1
|
Cai W, Xie X, Yang Z, Guo X. Stereochemistry at the Single-Molecule Level: From Monitoring to Regulation. Angew Chem Int Ed Engl 2025; 64:e202504558. [PMID: 40128120 DOI: 10.1002/anie.202504558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Traditional stereochemistry analysis is crucial for understanding the molecular behavior, but relies on measurements that encompass multiple molecules and obscure individual molecular dynamics. Single-molecule techniques enable real-time tracking of stereochemical transformations. These techniques include electrical methods (such as scanning probe microscopy, single-molecule junction techniques, and nanopore technology) and non-electrical approaches (such as circular dichroism spectroscopy and surface-enhanced Raman spectroscopy). This review highlights recent advances in monitoring and regulation of stereochemical properties at the single-molecule level. Techniques that bridge macroscopic observations with molecular-scale dynamics are emphasized. Key isomerization phenomena (constitutional, configurational, and conformational isomerizations) are explored to demonstrate how light, electric field, and mechanical force regulate molecular states. The use of chiral molecules in optical tweezers, chiral-modified scanning tunneling microscopies, and graphene-based single-molecule junctions to leverage the chirality-induced spin selectivity effect for enantiomer discrimination and manipulation is highlighted. Despite progress in this field, challenges persist in resolving ultrafast isomerization pathways, understanding chiral origin mechanisms, and integrating single-molecule devices. Emerging strategies combining multimodal stimuli, machine learning, and nanofabrication are promising for advancing stereochemical research and applications in molecular electronics and nanotechnology. This work underscores the transformative potential of single-molecule techniques in unveiling fundamental chemical dynamics and designing functional molecular systems.
Collapse
Affiliation(s)
- Wenlong Cai
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Xinmiao Xie
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zezhou Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
- Center of Single-Molecule Sciences, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P.R. China
| |
Collapse
|
2
|
Duan Y, Chen S, Jonsson MP. Broadband Chiroptics with Twist-stacked Hyperbolic Conducting Polymer Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417024. [PMID: 40072330 PMCID: PMC12016737 DOI: 10.1002/adma.202417024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Indexed: 04/24/2025]
Abstract
Chiral-specific interaction of light with organic materials is important but typically arises from circular polarization-dependent absorption of specific optical transitions, resulting in narrow effective wavelength ranges. This study presents a scalable and universal concept for broadband circular dichroism (CD) enabled by strained conducting polymer thin films that possess in-plane hyperbolic optical behavior (i.e., optically metallic and dielectric properties along orthogonal directions). It is shown that off-axis stacking of two or more such thin films provides broadband CD that varies with the hyperbolic bandwidth and stacking geometry. By contrast to traditional chiroptical materials, the CD can also be modulated by redox-tuning of the hyperbolic polymer properties, opening for broadband dynamic chiroptical components.
Collapse
Affiliation(s)
- Yulong Duan
- Laboratory of Organic ElectronicsDepartment of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
| | - Shangzhi Chen
- Laboratory of Organic ElectronicsDepartment of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
| | - Magnus P. Jonsson
- Laboratory of Organic ElectronicsDepartment of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐601 74Sweden
| |
Collapse
|
3
|
Han Y, Yang X, Wang X, Mao H, Huang K, Pan H, Liu M, Duan P, Chen J. Real-Time Observation of Ultrafast Concerted Dynamics between Energy and Chirality Transfer by Femtosecond Time-Resolved Circular Polarization Luminescence Spectroscopy. J Am Chem Soc 2025; 147:9891-9899. [PMID: 40063559 DOI: 10.1021/jacs.5c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Elucidating the underlying mechanism of effective chirality and energy transfer processes observed in biological assemblies has cross-disciplinary significance, and it is of special interest in the fields of chemistry and biology due to the pivotal role of chirality in life. Challenges in the field include how to achieve real-time monitoring of the chirality and energy transfer dynamics simultaneously, as well as how to distinguish whether these processes take place in the ground or excited state. Herein, we achieve the first attempt at real-time observation of the concerted ultrafast dynamics between the Förster resonance energy transfer (FRET) and the generation of circularly polarized luminescence (CPL) in the excited state in near-infrared CPL supramolecular nanofibers (SNFs) by using femtosecond time-resolved circularly polarized luminescence (fs-TRCPL) spectroscopy. Our findings reveal a cooperative interplay between FRET and CPL emission, unfolding over time scales from several to hundreds of picoseconds. Notably, we identify that the pivotal mechanism leading to a 0.045 glum value in SNFs is the difference in the FRET rates between left- and right-handed circularly polarized emission channels, which is a reason beyond the well-known relationship of the electronic and magnetic dipoles. Our results not only shed light on the understanding of the chirality transfer mechanism in the excited states but also pave the road for the development of novel CPL materials in the future.
