1
|
Xu S, Shao D, Wang J, Zheng X, Yang Z, Wang A, Chen Z, Gao Y. Pre-ligand-induced porous MOF as a peroxidase mimic for electrochemical analysis of deoxynivalenol (DON). Food Chem 2025; 480:143860. [PMID: 40112717 DOI: 10.1016/j.foodchem.2025.143860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Developing convenient and sensitive vomitoxin detection methods is crucial to prevent human health risks from excess deoxynivalenol (DON) in food products. This study synthesized porous electrochemical nanomaterial calcined PA-NH2-MIL-101 (CPNM) with abundant amino group modifications using a palmitic acid (PA) pre-ligand and amino functionalization scheme. PA-induced defect generation and which formed a high-stability porous structure that increased the peroxidase-like catalytic active site and thus improving electrochemical analytical performance. In addition, introducing amino groups in CPNM facilitated the covalent immobilization of DON antibodies. Therefore, an electrochemical immunosensing platform for detecting DON was developed by utilizing the electrocatalytic signals generated by Fe-MOF (MIL-101) nanozymes and thionine molecules. The proposed sensor showed a large linear range of 10-107 pg mL-1 with a detection limit of 9.6 pg mL-1 (S/N = 3) under optimized optimal conditions. Consequently, this innovative electrochemical immunosensing technique based on CPNM nanozymes paves the way for DON detection in food.
Collapse
Affiliation(s)
- Suhui Xu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Dan Shao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jiamin Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xiangfeng Zheng
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aijian Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiyan Chen
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Wei S, Cui T, Zhang S. pH-Dependent Structural Engineering of Sulfonate-Carboxylate Cu-MOFs for High Proton Conductivity. Inorg Chem 2025; 64:8819-8828. [PMID: 40265218 DOI: 10.1021/acs.inorgchem.5c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Metal-organic frameworks (MOFs) with free carboxylic acid (COOH) groups are promising for solid-state proton-conducting materials, owing to the Brønsted acidity, polarity, and the hydrogen-bonding ability of COOH groups. In this work, two Cu-MOFs with different dimensions were synthesized by adjusting the pH of the reaction solution using disodium-2,2'-disulfonate-4,4'-oxidibenzoic acid (Na2H2DSOA) and 4,4'-bipyridine (4,4'-bpy) as ligands to coordinate with Cu(II). The resulting compounds, CuDSOA-1 (([Cu(4,4'-bpy)2(H2O)2][Cu(H2DSOA)2(4,4'-bpy)(H2O)2]·12H2O)) and CuDSOA-2 ([Cu2(DSOA)(4,4'-bpy)2(H2O)2]·4H2O), have distinct dimensionalities and structures, mainly due to the pH's effect on carboxylic acid deprotonation. Notably, CuDSOA-1 with abundant COOH groups, uncoordinated sulfonate groups, and water molecules shows a significantly enhanced proton conductivity of 2.46 × 10-2 S cm-1 at 95 °C and 98% RH, surpassing CuDSOA-2 (3.40 × 10-5 S cm-1 at 85 °C and 98% RH). The conductivity mechanism was found to be a Grotthuss mechanism, confirmed by deuterium-hydrogen isotopic effects. This study offers a method to control the coordination of sulfonic-carboxylic acid ligands with Cu(II) by pH adjustment, aiming to create MOFs with ultrahigh proton conductivity.
Collapse
Affiliation(s)
- Shiyu Wei
- Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University, Guiyang 550025, China
| | - Tingting Cui
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215519, China
| | - Shunlin Zhang
- Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Kurahashi A, Yoshida Y, Kitagawa H. Self-assembled metal-organic framework composed of one-dimensional Rh(II/III) chains with an octahedral [RhN 6] coordination. Chem Commun (Camb) 2025. [PMID: 40308190 DOI: 10.1039/d5cc00176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
A mixed-valence rhodium(II/III)-based metal-organic framework with an octahedral [RhN6] coordination was synthesised for the first time in this study. The porous structure leads to a considerable amount of N2, H2, and CO2 gas adsorption and a relatively high proton conductivity when water molecules are adsorbed in the channel pores.
Collapse
Affiliation(s)
- Ai Kurahashi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Song J, Lei H, Lin L, Sun M, Han X, Dou Z, Tian Y, Zhu G. Continuous porous aromatic framework membranes with acid-/base-induced reversible isomerization for switchable ion conductivity. Chem Sci 2025; 16:6231-6239. [PMID: 40092592 PMCID: PMC11905450 DOI: 10.1039/d4sc08389j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Stimuli-responsive ion conductor materials are highly sought after in the fields of biological systems, clean energy, and smart devices. However, it remains a huge challenge to achieve acid/base switchable ion conductors owing to their stringent requirements of structural responsive behaviors, high stability and porosity. In this study, porous aromatic frameworks (PAFs) are utilized as a favorable platform to successfully design and prepare ion conductive powders and its continuous membranes based on a commercially available pH indicator. Interestingly, these PAFs possessed structural reversibility in response to acidic and alkaline environments, followed by an apparent ion-conducting switch of about 4 orders of magnitude (from 3.36 × 10-7 S cm-1 to 4.59 × 10-3 S cm-1) under the conditions of 25 °C and 98% RH. Moreover, the continuous PAF membrane exhibited an ultrahigh ion conductivity of 7.29 × 10-1 S cm-1 after 1 mol per L NaOH treatment and good acid/base switchable cycle stability. To our knowledge, this is the first report on exploring ion-conductive porous frameworks and continuous membranes that dynamically respond to acid/base chemical stimuli. This work provides a new research strategy for the application of ion conductors as so-called "smart materials" even in extremely harsh chemical environments.
Collapse
Affiliation(s)
- Jian Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Hengtao Lei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Lin Lin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mengxiao Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xueyan Han
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Zilong Dou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Yuyang Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| |
Collapse
|
5
|
Yang C, Liu Y, Li J, Zhuang S, Wang F, Lin Z, Zhao Y, Huang W. Linkage Position-Controlled Synthesis of Diverse Zirconium Metal-Organic Frameworks with Prominent Intrinsic Proton Conductivities. Inorg Chem 2025; 64:5271-5283. [PMID: 40042115 DOI: 10.1021/acs.inorgchem.5c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Herein, by engineering the geometries of the organic linkers, two pyrrolo-pyrrole-based low-symmetry tetracarboxylate linkers (TAPPs) were successfully designed and subsequently used for the construction of two new zirconium-based metal-organic frameworks (Zr-MOFs) (IAM-10 and IAM-11). The reduction of the linker symmetry arises from both the asymmetric pyrrolo-pyrrole core and the integration of both the para- and meta-benzoate coordination groups on the linkers. Both MOFs are composed of 8-connected Zr6 nodes and 4-connected highly deformed TAPP4- linkers with the same scu topology, but distinct linker arrangements can be observed in two structures. The specific rhomb-shaped geometry together with the flexible m-benzoate groups through the rotation of the peripheral phenyl rings allows this type of TAPP linker to generate unique conformations and arrangements in MOF structures to optimize the coordination bonds with the inorganic building blocks and adapt to the final topologies. Furthermore, the presence of well-defined hydrophilic channels in the reported MOFs allowed us to evaluate the potential for proton conduction. Both IAM-10 and IAM-11 show the prominent intrinsic proton conductivities of 1.13 × 10-2 and 2.69 × 10-3 S cm-1 at 90 °C and 95% RH, making them the top-performing proton-conductive Zr-MOFs.
Collapse
Affiliation(s)
- Chunhui Yang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuanqian Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Jingjing Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shenhao Zhuang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Feiyu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Zhihua Lin
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yonggang Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
6
|
Li XM, Jia J, Liu D, Xiao M, Xu L. Directed Regulation of Proton Transport Pathways in MOF-808. Inorg Chem 2025; 64:5196-5201. [PMID: 40017295 DOI: 10.1021/acs.inorgchem.5c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The directed regulation of proton transport pathways in proton conductors, facilitated by the well-defined crystal structures of metal-organic frameworks (MOFs), is important for the development of advanced materials. In this study, MOF-808-2.5SO4-His is synthesized by progressive directed modification on the framework using functional molecules. The incorporation of sulfate and imidazole groups into MOF-808-2.5SO4-His results in a high proton conductivity of 1.37 × 10-2 S cm-1 at 70 °C and 98% relative humidity (RH). The analysis of temperature-dependent proton conductivity indicates that MOF-808-2.5SO4-His facilitates proton transport through the Grotthuss mechanism at 98% RH and the temperature range of 30-70 °C. Additionally, MOF-808-2.5SO4-His exhibits good cycling stability and durability in performance. This feasible approach enhances the comprehension of proton transfer mechanism and promotes the development of viable strategies for controllable construction of proton conductors.
Collapse
Affiliation(s)
- Xiao-Min Li
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, P. R. China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Junchao Jia
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Dongbo Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Mengyang Xiao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lang Xu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, P. R. China
| |
Collapse
|
7
|
Unnikrishnan PM, Premanand G, Das SK. Fabricating MOF-GO Composites by Modulating Graphene Oxide Content to Achieve Superprotonic Conductivity. Inorg Chem 2025; 64:3506-3517. [PMID: 39932949 DOI: 10.1021/acs.inorgchem.4c05114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Metal-organic frameworks (MOFs) have emerged as crucial materials for proton conductivity, especially in the context of the growing need for alternative energy sources. Enhancing the proton conductivity of MOFs has been a major focus with one effective approach involving the integration of MOFs with graphene oxide (GO) to form composite materials. In this study, Cr-MIL-101 MOF is selected, and its growth on GO sheets has been achieved through in situ crystallization, leading to the formation of MOF-GO composites with varying GO content, MIL-101/GO(x%), (x = 1%, 2%, and 5%). The oxygen functional groups on the 2D-GO layer e.g., carboxyl, hydroxyl, and epoxy groups improve both the acidity and hydrophilicity of the composite, which directly contributes to improved proton conductivity. All the composites, fabricated in this work, exhibit higher conductivity than that of the parent MOF due to the additional acidic functional groups introduced by GO. Among the different composites, the MIL-101/GO(2%) composite exhibits the highest proton conductivity, achieving superprotonic conductivity value of 0.105 S cm-1 at 80 °C and 98% relative humidity (RH). These results highlight the potential of MOF-GO composites for their application as nanofillers in proton exchange membranes for proton exchange membrane fuel cells (PEMFCs) and other energy-related technologies.
