1
|
Saravanan N, Sundaramurthy A, Park S. MoS 2 nanoflowers surface decorated with CuS nanorods and carbon dots for fluorescent and ultrasound imaging in cancer therapy. Colloids Surf B Biointerfaces 2025; 249:114503. [PMID: 39823948 DOI: 10.1016/j.colsurfb.2025.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS2 nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy. The size of NFs was found to be 350 ± 50 nm which increased to 500 ± 50 nm after surface decoration. The morphology of MoS2 NFs before and after surface decoration was investigated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV-Vis-NIR spectroscopy. The photo-thermal heat generation was found to be increasing as a function of the concentration of NFs. The encapsulation efficiency of doxorubicin (DOX) and photo-thermal conversion efficiency (PCE) for surface-decorated MoS2 NFs (MoS2@CuS/FACDs NFs) was estimated to be 42 and 44 %, respectively. The surface decoration of CuS NRs and FACDs on MoS2 NFs not only improved the anticancer activity but also increased the signal intensity in ultrasound and fluorescence imaging of cancer cells. The MoS2@CuS/FACDs NFs exhibited excellent cytotoxicity against MDA-MB-231 cancer cells. Hence, the hybrid system demonstrated here showed high potential for use as a combined probe for non-invasive ultrasound imaging and fluorescence imaging for PTT-chemotherapy.
Collapse
Affiliation(s)
- Nishakavya Saravanan
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India; Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Sukho Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
2
|
Ijaz M, Hasan I, Aslam B, Yan Y, Zeng W, Gu J, Jin J, Zhang Y, Wang S, Xing L, Guo B. Diagnostics of brain tumor in the early stage: current status and future perspectives. Biomater Sci 2025. [PMID: 40200902 DOI: 10.1039/d4bm01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Early diagnosis of brain tumors is challenging due to their complexity and delicate structure. Conventional imaging techniques like MRI, CT, and PET are unable to provide detailed visualization of early-stage brain tumors. Early-stage detection of brain tumors is vital for enhancing patient outcomes and survival rates. So far, several scientists have dedicated their efforts to innovating advanced diagnostic probes to efficiently cross the BBB and selectively target brain tumors for optimal imaging. The integration of these techniques presents a viable pathway for non-invasive, accurate, and early-stage tumor identification. Herein, we provide a timely update on the various imaging probes and potential challenges for the diagnosis of early-stage brain tumors. Furthermore, this review highlights the significance of integrating advanced imaging probes for improving the early detection of brain tumors, ultimately enhancing treatment outcomes. Hopefully, this review will stimulate the interest of researchers to accelerate the development of new imaging probes and even their clinical translation for improving the early diagnosis of brain tumors.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bilal Aslam
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yuqian Yan
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Wenjun Zeng
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jian Jin
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Shaohua Wang
- Diagnostic Center of Infectious Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Lu Xing
- Department of Sleep Medicine, Shenzhen Kangning Hospital, No. 1080 Cuizhu Road, Guangdong 518020, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| |
Collapse
|
3
|
Xiao T, Chen D, Peng L, Li Z, Pan W, Dong Y, Zhang J, Li M. Fluorescence-guided Surgery for Hepatocellular Carcinoma: From Clinical Practice to Laboratories. J Clin Transl Hepatol 2025; 13:216-232. [PMID: 40078203 PMCID: PMC11894393 DOI: 10.14218/jcth.2024.00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 03/14/2025] Open
Abstract
Fluorescence navigation is a novel technique for accurately identifying hepatocellular carcinoma (HCC) lesions during hepatectomy, enabling real-time visualization. Indocyanine green-based fluorescence guidance has been commonly used to demarcate HCC lesion boundaries, but it cannot distinguish between benign and malignant liver tumors. This review focused on the clinical applications and limitations of indocyanine green, as well as recent advances in novel fluorescent probes for fluorescence-guided surgery of HCC. It covers traditional fluorescent imaging probes such as enzymes, reactive oxygen species, reactive sulfur species, and pH-sensitive probes, followed by an introduction to aggregation-induced emission probes. Aggregation-induced emission probes exhibit strong fluorescence, low background signals, excellent biocompatibility, and high photostability in the aggregate state, but show no fluorescence in dilute solutions. Design strategies for these probes may offer insights for developing novel fluorescent probes for the real-time identification and navigation of HCC during surgery.
Collapse
Affiliation(s)
- Tian Xiao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Didi Chen
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Hubei University of Education, Wuhan, Hubei, China
| | - Li Peng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuoxia Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenming Pan
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Chow JCL. Nanomaterial-Based Molecular Imaging in Cancer: Advances in Simulation and AI Integration. Biomolecules 2025; 15:444. [PMID: 40149980 PMCID: PMC11940464 DOI: 10.3390/biom15030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Nanomaterials represent an innovation in cancer imaging by offering enhanced contrast, improved targeting capabilities, and multifunctional imaging modalities. Recent advancements in material engineering have enabled the development of nanoparticles tailored for various imaging techniques, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US). These nanoscale agents improve sensitivity and specificity, enabling early cancer detection and precise tumor characterization. Monte Carlo (MC) simulations play a pivotal role in optimizing nanomaterial-based imaging by modeling their interactions with biological tissues, predicting contrast enhancement, and refining dosimetry for radiation-based imaging techniques. These computational methods provide valuable insights into nanoparticle behavior, aiding in the design of more effective imaging agents. Moreover, artificial intelligence (AI) and machine learning (ML) approaches are transforming cancer imaging by enhancing image reconstruction, automating segmentation, and improving diagnostic accuracy. AI-driven models can also optimize MC-based simulations by accelerating data analysis and refining nanoparticle design through predictive modeling. This review explores the latest advancements in nanomaterial-based cancer imaging, highlighting the synergy between nanotechnology, MC simulations, and AI-driven innovations. By integrating these interdisciplinary approaches, future cancer imaging technologies can achieve unprecedented precision, paving the way for more effective diagnostics and personalized treatment strategies.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada; ; Tel.: +1-416-946-4501
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
5
|
Zhu L, Song G, Zhang W, Wu Y, Chen Y, Song J, Wang D, Li G, Tang BZ, Li Y. Aggregation induced emission luminogen bacteria hybrid bionic robot for multimodal phototheranostics and immunotherapy. Nat Commun 2025; 16:2578. [PMID: 40089477 PMCID: PMC11910577 DOI: 10.1038/s41467-025-57533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Multimodal phototheranostics utilizing single molecules offer a "one-and-done" approach, presenting a convenient and effective strategy for cancer therapy. However, therapies based on conventional photosensitizers often suffer from limitations such as a single photosensitizing mechanism, restricted tumor penetration and retention, and the requirement for multiple irradiations, which significantly constrain their application. In this report, we present an aggregation-induced emission luminogen (AIEgen) bacteria hybrid bionic robot to address above issues. This bionic robot is composed of multifunctional AIEgen (INX-2) and Escherichia coli Nissle 1917 (EcN), i.e., EcN@INX-2. The EcN@INX-2 bionic robot exhibits near-infrared II (NIR-II) fluorescence emission and demonstrates efficient photodynamic and photothermal effects, as well as tumor-targeting capabilities. These features are facilitated by the complementary roles of INX-2 and EcN. The robot successfully enables in vivo multimodal imaging and therapy of colon cancer models in female mice through various mechanisms, including the activation of anti-tumor immunity, as well as photodynamic and photothermal therapy. Our study paves an avenue for designing multifunctional diagnostic agents for targeted colon cancer therapy through image-guided combinational immunotherapy.
