1
|
Shanmugapriya IG, Dey M, Liang M, Borah D, Singh AK, Halasyamani PS, Shanmugam M, Natarajan S. The Dugganite Structure as a Host for New Colored Compounds and for Oxygen Evolution Studies. Chemistry 2025:e202501300. [PMID: 40331281 DOI: 10.1002/chem.202501300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/08/2025]
Abstract
A family compounds with the general formula A3BC3D2O14 (A = Pb, Ba, Sr; B = Te, Sb; C = Al, Ga, Fe, Zn, Mg, Co, Ni, Cu; D = P, V, As, Si, Ge) stabilized in the dugganite structure has been prepared and characterized. The transition metal ions substituted at the tetrahedral sites in place of Zn2+ ions, gave rise to brightly colored compounds. The origin of colors in the compounds were understood based on the allowed d-d transitions and possible metal-to-metal charge transfer (MMCT) transitions involving the different transition elements. The white compounds exhibited good near infrared (NIR) reflectivity as well as deep UV-cut off (85-90%), which indicates possible use as UV-NLO materials. The compounds exhibited reasonable second harmonic generation (SHG) activity with values that are 3-5 times higher than KDP. The dielectric studies indicated reasonable values for the dielectric constant with low dielectric loss. The oxygen evolution reaction (OER) studies on Pb3TeCo3V2O14 and Pb3Te(Co2Fe)(VSi)O14, exhibited good OER behavior in alkaline medium with long-term stability. The change in the band gap values for the transition metal substituted compounds were understood through density functional theory calculations, which support the findings of the experimental investigations. The present study clearly indicates that it is profitable to explore mineral structures as hosts toward new colored compounds, substitution of transition elements that result not only in new and also for application as electrocatalysts through careful band engineering.
Collapse
Affiliation(s)
- Indrani G Shanmugapriya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Manoj Dey
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Mingli Liang
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, TX, 772045003, USA
| | - Dipanti Borah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Abhishek Kumar Singh
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - P Shiv Halasyamani
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, TX, 772045003, USA
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Srinivasan Natarajan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Swindell JD, Tainton GR, Chansai S, Hazeldine K, Buckingham MA, Walton AS, Hardacre C, Haigh SJ, Lewis DJ. Improving CO Oxidation Catalysis Over High Entropy Spinels by Increasing Disorder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413424. [PMID: 39980246 PMCID: PMC12005821 DOI: 10.1002/advs.202413424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Indexed: 02/22/2025]
Abstract
Enhancing the activity and stability of earth-abundant, heterogeneous catalysts remains a key challenge, requiring new materials design strategies to replace platinum-group metals. Herein, it is demonstrated that increasing the configurational disorder of spinel metal oxides (M3O4, where M is a combination of Cr, Mn, Fe, Co, Ni, Cu, and Zn) leads to significant improvements in carbon monoxide (CO) oxidation performance. A substantial 63% decrease in the T10 value (temperature to reach 10% CO oxidation) is observed by systematically increasing the number of first-row transition metals within the spinel oxide. Long-term stability studies reveal that the most disordered 7-metal spinel oxide exhibited superior resistance to catalyst deactivation compared to the 4-metal variant, showing a decrease in activity of only 4.7% versus 12.2% during 14 h of operation. A solventless thermolysis approach is developed to synthesize a series of medium entropy spinel oxide (MESO) and high entropy spinel oxides (HESOs) from discrete, air-stable molecular precursors. Comprehensive crystal structure determination, elemental distribution analysis, and surface characterization are conducted, establishing a clear structure-function relationship between elemental composition, configurational disorder, and catalytic performance. This work highlights how configurational disorder can serve as an effective design principle for developing both active and stable catalysts.
Collapse
Affiliation(s)
- Joshua D. Swindell
- Department of MaterialsThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gareth R.M. Tainton
- Department of MaterialsThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sarayute Chansai
- Department of Chemical EngineeringThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Kerry Hazeldine
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mark A. Buckingham
- Department of MaterialsThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alex S. Walton
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Christopher Hardacre
- Department of Chemical EngineeringThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sarah J. Haigh
- Department of MaterialsThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Lewis
- Department of MaterialsThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
3
|
Zhou LL, Xu H, Sheng YH, Wang WK, Xu J. Mn xCo 3-xO 4 spinel activates peroxymonosulfate for highly effective bisphenol A degradation with ultralow catalyst and persulfate usage. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136826. [PMID: 39672067 DOI: 10.1016/j.jhazmat.2024.136826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Persulfates-based advanced oxidation processes are highly efficient in degrading refractory organic contaminants in wastewater. However, their practical application is often limited by the extensive consumption of catalysts and oxidants. Therefore, constructing catalysts with abundant and efficient reaction interfaces is essential for improving the efficiency of persulfate activation. In this work, we develop a novel MnxCo3-xO4 spinel with highly exposed surface active sites by etching Mn-based precursors with Co ions. This process forms sufficient interface Co-O-Mn bonds, which effectively activate peroxymonosulfate (PMS) for bisphenol A (BPA) degradation. A clear structure-activity relationship is observed between the Co/Mn content ratio and the BPA degradation rate in the MnxCo3-xO4/PMS system. Notably, Mn0.1Co2.9O4 demonstrates superior PMS activation efficiency, achieving 100 % degradation of 10 mg/L BPA within 2 minutes with 0.05 g/L catalyst and 0.05 g/L persulfate usage. Experimental analyses combined with theoretical calculations identify the interface Co-O-Mn as the active site, which plays a crucial role in accelerating PMS molecule adsorption and O-O bond activation. Additionally, the spatially adjacent Co-O-Mn sites promote redox cycling for efficient interface electron transfer during the PMS activation process. Furthermore, Zebrafish toxicity studies revealed a considerable reduction in the toxicity of the BPA treatment residue in the MnxCo3-xO4/PMS system. Overall, this work presents a novel strategy for constructing spatially adjacent redox sites in dual-metal spinel materials, offering valuable insights into reducing chemical input and advancing persulfate-based environmental remediation technology.
Collapse
Affiliation(s)
- Lu-Lu Zhou
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hengyue Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi-Han Sheng
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wei-Kang Wang
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Juan Xu
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Rong C, Huang X, Arandiyan H, Shao Z, Wang Y, Chen Y. Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen-Oxygen Radical Coupling Pathway. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416362. [PMID: 39815381 PMCID: PMC11881674 DOI: 10.1002/adma.202416362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO2/N2 reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability. Despite its unique advantage, electrocatalysts that can drive OER via OPM remain nascent and are increasingly recognized as critical. This review discusses recent advances in OPM-based OER electrocatalysts. It starts by analyzing three reaction mechanisms that guide the design of electrocatalysts. Then, several types of novel materials, including atomic ensembles, metal oxides, perovskite oxides, and molecular complexes, are highlighted. Afterward, operando characterization techniques used to monitor the dynamic evolution of active sites and reaction intermediates are examined. The review concludes by discussing several research directions to advance OPM-based OER electrocatalysts toward practical applications.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Xinyi Huang
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)School of ScienceRMIT UniversityMelbourneVIC3000Australia
| | - Zongping Shao
- WA School of Mines: MineralsEnergy and Chemical EngineeringCurtin UniversityPerthWA6845Australia
| | - Yuan Wang
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Yuan Chen
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| |
Collapse
|
5
|
Ahmed MG, Tay YF, Chi X, Razeen AS, Fang Y, Zhang M, Sng A, Chiam SY, Rusydi A, Wong LH. Cation Migration-Induced Lattice Oxygen Oxidation in Spinel Oxide for Superior Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202416757. [PMID: 39523477 DOI: 10.1002/anie.202416757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Activating the lattice oxygen can significantly improve the kinetics of oxygen evolution reaction (OER), however, it often results in reduced stability due to the bulk structure degradation. Here, we develop a spinel Fe0.3Co0.9Cr1.8O4 with active lattice oxygen by high-throughput methods, achieving high OER activity and stability, superior to the benchmark IrO2. The oxide exhibits an ultralow overpotential (190 mV at 10 mA cm-2) with outstanding stability for over 170 h at 100 mA cm-2. Soft X-ray absorption- and Raman-spectroscopies, combined with 18O isotope-labelling experiments, reveal that lattice oxygen activation is driven by Cr oxidation, which induces a cation migration from CrO6 octahedrons to CrO4 tetrahedrons. The geometry conversion creates accessible non-bonding oxygen states, crucial for lattice oxygen oxidation. Upon oxidation, peroxo O-O bond is formed and further stabilized by Cr6+ (CrO4 tetrahedra) via dimerization. This work establishes a new approach for designing efficient catalysts that feature active and stable lattice oxygen without compromising structural integrity.
Collapse
Affiliation(s)
- Mahmoud G Ahmed
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ying Fan Tay
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 1 Pesek Road Jurong Island, Singapore, 627833, Singapore
| | - Xiao Chi
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore, Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, 117603, Singapore
| | - Ahmed S Razeen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanan Fang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mengyuan Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Anqi Sng
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Sing Yang Chiam
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Andrivo Rusydi
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore, Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, 117603, Singapore
| | - Lydia H Wong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
- Energy Research Institute @NTU (ERI@N), Nanyang Technological University, Singapore, 637553, Singapore
| |
Collapse
|
6
|
Peng Y, Zhao X, Shao Y, Yue X, Hu Z, Huang S. Triggering Oxygen Redox Cycles in Nickel Ferrite by Octahedral Geometry Engineering for Enhancing Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409024. [PMID: 39686629 PMCID: PMC11792042 DOI: 10.1002/advs.202409024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/23/2024] [Indexed: 12/18/2024]
Abstract
Spinel-type nickel ferrite (NixFe3-xO4, x≤1) is a widely used electrocatalyst for the oxygen evolution reaction (OER). Due to the lower hybridization of metal-d and oxygen-p orbitals, the OER process on NixFe3-xO4 follows the sluggish adsorbate evolution mechanism (AEM). Generally, activating the lattice oxygen to trigger the lattice-oxygen-mediated mechanism (LOM) can enhance the OER activity. Herein, to trigger the LOM pathway while maintaining high stability, iron foam (IF)-supported Ni0.75Fe2.25O4 (NiFeO) with geometrical defects of [NiO6] (nickel cation coordinated with six oxygen anions) units and higher ratio of Fe to Ni cations in octahedral sites (d-NiFeHRO/IF) is prepared by ion-exchanging with polar aprotic solvent followed by annealing. As a result, as-synthesized d-NiFeHRO/IF exhibits excellent activity (at 295 mV overpotential to achieve 100 mA cm-2), fast kinetics (Tafel slope of only 34.6 mV dec-1), and high stability (maintaining a current density of 100 mA cm-2 over 130 h) for the OER. The theoretical calculations reveal that the construction of octahedral defect in NixFe3-xO4 enhances the overlap of Fe-d and O-p orbitals, which can activate the lattice oxygen. Therefore, increasing the ratio of Fe to Ni will further improve the lattice oxygen redox activity, and thus trigger the fast LOM pathway, ultimately facilitating the OER process.