Collapse
Affiliation(s)
- Yunxia Han
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Haolai Mao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Kang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, Huairou District 100049, China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, Huairou District 100049, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi, Taiyuan 030006, China
| |
Collapse
|
4
|
Sun YW, Li ZW. Nanohelix Arrays with Giant Circular Dichroism through Patch-Enthalpy-Driven Self-Confined Self-Assembly of Janus Nanoparticles. NANO LETTERS 2025; 25:4540-4548. [PMID: 40062726 DOI: 10.1021/acs.nanolett.5c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plasmonic nanohelix arrays, exhibiting strong circular dichroism, are among the most promising optical chiral metamaterials. However, achieving chiral plasmonic effects in the visible range remains challenging with current manufacturing techniques, as it requires structures small enough to resonate at visible wavelengths. Herein, we propose a novel strategy for constructing nanohelix arrays through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles. The hexagonal columnar structures, self-assembled from Janus nanoparticles, create a cylindrical self-confined environment within each column, where patch-enthalpy drives the particles to form helical structures. Numerical simulations reveal that patch-enthalpy induces the sequential formation of helical structures within each column, from multiple helices to double helix and finally to single helix. Additionally, optical property calculations demonstrate that these nanohelix arrays exhibit giant circular dichroism and high g-factors at visible frequencies. Our proposed construction strategy offers a promising route for developing optical chiral metamaterials through patch-enthalpy-driven self-confined self-assembly of Janus nanoparticles.
Collapse
Affiliation(s)
- Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Sun Y, He C, Deng Z, Li X, Li X, Zhang Z, Sui X, Li N, He W, Chen F. Optical chirality of all dielectric q-BIC metasurface with symmetry breaking. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:559-569. [PMID: 40161534 PMCID: PMC11953724 DOI: 10.1515/nanoph-2024-0666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/16/2025] [Indexed: 04/02/2025]
Abstract
As a two-dimensional material at the nanoscale, optical metasurfaces have excellent and flexible optical field control methods. In particular, the application of the concept of bound states in the continuum (BIC) enables optical metasurfaces to achieve resonance effects with high quality factors (Q factor). In comparison to plasmonic metasurfaces, all dielectric metasurfaces can effectively reduce the Ohmic losses in the structure. In this study, we propose a q-BIC metasurface with a high quality factor (maximum Q factor of 247), which is all dielectric and symmetry-breaking, and investigate the enhancement effect of this structure on optical chirality in the near-infrared band. In the simulation and experiment, the transmission spectra of the structure in the near-infrared band exhibited differences at different light source incidence angles when illuminated with circularly polarised light of varying rotation directions (external chirality). The maximum far-field circular dichroism (CD) achieved was 0.17 in the simulation and 0.038 in the experiment. Subsequently, the near-field chirality enhancement of the structure was investigated, which has the potential to increase the optical chirality of the incident light by up to 22 times. Furthermore, the introduction of a chiral medium to a non-chiral metasurface results in a chiral transfer effect, enabling the achievement of circular dichroism beyond the intrinsic capabilities of the individual substances involved (maximum CD = 0.0055). The high-Q factor of the all-dielectric metasurface paves the way for a plenty of potential applications in optical chiral fields, including chiral sensing, ultra-sensitive analysis of biomaterials and soft matter.
