1
|
Wu X, Borca B, Sen S, Koslowski S, Abb S, Rosenblatt DP, Gallardo A, Mendieta-Moreno JI, Nachtigall M, Jelinek P, Rauschenbach S, Kern K, Schlickum U. Molecular sensitised probe for amino acid recognition within peptide sequences. Nat Commun 2023; 14:8335. [PMID: 38097575 PMCID: PMC10721870 DOI: 10.1038/s41467-023-43844-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformational freedom, however, the chemical identification of building blocks of these biopolymers often relies on the presence of markers, extensive simulations, or is not possible at all. Here, we present a molecular probe-sensitisation approach addressing the identification of a specific amino acid within different peptides. A selective intermolecular interaction between the sensitiser attached at the tip-apex and the target amino acid on the surface induces an enhanced tunnelling conductance of one specific spectral feature, which can be mapped in spectroscopic imaging. Density functional theory calculations suggest a mechanism that relies on conformational changes of the sensitiser that are accompanied by local charge redistributions in the tunnelling junction, which, in turn, lower the tunnelling barrier at that specific part of the peptide.
Collapse
Affiliation(s)
- Xu Wu
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Bogdana Borca
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - Suman Sen
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Sabine Abb
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | - Matyas Nachtigall
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic
| | - Pavel Jelinek
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic.
| | - Stephan Rauschenbach
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Uta Schlickum
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany.
| |
Collapse
|
2
|
Mastracco P, Copp SM. Beyond nature's base pairs: machine learning-enabled design of DNA-stabilized silver nanoclusters. Chem Commun (Camb) 2023; 59:10360-10375. [PMID: 37575075 DOI: 10.1039/d3cc02890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sequence-encoded biomolecules such as DNA and peptides are powerful programmable building blocks for nanomaterials. This paradigm is enabled by decades of prior research into how nucleic acid and amino acid sequences dictate biomolecular interactions. The properties of biomolecular materials can be significantly expanded with non-natural interactions, including metal ion coordination of nucleic acids and amino acids. However, these approaches present design challenges because it is often not well-understood how biomolecular sequence dictates such non-natural interactions. This Feature Article presents a case study in overcoming challenges in biomolecular materials with emerging approaches in data mining and machine learning for chemical design. We review progress in this area for a specific class of DNA-templated metal nanomaterials with complex sequence-to-property relationships: DNA-stabilized silver nanoclusters (AgN-DNAs) with bright, sequence-tuned fluorescence colors and promise for biophotonics applications. A brief overview of machine learning concepts is presented, and high-throughput experimental synthesis and characterization of AgN-DNAs are discussed. Then, recent progress in machine learning-guided design of DNA sequences that select for specific AgN-DNA fluorescence properties is reviewed. We conclude with emerging opportunities in machine learning-guided design and discovery of AgN-DNAs and other sequence-encoded biomolecular nanomaterials.
Collapse
Affiliation(s)
- Peter Mastracco
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| |
Collapse
|
3
|
Vecchioni S, Lu B, Livernois W, Ohayon YP, Yoder JB, Yang CF, Woloszyn K, Bernfeld W, Anantram MP, Canary JW, Hendrickson WA, Rothschild LJ, Mao C, Wind SJ, Seeman NC, Sha R. Metal-Mediated DNA Nanotechnology in 3D: Structural Library by Templated Diffraction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210938. [PMID: 37268326 DOI: 10.1002/adma.202210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/06/2023] [Indexed: 06/04/2023]
Abstract
DNA double helices containing metal-mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.
Collapse
Affiliation(s)
- Simon Vecchioni
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Brandon Lu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - William Livernois
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Jesse B Yoder
- IMCA-CAT, Argonne National Lab, Argonne, IL, 60439, USA
| | - Chu-Fan Yang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - William Bernfeld
- Department of Chemistry, New York University, New York, NY, 10003, USA
- ASPIRE Program, King School, Stamford, CT, 06905, USA
| | - M P Anantram
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James W Canary
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Lynn J Rothschild
- NASA Ames Research Center, Planetary Sciences Branch, Moffett Field, CA, 94035, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shalom J Wind
- Department of Applied Physics and Applied Math, Columbia University, New York, NY, 10027, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
4
|
Rodríguez-Galván A, Contreras-Torres FF. Scanning Tunneling Microscopy of Biological Structures: An Elusive Goal for Many Years. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3013. [PMID: 36080050 PMCID: PMC9457988 DOI: 10.3390/nano12173013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Scanning tunneling microscopy (STM) is a technique that can be used to directly observe individual biomolecules at near-molecular scale. Within this framework, STM is of crucial significance because of its role in the structural analysis, the understanding the imaging formation, and the development of relative techniques. Four decades after its invention, it is pertinent to ask how much of the early dream has come true. In this study, we aim to overview different analyses for DNA, lipids, proteins, and carbohydrates. The relevance of STM imaging is exhibited as an opportunity to assist measurements and biomolecular identification in nanobiotechnology, nanomedicine, biosensing, and other cutting-edge applications. We believe STM research is still an entire science research ecosystem for joining several areas of expertise towards a goal settlement that has been elusive for many years.