Collapse
Affiliation(s)
| | - Gopika Premanand
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
8
|
Mukherjee D, Saha A, Moni S, Volkmer D, Das MC. Anhydrous Solid-State Proton Conduction in Crystalline MOFs, COFs, HOFs, and POMs. J Am Chem Soc 2025; 147:5515-5553. [PMID: 39929703 DOI: 10.1021/jacs.4c14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Strategic design of solid-state proton-conducting electrolytes for application in anhydrous proton-exchange membrane fuel cells (PEMFCs) has gained burgeoning interest due to a spectrum of advantageous features, including higher CO tolerance and ease in the water management systems. Toward this direction, crystalline materials like metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and polyoxometalates (POMs) are emerging PEM materials, offering strategic structural engineering through crystallography, thus enabling ultrahigh anhydrous proton conductivity up to 10-2-10-1 S/cm. This Perspective highlights significant progress achieved thus far with such crystalline platforms in the domain of anhydrous proton conduction across a wide temperature window (sub-zero to above 100 °C). Based on their structural backgrounds, these platforms are categorized into four classes (viz. MOFs, COFs, HOFs, and POMs) with a detailed evolutionary timeline since their emergence early in 2009. Insightful discussions with a key focus on the strategies undertaken to attain anhydrous proton conductivity along with implementation in fuel cell technology through membrane electrode assembly are presented. A section on "Critical Analysis and Future Prospects" provides decisive key viewpoints on those overlooked issues with future endorsement (e.g., performance assessment with CO tolerance analysis and fuel cell test stand) for further development while comparing them with other anhydrous platforms from both academic and industrial perspectives.
Collapse
Affiliation(s)
- Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Apu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Subhodeep Moni
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry, Institute of Physics, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
9
|
Hameed YAS, Alkhathami N, Snari RM, Munshi AM, Alaysuy O, Hadi M, Alsharif MA, Khalil MA, El-Metwaly NM. Novel amino-functionalized MOF-based sensor for zinc ion detection in water and blood serum samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125432. [PMID: 39549333 DOI: 10.1016/j.saa.2024.125432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Aquatic systems with low zinc levels can experience a significant decrease in carbon dioxide uptake and limited growth of phytoplankton species. In this study, we describe the use of a new fluorescent sensor based on NH2-MIL-53(Al), and modified with glutaraldehyde and sulfadoxine, for selectively detecting zinc ions in water and blood serum samples. Characterization of the synthesized material was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirming successful functionalization and preservation of the MOF structure. The sensor's performance for Zn2+ detection was evaluated by spectrofluorometry, demonstrating a significant fluorescence enhancement upon Zn2+ binding due to the interaction between Zn2+ ions and the sulfonamide groups. With a detection limit as low as 3.14 × 10-2 ppm, the sensor demonstrates high selectivity for Zn2+ over other common metal ions. The sensor's response is rapid, stable, and reproducible, making it suitable for practical applications. Real sample analysis was conducted in tap water and blood serum samples, with the results compared to those obtained using ICP-OES and a colorimetric test with 5-bromo-PAPS. The comparison confirmed the high accuracy and reliability of the fluorescent sensor in detecting Zn2+ ions in complex matrices. NH2-MIL-53(Al) modified with glutaraldehyde and sulfadoxine shows potential as a selective fluorescent sensor for Zn2+ detection, making it a valuable tool for monitoring the environment and biology.
Collapse
Affiliation(s)
- Yasmeen A S Hameed
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 73222, Saudi Arabia
| | - Nada Alkhathami
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa M Munshi
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Muhammad Hadi
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Marwah A Alsharif
- Department of Physics, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - M A Khalil
- Egyptian Propylene and Polypropylene Company, Port Said 42511, Egypt
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
10
|
Li Z, Wan C, Liang X, Feng S, Zhang F, Feng L, Wen C. Competitive Effect of Surface Hydrophobicity-Hydrophilicity and the Number of Accessible Protons on Water-Assisted Proton Conductivity in Metal-Organic Frameworks: Dielectric σ-Relaxation Triggered by Disordered Guest Ionic Migration and Its Mechanism. Inorg Chem 2025; 64:2256-2275. [PMID: 39879097 DOI: 10.1021/acs.inorgchem.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The rapid upsurge of metal-organic frameworks (MOFs) has sparked profound interest in their potential as proton conductors for proton exchange membrane fuel cells. However, proton-conducting behaviors of hydrophobic MOFs remain poorly understood compared with their hydrophilic counterparts, largely due to the absence of a microscopic phase separation structure akin to that found in Nafion membranes. Herein, we demonstrate a strategy for regulating the structures and proton conductivities of MOFs by separately incorporating hydrophobic -C(CF3)2- group alongside hydrophilic -O- and -SO2- groups into organic ligands as linkers. Three analogous MOFs, {[Zr6(obba)4(μ3-O)4(μ3-OH)4(OH)3(H2O)3(HCOO)]·3.5DMF·3CH3COCH3}n (Zr-obba, H2obba = 4,4'-oxybis(benzoic acid)), {[Zr6(sdba)4(μ3-O)4(μ3-OH)4(OH)2(H2O)2(HCOO)2]·2(CH3)2NH2+·2HCOO-·7(CH3)2NH·6.5H2O}n (Zr-sdba, H2sdba = 4,4'-sulfonyldibenzoic acid), and {[Zr6(hfipbba)4(μ3-O)4(μ3-OH)4(OH)4(H2O)4]·7.5(CH3)2NH2+·7.5HCOO-·3.5(CH3)2NH}n (Zr-hfipbba, H2hfipbba = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid)), were prepared and characterized. Interestingly, we observed a trend in proton conductivity: Zr-obba > Zr-sdba > Zr-hfipbba, which can be attributed to the competitive effect of surface hydrophobicity-hydrophilicity and the availability of accessible protons. More importantly, we identified dielectric σ-relaxation in Zr-sdba and Zr-hfipbba, which is linked to the thermally activated migration of disordered guest ions within the MOFs, highlighting the significant relationship between proton conduction and dielectric relaxation. This finding contributes to a deeper understanding of the critical roles that hydrophobicity-hydrophilicity play in proton conduction and the dielectric σ-relaxation mechanism in crystalline MOFs.
Collapse
Affiliation(s)
- Zhongyi Li
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Chengan Wan
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| | - Xiaoqiang Liang
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Shaoqiang Feng
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Lei Feng
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| | - Chen Wen
- Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China
| |
Collapse
|
11
|
Lin H, Zhang H, Li Y, Yuan F, Zheng X, He L, Li L, Zhang Y, Xiang S, Chen B, Zhang Z. A 3D Robust and Microporous B←N Framework with 8-connected Sandwich Nodes for Efficient Separation of Hexane Isomers. Angew Chem Int Ed Engl 2025; 64:e202415968. [PMID: 39462762 DOI: 10.1002/anie.202415968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Recently B←N organic frameworks (BNFs) have gained substantial attention owing to their unique dative bond energy, which imparts them with specialized functionalities across a broad spectrum of applications. Despite previous reports on BNFs with permanent porosity, research endeavors towards three-dimensional (3D) BNFs with similar properties are scarce, with no report of robust 3D BNFs featuring permanent porosity to date. Herein, electrostatic complementary strategy is proposed to construct the first example of 3D robust and microporous BNF, BNF-100, featuring a reo topology with 8-connected sandwich nodes assembled via dative B←N bonds. The activated form BNF-100 a exhibits excellent chemical stability and permanent porosity with Langmuir surface area of 645.9 m2 g-1 and pore volume of 0.23 cm3 g-1. BNF-100 a can efficiently separate hexane isomers through sieving mechanisms, as confirmed by vapor adsorption experiments and dynamic breakthrough tests, surpassing the performance of most MOF materials. Finally, we achieved the purification of different branched hexane isomers using a single breakthrough column in a combined breakthrough and purging experiment, which is the first reported instance in the literature on hexane isomer separation.
Collapse
Affiliation(s)
- Hongyu Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Furong Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xiaoqing Zheng
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yongfan Zhang
- College of Chemistry, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
12
|
Liu RL, Ren HM, Zhao S, Lin D, Cheng K, Li G, Wang DY. Inherent Ultrahigh Proton Conductivity of Two Highly Stable COOH-Functionalized Hafnium-Based Metal-Organic Frameworks. Inorg Chem 2025; 64:1183-1192. [PMID: 39757465 DOI: 10.1021/acs.inorgchem.4c04935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Although there has been some recent interest in the proton conductivity (σ) of highly stable carboxyl metal-organic frameworks (MOFs) made of tetravalent metal ions, given their potential applications in fuel cells and electrochemical sensing, research on MOFs constructed by hafnium(IV) ions needs to be expanded significantly. Based on this, we used two common and easily prepared phenylpoly(carboxylic acid) ligands, 1,2,4-phenyltricarboxylic acid and 1,2,4,5-phenyltetracarboxylic acid, to react with hafnium tetrachloride, respectively, creating two porous hafnium(IV)-based MOFs, UiO-66-COOH-Hf (1) and UiO-66-(COOH)2-Hf (2), with the same structure as UiO-66-Hf but with different numbers of free carboxylic groups. A series of stability assays revealed that the two MOFs had excellent structural rigidity, including thermal and water stability. More crucially, alternating current impedance experiments demonstrate that the σ of the two MOFs varies positively with humidity and temperature, reaching up to 10-3 S·cm-1 (1: 2.83 × 10-3 S·cm-1 and 2: 4.35 × 10-3 S·cm-1) under the right conditions (98% relative humidity and 100 °C). The latter roughly doubles the proton conductivity of the former, which is due to the difference in the number of free carboxyl groups, as confirmed by the structural analysis and proton conduction mechanism investigation. The high intrinsic σ of the two MOFs lays a solid foundation for their future application and affords new inspiration for developing high-performance proton-conductive materials.