Collapse
Affiliation(s)
- Liwei Zhu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guangjie Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wentian Zhang
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yifan Wu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yuling Chen
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Guoxin Li
- Cancer Center of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, 102218, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
6
|
Wei K, Guo K, Tao Y, Gong X, Yan G, Wang L, Guo M. Design, synthesis, biological evaluation and molecular docking of novel isatin-oxime ether derivatives as potential IDH1 inhibitors. Mol Divers 2025:10.1007/s11030-024-11084-4. [PMID: 39747799 DOI: 10.1007/s11030-024-11084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
A series of novel isatin-oxime ether derivatives were designed, synthesized and characterized by 1H NMR and 13C NMR and HRMS. These compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (A549, HepG2 and Hela) by MTT assay. According to the experimental results, compounds 6a (IC50 = 0.34μM), 6c (IC50 = 14nM) and 6r (IC50 = 45nM) were found as the excellent selectivity and high activity against A549, whereas compounds 6m (IC50 = 12nM) and 6n (IC50 = 25nM) displayed the significant activity for HepG2, respectively. Compound 6f (IC50 = 30nM), 6n (IC50 = 9nM) and 6o (IC50 = 20nM) also showed the excellent activity against Hela. From the experiments of cell migration and colony formation assays, the findings demonstrated that 6m can effectively suppress the migration and growth of HepG2 cells. In addition, the results of molecular docking studies determined the strong binding interactions between the potential active compounds 6m and 6n and the active sites of isocitrate dehydrogenase 1 (IDH1) with the lowest binding affinity energy.
Collapse
Affiliation(s)
- Kangning Wei
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| | - Kaige Guo
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| | - Ye Tao
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| | - Xuanming Gong
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| | - Guobing Yan
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China.
| | - Liangliang Wang
- Department of Biology, Lishui University, Lishui, 323000, China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China
| |
Collapse
|
7
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Zheng H, Huang L, An G, Guo L, Wang N, Yang W, Zhu Y. A Nanoreactor Based on Metal-Organic Frameworks With Triple Synergistic Therapy for Hepatocellular Carcinoma. Adv Healthc Mater 2024; 13:e2401743. [PMID: 39015058 DOI: 10.1002/adhm.202401743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Indexed: 07/18/2024]
Abstract
The transformation of monotherapy into multimodal combined targeted therapy to fully exploit synergistic efficacy is of increasing interest in tumor treatment. In this work, a novel nanodrug-carrying platform based on iron-based MOFs, which is loaded with doxorubicin hydrochloride (DOX), dihydroartemisinin (DHA), and glucose oxidase (GOx), and concurrently covalently linked to the photosensitizer 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) in polydopamine (PDA)-encapsulated MIL-101(Fe) (denoted as MIL-101(Fe)-DOX-DHA@TCPP/GOx@PDA, MDDTG@P), is successfully developed. Upon entering the tumor microenvironment, MDDTG@P catalyzes the hydrogen peroxide (H2O2) into hydroxyl radicals (·OH) and depletes glutathione (GSH); thus, exerting the role of chemodynamic therapy (CDT). The reduced Fe2+ can also activate DHA, further expanding CDT and promoting tumor cell apoptosis. The introduced GOx will rapidly consume glucose and oxygen (O2) in the tumor; while, replenishing H2O2 for Fenton reaction, starving the cancer cells; and thus, realizing starvation and chemodynamic therapy. In addition, the covalent linkage of TCPP endows MDDTG@P with good photodynamic therapeutic (PDT) properties. Therefore, this study develops a nanocarrier platform for triple synergistic chemodynamic/photodynamic/starvation therapy, which has promising applications in the efficient treatment of tumors.
Collapse
Affiliation(s)
- Heming Zheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lei Huang
- School of Stomatology, Minzhu Clinic of Stomatology Hospital Affiliated to Guangxi Medical University, Guangxi, 530007, China
| | - Guanghui An
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lianshan Guo
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Wenhui Yang
- Department of Medical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
9
|
Zhao YY, Zhang X, Xu Y, Chen Z, Hwang B, Kim H, Liu H, Li X, Yoon J. A Renal Clearable Nano-Assembly with Förster Resonance Energy Transfer Amplified Superoxide Radical and Heat Generation to Overcome Hypoxia Resistance in Phototherapeutics. Angew Chem Int Ed Engl 2024; 63:e202411514. [PMID: 38940633 DOI: 10.1002/anie.202411514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/29/2024]
Abstract
Given that type I photosensitizers (PSs) possess a good hypoxic tolerance, developing an innovative tactic to construct type I PSs is crucially important, but remains a challenge. Herein, we present a smart molecular design strategy based on the Förster resonance energy transfer (FRET) mechanism to develop a type I photodynamic therapy (PDT) agent with an encouraging amplification effect for accurate hypoxic tumor therapy. Of note, benefiting from the FRET effect, the obtained nanostructured type I PDT agent (NanoPcSZ) with boosted light-harvesting ability not only amplifies superoxide radical (O2 •-) production but also promotes heat generation upon near-infrared light irradiation. These features facilitate NanoPcSZ to realize excellent phototherapeutic response under both normal and hypoxic environments. As a result, both in vitro and in vivo experiments achieved a remarkable improvement in therapeutic efficacy via the combined effect of photothermal action and type I photoreaction. Notably, NanoPcSZ can be eliminated from organs (including the liver, lung, spleen, and kidney) apart from the tumor site and excreted through urine within 24 h of its systemic administration. In this way, the potential biotoxicity of drug accumulation can be avoided and the biosafety can be further enhanced.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Xiaojun Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Yihui Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Bokyeong Hwang
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Hao Liu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingshu Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| |
Collapse
|
10
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
11
|
Cai J, Xu Y, Liao F. Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy. Expert Rev Mol Med 2024; 26:e27. [PMID: 39397711 PMCID: PMC11488333 DOI: 10.1017/erm.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains a significant threat to human health today. Even though starvation therapy and other treatment methods have recently advanced to a new level of rapid development in tumour treatment, their limited therapeutic effectiveness and unexpected side effects prevent them from becoming the first option in clinical treatment. With rapid advancement in nanotechnology, the utilization of nanomaterials in therapeutics offers the potential to address the shortcomings in cancer treatment. Notably, multifunctional metal-organic framework (MOF) has been widely employed in cancer therapy due to their customizable shape, adjustable diameter, high porosity, diverse compositions, large specific surface area, high degree of functionalization and strong biocompatibility. This paper reviews the current progress and success of MOF-based multifunctional nanoplatforms for cancer starvation therapy, as well as the prospects and potential barriers for the application of MOF nanoplatforms in cancer starvation therapy.
Collapse
Affiliation(s)
- Jinghan Cai
- Renmin Hospital of Wuhan University, Wuhan University, Wuhan, P. R. China
| | - Yan Xu
- University Hospital, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
12
|
Zhang M, Lu M, Gong Y, Yang Y, Song J, Li J, Chen Z, Ling Y, Zhou Y. Tadpole-Like Carbon Nanotube with Fe Nanoparticle Encapsulated at the Head and Zn Single-Atom Anchored on the Body: One-Pot Carbonization for Tetramodal Synergistic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400587. [PMID: 38837673 DOI: 10.1002/smll.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Precise integration of diverse therapeutic approaches into nanomaterials is the key to the development of multimodal synergistic cancer therapy. In this work, tadpole-like carbon nanotubes with Fe nanoparticle encapsulated at the head and Zn single-atom anchored on the body (Fe@CNT-Zn) is precisely designed and facilely prepared via one-pot carbonization. In vitro studies revealed the integration of chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT) in Fe@CNT-Zn as well as the near-infrared light (NIR)-responsive cascade therapeutic efficacy. Furthermore, in vivo studies demonstrated the NIR-triggered cascade-amplifying synergistic cancer therapy in a B16 tumor-bearing mouse model. The results not only showcased the Fe@CNT-Zn as a potential tetramodal therapeutic platform, but also demonstrated a proof-of-concept on metal-organic framework-based "one stone for multiple birds" strategy for in situ functionalization of carbon materials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yimin Gong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junfei Song
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jianing Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zhenxia Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
13
|
Peng X, Wang J, Deng Z, Wei J, Xie C, Wang Y, Han J, Chen Z, Du J, Zhang Z. NIR laser-activated phthalocyanine loaded lipid nanoparticles targeting M2 macrophage for improved photoacoustic imaging-guided photothermal therapy. Mater Today Bio 2024; 28:101209. [PMID: 39221205 PMCID: PMC11364919 DOI: 10.1016/j.mtbio.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The development of novel phototheranostic agents with significant potential in bioimaging-guided therapy is highly desirable for precise tumor therapy. Herein, NIR laser-activated ruthenium phthalocyanine (PcRu) loaded sub-30 nm targeting lipid nanoparticles (α-PcRu-NPs) were fabricated for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Due to the formation of J-type aggregation of PcRu in the core of the nanostructure, the α-PcRu-NPs exhibited high stability, efficient NIR absorption, reduced singlet oxygen generation, high photothermal activity, and intense photoacoustic signal. With the M2 macrophage target peptide (M2pep) modification and small size of α-PcRu-NPs, in vivo evaluations reveal that α-PcRu-NPs can specifically target and deeply penetrate the tumor foci. Under a high contrast PAI guidance with α-PcRu-NPs (744 nm, 0.35 μW), it also realizes superior photothermal therapy (PTT) for breast cancer under 670 nm laser irradiation (0.5 W/cm2). The prominent therapeutic efficacy of α-PcRu-NP-based PTT not only directly kills tumor cells, but also enhances the immune response by promoting dendritic cell maturation and increasing cytotoxic T cell infiltration. Thus, this work broadens the applications of phthalocyanine derivatives as phototheranostics in the PAI-guided PTT field.