Collapse
Affiliation(s)
- Andrés Rodríguez-Galván
- Carrera de Biología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edo. Mex., Mexico
| | | |
Collapse
|
5
|
Dai X, Chen X, Jing X, Zhang Y, Pan M, Li M, Li Q, Liu P, Fan C, Liu X. DNA Origami‐Encoded Integration of Heterostructures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xinpei Dai
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Division of Physical Biology CHINA
| | - Xiaoliang Chen
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xinxin Jing
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yinan Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Muchen Pan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Mingqiang Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qian Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Biodesign Center 300307 Tianjin CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering No. 800, Dongchuan Road 200240 Shanghai CHINA
| | - Xiaoguo Liu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine No. 800 Dongchuan road 200240 Shanghai CHINA
| |
Collapse
|
6
|
Dai X, Chen X, Jing X, Zhang Y, Pan M, Li M, Li Q, Liu P, Fan C, Liu X. DNA Origami-Encoded Integration of Heterostructures. Angew Chem Int Ed Engl 2021; 61:e202114190. [PMID: 34962699 DOI: 10.1002/anie.202114190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/09/2022]
Abstract
Integrating dissimilar materials at the nanoscale is crucial for modern electronics and optoelectronics. The structural DNA nanotechnology provides a universal platform for precision assembly of materials; nevertheless, heterogeneous integration of dissimilar materials with DNA nanostructures has yet to be explored. Here we report a DNA origami-encoded strategy for integrating silica-metal heterostructures. Theoretical and experimental studies reveal distinctive mechanisms for the binding and aggregation of silica and metal clusters on protruding double-stranded DNA (dsDNA) strands that are prescribed on the DNA origami template. In particular, the binding energy differences of silica/metal clusters and DNA molecules underlies the accessibilities of dissimilar material areas on DNA origami. We find that, by programming the densities and lengths of protruding dsDNA strands on DNA origami, silica and metal materials can be independently deposited at their predefined areas with a high vertical precision of 2 nm. We demonstrate the integration of silica-gold and silica-silver heterostructures with high site addressability. This DNA nanotechnology-based strategy is thus applicable for integrating various types of dissimilar materials, which opens new routes for bottom-up electronics.
Collapse
Affiliation(s)
- Xinpei Dai
- Shanghai Institute of Applied Physics Chinese Academy of Sciences, Division of Physical Biology, CHINA
| | - Xiaoliang Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Xinxin Jing
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yinan Zhang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Muchen Pan
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Mingqiang Li
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Qian Li
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biodesign Center, 300307, Tianjin, CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, No. 800, Dongchuan Road, 200240, Shanghai, CHINA
| | - Xiaoguo Liu
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, No. 800 Dongchuan road, 200240, Shanghai, CHINA
| |
Collapse
|
7
|
Fardian-Melamed N, Katrivas L, Rotem D, Kotlyar A, Porath D. Electronic Level Structure of Novel Guanine Octuplex DNA Single Molecules. NANO LETTERS 2021; 21:8987-8992. [PMID: 34694812 DOI: 10.1021/acs.nanolett.1c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Throughout the past few decades, guanine quadruplex DNA structures have attracted much interest both from a fundamental material science perspective and from a technologically oriented perspective. Novel guanine octuplex DNA, formed from coiled quadruplex DNA, was recently discovered as a stable and rigid DNA-based nanostructure. A detailed electronic structure study of this new nanomaterial, performed by scanning tunneling spectroscopy on a subsingle-molecule level at cryogenic temperature, is presented herein. The electronic levels and lower energy gap of guanine octuplex DNA compared to quadruplex DNA dictate higher transverse conductivity through guanine octads than through guanine tetrads.