Collapse
Affiliation(s)
- Yang Peng
- Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage DevicesCollaborative Innovation Center of Advanced Energy MaterialsSchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
- School of Environmental Science and EngineeringGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Xu Zhao
- Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage DevicesCollaborative Innovation Center of Advanced Energy MaterialsSchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
| | - Yiqun Shao
- Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage DevicesCollaborative Innovation Center of Advanced Energy MaterialsSchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
| | - Xin Yue
- Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage DevicesCollaborative Innovation Center of Advanced Energy MaterialsSchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
| | - Zhuofeng Hu
- School of Environmental Science and EngineeringGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low‐Dimensional Materials and Energy Storage DevicesCollaborative Innovation Center of Advanced Energy MaterialsSchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
7
|
Liu D, Wang Y, Zhu J, Gu X, Yang H, Xiong Y, Shao M, Shao Q. A two-dimensional amorphous iridium-cobalt oxide for an acidic oxygen evolution reaction. Chem Commun (Camb) 2025; 61:2119-2122. [PMID: 39801483 DOI: 10.1039/d4cc05227g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
A two-dimensional (2D) amorphous iridium cobalt oxide (Am-IrCoyOx) was prepared using the molten salt method. The optimal catalyst shows a low overpotential of 230 mV at 10 mA cm-2 in 0.5 M H2SO4. DFT calculations show that the unsaturated Ir active sites on the surface are responsible for the excellent electrocatalytic performance. This work exhibits the advantages of 2D oxides and might find potential applications in other fields.
Collapse
Affiliation(s)
- Da Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Jiarui Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Xuewei Gu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Yutian Xiong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Jiangsu, China.
| |
Collapse
|
8
|
Cai L, Liu Y, Gao Y, Zhao BH, Guan J, Liu X, Zhang B, Huang Y. Atomically Asymmetrical Ir-O-Co Sites Enable Efficient Chloride-Mediated Ethylene Electrooxidation in Neutral Seawater. Angew Chem Int Ed Engl 2025; 64:e202417092. [PMID: 39449650 DOI: 10.1002/anie.202417092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 10/26/2024]
Abstract
The chloride-mediated ethylene oxidation reaction (EOR) of ethylene chlorohydrin (ECH) via electrocatalysis is practically attractive because of its sustainability and mild reaction conditions. However, the chlorine oxidation reaction (COR), which is essential for the above process, is commonly catalyzed by dimensionally stable anodes (DSAs) with high contents of precious Ru and/or Ir. The development of highly efficient COR electrocatalysts composed of nonprecious metals or decreased amounts of precious metals is highly desirable. Herein, we report a modified Co3O4 with a single-atom Ir substitution (Ir1/Co3O4) as a highly efficient COR electrocatalyst for chloride-mediated EOR to ECH in neutral seawater. Ir1/Co3O4 achieves a Faradaic efficiency (FE) of up to 94.8 % for ECH generation and remarkable stability. Combining experimental results and density functional theory (DFT) calculations, the unique atomically asymmetrical Ir-O-Co configuration with a strong electron coupling effect in Ir1/Co3O4 can accelerate electron transfer to increase the reaction kinetics and maintain the structural stability of Co3O4 during COR. Moreover, a coupling reaction system integrating the anodic chloride-mediated and cathodic H2O2-mediated EOR show a total FE of ~170 % for paired electrosynthesis of ECH and ethylene glycol (EG) using ethylene as the raw material. The technoeconomic analysis highlights the promising application prospects of this system.
Collapse
Affiliation(s)
- Linke Cai
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, China
| | - Yao Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ying Gao
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bo-Hang Zhao
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Jiacheng Guan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, China
| | - Xiao Liu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yi Huang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, China
| |
Collapse
|
9
|
Vezzù K, Triolo C, Moulaee K, Pagot G, Ponti A, Pinna N, Neri G, Santangelo S, Di Noto V. Interplay Between Calcination Temperature and Alkaline Oxygen Evolution of Electrospun High-Entropy (Cr 1/5Mn 1/5Fe 1/5Co 1/5Ni 1/5) 3O 4 Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408319. [PMID: 39580689 PMCID: PMC11753503 DOI: 10.1002/smll.202408319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Spinel-structured transition metal (TM) oxides have shown great potential as a sustainable alternative to platinum group metal-based electrocatalysts. Among them, high-entropy oxides (HEOs) with multiple TM-cation sites are suitable for engineering octahedral redox-active centers to enhance the catalyst reactivity. This paper reports on the preparation of electrospun (Cr1/5Mn1/5Fe1/5Co1/5Ni1/5)3O4 nanofibers (NFs) and their evaluation as electrocatalysts. Its main aim is to unveil the nanostructural features that play a key role in the alkaline oxygen evolution reaction. Differing calcination temperature (300-800 °C) and duration (2 or 4 h) leads to different morphology of the NFs, crystallinity of the oxide, density of defects, and cation distribution in the lattice, which reflect in different electrocatalytic behaviors. The best performance (overpotential and Tafel slope at 10 mA cm-2: 325 mV and 40 mV dec-1, respectively) pertains to the NFs calcined at 400 °C for 2 h. To gain a deeper understanding of their electrocatalytic properties, the pristine NFs are investigated by a combination of analytical techniques. In particular, broadband electric spectroscopy reveals that the mobility of oxygen vacancies in the best electrocatalyst is associated to very fast local dielectric relaxations of metal coordination octahedral geometries and experimentally demonstrates the key role of O-deficient octahedra.
Collapse
Affiliation(s)
- Keti Vezzù
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| | - Claudia Triolo
- Dipartimento di Ingegneria Civiledell'Energiadell'Ambiente e dei Materiali (DICEAM)Università “Mediterranea”Via Zehender, Loc. Feo di VitoReggio Calabria89122Italy
- National Reference Center for Electrochemical Energy Storage (GISEL)Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)Firenze50121Italy
| | - Kaveh Moulaee
- Dipartimento di IngegneriaUniversità di MessinaContrada di Dio, Vill. Sant'AgataMessina98166Italy
| | - Gioele Pagot
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| | - Alessandro Ponti
- Laboratorio di NanotecnologieIstituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)Consiglio Nazionale delle RicercheVia Fantoli 16/15Milano20138Italy
| | - Nicola Pinna
- Department of Chemistry & The Center for the Science of Materials BerlinHumboldt‐Universität zu BerlinBrook‐Taylor‐Str. 212489BerlinGermany
| | - Giovanni Neri
- Dipartimento di IngegneriaUniversità di MessinaContrada di Dio, Vill. Sant'AgataMessina98166Italy
| | - Saveria Santangelo
- Dipartimento di Ingegneria Civiledell'Energiadell'Ambiente e dei Materiali (DICEAM)Università “Mediterranea”Via Zehender, Loc. Feo di VitoReggio Calabria89122Italy
- National Reference Center for Electrochemical Energy Storage (GISEL)Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)Firenze50121Italy
| | - Vito Di Noto
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| |
Collapse
|
10
|
Patzke GR, Keller F, Iannuzzi M, Reith L, Marshall KP, van Beek W, Triana CA. Structure-Selection Dynamics of Cobalt Nanoparticles from Solution Synthesis and Their Impact on the Oxygen Evolution Reaction. ACS NANO 2024; 18:35533-35549. [PMID: 39689260 DOI: 10.1021/acsnano.4c13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Resolving the three-dimensional structure of transition metal oxide nanoparticles (TMO-NPs), upon self-restructuring from solution, is crucial for tuning their structure-functionality. Yet, this remains challenging as this process entails complex structure fluctuations, which are difficult to track experimentally and, hence, hinder the knowledge-driven optimization of TMO-NPs. Herein, we combine high-energy synchrotron X-ray absorption and X-ray total scattering experiments with atomistic multiscale simulations to investigate the self-restructuring of self-assembled Co-NPs from solution under dark or photocatalytic water oxidation conditions at distinct reaction times and atomic length-scales. Using the atomic range order as a descriptor, we reveal that dissolution of a Co-salt in BO3 buffer leads to a self-optimization route forming disordered oxyborate Co3BOx-NPs unveiling a high oxygen yield due to the formation of surface oxo/hydroxo adsorbates. Those Co3BOx-NPs further self-restructure into distorted Co3O4-NPs and, lastly, into distorted CoOOH-NPs through a rate-limiting step integrating Co3+-states during the course of a representative photocatalytic assay. Self-restructuring does not proceed from amorphous-to-ordered states but through stochastic fluctuations of atomic nanoclusters of ≈10 Å domain size. Our key insight into the structure-selection dynamics of TMO-NPs from solution offers a route for tuning their structure-function relationships for wide-ranging emergent technologies.
Collapse
Affiliation(s)
- Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Florian Keller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lukas Reith
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Kenneth Paul Marshall
- The Swiss-Norwegian Beamlines (SNBL), European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France
| | - Wouter van Beek
- The Swiss-Norwegian Beamlines (SNBL), European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
11
|
Liu Y, Fu W, Yao S, Wang S, Ji Y, Li J, Shi L, Wang X, Zhang F, Yang J, Liu R, Xie J, Yang Z, Yan YM. Mn─O Covalency as a Lever for Na⁺ Intercalation Kinetics: The Role of Oxygen Edge-Sharing Co Octahedral Sites in MnO₂. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407690. [PMID: 39344210 DOI: 10.1002/smll.202407690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The strategic enhancement of manganese-oxygen (Mn─O) covalency is a promising approach to improve the intercalation kinetics of sodium ions (Na⁺) in manganese dioxide (MnO2). In this study, an augmenting Mn─O covalency in MnO2 by strategically incorporating cobalt at oxygen edge-sharing Co octahedral sites is focused on. Both experimental results and density functional theory (DFT) calculations reveal an increased electron polarization from oxygen to manganese, surpassing that directed toward cobalt, thereby facilitating enhanced electron transfer and strengthening covalency. The synthesized Co-MnO2 material exhibits outstanding electrochemical performance, demonstrating a superior specific capacitance of 388 F g-1 at 1 A g-1 and maintaining 97.21% capacity retention after 12000 cycles. Additionally, an asymmetric supercapacitor constructed using Co-MnO2 achieved a high energy density of 35 Wh kg-1 at a power density of 1000 W kg-1, underscoring the efficacy of this material in practical applications. This work highlights the critical role of transition metal-oxygen interactions in optimizing electrode materials and introduces a robust approach to enhance the functional properties of manganese oxides, thereby advancing high-performance energy storage technologies.