Collapse
Affiliation(s)
- Xingzhou Peng
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Hainan Medical University, Haikou, 571199, China
| | - Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, 430074, China
| | - Jianshuang Wei
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Changqiang Xie
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Yan Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Beijing, 100190, China
| | - Zhengyu Chen
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Jianghai Du
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Zhihong Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
14
|
Chen Y, Li X, Shang H, Sun Y, Wang C, Wang X, Tian H, Yang H, Zhang L, Deng L, Yang K, Wu B, Cheng W. Mechanism exploration of synergistic photo-immunotherapy strategy based on a novel exosome-like nanosystem for remodeling the immune microenvironment of HCC. NANO CONVERGENCE 2024; 11:31. [PMID: 39141072 PMCID: PMC11324638 DOI: 10.1186/s40580-024-00441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) has become a major challenge in cancer immunotherapy, with abundant tumor-associated macrophages (TAMs) playing a key role in promoting tumor immune escape by displaying an immunosuppressive (M2) phenotype. Recently, it was reported that M1 macrophage-derived nanovesicles (M1NVs) can reprogram TAMs to an anti-tumor M1 phenotype, thereby significantly alleviating the immunosuppressive TME and enhancing the anti-tumor efficacy of immunotherapy. Herein, we developed M1NVs loaded with mesoporous dopamine (MPDA) and indocyanine green (ICG), which facilitated the recruitment of M2 TAMs through synergistic photothermal and photodynamic therapy. Thereafter, M1NVs can induce M1 repolarization of TAMs, resulting in increased infiltration of cytotoxic T lymphocytes within the tumor to promote tumor regression. This study investigated the effect of phototherapy on the immune environment of liver cancer using single-cell RNA sequencing (scRNA-seq) by comparing HCC tissues before and after MPDA/ICG@M1NVs + NIR treatment. The results showed significant shifts in cell composition and gene expression, with decreases in epithelial cells, B cells, and macrophages and increases in neutrophils and myeloid cells. Additionally, gene analysis indicated a reduction in pro-inflammatory signals and immunosuppressive functions, along with enhanced B-cell function and anti-tumor immunity, downregulation of the Gtsf1 gene in the epithelial cells of the MPDA/ICG @M1NVs + NIR group, and decreased expression of the lars2 gene in immune subpopulations. Eno3 expression is reduced in M1 macrophages, whereas Clec4a3 expression is downregulated in M2 macrophages. Notably, the B cell population decreased, whereas Pou2f2 expression increased. These genes regulate cell growth, death, metabolism, and tumor environment, indicating their key role in HCC progression. This study highlights the potential for understanding cellular and molecular dynamics to improve immunotherapy.
Collapse
Affiliation(s)
- Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Yucao Sun
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Huajing Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Lei Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Liwen Deng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150080, P. R. China.
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China.
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
15
|
Cui Y, Xia H, Liu Q, Ma B, Pan M, Shang C, Zhang Q, Wang Y, Chen B, Guo H. A Tumor-Activatable Liposomal Nanoprobe for Selective Visualization of Metastatic Lymph Nodes. Adv Healthc Mater 2024:e2401935. [PMID: 39104023 DOI: 10.1002/adhm.202401935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Indexed: 08/07/2024]
Abstract
The precise identification of sentinel lymph nodes (SLNs) during surgery and assessment of their benign status is crucial for accurate tumor staging and optimal treatment strategizing. Currently, a deficiency exists in non-invasive in vivo diagnostic techniques that can accurately pinpoint SLNs during surgery while simultaneously evaluating their benign status. Here, a tumor-activatable liposomal nanoprobe (nTAL) is developed, remotely loaded with clinically approved photosensitizer, methyl aminolevulinate (MAL), to noninvasively visualize the tumor metastasis lymph nodes (LNs) with precision. Benefited from the highly efficient LNs draining of nanosized liposome and tumor cell-specific transformation of the non-fluorescent MAL to fluorescent protoporphyrin IX (PPIX), nTAL succeeded in targeting the SLNs and differentiated the metastatic from the benign ones with a positive correlation between PPIX generation and tumor cell infiltration in LNs. Moreover, the nTAL technology is capable of probing the early metastatic stage with a primary tumor size of 50 mm3. This study provides a new strategy for intraoperative visualization of real-time sentinel node dissection.
Collapse
Affiliation(s)
- Yi Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Heming Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiyu Liu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Bin Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Meijie Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
16
|
Na L, Fan F. Advances in nanobubbles for cancer theranostics: Delivery, imaging and therapy. Biochem Pharmacol 2024; 226:116341. [PMID: 38848778 DOI: 10.1016/j.bcp.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.
Collapse
Affiliation(s)
- Liu Na
- Ultrasound Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| |
Collapse
|
17
|
Cai X, Xu W, Ren C, Zhang L, Zhang C, Liu J, Yang C. Recent progress in quantitative analysis of self-assembled peptides. EXPLORATION (BEIJING, CHINA) 2024; 4:20230064. [PMID: 39175887 PMCID: PMC11335468 DOI: 10.1002/exp.20230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 08/24/2024]
Abstract
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
Collapse
Affiliation(s)
- Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Wei Xu
- Department of PathologyCharacteristic Medical Center of Chinese People's Armed Police ForcesTianjinP. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
18
|
Wang J, Sun X, Xu J, Liu L, Lin P, Luo X, Gao Y, Shi J, Zhang Y. X-ray activated near-infrared persistent luminescence nanoparticles for trimodality in vivo imaging. Biomater Sci 2024; 12:3841-3850. [PMID: 38881248 DOI: 10.1039/d4bm00395k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As promising luminescence nanoparticles, near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have received extensive attention in the field of high-sensitivity bioimaging in recent years. However, NIR PLNPs face problems such as short excitation wavelengths and single imaging modes, which limit their applications in in vivo reactivated imaging and multimodal imaging. Here, we report for the first time novel Gd2GaTaO7:Cr3+,Yb3+ (GGTO) NIR PLNPs that integrate X-ray activated NIR persistent luminescence (PersL), high X-ray attenuation and excellent magnetic properties into a single nanoparticle (NP). In this case, Cr3+ is used as the luminescence center. The co-doped Yb3+ and coating effectively enhance the X-ray activated NIR PersL. At the same time, the presence of the high-Z element Ta also makes the GGTO NPs exhibit high X-ray attenuation performance, which can be used as a CT contrast agent to achieve in vivo CT imaging. In addition, since the matrix contains a large amount of Gd, the GGTO NPs show remarkable magnetic properties, which can realize in vivo MR imaging. GGTO NPs combine the trimodal benefits of X-ray reactivated PersL, CT and MR imaging and are suitable for single or combined applications that require high sensitivity and spatial resolution imaging.
Collapse
Affiliation(s)
- Jinyuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
| | - Jixuan Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peng Lin
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xiaofang Luo
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Yan Gao
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
19
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
21
|
Chen T, Mao S, Ma J, Tang X, Zhu R, Mao D, Zhu X, Pan Q. Proximity-Enhanced Functional Imaging Analysis of Engineered Tumors. Angew Chem Int Ed Engl 2024; 63:e202319117. [PMID: 38305848 DOI: 10.1002/anie.202319117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Functional imaging (FI) techniques have revolutionized tumor imaging by providing information on specific tumor functions, such as glycometabolism. However, tumor cells lack unique molecular characteristics at the molecular level and metabolic pathways, resulting in limited metabolic differences compared to normal cells and increased background signals from FI. To address this limitation, we developed a novel imaging technique termed proximity-enhanced functional imaging (PEFI) for accurate visualization of tumors. By using "two adjacent chemically labeled glycoproteins" as output signals, we significantly enhance the metabolic differences between tumor and normal cells by PEFI, thereby reducing the background signals for analysis and improving the accuracy of tumor functional imaging. Our results demonstrate that PEFI can accurately identify tumors at the cellular, tissue, and animal level, and has potential value in clinical identification and analysis of tumor cells and tissues, as well as in the guidance of clinical tumor resection surgery.