Collapse
Affiliation(s)
- Natalie Fardian-Melamed
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dvir Rotem
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Danny Porath
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
8
|
Zhao Y, Zhang C, Yang L, Xu X, Xu R, Ma Q, Tang Q, Yang Y, Han D. Programmable and Site-Specific Patterning on DNA Origami Templates with Heterogeneous Condensation of Silver and Silica. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103877. [PMID: 34636168 DOI: 10.1002/smll.202103877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
DNA origami has been widely used as a modular platform for condensation of functional molecules to assemble optical, electronic, and biological components. However, the heterogeneous condensation with greater diversities in chemical composition templated with DNA origami is still challenging. Herein, a programmable deposition method is developed to precisely condense silver-silica nanohybrids on DNA origami templates. First, the site-specific metallization of Ag is achieved by thiol group-initiated silver reduction at the designed areas of DNA origami. Next, cysteamine is used to selectively modify the condensed Ag surface with positively charged amino groups for creating an electronically different environment for site-specific placement of silica by a modified Stöber method. Using these strategies, customized patterning of both silver and silica on tubular and rectangular DNA origami nanostructures is successfully achieved with nanoscale spatial resolution. These findings will greatly facilitate the development of DNA nanotechnology-based bottom-up nanofabrication.
Collapse
Affiliation(s)
- Yumeng Zhao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Xuemei Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Rui Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Qian Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Qian Tang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| |
Collapse
|
9
|
Smolovich AM. A Hypothesis about the Physical Nature of the Phenomenon of Life (A Contribution to the Discussion of the Paper by G.R. Ivanitskii 21st Century: What Is Life from the Perspective of Physics). Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Katrivas L, Fardian-Melamed N, Rotem D, Porath D, Kotlyar A. Formation of Novel Octuplex DNA Molecules from Guanine Quadruplexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006932. [PMID: 33475220 DOI: 10.1002/adma.202006932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Guanine quadruplex (G4)-DNA structures have sparked the interest of many scientists due to their important biological roles and their potential use in molecular nanoelectronics and nanotechnology. The high guanine content in G4-DNA endows it with mechanical stability, robustness, and improved charge transport properties-attractive attributes for a molecular nanowire. The self-driven formation of a novel G4-DNA-based nanostructure, coined guanine octuplex (G8)-DNA, is reported herein. Atomic force microscopy and scanning tunneling microscopy characterization of this molecule reveal its organized coiled-coil structure, which is found to be stable under different temperatures and surrounding conditions. G8-DNA exhibits enhanced stiffness, mechanical and thermodynamic stability when compared to its parent G4-DNA. These, along with its high guanine content, make G8-DNA a compelling new molecule, and a highly prospective candidate for molecular nanoelectronics.
Collapse
Affiliation(s)
- Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and, The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Natalie Fardian-Melamed
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dvir Rotem
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Danny Porath
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and, The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| |
Collapse
|
11
|
Dai X, Li Q, Aldalbahi A, Wang L, Fan C, Liu X. DNA-Based Fabrication for Nanoelectronics. NANO LETTERS 2020; 20:5604-5615. [PMID: 32787185 DOI: 10.1021/acs.nanolett.0c02511] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The bottom-up DNA-templated nanoelectronics exploits the unparalleled self-assembly properties of DNA molecules and their amenability with various types of nanomaterials. In principle, nanoelectronic devices can be bottom-up assembled with near-atomic precision, which compares favorably with well-established top-down fabrication process with nanometer precision. Over the past decade, intensive effort has been made to develop DNA-based nanoassemblies including DNA-metal, DNA-polymer, and DNA-carbon nanotube complexes. This review introduces the history of DNA-based fabrication for nanoelectronics briefly and summarizes the state-of-art advances of DNA-based nanoelectronics. In particular, the most widely applied characterization techniques to explore their unique electronic properties at the nanoscale are described and discussed, including scanning tunneling microscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. We also provide a perspective on potential applications of DNA-based nanoelectronics.
Collapse
Affiliation(s)
- Xinpei Dai
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Xu X, Zhou X, Wang T, Shi X, Liu Y, Zuo Y, Xu L, Wang M, Hu X, Yang X, Chen J, Yang X, Chen L, Chen P, Peng H. Robust DNA‐Bridged Memristor for Textile Chips. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaojie Xu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Tianyu Wang
- State Key Laboratory of ASIC and System, School of Microelectronics Fudan University Shanghai 200433 China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Ya Liu
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiao Tong University Shannxi 710049 China
| | - Yong Zuo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Limin Xu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Mengying Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xiaofeng Hu
- State Key Laboratory of Surface Physics Fudan University Shanghai 200438 China
| | - Xinju Yang
- State Key Laboratory of Surface Physics Fudan University Shanghai 200438 China
| | - Jiaxin Chen
- Department of Materials Science Fudan University Shanghai 200438 China
| | - Xiubo Yang
- Analytical & Testing Center Northwestern Polytechnical University Shaanxi 710072 China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics Fudan University Shanghai 200433 China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| |
Collapse
|
13
|
Fardian-Melamed N, Katrivas L, Eidelshtein G, Rotem D, Kotlyar A, Porath D. Electronic Level Structure of Silver-Intercalated Cytosine Nanowires. NANO LETTERS 2020; 20:4505-4511. [PMID: 32412760 DOI: 10.1021/acs.nanolett.0c01292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-mediated base-paired DNA has long been investigated for basic scientific pursuit and for nanoelectronics purposes. Particularly attractive in these domains is the Ag+-intercalated polycytosine DNA duplex. Extensive studies of this molecule have led to our current understanding of its self-assembly properties, high thermodynamic and structural stability, and high longitudinal conductivity. However, a high-resolution morphological characterization of long Ag+-intercalated polycytosine DNA has hitherto not been carried out. Furthermore, the electronic level structure of this molecule has not been studied before. Here we present a scanning tunneling microscopy and spectroscopy study of this intriguing nanowire. Its temperature-independent morphological and electronic properties suggest substantial stability, while its emergent electronic levels and energy gap provide the basis for its high conductivity.