Collapse
Affiliation(s)
- Rui-Lan Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Hui-Min Ren
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuhui Zhao
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Debo Lin
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Kaipeng Cheng
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dan-Yang Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| |
Collapse
|
13
|
Heng JM, Zhu HL, Zhao ZH, Liao PQ, Chen XM. Fabrication of Ultrahigh-Loading Dual Copper Sites in Nitrogen-Doped Porous Carbons Boosting Electroreduction of CO 2 to C 2H 4 Under Neutral Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415101. [PMID: 39548939 DOI: 10.1002/adma.202415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Synthesis of high-loading atomic-level dispersed catalysts for highly efficient electrochemical CO2 reduction reaction (eCO2RR) to ethylene (C2H4) in neutral electrolyte remain challenging tasks. To address common aggregation issues, a host-guest strategy is employed, by using a metal-azolate framework (MAF-4) with nanocages as the host and a dinuclear Cu(I) complex as the guest, to form precursors for pyrolysis into a series of nitrogen-doped porous carbons (NPCs) with varying loadings of dual copper sites, namely NPCMAF-4-Cu2-21 (21.2 wt%), NPCMAF-4-Cu2-11 (10.6 wt%), and NPCMAF-4-Cu2-7 (6.9 wt%). Interestingly, as the loading of dual copper sites increased from 6.9 to 21.2 wt%, the partial current density for eCO2RR to yield C2H4 also gradually increased from 38.7 to 93.6 mA cm-2. In a 0.1 m KHCO3 electrolyte, at -1.4 V versus reversible hydrogen electrode (vs. RHE), NPCMAF-4-Cu2-21 exhibits the excellent performance with a Faradaic efficiency of 52% and a current density of 180 mA cm-2. Such performance can be attributed to the presence of ultrahigh-loading dual copper sites, which promotes C─C coupling and the formation of C2 products. The findings demonstrate the confinement effect of MAF-4 with nanocages is conducive to the preparation of high-loading atomic-level catalysts.
Collapse
Affiliation(s)
- Jin-Meng Heng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
14
|
Wu WW, Cai JJ, Liang XY, Li ZZ, Andra S, Gao K, Lun HJ, Li YM. Anisotropic Single-Crystal Proton Conduction in a Sodium Chain-Based Coordination Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68358-68367. [PMID: 39582227 DOI: 10.1021/acsami.4c15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Coordination polymers (CPs) have been identified as promising candidate materials in the field of proton conduction owing to their customizable and diverse structures. However, research on CPs based on alkali metal ions has been less advanced, and the mechanism of proton transport in these materials remains unclear. Herein, a new coordination polymer, [Na2(pytet)(Hdat)2(H2O)3]·2H2O (abbreviated as Na-PyDat) (pytet4- = pyrene-1,3,6,8-tetrasulfonate, dat = 2-hydroxy-4,6-diamino-1,3,5-triazine), has been synthesized based on the starting materials of Na4pytet and 2-chloro-4,6-diamino-1,3,5-triazine, with the latter undergoing in situ transformation to dat under hydrothermal conditions. Na-PyDat is assembled from [Na-O-Na]n double strands and extends to a 3D network through multiple inter- and intrachain hydrogen bonds. Alternate current (AC) impedance analysis shows that Na-PyDat exhibits highly anisotropic single-crystal proton conduction, with a conductivity of 1.04 × 10-4 S cm-1 at 338 K and 90% relative humidity (RH) along the [100] direction, which is 1-2 orders of magnitude higher than those along the [011] and [01̅1] directions, as well as the powder sample under identical conditions. The high proton conductivity along the a-axis direction is closely related to the continuous hydrogen bond chain. To the best of our knowledge, this is one of the few studies reporting single-crystal proton conduction in alkali metal CPs. Moreover, by mixing Na-PyDat with Nafion, the composite membrane presents an enhanced proton conductivity of 4.33 × 10-3 S cm-1 at 338 K and 90% RH, highlighting its potential for future applications in fuel cells.
Collapse
Affiliation(s)
- Wen-Wen Wu
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Jun-Jie Cai
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Xin-Yu Liang
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Zhen-Zhu Li
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Swetha Andra
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Kun Gao
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Hui-Jie Lun
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Ya-Min Li
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
15
|
Zhu L, Yang H, Xu T, Shen F, Si C. Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks. NANO-MICRO LETTERS 2024; 17:87. [PMID: 39658670 PMCID: PMC11631836 DOI: 10.1007/s40820-024-01558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024]
Abstract
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices. Among them, metal-organic frameworks (MOFs) present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity, designability, and porosity. In particular, several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors, such as charged network construction, ligand functionalization, metal-center manipulation, defective engineering, guest molecule incorporation, and pore-space manipulation. With the implementation of these strategies, proton-conducting MOFs have developed significantly and profoundly within the last decade. Therefore, in this review, we critically discuss and analyze the fundamental principles, design strategies, and implementation methods targeted at improving the proton conductivity of MOFs through representative examples. Besides, the structural features, the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously. Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research. We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials.
Collapse
Affiliation(s)
- Liyu Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China
| | - Hongbin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| | - Feng Shen
- Agro-Environmenta Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, People's Republic of China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
16
|
Pramanik B, Sahoo R, Yoshida Y, Manna AK, Kitagawa H, Das MC. Proton Conduction via Water and Ammonia Coordinated Metal Cationic Species in MOF and MHOF Platforms. Chemistry 2024; 30:e202402896. [PMID: 39289889 DOI: 10.1002/chem.202402896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Although metal-organic frameworks (MOFs) and metalo hydrogen-bonded organic frameworks (MHOFs) are designed as promising solid-state proton conductors by incorporating various protonic species intrinsically or extrinsically, design and development of such materials by employing the concept of proton conduction through coordinated polar protic solvent is largely unexplored. Herein, we have constructed two proton-conducting materials having different solvent coordinated metal cationic species: In-H2O-MOF, ({[In(H2O)6][In3(Pzdc)6] ⋅ 15H2O}n; H2Pzdc: pyrazine-2,3-dicarboxylic acid) with coordinated water molecules from hexaaquaindium cationic species, and MHOF-4, ([{Co(NH3)6}2(2,6-NDS)2(H2O)2]n; 2,6-H2NDS: 2,6-naphthalenedisulfonic acid) with coordinated ammonia from hexaammoniacobalt cationic species. Interestingly, higher proton conductivity was achieved for In-H2O-MOF (1.5×10-5 S cm-1) than MHOF-4 (6.3×10-6 S cm-1) under the extreme conditions (80 °C and 95 % RH), which could be attributed to enhanced acidity of coordinated water molecules having much lower pKa value than that of coordinated ammonia. Greater charge polarization on hydrogen atoms of In3+-coordinated water molecules than that of Co2+-coordinated ammonia led to the high conductivity of In-H2O-MOF, as evident by quantum chemical studies. Such a comparative study on metal-coordinated protic polar solvents in achieving proton conduction in crystalline solids is yet to be made.
Collapse
Affiliation(s)
- Bikram Pramanik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, 517619, Tirupati, A.P, India
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| |
Collapse
|
17
|
Kim D, Park J, Park J, Jang J, Han M, Lim S, Ryu DY, You J, Zhu W, Yamauchi Y, Kim J. Surfactant-Free, Size-Controllable, and Scalable Green Synthesis of ZIF-8 Particles with Narrow Size Distribution by Tuning Key Reaction Parameters in Water Solvent. SMALL METHODS 2024; 8:e2400236. [PMID: 38697925 PMCID: PMC11672178 DOI: 10.1002/smtd.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/31/2024] [Indexed: 05/05/2024]
Abstract
The chemical/physical properties and reliable performance of nanoporous materials are strongly influenced by the particle size and corresponding distribution. Among many types of MOFs, ZIF-8, is still widely used and many studies have been conducted to control the particle size and uniformity of ZIF-8 using surfactants and organic solvents. However, the use of surfactants and organic solvents process is expensive and may cause environmental pollution. For the first time, in this paper, a surfactant-free, size-controllable, and scalable green synthesis method of ZIF-8 particles is reported using four reaction parameters (temperature, concentration, pouring time, and reactant ratio) that affect the formation of nuclei and growth of ZIF-8 crystals. The as-synthesized ZIF-8 nanoparticles show great uniformity and controllable particle sizes in the wide range of 147-915 nm. In addition, a 2 L large-scale synthesis of ZIF-8 with narrow size distribution is developed by finely tuned particle size in water without any additives. To demonstrate the efficient utilization of nanopores according to the particle size and size distribution, an adsorption test is conducted on the ZIF-8 nanoparticles. This study will support the synthesis of size-controlled ZIF-8 with narrow size distribution and their composites for achieving high performance in the emerging applications.