Collapse
Affiliation(s)
- Tianshu Chen
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Siwei Mao
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Ji Ma
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Xiaochen Tang
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Rui Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Qiuhui Pan
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, 572000, P. R. China
| |
Collapse
|
22
|
Chen Y, Tan Q, Tang Y, Pang E, Peng R, Lan M, Bai D. Sorafenib and tetrakis (4-carboxyphenyl) porphyrin assembled nanoparticles for synergistic targeted chemotherapy and sonodynamic therapy of hepatocellular carcinoma. Biomater Sci 2024; 12:1864-1870. [PMID: 38411494 DOI: 10.1039/d3bm01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized by a high degree of malignancy and mortality. Sorafenib (SOR), a multi-kinase inhibitor, is clinically used in the treatment of HCC. However, SOR suffers from serious side effects and drug resistance. The development of novel therapeutic strategies for HCC therapy is urgently needed. Sonodynamic therapy (SDT) has unique advantages in treating deep tumors due to the merits of deep tissue penetration, low side effects, and the absence of drug resistance. Here, we developed multifunctional nanoparticles (NPs) termed SOR-TCPP@PEG-FA by assembling SOR, tetrakis (4-carboxyphenyl) porphyrin (TCPP), and folic acid (FA)-modified DSPE-PEG. The FA group enhances the tumor targeting capability of these NPs, while TCPP generates ROS under ultrasound (US) irradiation, which are toxic to tumor cells, and SOR with chemotherapeutic effects is released, thus realizing the synergistic SDT and chemotherapy of tumors.
Collapse
Affiliation(s)
- Yongzhi Chen
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225009, P.R. China.
| | - Qiuxia Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Yuanyu Tang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - E Pang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225009, P.R. China.
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225009, P.R. China.
| |
Collapse
|
23
|
Ren L, Sun Y, Zhang J, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO, Jiang G. Red blood cell membrane-coated functionalized Cu-doped metal organic framework nanoformulations as a biomimetic platform for improved chemo-/chemodynamic/photothermal synergistic therapy. Int J Pharm 2024; 652:123811. [PMID: 38237709 DOI: 10.1016/j.ijpharm.2024.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Nanoformulations for combining chemotherapy, chemodynamic therapy, and photothermal therapy have enormous potential in tumor treatment. Coating nanoformulations with cell membranes endows them with homologous cellular mimicry, enabling nanoformulations to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused multifunctional biomimetic nanoformulations based on Cu-doped zeolitic imidazolate framework-8 (ZIF-8). Hydroxycamptothecin (HCPT), a clinical anti-tumor drug, was encapsulated into ZIF-8, which was subsequently coated with polydopamine (PDA) and red blood cell membrane. The as-fabricated biomimetic nanoformulations showed an enhanced cell uptake in vitro and the potential to prolong blood circulation in vivo, producing effective synergistic chemotherapy, chemodynamic therapy, and photothermal therapy under the 808 nm laser irradiation. Together, the biomimetic nanoformulations showed a prolonged blood circulation and evasion of immune recognition in vivo to provide a bio-inspired strategy which may have the potential for the multi-synergistic therapy of breast cancer.
Collapse
Affiliation(s)
- Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, China.
| | - Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, 220030, Belarus
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
24
|
Chen H, Nizard P, Decorse P, Nowak S, Ammar-Merah S, Pinson J, Gazeau F, Mangeney C, Luo Y. Dual-Mode Nanoprobes Based on Lanthanide Doped Fluoride Nanoparticles Functionalized by Aryl Diazonium Salts for Fluorescence and SERS Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305346. [PMID: 37875723 DOI: 10.1002/smll.202305346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 10/26/2023]
Abstract
The design of dual-mode fluorescence and Raman tags stimulates a growing interest in biomedical imaging and sensing applications as they offer the possibility to synergistically combine the versatility and velocity of fluorescence imaging with the specificity of Raman spectroscopy. Although lanthanide-doped fluoride nanoparticles (NPs) are among the most studied fluorescent nanoprobes, their use for the development of bimodal fluorescent-Raman probes has never been reported yet, to the best of the authors knowledge, probably due to the difficulty to functionalize them with Raman reporter groups. This gap is filled herein by proposing a fast and straightforward approach based on aryl diazonium salt chemistry to functionalize Eu3+ or Tb3+ doped CaF2 and LaF3 NPs by Raman scatters. The resulting surface-enhanced Raman spectroscopy (SERS)-encoded lanthanide-doped fluoride NPs retain their fluorescence labeling capacity and display efficient SERS activity for cell bioimaging. The potential of this new generation of bimodal nanoprobes is assessed through cell viability assays and intracellular fluorescence and Raman imaging, opening up unprecedented opportunities for biomedical applications.
Collapse
Affiliation(s)
- Huan Chen
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes MSC, Paris, F-75006, France
| | - Philippe Nizard
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
- Structural and Molecular Analysis platform core facility of BioMedTech Facilities INSERM US36, CNRS UAR2009, Université Paris Cité, Paris, F-75006, France
| | | | - Sophie Nowak
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | | | - Jean Pinson
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | - Florence Gazeau
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes MSC, Paris, F-75006, France
| | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| |
Collapse
|
25
|
Yue Y, Xu H, Jiang L, Zhao X, Deng D. Introducing Specific Iodine Ions in Perovskite-Based Nanocomplex to Cater for Versatile Biomedical Imaging and Tumor Radiotherapy. Adv Healthc Mater 2024; 13:e2302721. [PMID: 37990787 DOI: 10.1002/adhm.202302721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Multimodal biomedical imaging and imaging-guided therapy have garnered extensive attention owing to the aid of nanoagents with the aim of further improving the therapeutic efficacy of diseases. The ability to engineer nanocomplexes (NCs) or control how they behave within an organism remains largely elusive. Here, a multifunctional nanoplatform is developed based on stabilized I-doped perovskite, CsPbBr3 -x Ix @SiO2 @Lip-c(RGD)2 (PSL-c(RGD)2 ) NCs. In particular, by regulating the amount of regular I- ions introduced, the fluorescence emission spectrum of perovskite-based NCs can be modulated well to match the requirement for biomedical optical imaging at the scale from molecule, cell to mouse; doping 125 I enables the nanoformulation to be competent for single-photon emission computed tomography (SPECT) imaging; the introduction of 131 I- imparts the NCs with the capability for radiotherapy. Through facile manipulation of specific iodine ions, this nanoplatform exhibits a remarkable ability to match multifunctional biomedical imaging and tumor therapy. In addition, their in vivo behavior can be manipulated by adjusting the thickness of the silica shell and the surface polarity for more practical applications. These experimental explorations offer a novel approach for engineering desirable multimodal NCs to simultaneously image and combat malignant tumors.
Collapse
Affiliation(s)
- Yumeng Yue
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Haoran Xu
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Liwen Jiang
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaomin Zhao
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Dawei Deng
- Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
26
|
Avugadda S, Soni N, Rodrigues EM, Persano S, Pellegrino T. Protease-Mediated T1 Contrast Enhancement of Multilayered Magneto-Gadolinium Nanostructures for Imaging and Magnetic Hyperthermia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6743-6755. [PMID: 38295315 PMCID: PMC10875642 DOI: 10.1021/acsami.3c13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on T1 and T2 signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the T1 relaxation time and contrast and a parallel decrease in the T2 signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 μg mL-1, which also corresponds to a iron dose of 52 μg mL-1. Nontoxic nanostructures with such enzyme-triggered release mechanisms and T1 signal enhancement are desirable for tracking tumor microenvironment release with remote T1-guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.