Collapse
Affiliation(s)
- Natalie Fardian-Melamed
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Gennady Eidelshtein
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dvir Rotem
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Danny Porath
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Xu X, Zhou X, Wang T, Shi X, Liu Y, Zuo Y, Xu L, Wang M, Hu X, Yang X, Chen J, Yang X, Chen L, Chen P, Peng H. Robust DNA-Bridged Memristor for Textile Chips. Angew Chem Int Ed Engl 2020; 59:12762-12768. [PMID: 32342610 DOI: 10.1002/anie.202004333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Electronic textiles may revolutionize many fields, such as communication, health care and artificial intelligence. To date, unfortunately, computing with them is not yet possible. Memristors are compatible with the interwoven structure and manufacturing process in textiles because of its two-terminal crossbar configuration. However, it remains a challenge to realize textile memristors owing to the difficulties in designing advanced memristive materials and achieving high-quality active layers on fiber electrodes. Herein we report a robust textile memristor based on an electrophoretic-deposited active layer of deoxyribonucleic acid (DNA) on fiber electrodes. The unique architecture and orientation of DNA molecules with the incorporation of Ag nanoparticles offer the best-in-class performances, e.g., both ultra-low operation voltage of 0.3 V and power consumption of 100 pW and high switching speed of 20 ns. Fundamental logic calculations such as implication and NAND are demonstrated as functions of textile chips, and it has been thus integrated with power-supplying and light emitting modules to demonstrate an all-fabric information processing system.
Collapse
Affiliation(s)
- Xiaojie Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Tianyu Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiao Tong University, Shannxi, 710049, China
| | - Yong Zuo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Limin Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Mengying Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xiaofeng Hu
- State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, China
| | - Xinju Yang
- State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, China
| | - Jiaxin Chen
- Department of Materials Science, Fudan University, Shanghai, 200438, China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Shaanxi, 710072, China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
15
|
Zhu J, Tian Y, Tian L, Wang Z, Liu X. Mechanobiology Analysis of Manifold Live Cells in Vitro with Atomic Force Acoustic Microscopy. ACS APPLIED BIO MATERIALS 2020; 3:1210-1215. [DOI: 10.1021/acsabm.9b01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiajing Zhu
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Liguo Tian
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
16
|
Fardian-Melamed N, Eidelshtein G, Rotem D, Kotlyar A, Porath D. Temperature Dependence of the STM Morphology and Electronic Level Structure of Silver-Containing DNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905901. [PMID: 31885142 DOI: 10.1002/smll.201905901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Understanding the effect of external conditions, temperature in particular, on novel nanomaterials is of great significance. The powerful ability of scanning tunneling microscopy (STM) to characterize topography and electronic levels on a single molecule scale is utilized herein to characterize individual silver-containing poly(dG)-poly(dC) DNA molecules, at different temperatures. These measurements indicate that the molecule is a truly hybrid metal-organic nanomaterial with electronic states originating from both the DNA and the embedded silver. The temperature dependence of this density of states (DOS) leads to the temperature dependent STM apparent height of the molecule-a phenomenon that has not been observed before for other complex nanostructures.
Collapse
Affiliation(s)
- Natalie Fardian-Melamed
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Gennady Eidelshtein
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Dvir Rotem
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, and The Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Danny Porath
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
17
|
Li J, Chen R, Zhang Q, Chen J, Gu L, Zhao J, Wang Z, Dai Z. Spectrum-Quantified Morphological Evolution of Enzyme-Protected Silver Nanotriangles by DNA-Guided Postshaping. J Am Chem Soc 2019; 141:19533-19537. [DOI: 10.1021/jacs.9b09546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Junyao Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Runkun Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jian Zhao
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| |
Collapse
|