Collapse
Affiliation(s)
- Yuanming Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weijie Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuyun Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jingxian Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Feike Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jinghua Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ruilong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
12
|
Rajput A, Sivasakthi P, Samanta PK, Chakraborty B. Recognizing the reactive sites of SnFe 2O 4 for the oxygen evolution reaction: the synergistic effect of Sn II and Fe III in stabilizing reaction intermediates. NANOSCALE 2024; 16:21388-21397. [PMID: 39480537 DOI: 10.1039/d4nr03107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Among the reported spinel ferrites, the p-block metal containing SnFe2O4 is scarcely explored, but it is a promising water-splitting electrocatalyst. This study focuses on the reaction kinetics and atomic scale insight of the reaction mechanism of the oxygen evolution reaction (OER) catalyzed by SnFe2O4 and analogous Fe3O4. The replacement of FeIIOh sites with SnIIOh in SnFe2O4 improves the catalytic efficiency and various intrinsic parameters affecting the reaction kinetics. The variable temperature OER depicts a low activation energy (Ea) of 28.71 kJ mol-1 on SnFe2O4. Experimentally determined second-order dependence on [OH-] and the prominent kinetic isotope effect observed during the deuterium labelling study implies the role of hydroxide ions in the rate-determining step (RDS). Using density functional theory, the reaction mechanism on the (001) surface of SnFe2O4 and Fe3O4 is modelled. The DFT simulated free energy diagram for the reaction intermediates shows an adsorbate evolution mechanism (AEM) on both the ferrites' surfaces where the formation of *OOH is the RDS on SnFe2O4 while *O formation is the RDS on Fe3O4. In contrast to other spinel ferrites, where individual metal sites act independently, in case of SnFe2O4, a synergy between FeIIIOh and the neighbouring SnIIOh atoms is responsible for stabilizing the OER intermediates, enhancing the catalytic OER activity of SnFe2O4 as compared to isostructural Fe3O4.
Collapse
Affiliation(s)
- Anubha Rajput
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Pandiyan Sivasakthi
- Department of Chemistry, Birla Institute of Technology and Science Pilani (BITS Pilani), Hyderabad Campus, Hyderabad-500078, India.
| | - Pralok K Samanta
- Department of Chemistry, Birla Institute of Technology and Science Pilani (BITS Pilani), Hyderabad Campus, Hyderabad-500078, India.
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| |
Collapse
|
13
|
Wang L, Wang J, Xiao Z, Wu R, Fan C, Zhang D, Fan Y. Rational Construction of Co 4(μ-O) 6(COO) 6 SBU-Based MOFs through Mixed-Ligand Strategy to Enhance Electrocatalytic Oxygen Evolution Performance. Inorg Chem 2024; 63:18182-18192. [PMID: 39297886 DOI: 10.1021/acs.inorgchem.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Metal-organic frameworks (MOFs) are increasingly becoming an important choice for developing robust and efficient electrocatalysts; therefore, exploring the relationship between the structure, catalytic activity, and stability of MOFs is of great significance. MOFs 1-3 with different spatial configurations are designed and synthesized based on linear pyridine ligands, tetragonal carboxylic acid ligands, and triangular carboxylic acid ligands, while MOF 4 displays a three-dimensional (3D) supramolecule assembled through a mixed-ligand strategy. Compared with MOFs 1-3, MOF 4 has the lowest overpotential of 106 mV (at 10 mA·cm-2) and a Tafel slope of 80.9 mV·dec-1, as well as sturdy long-term stability in the process of oxygen evolution reaction (OER). The presence of dense metal clusters and μ3-O promotes the optimal catalytic performance of MOF 4. Density functional theory (DFT) calculations of MOF 4 demonstrate that the process from O* to OOH* is the rate-determining step. This investigation further reveals the relationship between MOF structural composition and electrocatalytic OER performance and provides an effective strategy for the assembly of MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Zhengting Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Ruixue Wu
- College of Food Engineering, Qingdao Institute of Technology, Qingdao, Shandong 266300, P. R. China
| | - Chuanbin Fan
- Key Laboratory of Research on Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China
| | - Dongmei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| |
Collapse
|
14
|
Xiao K, Xiao BH, Li JX, Cao S, Liu ZQ. Efficient asymmetric diffusion channel in MnCo 2O 4 spinel for ammonium-ion batteries. Proc Natl Acad Sci U S A 2024; 121:e2409201121. [PMID: 39240973 PMCID: PMC11406291 DOI: 10.1073/pnas.2409201121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 09/08/2024] Open
Abstract
Transition metal oxides ion diffusion channels have been developed for ammonium-ion batteries (AIBs). However, the influence of microstructural features of diffusion channels on the storage and diffusion behavior of NH4+ is not fully unveiled. In this study, by using MnCo2O4 spinel as a model electrode, the asymmetric ion diffusion channels of MnCo2O4 have been regulated through bond length optimization strategy and investigate the effect of channel size on the diffusion process of NH4+. In addition, the reducing channel size significantly decreases NH4+ adsorption energy, thereby accelerating hydrogen bond formation/fracture kinetics and NH4+ reversible diffusion within 3D asymmetric channels. The optimized MnCo2O4 with oxygen vacancies/carbon nanotubes composite exhibits impressive specific capacity (219.2 mAh g-1 at 0.1 A g-1) and long-cycle stability. The full cell with 3,4,9,10-perylenetetracarboxylic diimide anode demonstrates a remarkable energy density of 52.3 Wh kg-1 and maintains 91.9% capacity after 500 cycles. This finding provides a unique approach for the development of cathode materials in AIBs.
Collapse
Affiliation(s)
- Kang Xiao
- School of Chemistry and Chemical Engineering, Ministry of Education, Guangzhou University, Guangzhou510006
- Key Laboratory for Clean Energy and Materials, Ministry of Education, Guangzhou University, Guangzhou510006
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006
| | - Bo-Hao Xiao
- School of Chemistry and Chemical Engineering, Ministry of Education, Guangzhou University, Guangzhou510006
- Key Laboratory for Clean Energy and Materials, Ministry of Education, Guangzhou University, Guangzhou510006
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering, Ministry of Education, Guangzhou University, Guangzhou510006
- Key Laboratory for Clean Energy and Materials, Ministry of Education, Guangzhou University, Guangzhou510006
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006
| | - Shunsheng Cao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering, Ministry of Education, Guangzhou University, Guangzhou510006
- Key Laboratory for Clean Energy and Materials, Ministry of Education, Guangzhou University, Guangzhou510006
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006
| |
Collapse
|
15
|
Sun N, Zheng Z, Lai Z, Wang J, Du P, Ying T, Wang H, Xu J, Yu R, Hu Z, Pao CW, Huang WH, Bi K, Lei M, Huang K. Augmented Electrochemical Oxygen Evolution by d-p Orbital Electron Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404772. [PMID: 38822811 DOI: 10.1002/adma.202404772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 06/03/2024]
Abstract
While high-entropy alloys, high-entropy oxides, and high-entropy hydroxides, are advanced as a novel frontier in electrocatalytic oxygen evolution, their inherent activity deficiency poses a major challenge. To achieve the unlimited goal to tailor the structure-activity relationship in multicomponent systems, entropy-driven composition engineering presents substantial potential, by fabricating high-entropy anion-regulated transition metal compounds as sophisticated oxygen evolution reaction electrocatalysts. Herein, a versatile 2D high-entropy metal phosphorus trisulfide is developed as a promising and adjustable platform. Leveraging the multiple electron couplings and d-p orbital hybridizations induced by the cocktail effect, the exceptional oxygen evolution catalytic activity is disclosed upon van der Waals material (MnFeCoNiZn)PS3, exhibiting an impressively low overpotential of 240 mV at a current density of 10 mA cm-2, a minimal Tafel slope of 32 mV dec-1, and negligible degradation under varying current densities for over 96 h. Density functional theory calculations further offer insights into the correlation between orbital hybridization and catalytic performance within high-entropy systems, underscoring the contribution of active phosphorus centers on the substrate to performance enhancements. Moreover, by achieving electron redistribution to optimize the electron coordination environment, this work presents an effective strategy for advanced catalysts in energy-related applications.
Collapse
Affiliation(s)
- Ning Sun
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhichuan Zheng
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhuangzhuang Lai
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Junjie Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Du
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Tianping Ying
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haifeng Wang
- State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jianchun Xu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Runze Yu
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, P. R. China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, R.O.C
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, R.O.C
| | - Ke Bi
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Kai Huang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| |
Collapse
|
16
|
Hari Kumar SG, Bozal-Ginesta C, Wang N, Abed J, Shan CH, Yao Z, Aspuru-Guzik A. From computational screening to the synthesis of a promising OER catalyst. Chem Sci 2024; 15:10556-10570. [PMID: 38994429 PMCID: PMC11234821 DOI: 10.1039/d4sc00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The search for new materials can be laborious and expensive. Given the challenges that mankind faces today concerning the climate change crisis, the need to accelerate materials discovery for applications like water-splitting could be very relevant for a renewable economy. In this work, we introduce a computational framework to predict the activity of oxygen evolution reaction (OER) catalysts, in order to accelerate the discovery of materials that can facilitate water splitting. We use this framework to screen 6155 ternary-phase spinel oxides and have isolated 33 candidates which are predicted to have potentially high OER activity. We have also trained a machine learning model to predict the binding energies of the *O, *OH and *OOH intermediates calculated within this workflow to gain a deeper understanding of the relationship between electronic structure descriptors and OER activity. Out of the 33 candidates predicted to have high OER activity, we have synthesized three compounds and characterized them using linear sweep voltammetry to gauge their performance in OER. From these three catalyst materials, we have identified a new material, Co2.5Ga0.5O4, that is competitive with benchmark OER catalysts in the literature with a low overpotential of 220 mV at 10 mA cm-2 and a Tafel slope at 56.0 mV dec-1. Given the vast size of chemical space as well as the success of this technique to date, we believe that further application of this computational framework based on the high-throughput virtual screening of materials can lead to the discovery of additional novel, high-performing OER catalysts.