Collapse
Affiliation(s)
- Donggyun Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722South Korea
| | - Jinhyeon Park
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722South Korea
| | - Jisoo Park
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722South Korea
| | - Jieun Jang
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722South Korea
| | - Minsu Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
| | - Si‐Hyung Lim
- School of Mechanical EngineeringKookmin UniversitySeoul02707Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722South Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources and Graduate School of BiotechnologyCollege of Life SciencesKyung Hee University1732 Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do446‐701South Korea
| | - Wenkai Zhu
- College of Chemistry and Materials EngineeringZhejiang A&F UniversityHangzhou311300China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
- Department of Materials Process Engineering Graduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Jeonghun Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722South Korea
| |
Collapse
|
18
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
19
|
Gong L, Chen L, Lin Q, Wang L, Zhang Z, Ye Y, Chen B. Nanoscale Metal-Organic Frameworks as a Photoluminescent Platform for Bioimaging and Biosensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402641. [PMID: 39011737 DOI: 10.1002/smll.202402641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The tracking of nanomedicines in their concentration and location inside living systems has a pivotal effect on the understanding of the biological processes, early-stage diagnosis, and therapeutic monitoring of diseases. Nanoscale metal-organic frameworks (nano MOFs) possess high surface areas, definite structure, regulated optical properties, rich functionalized sites, and good biocompatibility that allow them to excel in a wide range of biomedical applications. Controllable syntheses and functionalization endow nano MOFs with better properties as imaging agents and sensing units for the diagnosis and treatment of diseases. This minireview summarizes the tunable synthesis strategies of nano MOFs with controllable size, shape, and regulated luminescent performance, and pinpoints their recent advanced applications as optical elements in bioimaging and biosensing. The current limitations and future development directions of nano MOF-contained materials in bioimaging and biosensing applications are also discussed, aiming to expand the biological applications of nano MOF-based nanomedicine and facilitate their production or clinical translation.
Collapse
Affiliation(s)
- Lingshan Gong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Lixiang Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Quanjie Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362046, P. R. China
| | - Lihua Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| |
Collapse
|
20
|
Yu MQ, Yang CY, Dong LJ, Yan Y, Feng YJ, Chen Z, Xiao HP, Wang HY, Ge JY. Metal Effect on the Proton Conduction of Three Isostructural Metal-Organic Frameworks and Pseudo-Capacitance Behavior of the Cobalt Analogue. Inorg Chem 2024; 63:19287-19298. [PMID: 39344080 DOI: 10.1021/acs.inorgchem.4c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three isostructural transition metal-organic frameworks, [M(bta)0.5(bpt)(H2O)2]·2H2O (M = Co (1), Ni (2), Zn (3), H4bta = 1,2,4,5-benzenetetracarboxylic acid, bpt = 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole), were successfully constructed using different metal cations. These frameworks exhibit a three-dimensional network structure with multiple coordinated and lattice water molecules within the framework, contributing to high stability and a rich hydrogen-bond network. Proton conduction studies revealed that, at 333 K and 98% relative humidity, the proton conductivities (σ) of MOFs 1-3 reached 1.42 × 10-2, 1.02 × 10-2, and 6.82 × 10-3 S cm-1, respectively. Compared to the proton conductivity of the initial ligands, the σ values of the complexes increased by 2 orders of magnitude, with the activation energies decreasing from 0.36 to 0.18 eV for 1, 0.09 eV for 2, and 0.12 eV for 3. An in-depth analysis of the correlation between different metal centers and proton conduction performance indicated that the varying coordination abilities of the metal cations and the water absorption capacities of the frameworks might account for the differences in conductivity. Additionally, the potential of 1 as a supercapacitor electrode material was assessed. 1 exhibited a specific capacitance of 61.13 F g-1 at a current density of 0.5 A g-1, with a capacitance retention of 82.4% after 5000 cycles, making it a promising candidate for energy storage applications.
Collapse
Affiliation(s)
- Meng-Qian Yu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Cai-Yi Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Lian-Jun Dong
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yong Yan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yu-Jie Feng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hong-Ping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hai-Ying Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
21
|
Jin S, Fu Y, Jie K, Dai H, Luo YJ, Ye L, Zhou C, Xu W. High-Entropy Lanthanide-Organic Framework as an Efficient Heterogeneous Catalyst for Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. Chemistry 2024; 30:e202400756. [PMID: 38727558 DOI: 10.1002/chem.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 06/19/2024]
Abstract
Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.
Collapse
Affiliation(s)
- Siyang Jin
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yu Fu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023
| | - Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Yun Jie Luo
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Liang Ye
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University -, Ningbo Shuangneng Environmental Technology Co. Ltd., Ningbo University, Ningbo, 315211
| |
Collapse
|
22
|
Liu J, Yan W, Ma Y, Li X, Zhong J, Zheng X, Liu Z. Improving Proton-Conducting Stability by Regulating Pore Size of MOF Materials through Mixed Grinding. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34240-34253. [PMID: 38914052 DOI: 10.1021/acsami.4c07876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An effective strategy to improve the proton conductivity of metal-organic frameworks (MOFs) is to regulate the pore size of composite materials. In this work, composite materials of MOF-808@MOG-808-X (X is the mass ratios of MOF-808 to MOG-808) was successfully prepared by grinding and blending. MOF-808@MOG-808-1:2 was optimal for its suitable pore structure, which facilitates the practical construction of hydrogen bonding networks, promotes rapid and stable proton conduction, and enables the proton conductivity, achieving a 1 + 1 > 2 effect. At 353 K and 93% relative humidity (RH), the maximum proton conductivity of MOF-808@MOG-808-1:2 reaches 1.08 × 10-1 S·cm-1. Next, MOF-808@MOG-808-1:2 was blended with chitosan (CS) to obtain composite proton exchange membranes (PEMs), namely, CS@MOF-808@MOG-808-1:2-Y (Y = 5%, 10%, or 15%) with the maximum proton conductivity reaching 1.19 × 10-2 S·cm-1 at 353 K and 93% RH for CS@MOF-808@MOG-808-1:2-10% with additional stability. The conductive mechanisms of the composite materials were revealed by activation energy calculation. This investigation not only proposes a simple grinding-blending method for the development of MOF-doped composite materials for proton conductivity but also provides a producting material basis for future applications of MOFs in proton exchange membrane fuel cells (PEMFCs).
Collapse
Affiliation(s)
- Jie Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Wenxuan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Yingying Ma
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Xinran Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Jiajun Zhong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Xiaofeng Zheng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| |
Collapse
|
23
|
Zhang T, Xia Y, Xie YD, Du HJ, Shi ZQ, Hu HL, Zhang H, Guo ZC, Li G. Superprotonic conductivity of ketoenamine covalent-organic frameworks grafted by imidazole-based units. J Colloid Interface Sci 2024; 665:554-563. [PMID: 38552572 DOI: 10.1016/j.jcis.2024.03.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
The achievement of covalent organic frameworks (COFs) with high stability and exceptional proton conductivity is of tremendous practical importance and challenge. Given this, we hope to prepare the highly stable COFs carrying CN connectors and enhance their proton conductivity via a post-modification approach. Herein, one COF, TpTta, was successfully synthesized by employing 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)-trianiline (Tta) as starting materials, which has a β-ketoenamine structure bearing a large amount of -NH groups and intramolecular H-bonds. TpTta was then post-modified by inserting imidazole (Im) and histamine (His) molecules, yielding the corresponding COFs, Im@TpTta and His@TpTta, respectively. As a result, their proton conductivities were surveyed under changeable temperatures (30-100 °C) and relative humidities (68-98 %), revealing a degree of temperature and humidity dependence. Impressively, under identical conditions, the optimum proton conductivities of the two post-modified COFs are 1.14 × 10-2 (Im@TpTta) and 3.45 × 10-3 S/cm (His@TpTta), which are significantly greater than that of the pristine COF, TpTta (2.57 × 10-5 S/cm). Finally, their proton conduction mechanisms were hypothesized based on the computed activation energy values, water vapor adsorption values, and structural properties of these COFs. Additionally, the excellent electrochemical stability of the produced COFs was expressed, as well as the prospective application value.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China; Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Yu Xia
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Ya-Dian Xie
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Hai-Jun Du
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, PR China.
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China.
| | - Hong Zhang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Zhong-Cheng Guo
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
24
|
Li XM, Jia J, Zhao M, Liu D, Gao J, Lan YQ. Cooperative defect engineering and ligand modification in UiO-66 to achieve high proton conductivity. Chem Commun (Camb) 2024; 60:6777-6780. [PMID: 38868861 DOI: 10.1039/d4cc01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
D-UiO-66-NIM with high proton conductivity has been synthesized through the dual strategy of defect engineering and ligand modification. Moreover, D-UiO-66-NIM exhibits good temperature cycling stability and durability in proton conductivity. This work has developed a new method to obtain efficient MOF-based proton conductors.
Collapse
Affiliation(s)
- Xiao-Min Li
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Junchao Jia
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Mingyang Zhao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Dongbo Liu
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, P. R. China.
| |
Collapse
|
25
|
Feng J, Li Y, Xie L, Tong J, Li G. High H 2O-Assisted Proton Conduction in One Highly Stable Sr(II)-Organic Framework Constructed by Tetrazole-Based Imidazole Dicarboxylic Acid. Molecules 2024; 29:2656. [PMID: 38893530 PMCID: PMC11173819 DOI: 10.3390/molecules29112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Solid electrolyte materials with high structural stability and excellent proton conductivity (σ) have long been a popular and challenging research topic in the fuel cell field. This problem can be addressed because of the crystalline metal-organic frameworks' (MOFs') high structural stability, adjustable framework composition, and dense H-bonded networks. Herein, one highly stable Sr(II) MOF, {[Sr(H2tmidc)2(H2O)3]·4H2O}n (1) (H3tmidc = 2-(1H-tetrazolium-1-methylene)-1H-imidazole-4,5-dicarboxylic acid) was successfully fabricated, which was structurally characterized by single-crystal X-ray diffraction and electrochemically examined by the AC impedance determination. The results demonstrated that the σ of the compound manifested a positive dependence on temperature and humidity, and the optimal proton conductivity is as high as 1.22 × 10-2 S/cm under 100 °C and 98% relative humidity, which is at the forefront of reported MOFs with ultrahigh σ. The analysis of the proton conduction mechanism reveals that numerous tetrazolium groups, carboxyl groups, coordination, and crystallization water molecules in the framework are responsible for the high efficiency of proton transport. This work offers a fresh perspective on how to create novel crystalline proton conductive materials.
