-printed devices due to their excellent optoelectrical properties. Despite their utility, the intrinsic toxicity of HM QDs limits their applications in commercial products. To address this limitation, developing alternative HM-free quantum dots (HMF QDs) that have equivalent optoelectronic properties to HM QD is a promising approach to reduce toxicity and environmental impact. This article comprehensively reviews HMF QD-based devices fabricated using IJP methods. The discussion includes the basics of IJP technology, the formulation of printable HMF QD inks, and solutions to the coffee ring effect. Additionally, this review briefly explores the performance of typical state-of-the-art HMF QDs and cutting-edge characterization techniques for QD inks and printed QD films. The performance of printed devices based on HMF QDs is discussed and compared with those fabricated by other techniques. In the conclusion, the persisting challenges are identified, and perspectives on potential avenues for further progress in this rapidly developing research field are provided.
Collapse
Affiliation(s)
- Min Fu
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kevin Critchley
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
49
|
Li Z. Facile Synthesis of B/P Co-Doping Multicolor Emissive Carbon Dots Derived from Phenylenediamine Isomers and Their Application in Anticounterfeiting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:813. [PMID: 38786770 PMCID: PMC11123944 DOI: 10.3390/nano14100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Carbon dots (CDs) possess a considerable number of beneficial features for latent applications in biotargeted drugs, electronic transistors, and encrypted information. The synthesis of fluorescent carbon dots has become a trend in contemporary research, especially in the field of controllable multicolor fluorescent carbon dots. In this study, an elementary one-step hydrothermal method was employed to synthesize the multicolor fluorescent carbon dots by co-doping unique phenylenediamine isomers (o-PD, m-PD, and p-PD) with B and P elements, which under 365 nm UV light exhibited signs of lavender-color, grass-color, and tangerine-color fluorescence, respectively. Further investigations reveal the distinctness in the polymerization, surface-specific functional groups, and graphite N content of the multicolor CDs, which may be the chief factor regarding the different optical behaviors of the multicolor CDs. This new work offers a route for the exploration of multicolor CDs using B/P co-doping and suggests great potential in the field of optical materials, important information encryption, and commercial anticounterfeiting labels.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
50
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|