Collapse
Affiliation(s)
| | | | - Emille M. Rodrigues
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefano Persano
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Teresa Pellegrino
- Nanomaterials for Biomedical
Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
27
|
Ding L, Lyu Z, Perles-Barbacaru TA, Huang AYT, Lian B, Jiang Y, Roussel T, Galanakou C, Giorgio S, Kao CL, Liu X, Iovanna J, Bernard M, Viola A, Peng L. Modular Self-Assembling Dendrimer Nanosystems for Magnetic Resonance and Multimodality Imaging of Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308262. [PMID: 38030568 DOI: 10.1002/adma.202308262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Bioimaging is a powerful tool for diagnosing tumors but remains limited in terms of sensitivity and specificity. Nanotechnology-based imaging probes able to accommodate abundant imaging units with different imaging modalities are particularly promising for overcoming these limitations. In addition, the nanosized imaging agents can specifically increase the contrast of tumors by exploiting the enhanced permeability and retention effect. A proof-of-concept study is performed on pancreatic cancer to demonstrate the use of modular amphiphilic dendrimer-based nanoprobes for magnetic resonance (MR) imaging (MRI) or MR/near-infrared fluorescence (NIRF) multimodality imaging. Specifically, the self-assembly of an amphiphilic dendrimer bearing multiple Gd3+ units at its terminals, generates a nanomicellar agent exhibiting favorable relaxivity for MRI with a good safety profile. MRI reveals an up to two-fold higher contrast enhancement in tumors than in normal muscle. Encapsulating the NIRF dye within the core of the nanoprobe yields an MR/NIRF bimodal imaging agent for tumor detection that is efficient both for MRI, at Gd3+ concentrations 1/10 the standard clinical dose, and for NIRF imaging, allowing over two-fold stronger fluorescence intensities. These self-assembling dendrimer nanosystems thus constitute effective probes for MRI and MR/NIRF multimodality imaging, offering a promising nanotechnology platform for elaborating multimodality imaging probes in biomedical applications.
Collapse
Affiliation(s)
- Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Zhenbin Lyu
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Teodora-Adriana Perles-Barbacaru
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Adela Ya-Ting Huang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Baoping Lian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yifan Jiang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Christina Galanakou
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, 13273, France
| | - Monique Bernard
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Angèle Viola
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| |
Collapse
|
28
|
Zhang J, He X, Tang BZ. Aggregation-Induced Emission-Armored Living Bacteriophage-DNA Nanobioconjugates for Targeting, Imaging, and Efficient Elimination of Intracellular Bacterial Infection. ACS NANO 2024; 18:3199-3213. [PMID: 38227824 DOI: 10.1021/acsnano.3c09695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Intracellular bacterial infections bring a considerable risk to human life and health due to their capability to elude immune defenses and exhibit significant drug resistance. As a result, confronting and managing these infections present substantial challenges. In this study, we developed a multifunctional living phage nanoconjugate by integrating aggregation-induced emission luminogen (AIEgen) photosensitizers and nucleic acids onto a bacteriophage framework (forming MS2-DNA-AIEgen bioconjugates). These nanoconjugates can rapidly penetrate mammalian cells and specifically identify intracellular bacteria while concurrently producing a detectable fluorescent signal. By harnessing the photodynamic property of AIEgen photosensitizer and the bacteriophage's inherent targeting and lysis capability, the intracellular bacteria can be effectively eliminated and the activity of the infected cells can be restored. Moreover, our engineered phage nanoconjugates were able to expedite the healing process in bacterially infected wounds observed in diabetic mice models while simultaneously enhancing immune activity within infected cells and in vivo, without displaying noticeable toxicity. We envision that these multifunctional phage nanoconjugates, which utilize AIEgen photosensitizers and spherical nucleic acids, may present a groundbreaking strategy for combating intracellular bacteria and offer powerful avenues for theranostic applications in intracellular bacterial infection-associated diseases.
Collapse
Affiliation(s)
- Jing Zhang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
29
|
Ma G, Zhang X, Zhao K, Zhang S, Ren K, Mu M, Wang C, Wang X, Liu H, Dong J, Sun X. Polydopamine Nanostructure-Enhanced Water Interaction with pH-Responsive Manganese Sulfide Nanoclusters for Tumor Magnetic Resonance Contrast Enhancement and Synergistic Ferroptosis-Photothermal Therapy. ACS NANO 2024; 18:3369-3381. [PMID: 38251846 DOI: 10.1021/acsnano.3c10249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Rational structure design benefits the development of efficient nanoplatforms for tumor theranostic application. In this work, a multifunctional polydopamine (PDA)-coated manganese sulfide (MnS) nanocluster was prepared. The polyhydroxy structure of PDA enhanced the water interaction with pH-responsive MnS nanoclusters via hydrogen bonds. At pH 5.5 conditions, the spin-lattice relaxation rate of MnS nanoclusters dramatically increased from 5.76 to 19.33 mM-1·s-1 after the PDA coating, which can be beneficial for efficient tumor magnetic resonance imaging. In addition, PDA endowed MnS nanoclusters with excellent biocompatibility and good photothermal conversion efficiency, which can be used for efficient tumor photothermal therapy (PTT). Furthermore, MnS nanoclusters possess the ability to release H2S in the acidic tumor microenvironment, effectively inhibiting mitochondrial respiration and adenosine triphosphate production. As a result, the expression of heat shock protein was obviously reduced, which can reduce the resistance of tumor cells to photothermal stimulation and enhance the efficacy of PTT. The released Mn2+ also displayed efficient peroxidase and glutathione oxidase-like activity, effectively inducing tumor cell ferroptosis and apoptosis at the same time. Therefore, this nanoplatform could be a potential nanotheranostic for magnetic resonance contrast enhancement and synergistic ferroptosis-PTT of tumors.
Collapse
Affiliation(s)
- Guiqi Ma
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xinyu Zhang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Kunlong Zhao
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Shuxuan Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ke Ren
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Mengyao Mu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Chenyu Wang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hui Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Jian Dong
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
30
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
31
|
Chen M, Zhao X, Wang B, Liu H, Chen Z, Sun L, Xu X. Graphene-wrapped petal-like gap-enhanced Raman tags for enhancing photothermal conversion and Raman imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123306. [PMID: 37683434 DOI: 10.1016/j.saa.2023.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Multifunctional nanoplatform that combine imaging, diagnostic, and therapeutic functions into a single agent have great significance for the early diagnosis and efficient treatment of diseases, particularly tumors. In this study, we report on a novel graphene-wrapped petal-like gap-enhanced Raman tags with mesoporous silica shells (MS-GP-GERTs). These MS-GP-GERTs have 4-NBT Raman reporters embedded in the gap between the gold nanocore and the petal-shaped shell and are wrapped in graphene and mesoporous silica. The results of photothermal measurement experiments show that graphene layers significantly enhanced the photothermal effect of gap-enhanced Raman tags (GERTs). The photothermal conversion efficiency of MS-GP-GERTs reaches 40.8%, comparable to pure graphene. Moreover, MS-GP-GERTs show good photothermal performance in agarose phantoms, heating the phantom to 47 °C within 5 min under a low power density laser (0.5 W/cm2). MS-GP-GERTs also exhibit excellent photothermal stability and physiological environment stability, making them a promising candidate for repeated photothermal therapy. Raman spectra and mapping imaging experiments demonstrate MS-GP-GERTs' low detection limit (100 fM), large imaging depth (2.74 mm), and excellent ability to image simulated biological tissue and cells. This novel Raman tag has the potential to become a multifunctional nano platform for integrating Raman imaging diagnosis and photothermal therapy.