Collapse
Affiliation(s)
- Junyang Feng
- School of Pharmaceutical Engineering, Henan Technical Institute, Zhengzhou 450042, China; (J.F.); (Y.L.)
| | - Ying Li
- School of Pharmaceutical Engineering, Henan Technical Institute, Zhengzhou 450042, China; (J.F.); (Y.L.)
| | - Lixia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002, China;
| | - Jinzhao Tong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China;
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
26
|
Li J, Wang C, Su J, Liu Z, Fan H, Wang C, Li Y, He Y, Chen N, Cao J, Chen X. Observing Proton-Electron Mixed Conductivity in Graphdiyne. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400950. [PMID: 38581284 DOI: 10.1002/adma.202400950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Mixed conducting materials with both ionic and electronic conductivities have gained prominence in emerging applications. However, exploring material with on-demand ionic and electronic conductivities remains challenging, primarily due to the lack of correlating macroscopic conductivity with atom-scale structure. Here, the correlation of proton-electron conductivity and atom-scale structure in graphdiyne is explored. Precisely adjusting the conjugated diynes and oxygenic functional groups in graphdiyne yields a tunable proton-electron conductivity on the order of 103. In addition, a wet-chemistry lithography technique for uniform preparation of graphdiyne on flexible substrates is provided. Utilizing the proton-electron conductivity and mechanical tolerance of graphdiyne, bimodal flexible devices serving as capacitive switches and resistive sensors are created. As a proof-of-concept, a breath-machine interface for sentence-based communication and self-nursing tasks with an accuracy of 98% is designed. This work represents an important step toward understanding the atom-scale structure-conductivity relationship and extending the applications of mixed conducting materials to assistive technology.
Collapse
Affiliation(s)
- Jiaofu Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhihua Liu
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Hangming Fan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changxian Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nuan Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jinwei Cao
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
27
|
Pal SC, Mukherjee D, Oruganti Y, Lee BG, Lim DW, Pramanik B, Manna AK, Das MC. Room-Temperature Superprotonic Conductivity beyond 10 -1 S cm -1 in a Co(II) Coordination Polymer. J Am Chem Soc 2024; 146:14546-14557. [PMID: 38748181 DOI: 10.1021/jacs.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An efficient design of crystalline solid-state proton conductors (SSPCs) is crucial for the progress of clean energy applications. Developing such materials to make them work at room temperature with a conductivity of ≥10-1 S cm-1 is of significant interest in terms of technical and commercial aspects. Utilizing the recently highlighted "coordinated-water-driven proton conduction" approach, herein, we have rationally synthesized two highly stable and scalable 1D Co(II) coordination polymers (CPs) as SSPCs, PCM-2 {[Co(bpy)(H2O)2(NO3)2]·H2O}n and PCM-3 {[Co2(bpy)2(SO4)2(H2O)6].4H2O}n, with distinct alignments in coordinated water and coordinated oxo-anions (nitrate and sulfate, respectively). The acidity of the metal-bound water molecules in PCM-2 is further enhanced through cooperative long-range continuous H bonds with coordinated Brønsted basic nitrates (proton acceptors), leading to ultrahigh superprotonic conductivities even at 25 °C (1.03 × 10-1 S cm-1 under 95% RH), and reached a maximum of 2.99 × 10-1 S cm-1 at 85 °C (95% RH). The conductivity at 25 °C is even higher than that of commercial Nafion 117 (6.74 × 10-2 S cm-1 at 100% RH). The absence of such an H-bonding interaction in PCM-3 (closed loops) resulted in a lesser conductivity of 5.87 × 10-5 S cm-1 (95% RH, 85 °C). PCM-2 represents the first example of SSPC exhibiting conductivity in the order 10-1 S cm-1 at ambient temperature (25 °C) with excellent recyclability.
Collapse
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Yasaswini Oruganti
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Byoung Gwan Lee
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Dae-Woon Lim
- Department of Chemistry and Medical Chemistry, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Bikram Pramanik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
28
|
Wang C, Shen Y, Wang X, Zhang Y, Wang C, Wang Q, Li H, Wang S, Gui D. Imparting Stable and Ultrahigh Proton Conductivity to a Layered Rare Earth Hydroxide via Ion Exchange. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22648-22656. [PMID: 38634669 DOI: 10.1021/acsami.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Proton conductors are essential functional materials with a wide variety of potential applications in energy storage and conversion. In order to address the issues of low proton conductivity and poor stability in conventional proton conductors, a simple and valid ion-exchange method was proposed in this study for the introduction of stable and ultrahigh proton conductivity in layered rare earth hydroxides (LRHs). Test analyses by solid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, and powder X-ray diffraction revealed that the exchange of H2PO4- not only does not disrupt the layered structure of LRHs, but also creates more active proton sites and channels necessary for proton transport, thereby creating a high-performance proton conductor (LRH-H2PO4-). By utilizing this ion-exchange method, the proton conductivity of LRHs can be significantly enhanced from a low level to an ultrahigh level (>10-2 S·cm-1), while maintaining excellent long-term stability. Moreover, through methodically manipulating the guest ions and molecules housed within the interlayers of LRHs, a comprehensive explanation has been presented regarding the proficient mechanism of proton conduction in LRH-H2PO4-. As a result, this investigation presents a feasible and available approach for advancing proton conductor.
Collapse
Affiliation(s)
- Cong Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Yexin Shen
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Xiuyuan Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Chengzhen Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Qin Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hui Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Daxiang Gui
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| |
Collapse
|
29
|
Afzal J, Zhang J, Wang H. Fabrication of -SO 3H-functionalized polyphosphazene-reinforced proton conductive matrix-mixed membranes. RSC Adv 2024; 14:14456-14464. [PMID: 38699689 PMCID: PMC11063683 DOI: 10.1039/d3ra07094h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Proton exchange membranes (PEMs) have emerged as very promising membranes for automotive applications because of their notable proton conductivity at low temperatures. These membranes find extensive utilization in fuel cells. Several polymeric materials have been used, but their application is constrained by their expense and intricate synthetic processes. Affordable and efficient synthetic methods for polymeric materials are necessary for the widespread commercial use of PEM technology. The polymeric combination of hexachlorocyclotriphosphazene (HCCP) and 4,4-diamino-2,2-biphenyldisulfonic acid facilitated the synthesis of PP-(PhSO3H)2, a polyphosphazene with built-in -SO3H moieties. Characterization revealed that it was a porous organic polymer with high stability. PP-(PhSO3H)2 exhibited a proton conductivity of up to 8.24 × 10-2 S cm-1 (SD = ±0.031) at 353 K under 98% relative humidity (RH), which was more than two orders of magnitude higher than that of its -SO3H-free analogue, PP-(Ph)2 (2.32 × 10-4 S cm-1) (SD = ±0.019) under identical conditions. Therefore, for application in a PEM fuel cell, PP-(PhSO3H)2-based matrix-mixed membranes (PP-(PhSO3H)2-MMMs) were fabricated by mixing them with polyacrylonitrile (PAN) in various ratios. The proton conductivity could reach up to 6.11 × 10-2 S cm-1 (SD = ±0.0048) at 353 K and 98%RH, when the weight ratio of PP-(PhSO3H)2 : PAN was 3 : 1, the value of which was comparable with those of commercially available electrolytes used in PEM fuel cells. PP-(PhSO3H)2-MMM (3 : 1) had an extended lifetime of reusability. Using phosphazene and bisulfonated multiple-amine modules as precursors, we demonstrated that a porous organic polymer with a highly effective proton-conductive matrix-mixed membrane for PEM fuel cells could be produced readily by an intuitive polymeric reaction.
Collapse
Affiliation(s)
- Jamal Afzal
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiashun Zhang
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
30
|
Aoki K, Matsuzawa T, Suetsugu K, Hara M, Nagano S, Nagao Y. Influence of Humidity on Layer-by-Layer Growth and Structure in Coordination Networks. Inorg Chem 2024; 63:6674-6682. [PMID: 38560782 DOI: 10.1021/acs.inorgchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-organic frameworks (MOFs) are promising materials because of their high designability of pores and functionalities. Especially, MOF thin films and their properties have been investigated toward applications in nanodevices. Typically, MOF thin films are fabricated by using a bottom-up method such as layer-by-layer (LbL) growth in air. Because the water molecules can coordinate and be replaced with organic linkers during synthesis, humidity conditions will be expected to influence the LbL growth processes. In this study, we fabricated MOF thin films composed of Zn2+, tetrakis-(4-carboxyphenyl)-porphyrin (TCPP), and 4,4'-bipyridyl (bpy) at 10 and 40% relative humidity (RH) conditions. Then, we investigated the humidity effects on chemical compositions of TCPP and bpy, periodic structure, orientation, and surface morphology. At high RH, coordination replacement of water with the organic linkers becomes more competitive than that at low RH, resulting in a different TCPP/bpy composition ratio between the two RH conditions. Also, more frequent coordination replacements of water with the organic linkers at high RH led to the formation of phases other than that observed at low RH, loss of growth orientation, and rough surface. The findings clarified the importance of controlling the RH condition during LbL growth to obtain the desired coordination networks.