Collapse
Affiliation(s)
| | - Carlota Bozal-Ginesta
- Department of Chemistry, University of Toronto Toronto Canada
- Department of Computer Science, University of Toronto Toronto Canada
- Catalonia Institute for Energy Research Barcelona Spain
| | - Ning Wang
- Department of Materials Science and Engineering, University of Toronto Toronto Canada
| | - Jehad Abed
- Department of Materials Science and Engineering, University of Toronto Toronto Canada
- Department of Electrical and Computer Engineering, University of Toronto Toronto Canada
| | | | - Zhenpeng Yao
- Center of Hydrogen Science, Shanghai Jiao Tong University Shanghai China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai China
- Innovation Center for Future Materials, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai China
| | - Alan Aspuru-Guzik
- Department of Chemistry, University of Toronto Toronto Canada
- Department of Computer Science, University of Toronto Toronto Canada
- Department of Materials Science and Engineering, University of Toronto Toronto Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto Canada
- Vector Institute for Artificial Intelligence Toronto Canada
- Canadian Institute for Advanced Research (CIFAR) Toronto Canada
- Acceleration Consortium, University of Toronto Toronto Canada
| |
Collapse
|
17
|
Gaur A, Aashi, John JM, Pundir V, Kaur R, Sharma J, Gupta K, Bera C, Bagchi V. Electronic redistribution through the interface of MnCo 2O 4-Ni 3N nano-urchins prompts rapid In situ phase transformation for enhanced oxygen evolution reaction. NANOSCALE 2024; 16:10663-10674. [PMID: 38767603 DOI: 10.1039/d4nr00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
One of the most coveted objectives in the realm of energy conversion technologies is the development of highly efficient and economically viable electrocatalysts for the oxygen evolution reaction. The commercialization of such techniques has thus far been impeded by their slow response kinetics. One of the many ways to develop highly effective electrocatalysts is to judiciously choose a coupling interface that maximizes catalyst performance. In this study, the in situ electrochemical phase transformation of MnCo2O4-Ni3N into MnCo2O4-NiOOH is described. The catalyst has an exceptional overpotential of 224 mV to drive a current density of 10 mA cm-2. Strong interfacial contact is seen in the MnCo2O4-Ni3N catalyst, leading to a considerable electronic redistribution between the MnCo2O4 and Ni3N phases. This causes an increase in the valence state of Ni, which makes it an active site for the adsorption of *OH, O*, and *OOH (intermediates). This charge transfer facilitates the rapid phase transformation to form NiOOH from Ni3N. At a higher current density of 300 mA cm-2, the catalyst remained stable for a period of 140 h. DFT studies also revealed that the in situ-formed NiOOH on the MnCo2O4 surface results in superior OER kinetics compared to that of NiOOH alone.
Collapse
Affiliation(s)
- Ashish Gaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Aashi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Joel Mathew John
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Vikas Pundir
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Rajdeep Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Jatin Sharma
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Kaustubhi Gupta
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Chandan Bera
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Vivek Bagchi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
18
|
Yao Y, Zhao G, Guo X, Xiong P, Xu Z, Zhang L, Chen C, Xu C, Wu TS, Soo YL, Cui Z, Li MMJ, Zhu Y. Facet-Dependent Surface Restructuring on Nickel (Oxy)hydroxides: A Self-Activation Process for Enhanced Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:15219-15229. [PMID: 38775440 DOI: 10.1021/jacs.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to β-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals β-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate β-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared β-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.
Collapse
Affiliation(s)
- Yunduo Yao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Guangming Zhao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Pei Xiong
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Longhai Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Changsheng Chen
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Chao Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Molly Meng-Jung Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
19
|
Feng M, Xu Z, Li J, Wang N, Lin K, Zhang M. Insight into the role of reactive species on catalyst surface underlying peroxymonosulfate activation by P-Fe 2MnO 4 loaded on bentonite for trichloroethylene degradation. CHEMOSPHERE 2024; 357:141943. [PMID: 38621492 DOI: 10.1016/j.chemosphere.2024.141943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/17/2024]
Abstract
In this study, bentonite supporting phosphorus-doped Fe2MnO4 (BPF) was synthesized and applied for PMS activation to degrade TCE. Morphology and structure characterization results indicated the successfully synthesized of BPF, and the BPF/PMS system not only featured high TCE removal (97.4%) but also high reaction rate constant (kobs = 0.0554 min-1) and PMS utilization (70.4%, kobs = 0.0228 min-1). According to the results of various experiments, massive oxygen vacancies on P-Fe2MnO4 alter its charge balance and facilitate the electron transfer process named adjacent transfer (direct electron capture by adsorbed PMS from adjacent TCE). Mn(III) is the main adsorption site for PMS, and the hydroxyl groups on the catalyst (Fe sites of P-Fe2MnO4, Si and Al sites of bentonite) can also offer binding sites for PMS. The hydrogen-bonded PMS on Fe(III) and Mn(III) sites will subsequently accept the discharged electrons to generate free radicals and high-valent metal species. Meanwhile, electron loss of HSO5- that chemically bonded to hydroxyl groups on bentonite will generate SO5•-, which will further produce 1O2 through self-bonding. the active species on the catalyst surface contribute 65% of TCE degradation in the heterogeneous catalytic oxidation system.
Collapse
Affiliation(s)
- Meiyun Feng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 310000, China
| | - Ning Wang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, 610039, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
20
|
Bai Y, He J, Ran R, Zhou W, Wang W, Shao Z. Complex Metal Oxides as Emerging Inorganic Hole-Transporting Materials for Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310227. [PMID: 38196154 DOI: 10.1002/smll.202310227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Indexed: 01/11/2024]
Abstract
Perovskite solar cells (PSCs) have achieved revolutionary progress during the past decades with a rapidly boosting rate in power conversion efficiencies from 3.8% to 26.1%. However, high-efficiency PSCs with organic hole-transporting materials (HTMs) suffer from inferior long-term stability and high costs. The replacement of organic HTMs with inorganic counterparts such as metal oxides can solve the above-mentioned problems to realize highly robust and cost-effective PSCs. Nevertheless, the widely used simple metal oxide-based HTMs are limited by the low conductivity and poor light transmittance due to the fixed atomic environment. As an emerging family of inorganic HTMs, complex metal oxides with superior structural/compositional flexibility have attracted rapidly increasing interest recently, showing superior carrier conductivity/mobility and superb light transmittance. Herein, the recent advancements in the design and development of complex metal oxide-based HTMs for high-performance PSCs are summarized by emphasizing the superiority of complex metal oxides as HTMs over simple metal oxide-based counterparts. Consequently, several distinct strategies for the design of complex metal oxide-based HTMs are proposed. Last, the future directions and remaining challenges of inorganic complex metal oxide-based HTMs for PSCs are also presented. This review aims to provide valuable guidelines for the further advancements of robust, high-efficiency, and low-cost PSCs.
Collapse
Affiliation(s)
- Yu Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Jingsheng He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia, 6845, Australia
| |
Collapse
|
21
|
Liu H, Wang Y, Tan P, Dos Santos EC, Holmes SM, Li H, Pan J, D'Agostino C. A Doping-Induced SrCo 0.4Fe 0.6O 3/CoFe 2O 4 Nanocomposite for Efficient Oxygen Evolution in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308948. [PMID: 38109148 DOI: 10.1002/smll.202308948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Perovskite and spinel oxides are promising alternatives to noble metal-based electrocatalysts for oxygen evolution reaction (OER). Herein, a novel perovskite/spinel nanocomposite comprised of SrCo0.4Fe0.6O3 and CoFe2O4 (SCF/CF) is prepared through a simple one-step method that incorporates iron doping into a SrCoO3- δ matrix, circumventing complex fabrication processes typical of these materials. At a Fe dopant content of 60%, the CoFe2O4 spinel phase is directly precipitated from the parent SrCo0.4Fe0.6O3 perovskite phase and the number of active B-site metals (Co/Fe) in the parent SCF can be maximized. This nanocomposite exhibits a remarkable OER activity in alkaline media with a small overpotentional of 294 mV at 10 mA cm-2. According to surface states analysis, the parent SCF perovskite remains in its pristine form under alkaline OER conditions, serving as a stable substrate, while the second spinel CF is covered by 5/8 monolayer (ML) O*, exhibiting considerable affinity toward the oxygen species involved in the OER. Analysis based on advanced OER microkinetic volcano model indicates that a 5/8 ML O* covered-CF is the origin for the remarkable activity of this nanocomposite. The results reported here significantly advance knowledge in OER and can boost application, scale-up and commercialisation of electrocatalytic technologies toward clean energy devices.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yuan Wang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Egon C Dos Santos
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Stuart M Holmes
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum-Università di Bologna, Via Terracini, 28, Bologna, 40131, Italy
| |
Collapse
|
22
|
Zuo Y, Mastronardi V, Gamberini A, Zappia MI, Le THH, Prato M, Dante S, Bellani S, Manna L. Stainless Steel Activation for Efficient Alkaline Oxygen Evolution in Advanced Electrolyzers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312071. [PMID: 38377368 DOI: 10.1002/adma.202312071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Designing robust and cost-effective electrocatalysts for efficient alkaline oxygen evolution reaction (OER) is of great significance in the field of water electrolysis. In this study, an electrochemical strategy to activate stainless steel (SS) electrodes for efficient OER is introduced. By cycling the SS electrode within a potential window that encompasses the Fe(II)↔Fe(III) process, its OER activity can be enhanced to a great extent compared to using a potential window that excludes this redox reaction, decreasing the overpotential at current density of 100 mA cm-2 by 40 mV. Electrochemical characterization, Inductively Coupled Plasma - Optical Emission Spectroscopy, and operando Raman measurements demonstrate that the Fe leaching at the SS surface can be accelerated through a Fe → γ-Fe2O3 → Fe3O4 or FeO → Fe2+ (aq.) conversion process, leading to the sustained exposure of Cr and Ni species. While Cr leaching occurs during its oxidation process, Ni species display higher resistance to leaching and gradually accumulate on the SS surface in the form of OER-active Fe-incorporated NiOOH species. Furthermore, a potential-pulse strategy is also introduced to regenerate the OER-activity of 316-type SS for stable OER, both in the three-electrode configuration (without performance decay after 300 h at 350 mA cm-2) and in an alkaline water electrolyzer (≈30 mV cell voltage increase after accelerated stress test-AST). The AST-stabilized cell can still reach 1000 and 4000 mA cm-2 at cell voltages of 1.69 and 2.1 V, which makes it competitive with state-of-the-art electrolyzers based on ion-exchange membrane using Ir-based anodes.