Collapse
Affiliation(s)
- Ming Chen
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Xing Zhao
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Bin Wang
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China.
| | - Hongliang Liu
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Zhixiang Chen
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Lu Sun
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Xiaoxuan Xu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China
| |
Collapse
|
32
|
Li W, Liang M, Qi J, Ding D. Semiconducting Polymers for Cancer Immunotherapy. Macromol Rapid Commun 2023; 44:e2300496. [PMID: 37712920 DOI: 10.1002/marc.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Indexed: 09/16/2023]
Abstract
As a monumental breakthrough in cancer treatment, immunotherapy has attracted tremendous attention in recent years. However, one challenge faced by immunotherapy is the low response rate and the immune-related adverse events (irAEs). Therefore, it is important to explore new therapeutic strategies and platforms for boosting therapeutic benefits and decreasing the side effects of immunotherapy. In recent years, semiconducting polymer (SP), a category of organic materials with π-conjugated aromatic backbone, has been attracting considerable attention because of their outstanding characteristics such as excellent photophysical features, good biosafety, adjustable chemical flexibility, easy fabrication, and high stability. With these distinct advantages, SP is extensively explored for bioimaging and photo- or ultrasound-activated tumor therapy. Here, the recent advancements in SP-based nanomedicines are summarized for enhanced tumor immunotherapy. According to the photophysical properties of SPs, the cancer immunotherapies enabled by SPs with the photothermal, photodynamic, or sonodynamic functions are highlighted in detail, with a particular focus on the construction of combination immunotherapy and activatable nanoplatforms to maximize the benefits of cancer immunotherapy. Herein, new guidance and comprehensive insights are provided for the design of SPs with desired photophysical properties to realize maximized effectiveness of required biomedical applications.
Collapse
Affiliation(s)
- Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| |
Collapse
|
33
|
Huang H, Yu K, Husamelden E, Zhang H, Mao Z, Liu S, Zhang Q, Tian M, Zhang H, He Q. 177 Lu Radiolabelled AIE Dots for Multimodal Imaging Guided Photothermal/Radiopharmaceutical Tumor Therapy. Chem Asian J 2023; 18:e202300847. [PMID: 37842968 DOI: 10.1002/asia.202300847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) in the second near-infrared region (NIR-II,1000-1700 nm) have shown tremendous potential as theragnostic probe for tumor multimodal diagnostic imaging and combined treatment owing to their programmable optical, structural and functional properties. Herein, we presented a radionuclide 177 Lu-labeled AIEgen, 177 Lu-2TT-oC6B dots, for NIR-II fluorescence and SPECT/CT imaging-guided tumor photothermal and radiopharmaceutical therapy. Intriguingly, 177 Lu-2TT-oC6B self-assembled into 10 nm dots, exhibited high NIR-II fluorescence quantum yield (QY, 1.34 %) and unprecedented photothermal conversion efficiency (PCE, 70.3 %) in vitro, furtherly performed extremely long blood circulation (T1/2 =52.4 h), persistent tumor accumulation and retention in tumor (NIR-II SNR=5.56; SPECT SNR=36.59) via intravenous administration in vivo. Furthermore, upon NIR light activation and 177 Lu irradiation, 177 Lu-2TT-oC6B demonstrated great application potential in synergistic photothermal/radiopharmaceutical tumor therapy.
Collapse
Affiliation(s)
- Haoying Huang
- Department of Nuclear Medicine and PET Center, the Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Kaiwu Yu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Elkawad Husamelden
- Department of Nuclear Medicine and PET Center, the Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, the Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, the Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Haoke Zhang
- Department of Nuclear Medicine and PET Center, the Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
34
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
35
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
36
|
Sridharan B, Lim HG. Advances in photoacoustic imaging aided by nano contrast agents: special focus on role of lymphatic system imaging for cancer theranostics. J Nanobiotechnology 2023; 21:437. [PMID: 37986071 PMCID: PMC10662568 DOI: 10.1186/s12951-023-02192-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Photoacoustic imaging (PAI) is a successful clinical imaging platform for management of cancer and other health conditions that has seen significant progress in the past decade. However, clinical translation of PAI based methods are still under scrutiny as the imaging quality and clinical information derived from PA images are not on par with other imaging methods. Hence, to improve PAI, exogenous contrast agents, in the form of nanomaterials, are being used to achieve better image with less side effects, lower accumulation, and improved target specificity. Nanomedicine has become inevitable in cancer management, as it contributes at every stage from diagnosis to therapy, surgery, and even in the postoperative care and surveillance for recurrence. Nanocontrast agents for PAI have been developed and are being explored for early and improved cancer diagnosis. The systemic stability and target specificity of the nanomaterials to render its theranostic property depends on various influencing factors such as the administration route and physico-chemical responsiveness. The recent focus in PAI is on targeting the lymphatic system and nodes for cancer diagnosis, as they play a vital role in cancer progression and metastasis. This review aims to discuss the clinical advancements of PAI using nanoparticles as exogenous contrast agents for cancer theranostics with emphasis on PAI of lymphatic system for diagnosis, cancer progression, metastasis, PAI guided tumor resection, and finally PAI guided drug delivery.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
37
|
A R, Wang H, Nie C, Han Z, Zhou M, Atinuke OO, Wang K, Wang X, Liu S, Zhao J, Qiao W, Sun X, Wu L, Sun X. Glycerol-weighted chemical exchange saturation transfer nanoprobes allow 19F /1H dual-modality magnetic resonance imaging-guided cancer radiotherapy. Nat Commun 2023; 14:6644. [PMID: 37863898 PMCID: PMC10589257 DOI: 10.1038/s41467-023-42286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
Recently, radiotherapy (RT) has entered a new realm of precision cancer therapy with the introduction of magnetic resonance (MR) imaging guided radiotherapy systems into the clinic. Nonetheless, identifying an optimized radiotherapy time window (ORTW) is still critical for the best therapeutic efficacy of RT. Here we describe pH and O2 dual-sensitive, perfluorooctylbromide (PFOB)-based and glycerol-weighted chemical exchange saturation transfer (CEST) nano-molecular imaging probes (Gly-PFOBs) with dual fluorine and hydrogen proton based CEST MR imaging properties (19F/1H-CEST). Oxygenated Gly-PFOBs ameliorate tumor hypoxia and improve O2-dependent radiotherapy. Moreover, the pH and O2 dual-sensitive properties of Gly-PFOBs could be quantitatively, spatially, and temporally monitored by 19F/1H-CEST imaging to optimize ORTW. In this study, we describe the CEST signal characteristics exhibited by the glycerol components of Gly-PFOBs. The pH and O2 dual-sensitive Gly-PFOBs with19F/1H-CEST MR dual-modality imaging properties, with superior therapeutic efficacy and biosafety, are employed for sensitive imaging-guided lung cancer RT, illustrating the potential of multi-functional imaging to noninvasively monitor and enhance RT-integrated effectiveness.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Haoyu Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Chaoqun Nie
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Meifang Zhou
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Olagbaju Oluwatosin Atinuke
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Kaiqi Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Xiance Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Shuang Liu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Jingshi Zhao
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Wenju Qiao
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Xiaohong Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Lina Wu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Xilin Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China.
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China.
| |
Collapse
|
38
|
Das RS, Maiti D, Kar S, Bera T, Mukherjee A, Saha PC, Mondal A, Guha S. Design of Water-Soluble Rotaxane-Capped Superparamagnetic, Ultrasmall Fe 3O 4 Nanoparticles for Targeted NIR Fluorescence Imaging in Combination with Magnetic Resonance Imaging. J Am Chem Soc 2023; 145:20451-20461. [PMID: 37694929 DOI: 10.1021/jacs.3c06232] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integrating an NIR fluorescent probe with a magnetic resonance imaging (MRI) agent to harvest complementary imaging information is challenging. Here, we have designed water-soluble, biocompatible, noncytotoxic, bright-NIR-emitting, sugar-functionalized, mechanically interlocked molecules (MIMs)-capped superparamagnetic ultrasmall Fe3O4 NPs for targeted multimodal imaging. Dual-functional stoppers containing an unsymmetrical NIR squaraine dye interlocked within a macrocycle to construct multifunctional MIMs are developed with enhanced NIR fluorescence efficiency and durability. One of the stoppers of the axle is composed of a lipophilic cationic TPP+ functionality to target mitochondria, and the other stopper comprises a dopamine-containing catechol group to anchor at the surface of the synthesized Fe3O4 NPs. Fe3O4 NPs surface-coated with targeted NIR rotaxanes help to deliver ultrasmall magnetic NPs specifically inside the mitochondria. Two carbohydrate moieties are conjugated with the macrocycle of the rotaxane via click chemistry to improve the water solubility of MitoSQRot-(Carb-OH)2-DOPA-Fe3O4 NPs. Water-soluble, rotaxane-capped Fe3O4 NPs are used for live-cell mitochondria-targeted NIR fluorescence confocal imaging, 3D and multicolor imaging in combination with T2-weighted MRI on a 9.4 T MR scanner with a high relaxation rate (r2) of 180.7 mM-1 s-1. Biocompatible, noncytotoxic, ultrabright NIR rotaxane-capped superparamagnetic ultrasmall monodisperse Fe3O4 NPs could be a promising agent for targeted multimodal imaging applications.