Collapse
Affiliation(s)
- Kentaro Aoki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Toshitaka Matsuzawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kota Suetsugu
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
31
|
Winterstein SF, Bettermann M, Timm J, Marschall R, Senker J. Thermodynamically Stable Functionalization of Microporous Aromatic Frameworks with Sulfonic Acid Groups by Inserting Methylene Spacers. Molecules 2024; 29:1666. [PMID: 38611945 PMCID: PMC11013227 DOI: 10.3390/molecules29071666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Porous aromatic frameworks (PAFs) are an auspicious class of materials that allow for the introduction of sulfonic acid groups at the aromatic core units by post-synthetic modification. This makes PAFs promising for proton-exchange materials. However, the limited thermal stability of sulfonic acid groups attached to aromatic cores prevents high-temperature applications. Here, we present a framework based on PAF-303 where the acid groups were added as methylene sulfonic acid side chains in a two-step post-synthetic route (SMPAF-303) via the intermediate chloromethylene PAF (ClMPAF-303). Elemental analysis, NMR spectroscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy were used to characterize both frameworks and corroborate the successful attachment of the side chains. The resulting framework SMPAF-303 features high thermal stability and an ion-exchange capacity of about 1.7 mequiv g-1. The proton conductivity depends strongly on the adsorbed water level. It reaches from about 10-7 S cm-1 for 33% RH to about 10-1 S cm-1 for 100% RH. We attribute the strong change to a locally alternating polarity of the inner surfaces. The latter introduces bottleneck effects for the water molecule and oxonium ion diffusion at lower relative humidities, due to electrolyte clustering. When the pores are completely filled with water, these bottlenecks vanish, leading to an unhindered electrolyte diffusion through the framework, explaining the conductivity rise.
Collapse
Affiliation(s)
- Simon F. Winterstein
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Michael Bettermann
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Jana Timm
- Physical Chemistry III, Department of Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany (R.M.)
| | - Roland Marschall
- Physical Chemistry III, Department of Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany (R.M.)
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
32
|
Cui Y, Li D, Shao Z, Zhao Y, Geng K, Huang J, Zhang Y, Hou H. Construction of Hydration Layer for Proton Transport by Implanting the Hydrophilic Center Ag 0 in Nickel Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307964. [PMID: 38009486 DOI: 10.1002/smll.202307964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Indexed: 11/29/2023]
Abstract
The directional arrangement of H2O molecules can effectively regulate the ordered protons transfer to improve transport efficiency, which can be controlled by the interaction between materials and H2O. Herein, a strategy to build a stable hydration layer in metal-organic framework (MOF) platforms, in which hydrophilic centers that can manipulate H2O molecules are implanted into MOF cavities is presented. The rigid grid-Ni-MOF is selected as the supporting material due to the uniformly distributed cavities and rigid structures. The Ag0 possesses potential combination ability with the hydrophilic substances, so it is introduced into the MOF as hydration layer centers. Relying on the strong interaction between Ag0 and H2O, the H2O molecules can rearrange around Ag0 in the cavity, which is intuitively verified by DFT calculation and molecular dynamics simulation. The establishment of a hydration layer in Ag@Ni-MOF regulates the chemical properties of the material and gives the material excellent proton conduction performance, with a proton conductivity of 4.86 × 10-2 S cm-1.
Collapse
Affiliation(s)
- Yang Cui
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Dongyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan, 450002, China
| | - Yujie Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Kangshuai Geng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Jing Huang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
33
|
Duan X, Ge F, Liu Y, Zheng H. Small-size and well-dispersed Fe nanoparticles embedded in carbon rods for efficient oxygen reduction reaction. Chem Commun (Camb) 2024; 60:3547-3550. [PMID: 38456231 DOI: 10.1039/d4cc00119b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The preparation of ultra-small and well-dispersed metal nanoparticles (NPs) is of great importance for promoting oxygen reduction. Here, a metal (Fe and Zn) NP (7 nm) based catalyst derived from a Zn-based metal-organic framework was obtained by a vapor adsorption strategy, demonstrating a high half-wave potential (0.868 V) and power density (196 mW cm-2).
Collapse
Affiliation(s)
- Xinde Duan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Yang Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
34
|
Zhang X, Zhang Y, Li X, Yu J, Chi W, Wang Z, Zheng H, Sun Z, Zhu Y, Jiao C. A stable Mn(II) coordination polymer demonstrating proton conductivity and quantitative sensing of oxytetracycline in aquaculture. Dalton Trans 2024; 53:5034-5042. [PMID: 38374728 DOI: 10.1039/d3dt03882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The construction and investigation of dual-functional coordination polymers (CPs) with proton conduction and luminescence sensing is of great significance in clean energy and agricultural monitoring fields. In this work, an Mn-based coordination polymer (Mn-CP), namely, [Mn0.5(HL)] (H2L = HOOCC6H4C6H4CH2PO(OH)OCH3), was hydrothermally synthesized. Mn-CP has a one-dimensional (1D) chain structure, in which uncoordinated -COOH groups can serve as potential sites for fluorescence sensing. Moreover, Mn-CP shows good water and pH stabilities, offering the feasibility for proton conduction and sensing applications. Mn-CP displays comparatively high proton conductivity of 1.07 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), which is promising for proton conduction materials. Moreover, it can serve as a repeatable, highly selective, and visualized fluorescence sensor for detecting oxytetracycline (OTC). More importantly, Mn-CP reveals an amazing quantitative sensing of OTC in actual samples such as seawater, aquaculture freshwater, soil infiltration solutions, and tap water. This work proves the excellent application potential of dual-functional CPs in the field of clean energy and environmental protection, especially for the fluorescence detection of antibiotics in aquaculture systems.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yana Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Xin Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jiahui Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Weijia Chi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zikang Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Hanwen Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zhengang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yanyu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Chengqi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
35
|
Song YJ, Sang YL, Xu KY, Hu HL, Zhu QQ, Li G. Ligand-Functionalized MIL-68-type Indium(III) Metal-Organic Frameworks with Prominent Intrinsic Proton Conductivity. Inorg Chem 2024; 63:4233-4248. [PMID: 38377313 DOI: 10.1021/acs.inorgchem.3c04370] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Indium-based metal-organic frameworks (In-MOFs) have now become an attractive class of porous solids in materials science and electrochemistry due to their diverse structures and promising applications. In the field of proton conduction, to find more crystalline MOFs with splendid proton-conductive properties, herein, five three-dimensional isostructural In-MOFs, MIL-68-In or MIL-68-In-X (X = NH2, OH, Br, or NO2) using terephthalic acid (H2BDC) or functionalized terephthalic acids (H2BDC-X) as multifunctional linkages were efficiently fabricated. First, the outstanding structural stability of the five MOFs, including thermal and water stability, was verified by thermal analysis and powder X-ray diffraction. Subsequently, the H2O-mediated proton conductivities (σ) were fully assessed and compared. Notably, their σ evinced a significant positive correlation between the temperature or relative humidity (RH) and varied with the functional groups on the organic ligands. Impressively, their highest σ values are up to 10-3-10-4 S/cm (100 °C/98% RH) and change in this order: MIL-68-In-OH (1.72 × 10-3 S/cm) > MIL-68-In-NH2 (1.70 × 10-3 S/cm) > MIL-68-In-NO2 (4.47 × 10-4 S/cm) > MIL-68-In-Br (4.11 × 10-4 S/cm) > MIL-68-In (2.37 × 10-4 S/cm). Finally, the computed activation energy values under 98 or 68% RHs are assessed, and the related proton conduction mechanisms are speculated. Moreover, after electrochemical testing, these MOFs illustrate remarkable structural rigidity, laying a meritorious material foundation for future applications.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Ya-Li Sang
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, P. R. China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng 024000, P. R. China
| | - Kai-Yin Xu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Qian-Qian Zhu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
36
|
Zhuang Q, Kang LL, Zhang BY, Li ZF, Li G. Remarkable water-mediated proton conductivity of two porous zirconium(IV)/hafnium(IV) metal-organic frameworks bearing porphyrinlcarboxylate ligands. J Colloid Interface Sci 2024; 657:482-490. [PMID: 38070334 DOI: 10.1016/j.jcis.2023.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Obtaining crystalline materials with high structural stability as well as super proton conductivity is a challenging task in the field of energy and material chemistry. Therefore, two highly stable metal-organic frameworks (MOFs) with macro-ring structures and carboxylate groups, Zr-TCPP (1) and Hf-TCPP (2) assembled from low-toxicity as well as highly coordination-capable Zr(IV)/Hf(IV) cations and the multifunctional linkage, meso-tetra(4-carboxyphenyl)porphine (TCPP) have attracted our strong interest. Note that TCPP as a large-size rigid ligand with high symmetry and multiple coordination sites contributes to the formation of the two stable MOFs. Moreover, the pores with large sizes in the two MOFs favor the entry of more guest water molecules and thus result in high H2O-assisted proton conductivity. First, their distinguished structural stabilities covering water, thermal and chemical stabilities were verified by various determination approaches. Second, the dependence of the proton conductivity of the two MOFs on temperature and relative humidity (RH) is explored in depth. Impressively, MOFs 1 and 2 demonstrated the optimal proton conductivities of 4.5 × 10-4 and 0.78 × 10-3 S·cm-1 at 100 °C/98 % RH, respectively. Logically, based on the structural information, gas adsorption/desorption features, and activation energy values, their proton conduction mechanism was deduced and highlighted.
Collapse
Affiliation(s)
- Qi Zhuang
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Lu-Lu Kang
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Bao-Yue Zhang
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
37
|
Liu J, Lu J, Ji W, Lu G, Wang J, Ye T, Jiang Y, Zheng J, Yu P, Liu N, Jiang Y, Mao L. Ion-Selective Micropipette Sensor for In Vivo Monitoring of Sodium Ion with Crown Ether-Encapsulated Metal-Organic Framework Subnanopores. Anal Chem 2024; 96:2651-2657. [PMID: 38306178 DOI: 10.1021/acs.analchem.3c05366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.