Collapse
Affiliation(s)
- Yong Zuo
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | | | - Agnese Gamberini
- BeDimensional S.p.A., Via Lungotorrente Secca, 30R, Genova, 16163, Italy
| | - Marilena I Zappia
- BeDimensional S.p.A., Via Lungotorrente Secca, 30R, Genova, 16163, Italy
| | - Thi-Hong-Hanh Le
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Genova, 16146, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Silvia Dante
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca, 30R, Genova, 16163, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
23
|
Hu J, Guo T, Zhong X, Li J, Mei Y, Zhang C, Feng Y, Sun M, Meng L, Wang Z, Huang B, Zhang L, Wang Z. In Situ Reconstruction of High-Entropy Heterostructure Catalysts for Stable Oxygen Evolution Electrocatalysis under Industrial Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310918. [PMID: 38170168 DOI: 10.1002/adma.202310918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Despite of urgent needs for highly stable and efficient electrochemical water-splitting devices, it remains extremely challenging to acquire highly stable oxygen evolution reaction (OER) electrocatalysts under harsh industrial conditions. Here, a successful in situ synthesis of FeCoNiMnCr high-entropy alloy (HEA) and high-entropy oxide (HEO) heterocatalysts via a Cr-induced spontaneous reconstruction strategy is reported, and it is demonstrated that they deliver excellent ultrastable OER electrocatalytic performance with a low overpotential of 320 mV at 500 mA cm-2 and a negligible activity loss after maintaining at 100 mA cm-2 for 240 h. Remarkably, the heterocatalyst holds outstanding long-term stability under harsh industrial condition of 6 m KOH and 85 °C at a current density of as high as 500 mA cm-2 over 500 h. Density functional theory calculations reveal that the formation of the HEA-HEO heterostructure can provide electroactive sites possessing robust valence states to guarantee long-term stable OER process, leading to the enhancement of electroactivity. The findings of such highly stable OER heterocatalysts under industrial conditions offer a new perspective for designing and constructing efficient high-entropy electrocatalysts for practical industrial water splitting.
Collapse
Affiliation(s)
- Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Tianqi Guo
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Xinyu Zhong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yunjie Mei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yuebin Feng
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650093, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Lijian Meng
- CIETI, ISEP, Polytechnic of Porto, Rua Sr. António Bernardino de Almeida, Porto, 4249-015, Portugal
| | - Zhiyuan Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| |
Collapse
|
24
|
Tao Y, Jiang W, Wang H, Hao W, Bi Q, Liu X, Fan J, Li G. Tuning electronic structure of hedgehog-like nickel cobaltite via molybdenum-doping for enhanced electrocatalytic oxygen evolution catalysis. J Colloid Interface Sci 2024; 657:921-930. [PMID: 38091915 DOI: 10.1016/j.jcis.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024]
Abstract
As a typical spinel oxide, nickel cobaltite (NiCo2O4) is considered to be a promising and reliable oxygen evolution reaction (OER) catalyst due to its abundant oxidation states and the synergistic effect of multiple metal species. However, the electrocatalytic OER performance of NiCo2O4 has always been limited by the low specific surface area and poor intrinsic conductivity of spinels. Herein, the hedgehog-like molybdenum-doped NiCo2O4 (Mo-NiCo2O4) catalyst was prepared as an efficient OER electrocatalyst via a facile hydrothermal method followed with high-temperature annealing. The Mo-NiCo2O4-0.075 with Mo doping concentration of ∼ 1.95 wt% exhibits excellent OER performance with a low overpotential of 265 mV at a current density of 10 mA·cm-2and a Tafel slope of 126.63 mV·dec-1, as well as excellent cyclingstability.The results demonstrated that the hedgehog-like structure provides Mo-NiCo2O4 with the high surface area and mesopores that enhance electrolyte diffusion and optimal active site exposure. The in-situ Raman spectra and density functional theory calculations show that the Mo cations doping improve the intrinsic conductivity of the NiCo2O4 while modulating the chemisorption of intermediates. Meanwhile, the energy barriers of *OH and O* formation decrease significantly after Mo doping, effectively facilitating water dissociation and optimizing the reaction kinetics.
Collapse
Affiliation(s)
- Yinghao Tao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wendan Jiang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, Guangdong 510006 PR China
| | - Hui Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qingyuan Bi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
25
|
Wang W, Wang A, Xu J, Li H, Yu M, Dong A, Li Z, Zhao C, Cheng F, Wang W. Surface reconstruction of pyrite-type transition metal sulfides during oxygen evolution reaction. J Colloid Interface Sci 2024; 657:334-343. [PMID: 38043235 DOI: 10.1016/j.jcis.2023.11.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Reconstruction universally occurs over non-layered transition metal sulfides (TMSs) during oxygen evolution reaction (OER), leading to the formation of active species metal (oxy)hydroxide and thus significantly influences the OER performance. However, the reconstruction process and underlying mechanism quantitatively remain largely unexplored. Herein, we proposed an electrochemical reaction mechanism, namely sulfide oxidation reaction (SOR), to elucidate the reconstruction process of pyrite-type TMSs. Based on this mechanism, we evaluated the reconstruction capability of NiS2 doped with transition metals V, Cr, Mn, Fe, Co, Cu, Mo, Ru, Rh, and Ir within different doped systems. Two key descriptors were thus proposed to describe the reconstruction abilities of TMSs: USOR (the theoretical electric potential of SOR) and ΔU (the difference between the theoretical electric potential of SOR and OER), representing the initiation electric potential of reconstruction and the intrinsic reconstruction abilities of TMSs, respectively. Our finding shows that a lower USOR readily initiate reconstruction at a lower potential and a larger ΔU indicating a poorer reconstruction ability of the catalyst during OER. Furthermore, Fe-doped CoS2 was used to validate the rationality of our proposed descriptors, being consistent with the experiment findings. Our work provides a new perspective on understanding the reconstruction mechanism and quantifying the reconstruction of TMSs.
Collapse
Affiliation(s)
- Wanying Wang
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China; College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Ansheng Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Jinchao Xu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Huan Li
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Meng Yu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-Efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Anqi Dong
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, China
| | - Chunning Zhao
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China; College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-Efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weichao Wang
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China; College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Ou W, Zhang W, Qin H, Zhou W, Tang Y, Gao Q. Enhancing anti-chlorine corrosion of Ni 3S 2 by Mo-doping for mimic seawater electrolysis. J Colloid Interface Sci 2024; 655:852-862. [PMID: 37979291 DOI: 10.1016/j.jcis.2023.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Designing highly active electrocatalysts that can resist chloride ion (Cl-) corrosion during seawater electrolysis is still a challenge. Here, Mo-doping is introduced to synchronously improve the electrocatalytic activity and anti-chlorine corrosion of Ni3S2 toward the efficient overall seawater splitting. With commercial nickel-molybdenum foam (NMF) as the reactive substrates, Mo-doped Ni3S2 columnar arrays (Mo-Ni3S2/NMF) are fabricated via a one-step hydrothermal process, which expose abundant active sites with the ameliorated surface electronic configurations toward the enhanced binding with *OH (* denotes an active site) but the weakened one with *Cl. As expected, they afford the excellent bi-functionality for both oxygen and hydrogen evolution reactions (OER and HER), with the remarkably improved anti-corrosion to Cl- at anode as compared to pristine Ni3S2. In alkaline mimic seawater (1.0 M NaOH + 0.5 M NaCl), Mo-Ni3S2/NMF requires 330 mV (for OER) and 209 mV (for HER) overpotentials at the current density of ±100 mA cm-2, and a low cell voltage of 1.52 V at 10 mA cm-2 for overall seawater splitting. This work highlights a feasible strategy to explore highly active and stable electrocatalysts for sustainable H2 production.
Collapse
Affiliation(s)
- Wanjun Ou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632, PR China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632, PR China; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Haoran Qin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632, PR China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yi Tang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632, PR China.
| |
Collapse
|
27
|
Parayil RT, Gupta SK, Pal M, Dutta A, Tyagi D, Sudarshan K, Mohapatra M. ZnGa 2-xAl xO 4 ( x = 0 ≤ 2) spinel for persistent light emission and HER/OER bi-functional catalysis. RSC Adv 2023; 13:31101-31111. [PMID: 37881761 PMCID: PMC10594079 DOI: 10.1039/d3ra05017c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Spinel materials have demonstrated diverse applications in various fields, especially in the energy sector. Since the pure spinel structure has the limitations of poor inherent activity and low conductivity, defect engineering through octahedral B-site modulation is expected to enhance various properties. Here in this work, we have synthesized ZnGa2-xAlxO4 (x = 0 ≤ 2) spinel and moved from one terminal (ZnGa2O4) to the other (ZnAl2O4) by varying the Ga/Al ratio using solvent-free solid-state reaction. Dopant and rare earth element-free (RE) ZnGa2O4 spinel showed excellent blue luminescence with photoluminescent quantum yields (PLQY) of 13% while exhibiting persistent light emission close to 60 min. The Al3+ incorporation at Ga3+ site doesn't yield any improvement in persistent luminescence lifetime owing to quenching of shallow traps as suggested by thermoluminescence (TL) studies. Moreover our materials have demonstrated bifunctional electrocatalytic activity towards both oxygen evolution (OER) and hydrogen evolution reaction (HER) which has never been reported for ZnGa2-xAlxO4. X-ray photoelectron spectroscopy (XPS) and positron annihilation lifetime spectroscopy (PALS) suggested that mixed Al/Ga-containing spinels possessed enhanced oxygen vacancies/defects. This makes them better electrocatalyst towards OER and HER compare to ZnGa2O4 and ZnAl2O4. The ZnGa1.75Al0.25O4 composition by virtue of enhanced oxygen vacancies and less charge transfer resistance (47.3 ohms) demonstrated best electrocatalytic activity for OER compared to the other synthesized catalysts at the same applied potential (1.6 V). On the other hand, the ZnGa1Al1O4 composition demonstrated excellent faradaic efficiency of ∼ 90% towards HER. From this work we can achieve multifunctional applications towards optoelectronics and electrocatalysis just by modulating Al/Ga ratio in ZnGa2-xAlxO4.