Collapse
Affiliation(s)
- Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Debabrata Maiti
- Division of Medical Engineering, School of Medicine, The Jikei University, Tokyo 105-8461, Japan
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Pranab Chandra Saha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Aniruddha Mondal
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
39
|
Feng Z, Li Y, Chen S, Li J, Wu T, Ying Y, Zheng J, Zhang Y, Zhang J, Fan X, Yu X, Zhang D, Tang BZ, Qian J. Engineered NIR-II fluorophores with ultralong-distance molecular packing for high-contrast deep lesion identification. Nat Commun 2023; 14:5017. [PMID: 37596326 PMCID: PMC10439134 DOI: 10.1038/s41467-023-40728-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
The limited signal of long-wavelength near-infrared-II (NIR-II, 900-1880 nm) fluorophores and the strong background caused by the diffused photons make high-contrast fluorescence imaging in vivo with deep tissue disturbed still challenging. Here, we develop NIR-II fluorescent small molecules with aggregation-induced emission properties, high brightness, and maximal emission beyond 1200 nm by enhancing electron-donating ability and reducing the donor-acceptor (D-A) distance, to complement the scarce bright long-wavelength emissive organic dyes. The convincing single-crystal evidence of D-A-D molecular structure reveals the strong inhibition of the π-π stacking with ultralong molecular packing distance exceeding 8 Å. The delicately-designed nanofluorophores with bright fluorescent signals extending to 1900 nm match the background-suppressed imaging window, enabling the signal-to-background ratio of the tissue image to reach over 100 with the tissue thickness of ~4-6 mm. In addition, the intraluminal lesions with strong negatively stained can be identified with almost zero background. This method can provide new avenues for future long-wavelength NIR-II molecular design and biomedical imaging of deep and highly scattering tissues.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Siyi Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jin Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Tianxiang Wu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Junyan Zheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jianquan Zhang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
40
|
Pantwalawalkar J, Mhettar P, Nangare S, Mali R, Ghule A, Patil P, Mohite S, More H, Jadhav N. Stimuli-Responsive Design of Metal-Organic Frameworks for Cancer Theranostics: Current Challenges and Future Perspective. ACS Biomater Sci Eng 2023; 9:4497-4526. [PMID: 37526605 DOI: 10.1021/acsbiomaterials.3c00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Scientific fraternity revealed the potential of stimuli-responsive nanotherapeutics for cancer treatment that aids in tackling the major restrictions of traditionally reported drug delivery systems. Among stimuli-responsive inorganic nanomaterials, metal-organic frameworks (MOFs) have transpired as unique porous materials displaying resilient structures and diverse applications in cancer theranostics. Mainly, it demonstrates tailorable porosity, versatile chemical configuration, tunable size and shape, and feasible surface functionalization, etc. The present review provides insights into the design of stimuli-responsive multifunctional MOFs for targeted drug delivery and bioimaging for effective cancer therapy. Initially, the concept of cancer, traditional cancer treatment, background of MOFs, and approaches for MOFs synthesis have been discussed. After this, applications of stimuli-responsive multifunctional MOFs-assisted nanostructures that include pH, light, ions, temperature, magnetic, redox, ATP, and others for targeted drug delivery and bioimaging in cancer have been thoroughly discussed. As an outcome, the designed multifunctional MOFs showed an alteration in properties due to the exogenous and endogenous stimuli that are beneficial for drug release and bioimaging. The several reported types of stimuli-responsive surface-modified MOFs revealed good biocompatibility to normal cells, promising drug loading capability, target-specific delivery of anticancer drugs into cancerous cells, etc. Despite substantial progress in this field, certain crucial issues need to be addressed to reap the clinical benefits of multifunctional MOFs. Specifically, the toxicological compatibility and biodegradability of the building blocks of MOFs demand a thorough evaluation. Moreover, the investigation of sustainable and greener synthesis methods is of the utmost importance. Also, the low flexibility, off-target accumulation, and compromised pharmacokinetic profile of stimuli-responsive MOFs have attracted keen attention. In conclusion, the surface-modified nanosized design of inorganic diverse stimuli-sensitive MOFs demonstrated great potential for targeted drug delivery and bioimaging in different kinds of cancers. In the future, the preference for stimuli-triggered MOFs will open a new frontier for cancer theranostic applications.
Collapse
Affiliation(s)
- Jidnyasa Pantwalawalkar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| | - Prachi Mhettar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| | - Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra, India
| | - Rushikesh Mali
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, Maharashtra, India
| | - Anil Ghule
- Department of Chemistry, Shivaji University, 416013, Kolhapur Maharashtra, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra, India
| | - Suhas Mohite
- Bharati Vidyapeeth Deemed University, Yashwantrao Mohite Arts, Science and Commerce College, 411038 Pune, Maharashtra, India
| | - Harinath More
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra, India
| | - Namdeo Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| |
Collapse
|
41
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
42
|
Wang Y, Nan J, Ma H, Xu J, Guo F, Wang Y, Liang Y, Zhang J, Zhu S. NIR-II Imaging and Sandwiched Plasmonic Biosensor for Ultrasensitive Intraoperative Definition of Tumor-Invaded Lymph Nodes. NANO LETTERS 2023; 23:4039-4048. [PMID: 37071592 PMCID: PMC10176571 DOI: 10.1021/acs.nanolett.3c00829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Radical lymphadenectomy remains the cornerstone of preventing tumor metastasis through the lymphatic system. Current surgical resection of lymph nodes (LNs) based on fluorescence-guided surgery (FGS) suffers from low sensitivity/selectivity with only qualitative information, hampering accurate intraoperative decision-making. Herein, we develop a modularized theranostic system including NIR-II FGS and a sandwiched plasmonic chip (SPC). Intraoperative NIR-II FGS and detection of tumor-positive lymph nodes were performed on the gastric tumor to determine the feasibility of the modularized theranostic system in defining LN metastasis. Under the NIR-II imaging window, the orthotopic tumor and sentinel lymph nodes (SLNs) were successfully excised without ambient light interference in the operating room. Importantly, the SPC biosensor achieved 100% sensitivity and 100% specificity for tumor markers and realized rapid and high-throughput intraoperative SLN detection. We propose the synergetic design of combining the NIR-II FGS and suitable biosensor will substantially improve the efficiency of cancer diagnosis and therapy follow-up.