Collapse
Affiliation(s)
- Yujia Sun
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing211106, China
| | - Chongjun He
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing211106, China
| | - Zilan Deng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou510632, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou510632, China
| | - Xiaozhi Li
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing211106, China
| | - Zhongyuan Zhang
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing211106, China
| | - Xiubao Sui
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Ning Li
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Weiji He
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Fangzhou Chen
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing211106, China
| |
Collapse
|
6
|
Wang Y, Ai B, Jiang Y, Wang Z, Chen C, Xiao Z, Xiao G, Zhang G. Swiss roll nanoarrays for chiral plasmonic photocatalysis. J Colloid Interface Sci 2025; 678:818-826. [PMID: 39217697 DOI: 10.1016/j.jcis.2024.08.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region. The interplay between the CD signals and plasmon resonance modes is revealed through theoretical simulations, enabling a deep understanding of chiral plasmonic metamaterials. The polarization-sensitive photocatalytic activity of chiral SRNAs is investigated, noting a marked increase in the reaction rate when the chirality of SRNAs matches with the handedness of circularly polarized light (CPL). Notably, the SRNA continuous films based on substrate possess integration and reusability without complex recycling process, enhancing their practicality in applications like sensing and plasmonic nanochemistry, particularly toward polarization-dependent photocatalysis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044, PR China
| | - Yun Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zengyao Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Chong Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zifan Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ge Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Gang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
7
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Yang X, Wang K. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci 2025; 335:103342. [PMID: 39561657 DOI: 10.1016/j.cis.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Chirality is a common phenomenon in nature, including the dominance preference of small biomolecules, the special spatial conformation of biomolecules, and the biological and physiological processes triggered by chirality. The selective chiral recognition of molecules in nature from up-bottom or bottom-up is of great significance for living organisms. Such as the transcription of DNA, the recognition of membrane proteins, and the catalysis of enzymes all involve chiral recognition processes. The selective recognition between these macromolecules is mainly achieved through non covalent interactions such as hydrophobic interactions, ammonia bonding, electrostatic interactions, metal coordination, van der Waals forces, and π-π stacking. Researchers have been committed to studying how to convert this weak non covalent interaction into macroscopic visualization, which has further understood of the interactions between chiral molecules and is of great significance for simulating the interactions between molecules in living organisms. This article reviews several models of chiral recognition mechanisms, the interaction forces involved in the chiral recognition process, and the research progress of chiral recognition mechanisms. The outlook in this review points out that studying chiral recognition interactions provides an important bridge between chiral materials and the life sciences, providing an ideal platform for studying chiral phenomena in biological systems.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| |
Collapse
|
8
|
Yang J, Sun L, Sun X, Tan J, Xu H, Zhang Q. Unraveling the Origin of Reverse Plasmonic Circular Dichroism from Discrete Bichiral Au Nanoparticles. NANO LETTERS 2024; 24:11706-11713. [PMID: 39230335 DOI: 10.1021/acs.nanolett.4c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bichiral plasmonic nanoparticles exhibited intriguing geometry-dependent circular dichroism (CD) reversal; however, the crucial factor that dominates the plasmonic CD is still unclear. Combined with CD spectroscopy and theoretical multipole analysis, we demonstrate that plasmonic CD originates from the excitation of electric quadrupolar plasmons. Moreover, a comparative study of two distinct quadrupolar modes reveals the correlation between the sign of the CD and the local geometric handedness at the plasmonic hotspots, thereby establishing a structure-property relationship in bichiral nanoparticles. The reverse CD is attributed to the opposite directions of the wavelength shift of the two plasmon modes upon changing the particle geometry. By finely tuning the size of bichiral nanoparticles, we can further reveal that the dependence of plasmonic CD on the electric quadrupolar plasmons. Our work sheds light on the physical origin of plasmonic CD and provides important guidelines for the design of chiral plasmonic nanoparticles toward chirality-dependent applications.
Collapse
Affiliation(s)
- Jian Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiqing Tan
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Hongxing Xu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Nie L, Zhang H, Kong W, Kong RM, Zhang ES, Li J, Zhao Y, Qu F. Integrating a Copper-Histidine Brace in a Mimetic Nanozyme Streamlines the Tyrosinase Recognition Moiety to Achieve Chiral Differentiation. Anal Chem 2024; 96:13158-13165. [PMID: 39078164 DOI: 10.1021/acs.analchem.4c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Designing artificial mimetic enzymes with high activity/selectivity to replace chiral bioenzymes is of great interest in the development of chiral materials consisting of molecules, enantiomers, that exist in two forms as mirror images of one another but cannot be superimposed. In this study, the chiral catalytic structural unit was streamlined from tyrosinase to integrate a mimetic nanozyme. The chiral amino acid l-histidine, as the chiral binding/recognition site, and the active metal site Cu were coupled (Cu@l-His) to create a copper-histidine brace with enantioselective catalytic ability to tyrosinol enantiomers. Results of kinetic parameters and activation energies confirmed the excellent peroxidase-like activity with a preference of Cu@l-His to l-tyrosinol. Such a preference could be attributed to the structurally oriented copper-histidine brace with a stronger affinity and catalytic activity to l-tyrosinol. By accurately evaluating chiral recognition units derived from bioenzymes, stable and superior chiral mimetic nanoenzymes could be constructed in a more straightforward and simplified manner, and they could also be extended to the reconstruction of diverse chiral enzymes.