Collapse
Affiliation(s)
- Reshmi Thekke Parayil
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Santosh K Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Manodip Pal
- Chemistry Department, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Deepak Tyagi
- Chemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Kathi Sudarshan
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Manoj Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| |
Collapse
|
28
|
Liu Z, Kong Z, Cui S, Liu L, Wang F, Wang Y, Wang S, Zang SQ. Electrocatalytic Mechanism of Defect in Spinels for Water and Organics Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302216. [PMID: 37259266 DOI: 10.1002/smll.202302216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Indexed: 06/02/2023]
Abstract
Spinels display promising electrocatalytic ability for oxygen evolution reaction (OER) and organics oxidation reaction because of flexible structure, tunable component, and multifold valence. Unfortunately, limited exposure of active sites, poor electronic conductivity, and low intrinsic ability make the electrocatalytic performance of spinels unsatisfactory. Defect engineering is an effective method to enhance the intrinsic ability of electrocatalysts. Herein, the recent advances in defect spinels for OER and organics electrooxidation are reviewed. The defect types that exist in spinels are first introduced. Then the catalytic mechanism and dynamic evolution of defect spinels during the electrochemical process are summarized in detail. Finally, the challenges of defect spinel electrocatalysts are brought up. This review aims to deepen the understanding about the role and evolution of defects in spinel for electrochemical water/organics oxidation and provide a significant reference for the design of efficient defect spinel electrocatalysts.
Collapse
Affiliation(s)
- Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shasha Cui
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fen Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
29
|
Zhu W, Yao F, Cheng K, Zhao M, Yang CJ, Dong CL, Hong Q, Jiang Q, Wang Z, Liang H. Direct Dioxygen Radical Coupling Driven by Octahedral Ruthenium-Oxygen-Cobalt Collaborative Coordination for Acidic Oxygen Evolution Reaction. J Am Chem Soc 2023; 145:17995-18006. [PMID: 37550082 DOI: 10.1021/jacs.3c05556] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolyzers given its harsh oxidative and corrosive environments. Herein, we suggest an effective strategy to greatly enhance both the acidic OER activity and stability of Co3O4 spinel by atomic Ru selective substitution on the octahedral Co sites. The resulting highly symmetrical octahedral Ru-O-Co collaborative coordination with strong electron coupling effect enables the direct dioxygen radical coupling OER pathway. Indeed, both experiments and theoretical calculations reveal a thermodynamically breakthrough heterogeneous diatomic oxygen mechanism. Additionally, the active Ru-O-Co units are well-maintained upon the acidic OER thanks to the electron transfer from surrounding electron-enriched tetrahedral Co atoms via bridging oxygen bonds that suppresses the overoxidation and thus dissolution of active Ru and Co species. Consequently, the prepared catalyst, even with a low Ru mass loading of ca. 42.8 μg cm-2, exhibits an attractive acidic OER performance with a low overpotential of 200 mV and a low potential decay rate of 0.45 mV h-1 at 10 mA cm-2. Our work suggests an effective strategy to significantly enhance both the acidic OER activity and stability of low-cost electrocatalysts.
Collapse
Affiliation(s)
- Weijie Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fen Yao
- Key Laboratory of Preparation and Applications of Environmentally Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Kangjuan Cheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mengting Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng-Jie Yang
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Qiming Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhoucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hanfeng Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
30
|
Kießling J, Rosenfeldt S, Schenk AS. Size-controlled liquid phase synthesis of colloidally stable Co 3O 4 nanoparticles. NANOSCALE ADVANCES 2023; 5:3942-3954. [PMID: 37496621 PMCID: PMC10367999 DOI: 10.1039/d3na00032j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Spinel cobalt(ii,iii) oxide (Co3O4) represents a p-type semiconductor exhibiting promising functional properties in view of applications in a broad range of technological fields including magnetic materials and gas sensors as well as sustainable energy conversion systems based on photo- and electrocatalytic water splitting. Due to their high specific surface area, nanoparticle-based structures appear particularly promising for such applications. However, precise control over the diameter and the particle size distribution is required to achieve reproducible size-dependent properties. We herein introduce a synthetic strategy based on the decomposition of hydroxide precursors for the size-controlled preparation of purified Co3O4 nanoparticles with narrow size distributions adjustable in the range between 3-13 nm. The particles exhibit excellent colloidal stability. Their dispersibility in diverse organic solvents further facilitates processing (i.e. ligand exchange) and opens exciting perspectives for controlled self-assembly of the largely isometric primary particles into mesoscale structures. In view of potential applications, functional properties including absorption characteristics and electrocatalytic activity were probed by UV-Vis spectroscopy and cyclic voltammetry, respectively. In these experiments, low amounts of dispersed Co3O4 particles demonstrate strong light absorbance across the entire visible range and immobilized nanoparticles exhibit a comparably low overpotential towards the oxygen evolution reaction in electrocatalytic water splitting.
Collapse
Affiliation(s)
- Johannes Kießling
- Physical Chemistry IV, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Sabine Rosenfeldt
- Physical Chemistry I, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Anna S Schenk
- Physical Chemistry IV, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| |
Collapse
|
31
|
Yao L, Wu X, Zheng B, Liu J, Geng Z, Zhang Y, Cai M, Shao Z, Jiang M, Zhang Y, Chen Y, Huang K, Feng S. Activating Octahedral Center in Co-Doped NiFe 2 O 4 via Bridging Amorphous MoS x for Electrocatalytic Water Oxidation: A Case for e g Orbital Regulation in Spinel Oxide. SMALL METHODS 2023; 7:e2201550. [PMID: 36929326 DOI: 10.1002/smtd.202201550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Indexed: 06/09/2023]
Abstract
Moderate eg filling for octahedral metal cations (MOh ) is strongly correlated with the electrocatalytic water oxidation performance in the oxides system. Here, the eg fillings of NiOh and FeOh in NiFe2 O4 -based spinel are controllably regulated by introducing an external radical of catalytically inactive MoSx as an electron acceptor via a novel ultrasonic anchored pyrolysis strategy. The electron occupied in eg orbit of MOh emigrates with the amount of MoS hanging on the apical of octahedral sites, and results in a salutary transition from high to medium eg occupancy state, as confirmed by the X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. In addition, benefiting from the abundant unsaturated S atoms in amorphous MoSx , the MOh at the surface furthest activates and consequently shows a superior water oxidation performance. Density functional theory also reveals that the eg fillings of Ni and Fe decrease to 1.4 and 1.2 after MoSx modification, which can effectively reduce the free energy of the OOH* intermediates in the oxygen evolution reaction process. This work opens an avenue for further releasing the electrocatalytic activity of octahedral sites through bridging external phases with rational electron-capturing/donating capability.
Collapse
Affiliation(s)
- Lu Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Beining Zheng
- College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, P. R. China
| | - Zhibin Geng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Minmin Cai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mengpei Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
32
|
Wang H, Bao W, Sarwar MT, Tian L, Tang A, Yang H. Mineral-Enhanced Manganese Ferrite with Multiple Enzyme-Mimicking Activities for Visual Detection of Disease Markers. Inorg Chem 2023; 62:8418-8427. [PMID: 37196355 DOI: 10.1021/acs.inorgchem.3c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Local geometric configurations of metal cations in inorganic enzyme mimics determine their catalytic behaviors, while their optimization remains challenging. Herein, kaolinite, a naturally layered clay mineral, achieves the optimization of cationic geometric configuration in manganese ferrite. We demonstrate that the exfoliated kaolinite induces the formation of defective manganese ferrite and makes more iron cations fill into the octahedral sites, significantly enhancing the multiple enzyme-mimicking activities. The steady-state kinetic assay results show that the catalytic constant of composites toward 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 are more than 7.4- and 5.7-fold higher than manganese ferrite, respectively. Furthermore, density functional theory (DFT) calculations reveal that the outstanding enzyme-mimicking activity of composites is attributed to the optimized iron cation geometry configuration, which has a higher affinity and activation ability toward H2O2 and lowers the energy barrier of key intermediate formation. As a proof of concept, the novel structure with multiple enzyme-mimicking activities amplifies the colorimetric signal, realizing the ultrasensitive visual detection of disease marker acid phosphatase (ACP), with a detection limit of 0.25 mU/mL. Our findings provide a novel strategy for the rational design of enzyme mimics and an in-depth investigation of their enzyme-mimicking properties.
Collapse
Affiliation(s)
- Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxin Bao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Luyuan Tian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
33
|
Zhang T, Liu Y, Tong L, Yu J, Lin S, Li Y, Fan HJ. Oxidation State Engineering in Octahedral Ni by Anchored Sulfate to Boost Intrinsic Oxygen Evolution Activity. ACS NANO 2023; 17:6770-6780. [PMID: 36939286 DOI: 10.1021/acsnano.2c12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Promoting the electron occupancy of active sites to unity is an effective method to enhance the oxygen evolution reaction (OER) performance of spinel oxides, but it remains a great challenge. Here, an in situ approach is developed to modify the valence state of octahedral Ni cations in NiFe2O4 inverse spinel via surface sulfates (SO42-). Different from previous studies, SO42- is directly anchored on the spinel surface instead of forming from uncontrolled conversion or surface reconstruction. Experiment and theoretical calculations reveal the precise adsorption sites and spatial arrangement for SO42- species. As a main promoting factor, surface SO42- effectively converts the crystal field stable Ni state (t2g6eg2) to the near-unity eg electron state (t2g6eg1). Moreover, the inevitable oxygen vacancies (Vo) further optimize the energy barrier of the potential-determining step (from OH* to O*). This co-modification strategy enhances turnover frequency-based electrocatalytic activity about two orders higher than the control sample without surface sulfates. This work may provide insight into the OER activity enhancement mechanism by the oxyanion groups.
Collapse
Affiliation(s)
- Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Li Tong
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
34
|
Li X, Ge L, Du Y, Huang H, Ha Y, Fu Z, Lu Y, Yang W, Wang X, Cheng Z. Highly Oxidized Oxide Surface toward Optimum Oxygen Evolution Reaction by Termination Engineering. ACS NANO 2023; 17:6811-6821. [PMID: 36943144 DOI: 10.1021/acsnano.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The oxygen evolution reaction (OER) is a critical step for sustainable fuel production through electrochemistry process. Maximizing active sites of nanocatalyst with enhanced intrinsic activity, especially the activation of lattice oxygen, is gradually recognized as the primary incentive. Since the surface reconfiguration to oxyhydroxide is unavoidable for oxygen-activated transition metal oxides, developing a surface termination like oxyhydroxide in oxides is highly desirable. In this work, we demonstrate an unusual surface termination of (111)-facet Co3O4 nanosheet that is exclusively containing edge-sharing octahedral Co3+ similar to CoOOH that can perform at approximately 40 times higher current density at 1.63 V (vs RHE) than commercial RuO2. It is found that this surface termination has an oxidized oxygen state in contrast to standard Co-O systems, which can serve as active site independently, breaking the scaling relationship limit. This work forwards the applications of oxide electrocatalysts in the energy conversion field by surface termination engineering.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Liangbing Ge
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yumeng Du
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Haoliang Huang
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhengping Fu
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yalin Lu
- Department of Materials Science and Engineering & Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaolin Wang
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| |
Collapse
|
35
|
Kim K, Kim J, Moon JH. The Polysulfide-Cathode Binding Energy Landscape for Lithium Sulfide Growth in Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206057. [PMID: 36856270 PMCID: PMC10131804 DOI: 10.1002/advs.202206057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Indexed: 06/18/2023]
Abstract
A cathode substrate with strong adsorption of lithium polysulfides (LiPSs) has been preferred for lithium-sulfur (Li-S) batteries. However, the recent finding that controlled growth of lithium sulfides (Li2 S) during discharge is crucial for S utilization stimulates improvement of this preference. Here, the Li2 S growth and cell capacity in the LiPS binding energy landscape of cathode substrates are investigated. Specifically, Co-based ternary oxides are employed to obtain binding energies in the range of 4.0-7.4 eV. Of these substrates, only the MnCo2 O4 substrate with moderate LiPS affinity exhibits 3D Li2 S growth. The MnCo2 O4 cells achieve high sulfur utilization up to 84% at 0.2 C and excellent performance even under high sulfur loading/lean electrolyte conditions. In contrast, weak affinity substrates such as ZnCo2 O4 and strong affinity substrates such as NiCo2 O4 and CuCo2 O4 exhibit low discharge capacity with 2D Li2 S growth. For optimal LiPS affinity driving 3D growth, a balance between promoting LiPS adsorption and diffusion limitation in the LiPS adsorption layer is suggested.