Collapse
Affiliation(s)
- Jiahao Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiahao Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangwen Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiao Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
38
|
Zhao FJ, Zhu Y, Chen Y, Ren XY, Dong H, Zhang H, Ren Q, Luo HB, Zou Y, Ren XM. Acidified Nitrogen Self-Doped Porous Carbon with Superprotonic Conduction for Applications in Solid-State Proton Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305765. [PMID: 37821399 DOI: 10.1002/smll.202305765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Solid proton electrolytes play a crucial role in various electrochemical energy storage and conversion devices. However, the development of fast proton conducting solid proton electrolytes at ambient conditions remains a significant challenge. In this study, a novel acidified nitrogen self-doped porous carbon material is presented that demonstrates exceptional superprotonic conduction for applications in solid-state proton battery. The material, designated as MSA@ZIF-8-C, is synthesized through the acidification of nitrogen-doped porous carbon, specifically by integrating methanesulfonic acid (MSA) into zeolitic imidazolate framework-derived nitrogen self-doped porous carbons (ZIF-8-C). This study reveals that MSA@ZIF-8-C achieves a record-high proton conductivity beyond 10-2 S cm-1 at ambient condition, along with good long-term stability, positioning it as a cutting-edge alternative solid proton electrolyte to the default aqueous H2 SO4 electrolyte in proton batteries.
Collapse
Affiliation(s)
- Feng-Jia Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yun Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ying Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xing-Yu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Han Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qiu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yang Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
39
|
Zhu L, Ye P, Zhang L, Ren Y, Liu J, Lei J, Wang L. Bioinspired Heterogeneous Construction of Lignocellulose-Reinforced COF Membranes for Efficient Proton Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304575. [PMID: 37675819 DOI: 10.1002/smll.202304575] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Indexed: 09/08/2023]
Abstract
The exponential interest in covalent organic frameworks (COFs) arises from the direct correlation between their diverse and intriguing properties and the modular design principle. However, the insufficient interlamellar interaction among COF nanosheets greatly hinders the formation of defect-free membranes. Therefore, developing a methodology for the facile fabrication of these materials remains an enticing and highly desirable objective. Herein, ultrahigh proton conductivity and superior stability are achieved by taking advantage of COF composite membranes where 2D TB-COF nanosheets are linked by 1D lignocellulosic nanofibrils (LCNFs) through π-π and electrostatic interactions to form a robust and ordered structure. Notably, the high concentration of -SO3 H groups within the COF pores and the abundant proton transport paths at COFs-LCNFs interfaces impart composite membranes ultrahigh proton conductivity (0.348 S cm-1 at 80 °C and 100% RH). Moreover, the directional migration of protons along the stacked nanochannels of COFs is facilitated by oxygen atoms on the keto groups, as demonstrated by density functional theory (DFT) calculations. The simple design concept and reliable operation of the demonstrated mixed-dimensional composite membrane are expected to provide an ideal platform for next-generation conductive materials.
Collapse
Affiliation(s)
- Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Luying Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
40
|
Chen XY, Cao LH, Bai XT, Cao XJ, Yang D, Gao YD. Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen-Bonded Organic Frameworks with Nanotube-Shaped Proton Transport Channels. PRECISION CHEMISTRY 2023; 1:608-615. [PMID: 39473576 PMCID: PMC11504640 DOI: 10.1021/prechem.3c00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/17/2024]
Abstract
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10-2, 2.55 × 10-2, 4.01 × 10-2, and 1.2 × 10-1 S cm-1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10-1 S cm-1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Dan Yang
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Yi-Da Gao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| |
Collapse
|
41
|
Meng X, Gao J, Sun Y, Duan F, Chen B, Lv G, Li H, Jiang X, Wu Y, Zhang J, Fang X, Yao Z, Zuo C, Bu W. Fusing Positive and Negative CT Contrast Nanoagent for the Sensitive Detection of Hepatoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304668. [PMID: 37870166 PMCID: PMC10700169 DOI: 10.1002/advs.202304668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Positive computed tomography (CT) contrast nanoagent has significant applications in diagnosing tumors. However, the sensitive differentiation between hepatoma and normal liver tissue remains challenging. This challenge arises primarily because both normal liver and hepatoma tissues capture the nanoagent, resulting in similar positive CT contrasts. Here, a strategy for fusing positive and negative CT contrast nanoagent is proposed to detect hepatoma. A nanoagent Hf-MOF@AB@PVP initially generates a positive CT contrast signal of 120.3 HU in the liver. Subsequently, it can specifically respond to the acidic microenvironment of hepatoma to generate H2 , further achieving a negative contrast of -96.0 HU. More importantly, the relative position between the negative and positive signals area is helpful to determine the location of hepatoma and normal liver tissues. The distinct contrast difference of 216.3 HU and relative orientation between normal liver and tumor tissues are meaningful to sensitively distinguish hepatoma from normal liver tissue utilizing CT imaging.
Collapse
Affiliation(s)
- Xianfu Meng
- Department of Nuclear MedicineChanghai HospitalNavy Medical UniversityShanghai200433China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersAcademy for Engineering and TechnologyFudan UniversityShanghai200433China
| | - Jiahao Gao
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040China
| | - Yanhong Sun
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersAcademy for Engineering and TechnologyFudan UniversityShanghai200433China
- Department of GastroenterologyChanghai HospitalNaval Medical UniversityShanghai200433China
| | - Fei Duan
- Department of RadiologyEye & ENT Hospital of Fudan UniversityFudan UniversityShanghai200031China
| | - Bixue Chen
- Department of RadiologyWuxi People's HospitalNanjing Medical UniversityWuxi214023China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical EngineeringYiwu Research Institute of Fudan UniversityYiwu322000China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersAcademy for Engineering and TechnologyFudan UniversityShanghai200433China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersAcademy for Engineering and TechnologyFudan UniversityShanghai200433China
| | - Yelin Wu
- Tongji University Cancer CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200072China
| | - Jiawen Zhang
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040China
| | - Xiangming Fang
- Department of RadiologyWuxi People's HospitalNanjing Medical UniversityWuxi214023China
| | - Zhenwei Yao
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040China
| | - Changjing Zuo
- Department of Nuclear MedicineChanghai HospitalNavy Medical UniversityShanghai200433China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersAcademy for Engineering and TechnologyFudan UniversityShanghai200433China
- Department of RadiologyHuashan HospitalFudan UniversityShanghai200040China
| |
Collapse
|
42
|
Mu ZL, Ma YQ, Zhu Y, Chen Z, Xiao HP, Li X, Wang HY, Ge JY. Two Stable Bifunctional Zinc Metal-Organic Frameworks with Luminescence Detection of Antibiotics and Proton Conduction. Inorg Chem 2023. [PMID: 37991983 DOI: 10.1021/acs.inorgchem.3c03315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Functionalized crystalline solids based on metal-organic frameworks (MOFs) enable efficient luminescence detection and high proton conductivity, making them crucial in the realms of environmental monitoring and clean energy. Here, two structurally and functionally distinct zinc-based MOFs, [Zn(TTDPa)(bodca)]·H2O (1) and [Zn(TTDPb)(bodca)]·H2O (2), were successfully designed and synthesized using 3,6-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPa) and 2,5-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPb) as ligands, in the presence of bicyclo[2.2.2]octane-1,4-dicarboxylic acid (H2bodca). Both 1 and 2 display a three-dimensional (3D) structure with 5-fold interpenetration, and notably, 2 forms a larger one-dimensional pore measuring 17.16 × 10.81 Å2 in size. Fluorescence experiments demonstrate that 1 and 2 can function as luminescent sensors for nitrofurantoin (NFT) and nitrofurazone (NFZ) with low detection limits, remarkable selectivity, and good recyclability. A comprehensive analysis was conducted to investigate the differing sensing effects of compounds 1 and 2 and to explore potential sensing mechanisms. Additionally, at 328 K and 98% relative humidity, 1 and 2 exhibit proton conductivity values of 2.13 × 10-3 and 4.91 × 10-3 S cm-1, respectively, making them suitable proton-conducting materials. Hence, the integration of luminescent sensing and proton conductivity in monophasic 3D Zn-MOFs holds significant potential for application in intelligent multitasking devices.
Collapse
Affiliation(s)
- Zhi-Lin Mu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yi-Qing Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yibin Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hong-Ping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xinhua Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hai-Ying Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
43
|
Zhu SD, Zhou YL, Liu F, Lei Y, Liu SJ, Wen HR, Shi B, Zhang SY, Liu CM, Lu YB. A Pair of Multifunctional Cu(II)-Dy(III) Enantiomers with Zero-Field Single-Molecule Magnet Behaviors, Proton Conduction Properties and Magneto-Optical Faraday Effects. Molecules 2023; 28:7506. [PMID: 38005227 PMCID: PMC10673516 DOI: 10.3390/molecules28227506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multifunctional materials with a coexistence of proton conduction properties, single-molecule magnet (SMM) behaviors and magneto-optical Faraday effects have rarely been reported. Herein, a new pair of Cu(II)-Dy(III) enantiomers, [DyCu2(RR/SS-H2L)2(H2O)4(NO3)2]·(NO3)·(H2O) (R-1 and S-1) (H4L = [RR/SS] -N,N'-bis [3-hydroxysalicylidene] -1,2-cyclohexanediamine), has been designed and prepared using homochiral Schiff-base ligands. R-1 and S-1 contain linear Cu(II)-Dy(III)-Cu(II) trinuclear units and possess 1D stacking channels within their supramolecular networks. R-1 and S-1 display chiral optical activity and strong magneto-optical Faraday effects. Moreover, R-1 shows a zero-field SMM behavior. In addition, R-1 demonstrates humidity- and temperature-dependent proton conductivity with optimal values of 1.34 × 10-4 S·cm-1 under 50 °C and 98% relative humidity (RH), which is related to a 1D extended H-bonded chain constructed by water molecules, nitrate and phenol groups of the RR-H2L ligand.