Collapse
Affiliation(s)
- Yajun Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jingjie Nan
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Huilong Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Feifei Guo
- Cancer Institute, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Yufeng Wang
- Cancer Institute, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
43
|
Gao H, Qi X, Zhang J, Wang N, Xin J, Jiao D, Liu K, Qi J, Guan Y, Ding D. Smart One-for-All Agent with Adaptive Functions for Improving Photoacoustic /Fluorescence Imaging-Guided Photodynamic Immunotherapy. SMALL METHODS 2023; 7:e2201582. [PMID: 36807567 DOI: 10.1002/smtd.202201582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Indexed: 05/17/2023]
Abstract
Multifunctional phototheranostics that integrate several diagnostic and therapeutic strategies into one platform hold great promise for precision medicine. However, it is really difficult for one molecule to possess multimodality optical imaging and therapy properties that all functions are in the optimized mode because the absorbed photoenergy is fixed. Herein, a smart one-for-all nanoagent that the photophysical energy transformation processes can be facilely tuned by external light stimuli is developed for precise multifunctional image-guided therapy. A dithienylethene-based molecule is designed and synthesized because it has two light-switchable forms. In the ring-closed form, most of the absorbed energy dissipates via nonradiative thermal deactivation for photoacoustic (PA) imaging. In the ring-open form, the molecule possesses obvious aggregation-induced emission features with excellent fluorescence and photodynamic therapy properties. In vivo experiments demonstrate that preoperative PA and fluorescence imaging help to delineate tumors in a high-contrast manner, and intraoperative fluorescence imaging is able to sensitively detect tiny residual tumors. Furthermore, the nanoagent can induce immunogenic cell death to elicit antitumor immunity and significantly suppress solid tumors. This work develops a smart one-for-all agent that the photophysical energy transformation and related phototheranostic properties can be optimized by light-driven structure switch, which is promising for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinwen Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nan Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingrui Xin
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Di Jiao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kaining Liu
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital /Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
44
|
Li Z, Liang PZ, Xu L, Zhang XX, Li K, Wu Q, Lou XF, Ren TB, Yuan L, Zhang XB. In situ orderly self-assembly strategy affording NIR-II-J-aggregates for in vivo imaging and surgical navigation. Nat Commun 2023; 14:1843. [PMID: 37012267 PMCID: PMC10070396 DOI: 10.1038/s41467-023-37586-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
J-aggregation, an effective strategy to extend wavelength, has been considered as a promising method for constructing NIR-II fluorophores. However, due to weak intermolecular interactions, conventional J-aggregates are easily decomposed into monomers in the biological environment. Although adding external carriers could help conventional J-aggregates stabilize, such methods still suffer from high-concentration dependence and are unsuitable for activatable probes design. Besides, these carriers-assisted nanoparticles are risky of disassembly in lipophilic environment. Herein, by fusing the precipitated dye (HPQ) which has orderly self-assembly structure, onto simple hemi-cyanine conjugated system, we construct a series of activatable, high-stability NIR-II-J-aggregates which overcome conventional J-aggregates carrier's dependence and could in situ self-assembly in vivo. Further, we employ the NIR-II-J-aggregates probe HPQ-Zzh-B to achieve the long-term in situ imaging of tumor and precise tumor resection by NIR-II imaging navigation for reducing lung metastasis. We believe this strategy will advance the development of controllable NIR-II-J-aggregates and precise bioimaging in vivo.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ping-Zhao Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ke Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao-Feng Lou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
45
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
46
|
Zhang J, Zhang K, Hao Y, Yang H, Wang J, Zhang Y, Zhao W, Ma S, Mao C. Polydopamine nanomotors loaded indocyanine green and ferric ion for photothermal and photodynamic synergistic therapy of tumor. J Colloid Interface Sci 2023; 633:679-690. [PMID: 36473358 DOI: 10.1016/j.jcis.2022.11.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The limited penetration depth of nanodrugs in the tumor and the severe hypoxia inside the tumor significantly reduce the efficacy of photothermal-photodynamic synergistic therapy (PTT-PDT). Here, we synthesized a methoxypolyethylene glycol amine (mPEG-NH2)-modified walnut-shaped polydopamine nanomotor (PDA-PEG) driven by near-infrared light (NIR). At the same time, it also loaded the photosensitizer indocyanine green (ICG) via electrostatic/hydrophobicinteractions and chelated with ferric ion (Fe3+). Under the irradiation of NIR, the asymmetry of PDA-PEG morphology led to the asymmetry of local photothermal effects and the formation of thermal gradient, which can make the nanomotor move autonomously. This ability of autonomous movement was proved to be used to improve the permeability of the nanomotor in three-dimensional (3D) tumor sphere. Fe3+ can catalyze endogenous hydrogen peroxide to produce oxygen, so as to overcome the hypoxia of tumor microenvironment and thereby generate more singlet oxygen to kill tumor cells. Animal experiments in vivo confirmed that the nanomotors had a good PTT-PDT synergistic treatment effect. The introduction of nanomotor technology has brought new ideas for cancer optical therapy.
Collapse
Affiliation(s)
- Jinzha Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ke Zhang
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Yijie Hao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongna Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingzhi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Shenglin Ma
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
47
|
Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, Liu A, He L, Wang T, Zvyagin AV, Yang B, Lin Q. Novel strategies for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci 2023; 11:1116-1136. [PMID: 36601661 DOI: 10.1039/d2bm01496c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is one of the most effective and commonly used cancer treatments for malignant tumors. However, the existing radiosensitizers have a lot of side effects and poor efficacy, which limits the curative effect and further application of radiotherapy. In recent years, emerging nanomaterials have shown unique advantages in enhancing radiosensitization. In particular, gold-based nanomaterials, with high X-ray attenuation capacity, good biocompatibility, and promising chemical, electronic and optical properties, have become a new type of radiotherapy sensitizer. In addition, gold-based nanomaterials can be used as a carrier to load a variety of drugs and immunosuppressants; in particular, its photothermal therapy, photodynamic therapy and multi-mode imaging functions aid in providing excellent therapeutic effect in coordination with RT. Recently, many novel strategies of radiosensitization mediated by multifunctional gold-based nanomaterials have been reported, which provides a new idea for improving the efficacy and reducing the side effects of RT. In this review, we systematically summarize the recent progress of various new gold-based nanomaterials that mediate radiosensitization and describe the mechanism. We further discuss the challenges and prospects in the field. It is hoped that this review will help researchers understand the latest progress of gold-based nanomaterials for radiosensitization, and encourage people to optimize the existing methods or explore novel approaches for radiotherapy.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Liang He
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
48
|
Du Z, Wang T. Knowledge domain and dynamic patterns in multimodal molecular imaging from 2012 to 2021: A visual bibliometric analysis. Medicine (Baltimore) 2023; 102:e32780. [PMID: 36705366 PMCID: PMC9875962 DOI: 10.1097/md.0000000000032780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multimodal molecular imaging technologies have been widely used to optimize medical research and clinical practice. Bibliometric analysis was performed to identify global research trends, hot spots, and scientific frontiers of multimodal molecular imaging technology from 2012 to 2021. The articles and reviews related to multimodal molecular imaging were retrieved from the Web of Science Core Collection. A bibliometric study was performed using CiteSpace and VOSviewer. A total of 4169 articles and reviews from 2012 to 2021 were analyzed. An increasing trend in the number of articles on multimodal molecular imaging technology was observed. These publications mainly come from 417 institutions in 92 countries, led by the USA and China. K. Bailey Freund published the most papers amongst the publications, while R.F. Spaide had the most co-citations. A dual map overlay of the literature shows that most publications were specialized in physics/materials/chemistry, and molecular/biology/immunology. Synergistic therapy in cancer, advanced nanotechnology, and multimodal imaging in ophthalmology are new trends and developing areas of interest. A global bibliometric and visualization analysis was used to comprehensively review the published research related to multimodal molecular imaging. This study may help in understanding the dynamic patterns of multimodal molecular imaging technology research and point out the developing areas of this field.
Collapse
Affiliation(s)
- Zhe Du
- Trauma Center, Peking University People’s Hospital, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education), Beijing, China
| | - Tianbing Wang
- Trauma Center, Peking University People’s Hospital, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education), Beijing, China
- *Correspondence: Tianbing Wang, Trauma Center, Peking University People’s Hospital, No.11 South Xizhimen Street, Beijing 100044, China (e-mail: )
| |
Collapse
|
49
|
Zhang L, Ma S, Wang T, Li S, Wang L, Li D, Tian Y, Zhang Q. Four-Photon Absorption Iron Complex for Magnetic Resonance/Photoacoustic Dual-Model Imaging and an Enhanced Ferroptosis Process. Anal Chem 2023; 95:1635-1642. [PMID: 36533710 DOI: 10.1021/acs.analchem.2c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four-photon absorption (4PA) multimodal therapeutic agent applied to tumor ferroptosis process tracking is rarely reported. In this paper, two functionalized terpyridine iron complexes (TD-FeCl3, TD-Fe-TD) with four-photon absorption properties were designed and synthesized. The four-photon absorption cross sections of TD-FeCl3 reached 6.87 × 10-74cm8·s3·photon-3. Due to its strong near-infrared absorption, TD-FeCl3 has excellent photoacoustic imaging (PAI) capability for accurate PA imaging. TD-FeCl3 has an efficient longitudinal electron relaxation rate (r1 = 2.26 mM-1 s-1) and high spatial resolution, which can be applied as T1-weighted magnetic resonance imaging (MRI) contrast agent for tumor imaging in vivo. In addition, Fe3+ as a natural ferroptosis tracer, TD-FeCl3, is able to deplete glutathione (GSH) effectively, which can further enhance the ferroptosis process. We found that the series of cheap transition metal complexes has four-photon absorption activity and can be used as multimodal (MRI/PAI) diagnostic agents for tumor tracing processes.
Collapse
Affiliation(s)
- Lidi Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Shanheng Ma
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tao Wang
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Shengli Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Lianke Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Dandan Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Qiong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
50
|
The Future of Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|