Collapse
Affiliation(s)
- Kiwon Kim
- Department of Chemical and Biomolecular EngineeringInstitute of Emergent MaterialsSogang UniversityBaekbeom‐ro 35, Mapo‐guSeoul04107Republic of Korea
| | - Jaehyun Kim
- Department of Chemical and Biomolecular EngineeringInstitute of Emergent MaterialsSogang UniversityBaekbeom‐ro 35, Mapo‐guSeoul04107Republic of Korea
| | - Jun Hyuk Moon
- Department of Chemical and Biomolecular EngineeringInstitute of Emergent MaterialsSogang UniversityBaekbeom‐ro 35, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
36
|
Einert M, Waheed A, Lauterbach S, Mellin M, Rohnke M, Wagner LQ, Gallenberger J, Tian C, Smarsly BM, Jaegermann W, Hess F, Schlaad H, Hofmann JP. Sol-Gel-Derived Ordered Mesoporous High Entropy Spinel Ferrites and Assessment of Their Photoelectrochemical and Electrocatalytic Water Splitting Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205412. [PMID: 36653934 DOI: 10.1002/smll.202205412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The novel material class of high entropy oxides with their unique and unexpected physicochemical properties is a candidate for energy applications. Herein, it is reported for the first time about the physico- and (photo-) electrochemical properties of ordered mesoporous (CoNiCuZnMg)Fe2 O4 thin films synthesized by a soft-templating and dip-coating approach. The A-site high entropy ferrites (HEF) are composed of periodically ordered mesopores building a highly accessible inorganic nanoarchitecture with large specific surface areas. The mesoporous spinel HEF thin films are found to be phase-pure and crack-free on the meso- and macroscale. The formation of the spinel structure hosting six distinct cations is verified by X-ray-based characterization techniques. Photoelectron spectroscopy gives insight into the chemical state of the implemented transition metals supporting the structural characterization data. Applied as photoanode for photoelectrochemical water splitting, the HEFs are photostable over several hours but show only low photoconductivity owing to fast surface recombination, as evidenced by intensity-modulated photocurrent spectroscopy. When applied as oxygen evolution reaction electrocatalyst, the HEF thin films possess overpotentials of 420 mV at 10 mA cm-2 in 1 m KOH. The results imply that the increase of the compositional disorder enhances the electronic transport properties, which are beneficial for both energy applications.
Collapse
Affiliation(s)
- Marcus Einert
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Arslan Waheed
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Stefan Lauterbach
- Institute for Applied Geosciences, Geomaterial Science, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287, Darmstadt, Germany
| | - Maximilian Mellin
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Marcus Rohnke
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Lysander Q Wagner
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Institute for Physical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Julia Gallenberger
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Chuanmu Tian
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Bernd M Smarsly
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Institute for Physical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Wolfram Jaegermann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Franziska Hess
- Institute of Chemistry, Technical University Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Helmut Schlaad
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| |
Collapse
|
37
|
Sun YY, Zhang XY, Tang J, Li X, Fu HQ, Xu HG, Mao F, Liu P, Yang HG. Amorphous Oxysulfide Reconstructed from Spinel NiCo 2 S 4 for Efficient Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207965. [PMID: 36965022 DOI: 10.1002/smll.202207965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The progress of effective and durable electrocatalysts for oxygen evolution reaction (OER) is urgent, which is essential to promote the overall efficiency of green hydrogen production. To improve the performance of spinel cobalt-based oxides, which serve as promising water oxidation electrocatalysts in alkaline electrolytes, most researches have been concentrated on cations modification. Here, an anionic regulation mechanism is employed to adopt sulfur(S) anion substitution to supplant NiCo2 O4 by NiCo2 S4 , which contributed to an impressive OER performance in alkali. It is revealed that the substitution of S constructs a sub-stable spinel structure that facilitates its reconstruction into active amorphous oxysulfide under OER conditions. More importantly, as the active phase in the actual reaction process, the hetero-anionic amorphous oxysulfide has an appropriately tuned electronic structure and efficient OER electrocatalytic activity. This work demonstrates a promising approach for achieving anion conditioning-based tunable structure reconstruction for robust and easy preparation spinel oxide OER electrocatalysts.
Collapse
Affiliation(s)
- Ying Ying Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Yu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianfang Tang
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Huai Qin Fu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Hao Guan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - PengFei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
38
|
Jia H, Yao N, Zhu J, Luo W. Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. Chemistry 2023; 29:e202203073. [PMID: 36367365 DOI: 10.1002/chem.202203073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
The development of electrocatalysts with high-efficiency and clear structure-activity relationship towards the sluggish oxygen evolution reaction (OER) is essential for the wide application of water electrolyzers. Recently, the dynamic reconstruction phenomenon of the catalysts' surface structures during the OER process has been discovered. With the help of various advanced ex situ and in situ characterization, it is demonstrated that such surface reconstruction could yield actual active species to catalyze the water oxidation process. However, the attention and studies of potential interaction between reconstructed species and substrate are lacking. This review summarizes the recent development of typical reconstructed electrocatalysts and the substrate effect. First, the advanced characterization for electrocatalytic reconstruction is briefly discussed. Then, typical reconstructed electrocatalysts are comprehensively summarized and the key role of substrate effects during the OER process is emphasized. Finally, the future challenges and perspectives of surface reconstructed catalysts for water electrolysis are discussed.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
39
|
Fu Y, Zhang D, Li P, Han Y, You J, Wei Q, Yang W. Tailoring Ni-Fe-Se film on Ni foam via electrodeposition optimization for efficient oxygen evolution reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
40
|
An L, Zhang H, Zhu J, Xi S, Huang B, Sun M, Peng Y, Xi P, Yan CH. Balancing Activity and Stability in Spinel Cobalt Oxides through Geometrical Sites Occupation towards Efficient Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2023; 62:e202214600. [PMID: 36367220 DOI: 10.1002/anie.202214600] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Designing active and stable oxygen evolution reaction (OER) catalysts are vitally important to various energy conversion devices. Herein, we introduce elements Ni and Mn into (Co)tet (Co2 )oct O4 nanosheets (NSs) at fixed geometrical sites, including Mnoct , Nioct , and Nitet , to optimize the initial geometrical structure and modulate the CoCo2 O4 surface from oxygen-excess to oxygen-deficiency. The pristine (Ni,Mn)-(Co)tet (Co2 )oct O4 NSs shows excellent OER activity with an overpotential of 281.6 mV at a current density of 10 mA cm-2 . Moreover, without damaging their initial activity, the activated (Act)-(Ni,Mn)-(Co)tet (Co2 )oct O4 NSs after surface reconstruction exhibit long-term stability of 100 h under 10 mA cm-2 , 50 mA cm-2 , or even 100 mA cm-2 . The optimal balance between electroactivity and stability leads to remarkable OER performances, providing a pivotal guideline for designing ideal electrocatalysts and inspiring more works to focus on the dynamic change of each occupation site component.
Collapse
Affiliation(s)
- Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Zhang
- Electron Microscopy Centre of Lanzhou University, School of Materials and Energy, Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jiamin Zhu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kow-loon, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kow-loon, Hong Kong SAR, China
| | - Yong Peng
- Electron Microscopy Centre of Lanzhou University, School of Materials and Energy, Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
41
|
Ahmed MG, Tay YF, Chi X, Zhang M, Tan JMR, Chiam SY, Rusydi A, Wong LH. Efficient Ternary Mn-Based Spinel Oxide with Multiple Active Sites for Oxygen Evolution Reaction Discovered via High-Throughput Screening Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204520. [PMID: 36354178 DOI: 10.1002/smll.202204520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The discovery of more efficient and stable catalysts for oxygen evolution reaction (OER) is vital in improving the efficiency of renewable energy generation devices. Given the large numbers of possible binary and ternary metal oxide OER catalysts, high-throughput methods are necessary to accelerate the rate of discovery. Herein, Mn-based spinel oxide, Fe10 Co40 Mn50 O, is identified for the first time using high-throughput methods demonstrating remarkable catalytic activity (overpotential of 310 mV on fluorine-doped tin oxide (FTO) substrate and 237 mV on Ni foam at 10 mA cm-2 ). Using a combination of soft X-ray absorption spectroscopy and electrochemical measurements, the high catalytic activity is attributed to 1) the formation of multiple active sites in different geometric sites, tetrahedral and octahedral sites; and 2) the formation of active oxyhydroxide phase due to the strong interaction of Co2+ and Fe3+ . Structural and surface characterizations after OER show preservation of Fe10 Co40 Mn50 O surface structure highlighting its durability against irreversible redox damage on the catalytic surface. This work demonstrates the use of a high-throughput approach for the rapid identification of a new catalyst, provides a deeper understanding of catalyst design, and addresses the urgent need for a better and stable catalyst to target greener fuel.