Collapse
Affiliation(s)
- Shui-Dong Zhu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu-Lin Zhou
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu Lei
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Bin Shi
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Shi-Yong Zhang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Bing Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| |
Collapse
|
44
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
45
|
Qu JX, Fu YM, Meng X, He YO, Li CJ, Sun HX, Yang RG, Wang HN, Su ZM. Construction of Zr-Metal-Organic Frameworks-Based Composite Materials toward Anhydrous Proton Conduction and Photocatalytic CO 2 Reduction. Inorg Chem 2023; 62:15992-15999. [PMID: 37735108 DOI: 10.1021/acs.inorgchem.3c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Metal-organic frameworks constructed from Zr usually possess excellent chemical and physical stability. Therefore, they have become attractive platforms in various fields. In this work, two families of hybrid materials based on ZrSQU have been designed and synthesized, named Im@ZrSQU and Cu@ZrSQU, respectively. Im@ZrSQU was prepared through the impregnation method and employed for proton conduction. Im@ZrSQU exhibited terrific proton conduction performance in an anhydrous environment, with the highest proton conduction value of 3.6 × 10-2 S cm-1 at 110 °C. In addition, Cu@ZrSQU was synthesized via the photoinduction method for the photoreduction of CO2, which successfully promoted the conversion of CO2 into CO and achieved the CO generation rate of up to 12.4 μmol g-1 h-1. The photocatalytic performance of Cu@ZrSQU is derived from the synergistic effect of Cu NPs and ZrSQU. Based on an in-depth study and discussion toward ZrSQU, we provide a versatile platform with applications in the field of proton conduction and photocatalysis, which will guide researchers in their further studies.
Collapse
Affiliation(s)
- Jian-Xin Qu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Yao-Mei Fu
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Yu-Ou He
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Cheng-Jie Li
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| | - Hong-Xu Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Rui-Gang Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Zhong-Min Su
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
46
|
Zhang S, Xie Y, Somerville RJ, Tirani FF, Scopelliti R, Fei Z, Zhu D, Dyson PJ. MOF-Based Solid-State Proton Conductors Obtained by Intertwining Protic Ionic Liquid Polymers with MIL-101. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206999. [PMID: 37317016 DOI: 10.1002/smll.202206999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Solid-state proton conductors based on the use of metal-organic framework (MOF) materials as proton exchange membranes are being investigated as alternatives to the current state of the art. This study reports a new family of proton conductors based on MIL-101 and protic ionic liquid polymers (PILPs) containing different anions. By first installing protic ionic liquid (PIL) monomers inside the hierarchical pores of a highly stable MOF, MIL-101, then carrying out polymerization in situ, a series of PILP@MIL-101 composites was synthesized. The resulting PILP@MIL-101 composites not only maintain the nanoporous cavities and water stability of MIL-101, but the intertwined PILPs provide a number of opportunities for much-improved proton transport compared to MIL-101. The PILP@MIL-101 composite with HSO4 - anions shows superprotonic conductivity (6.3 × 10-2 S cm-1 ) at 85 °C and 98% relative humidity. The mechanism of proton conduction is proposed. In addition, the structures of the PIL monomers were determined by single crystal X-ray analysis, which reveals many strong hydrogen bonding interactions with O/NH···O distances below 2.6 Å.
Collapse
Affiliation(s)
- Shunlin Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Yuxin Xie
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rosie J Somerville
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Farzaneh Fadaei Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dunru Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
47
|
Lu J, Yoshida Y, Kanamori K, Kitagawa H. Robust Proton Conduction against Mechanical Stress in Flexible Free-Standing Membrane Composed of Two-Dimensional Coordination Polymer. Angew Chem Int Ed Engl 2023; 62:e202306942. [PMID: 37403672 DOI: 10.1002/anie.202306942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Introduction of mechanical flexibility into proton-conducting coordination polymers (CPs) is in high demand for future protonic applications such as fuel cells and hydrogen sensors. Although such mechanical properties have been primarily investigated in one-dimensional (1D) CPs, in this study, we successfully fabricated highly flexible free-standing CP membranes with a high surface-to-volume ratio, which is beneficial for enhanced performance in the aforementioned applications. We fabricated a layered CP, Cu2 (NiTCPP) (H4 (H2 TCPP); 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin), in which a two-dimensional (2D) square grid sheet composed of tetradentate nickel porphyrins and paddlewheel-type copper dimers was connected to each other by weak van der Waals forces. The mechanical flexibility was evaluated by bending and tensile tests. The flexural and Young's moduli of the membrane were significantly higher than those of conventional Nafion membranes. Electrochemical impedance spectroscopy analysis revealed that the in-plane proton conductivity of the membrane was maintained even under applied bending stress. Because the X-ray diffraction analysis indicates that the proton-conducting pathway through the hydrogen bonding network remains intact during the bending operation, our present study provides a promising strategy for the fabrication of new and advanced 2D CPs without using substrates or additional polymers for protonic devices.
Collapse
Affiliation(s)
- Jiangfeng Lu
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuyoshi Kanamori
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
48
|
Guo Y, Wei J, Ying Y, Liu Y, Zhou W, Yu Q. Recent Progress of Crystalline Porous Frameworks for Intermediate-Temperature Proton Conduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11166-11187. [PMID: 37533296 DOI: 10.1021/acs.langmuir.3c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Proton exchange membranes (PEMs), especially for work under intermediate temperatures (100-200 °C), have attracted great interest because of the high CO toleration and facial water management of the corresponding proton exchange membrane fuel cells (PEMFCs). Traditional polymer PEMs faced challenges of low stability and proton carrier leaking. Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are promising to overcome these issues contributed by nanometer-sized channels. Herein we summarized the recent development of MOF/COF-based intermediate-temperature proton conductors. The strategies of framework engineering and pore impregnation were introduced in detail for raising proton conductivity. The proton-conducting mechanism was described as well. This spotlight will provide new insight into the fabrication of MOF/COF proton conductors under intermediate-temperature and anhydrous conditions.
Collapse
Affiliation(s)
- Yi Guo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junsheng Wei
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yu Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qing Yu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
49
|
Zhou YN, Zhao SJ, Leng WX, Zhang X, Liu DY, Zhang JH, Sun ZG, Zhu YY, Zheng HW, Jiao CQ. Dual-Functional Eu-Metal-Organic Framework with Ratiometric Fluorescent Broad-Spectrum Sensing of Benzophenone-like Ultraviolet Filters and High Proton Conduction. Inorg Chem 2023; 62:12730-12740. [PMID: 37529894 DOI: 10.1021/acs.inorgchem.3c01224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The construction of attractive dual-functional lanthanide-based metal-organic frameworks (Ln-MOFs) with ratiometric fluorescent detection and proton conductivity is significant and challenging. Herein, a three-dimensional (3D) Eu-MOF, namely, [Eu4(HL)2(SBA)4(H2O)6]·9H2O, has been hydrothermally synthesized with a dual-ligand strategy, using (4-carboxypiperidyl)-N-methylenephosphonic acid (H3L = H2O3PCH2-NC5H9-COOH) and 4-sulfobenzoic acid monopotassium salt (KHSBA = KO3SC6H4COOH) as organic linkers. Eu-MOF showed ratiometric fluorescent broad-spectrum sensing of benzophenone-like ultraviolet filters (BP-like UVFs) with satisfactory sensitivity, selectivity, and low limits of detection in water/ethanol (1:1, v/v) solutions and real urine systems. A portable test paper was prepared for the convenience of actual detection. The potential sensing mechanisms were thoroughly analyzed by diversified experiments. The synergistic effect of the forbidden energy transfer from the ligand to Eu3+, the internal filtration effect (IFE), the formation of a complex, and weak interactions between the KHSBA ligand and BP-like UVFs is responsible for the ratiometric sensing effect. Meanwhile, Eu-MOF displayed relatively high proton conductivity of 2.60 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), making it a potential material for proton conduction. This work provides valuable guidance for the facile and effective design and construction of multifunctional Ln-MOFs with promising performance.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Si-Jia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Wen-Xing Leng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Dong-Yan Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jia-Hui Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhen-Gang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yan-Yu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Han-Wen Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Cheng-Qi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
50
|
Li P, He B, Li X, Lin Y, Tang S. Chitosan-Linked Dual-Sulfonate COF Nanosheet Proton Exchange Membrane with High Robustness and Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302060. [PMID: 37096933 DOI: 10.1002/smll.202302060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
2D materials that can provide long-range ordered channels in thin-film form are highly desirable for proton exchange membranes (PEMs). Covalent organic framework nanosheets (CONs) are promising 2D materials possessing intrinsic porosity and high processability. However, the potential of CONs in PEMs is limited by loose sheet stacking and interfacial grain boundary, which lead to unsatisfied mechanical property and discontinuous conduction pathway. Herein, chitosan (CS), a natural polymer with rich NH2 groups, is designed as the linker of dual-sulfonate CONs (CON-2(SO3 H)) to obtain CON-2(SO3 H)-based membrane. Ultrathin CON-2(SO3 H) with high crystallinity and large lateral size is synthesized at water-octanoic acid interface. The high flexibility of CS chains and their electrostatic interactions with SO3 H groups of CON-2(SO3 H) enable effective connection of CON-2(SO3 H), thus endowing membrane dense structure and exceptional stability. The stacked CON-2(SO3 H) constructs regular hydrophilic nanochannels containing high-density SO3 H groups, and the electrostatic interactions between CON-2(SO3 H) and CS form interfacial acid-base pairs transfer channels. Consequently, CON-2(SO3 H)@CS membrane simultaneously achieves superior proton conductivity of 353 mS cm-1 (under 80 °C hydrated condition) and tensile strength of 95 MPa. This work highlights the advantages of proton-conducting porous CON-2(SO3 H) in advanced PEMs and paves a way in fabricating robust CON-based membranes for various applications.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Bo He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Xuan Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Yunfei Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Shaokun Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|