Collapse
Affiliation(s)
- Mahmoud Gamal Ahmed
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Ying Fan Tay
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Xiao Chi
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore, 117603, Singapore
| | - Mengyuan Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Joel Ming Rui Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Energy Research Institute @NTU IERI@N, Nanyang Technological University, Singapore, 637553, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Sing Yang Chiam
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Andrivo Rusydi
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore, 117603, Singapore
| | - Lydia Helena Wong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Energy Research Institute @NTU IERI@N, Nanyang Technological University, Singapore, 637553, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
42
|
Xu H, Yuan J, He G, Chen H. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Strotkötter V, Krysiak OA, Zhang J, Wang X, Suhr E, Schuhmann W, Ludwig A. Discovery of High-Entropy Oxide Electrocatalysts: From Thin-Film Material Libraries to Particles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10291-10303. [PMID: 36530940 PMCID: PMC9753560 DOI: 10.1021/acs.chemmater.2c01455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Discovery of new high-entropy electrocatalysts requires testing of hundreds to thousands of possible compositions, which can be addressed most efficiently by high-throughput experimentation on thin-film material libraries. Since the conditions for high-throughput measurements ("screening") differ from more standardized methods, it is frequently a concern whether the findings from screening can be transferred to the commonly used particulate catalysts. We demonstrate the successful transfer of results from thin-film material libraries to particles of Cantor alloy oxide (Co-Cr-Fe-Mn-Ni)3O4. The chemical compositions of the libraries, all single-phase spinels, cover a wide compositional range of (Cr8.1-28.0Mn11.6-28.4Fe10.6-39.0Co11.4-36.7Ni13.5-31.4)37.7±0.6O62.3±0.6, with composition-dependent lattice constant values ranging from 0.826 to 0.851 nm. Electrochemical screening of the libraries for the oxygen evolution reaction (OER) identifies (Cr24.6±1.4Mn15.7±2.0Fe16.9±1.8Co26.1±1.9Ni16.6±1.7)37.8±0.8O62.2±1.2 as the most active composition, exhibiting an overpotential of 0.36 V at a current density of 1 mA cm-2. This "hit" in the library was subsequently synthesized in the form of particles with the same composition and crystal structure using an aerosol-based synthesis strategy. The similar OER activity of the most active thin-film composition and the derived catalyst particles validates the proposed approach of accelerated discovery of novel catalysts by screening of thin-film libraries.
Collapse
Affiliation(s)
- Valerie Strotkötter
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Olga A. Krysiak
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Jian Zhang
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Xiao Wang
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Ellen Suhr
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Alfred Ludwig
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
- Centre
for Interface-Dominated High Performance Materials (ZGH), Ruhr University, BochumD-44801, Germany
| |
Collapse
|
44
|
Tumbalev V, Kovacheva D, Spassova I, Velinova R, Tyuliev G, Velinov N, Naydenov A. Novel Nanosized Spinel MnCoFeO 4 for Low-Temperature Hydrocarbon Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3900. [PMID: 36364676 PMCID: PMC9653678 DOI: 10.3390/nano12213900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The present paper reports on MnCoFeO4 spinels with peculiar composition and their catalytic behavior in the reactions of complete oxidation of hydrocarbons. The samples were synthesized by solution combustion method with sucrose and citric acid as fuels. All samples were characterized by powder X-ray diffraction, N2-physisorption, scanning electron microscopy, thermal analysis, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy. The catalytic properties of the spinels with Mn:Co:Fe = 1:1:1 composition were studied in reactions of complete oxidation of methane, propane, butane, and propane in the presence of water as model pollutants. Both prepared catalysts are nanosized materials. The slight difference in the compositions, structure, and morphology is due to the type of fuel used in the synthesis reaction. The spinel, prepared with sucrose, shows a higher specific surface area, pore volume, higher amount of small particles fraction, higher thermal stability, and as a result, more exposed active sites on the sample surface that lead to higher catalytic activity in the studied oxidation reactions. After the catalytic tests, both samples do not undergo any substantial phase and morphological changes; thus, they could be applied in low-temperature hydrocarbon oxidation reactions.
Collapse
Affiliation(s)
- Vencislav Tumbalev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitsa Velinova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Tyuliev
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikolay Velinov
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Anton Naydenov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
45
|
Lee G, Jeong M, Kim HR, Kwon M, Baek S, Oh S, Lee M, Lee D, Joo JH. Controlled Electrophoretic Deposition Strategy of Binder-Free CoFe 2O 4 Nanoparticles as an Enhanced Electrocatalyst for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48598-48608. [PMID: 36256595 DOI: 10.1021/acsami.2c11456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetic-sluggish oxygen evolution reaction (OER) is the main obstacle in electrocatalytic water splitting for sustainable production of hydrogen energy. Efficient water electrolysis can be ensured by lowering the overpotential of the OER by developing highly active catalysts. In this study, a controlled electrophoretic deposition strategy was used to develop a binder-free spinel oxide nanoparticle-coated Ni foam as an efficient electrocatalyst for water oxidation. Oxygen evolution was successfully promoted using the CoFe2O4 catalyst, and it was optimized by modulating the electrophoretic parameters. When optimized, CoFe2O4 nanoparticles presented more active catalytic sites, superior charge transfer, increased ion diffusion, and favorable reaction kinetics, which led to a small overpotential of 287 mV for a current density of 10 mA cm-2, with a small Tafel slope of 43 mV dec-1. Moreover, the CoFe2O4 nanoparticle electrode exhibited considerable long-term stability over 100 h without detectable activity loss. The results demonstrate promising potential for large-scale water splitting using Earth-abundant oxide materials via a simple and cheap fabrication process.
Collapse
Affiliation(s)
- Gahyeon Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk28644, Republic of Korea
| | - Minsik Jeong
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk28644, Republic of Korea
| | - Hye Ri Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Minsol Kwon
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk28644, Republic of Korea
| | - Seulgi Baek
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Sekwon Oh
- Surface R&D Group, Korea Institute of Industrial Technology, Incheon21999, Republic of Korea
| | - Minhyung Lee
- Surface R&D Group, Korea Institute of Industrial Technology, Incheon21999, Republic of Korea
| | - Dongju Lee
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk28644, Republic of Korea
| | - Jong Hoon Joo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| |
Collapse
|
46
|
Zhou M, Wang H, Zhang L, Li C, Kumbhar A, Abruña HD, Fang J. Facet Impact of CuMn 2O 4 Spinel Nanocatalysts on Enhancement of the Oxygen Reduction Reaction in Alkaline Media. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14853, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| | - Amar Kumbhar
- Chapel Hill Analytical and Nanofabrication Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York13902, United States
| |
Collapse
|
47
|
Lyu X, Zhang Y, Du Z, Chen H, Li S, Rykov AI, Cheng C, Zhang W, Chang L, Kai W, Wang J, Zhang L, Wang Q, Huang C, Kan E. Magnetic Field Manipulation of Tetrahedral Units in Spinel Oxides for Boosting Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204143. [PMID: 36108133 DOI: 10.1002/smll.202204143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Magnetic field enhanced electrocatalysis has recently emerged as a promising strategy for the development of a viable and sustainable hydrogen economy via water oxidation. Generally, the effects of magnetic field enhanced electrocatalysis are complex including magnetothermal, magnetohydrodynamic and spin selectivity effects. However, the exploration of magnetic field effect on the structure regulation of electrocatalyst is still unclear whereas is also essential for underpinning the mechanism of magnetic enhancement on the electrocatalytic oxygen evolution reaction (OER) process. Here, it is identified that in a mixed NiFe2 O4 (NFO), a large magnetic field can force the Ni2+ cations to migrate from the octahedral (Oh ) sites to tetrahedral (Td ) sites. As a result, the magnetized NFO electrocatalyst (NFO-M) shows a two-fold higher current density than that of the pristine NFO in alkaline electrolytes. The OER enhancement of NFO is also observed at 1 T (NFO@1T) under an operando magnetic field. Our first-principles calculations further confirm the mechanism of magnetic field driven structure regulation and resultant OER enhancement. These findings provide a strategy of manipulating tetrahedral units of spinel oxides by a magnetic field on boosting OER performance.
Collapse
Affiliation(s)
- Xiao Lyu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Yanan Zhang
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Zhengwei Du
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hao Chen
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Sicheng Li
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Alexandre I Rykov
- Center for Advanced Mössbauer Spectroscopy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chen Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Weina Zhang
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, China
| | - Ling Chang
- Key Laboratory of Electromagnetic Processing of Materials, Northeastern University, Shenyang, 110819, China
| | - Wang Kai
- Key Laboratory of Electromagnetic Processing of Materials, Northeastern University, Shenyang, 110819, China
| | - Junhu Wang
- Center for Advanced Mössbauer Spectroscopy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials, Northeastern University, Shenyang, 110819, China
| | - Chengxi Huang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
48
|
Wang Y, Zhu YQ, Xie Z, Xu SM, Xu M, Li Z, Ma L, Ge R, Zhou H, Li Z, Kong X, Zheng L, Zhou J, Duan H. Efficient Electrocatalytic Oxidation of Glycerol via Promoted OH* Generation over Single-Atom-Bismuth-Doped Spinel Co 3O 4. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ye Wang
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yu-Quan Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zhiheng Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ruixiang Ge
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing100084, China
| |
Collapse
|
49
|
Guo W, Luo H, Jiang Z, Fang D, Chi J, Shangguan W, Wang Z, Wang L, Lee AF. Ge-Doped Cobalt Oxide for Electrocatalytic and Photocatalytic Water Splitting. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiqi Guo
- Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haolin Luo
- Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi Jiang
- Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongxu Fang
- Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiasheng Chi
- Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Shangguan
- Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiliang Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Adam F. Lee
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
50
|
Chen Y, Li Y, Cui Y, Qian G. Abundant Dislocation Layered Double Hydroxides Synthesis by Molten Salt with Bound Water Boosting Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203105. [PMID: 35931456 DOI: 10.1002/smll.202203105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Optimizing the adsorption free energy and promoting the active phase transition to further enhance the oxygen evolution reaction (OER) activity remain significant challenges. The adsorption free energy can be optimized by modulating the electronic structure and adjusting the crystal configuration. Meanwhile, the transformation of the active phase can be promoted by introducing strain energy. The theoretical calculations are conducted to verify the rational envisage. However, it is still a great obstacle to introducing strain into the electrocatalysts and avoiding destruction. The stress field caused by dislocation can realize both of the above. Hence, the molten salt with the bound water method is proposed and the abundant dislocation layered double hydroxides (D-NiFe LDH) are constructed. The in situ characterizations further verify the dislocations significantly affect the generation of the active phase and the state of electronic structure. Consequently, the D-NiFe LDH exhibits outstanding OER activity and obtains 10 mA cm-2 , only requiring 199 mV overpotential with fabulous stability (100 mA cm-2 more than 24 h). The work paves a new avenue for the rational introduction dislocations to optimize the crystal configuration and boost the active phase formation, significantly enhancing the OER performance.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuwen Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|