Collapse
Affiliation(s)
- Lingyu Nie
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Hui Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Rong-Mei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - En-Sheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jin Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
10
|
Tang H, Stan L, Czaplewski DA, Yang X, Gao J. Infrared phase-change chiral metasurfaces with tunable circular dichroism. OPTICS EXPRESS 2024; 32:20136-20145. [PMID: 38859130 DOI: 10.1364/oe.525756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Integrating phase-change materials in metasurfaces has emerged as a powerful strategy to realize optical devices with tunable electromagnetic responses. Here, phase-change chiral metasurfaces based on GST-225 material with the designed trapezoid-shaped resonators are demonstrated to achieve tunable circular dichroism (CD) responses in the infrared regime. The asymmetric trapezoid-shaped resonators are designed to support two chiral plasmonic resonances with opposite CD responses for realizing switchable CD between negative and positive values using the GST phase change from amorphous to crystalline. The electromagnetic field distributions of the chiral plasmonic resonant modes are analyzed to understand the chiroptical responses of the metasurface. Furthermore, the variations in the absorption spectrum and CD value for the metasurface as a function of the baking time during the GST phase transition are analyzed to reveal the underlying thermal tuning process of the metasurface. The demonstrated phase-change metasurfaces with tunable CD responses hold significant promise in enabling many applications in the infrared regime such as chiral sensing, encrypted communication, and thermal imaging.
Collapse
|
11
|
Zhao Y, Xie J, Tian Y, Mourdikoudis S, Fiuza‐Maneiro N, Du Y, Polavarapu L, Zheng G. Colloidal Chiral Carbon Dots: An Emerging System for Chiroptical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305797. [PMID: 38268241 PMCID: PMC10987166 DOI: 10.1002/advs.202305797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Indexed: 01/26/2024]
Abstract
Chiral CDots (c-CDots) not only inherit those merits from CDots but also exhibit chiral effects in optical, electric, and bio-properties. Therefore, c-CDots have received significant interest from a wide range of research communities including chemistry, physics, biology, and device engineers. They have already made decent progress in terms of synthesis, together with the exploration of their optical properties and applications. In this review, the chiroptical properties and chirality origin in extinction circular dichroism (ECD) and circularly polarized luminescence (CPL) of c-CDots is briefly discussed. Then, the synthetic strategies of c-CDots is summarized, including one-pot synthesis, post-functionalization of CDots with chiral ligands, and assembly of CDots into chiral architectures with soft chiral templates. Afterward, the chiral effects on the applications of c-CDots are elaborated. Research domains such as drug delivery, bio- or chemical sensing, regulation of enzyme-like catalysis, and others are covered. Finally, the perspective on the challenges associated with the synthetic strategies, understanding the origin of chirality, and potential applications is provided. This review not only discusses the latest developments of c-CDots but also helps toward a better understanding of the structure-property relationship along with their respective applications.
Collapse
Affiliation(s)
- Yuwan Zhao
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Juan Xie
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Yongzhi Tian
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Stefanos Mourdikoudis
- Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)Boeretang 200Mol2400Belgium
| | - Nadesh Fiuza‐Maneiro
- CINBIOMaterials Chemistry and Physics GroupUniversity of VigoCampus Universitario MarcosendeVigo36310Spain
| | - Yanli Du
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
| | - Lakshminarayana Polavarapu
- CINBIOMaterials Chemistry and Physics GroupUniversity of VigoCampus Universitario MarcosendeVigo36310Spain
| | - Guangchao Zheng
- School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450001P. R. China
- Institute of Quantum Materials and PhysicsHenan Academy of SciencesZhengzhou450046P. R. China
| |
Collapse
|
12
|
Wei B, Li H, Chu H, Dong H, Zhang Y, Sun CL, Li Y. Self-Assembly of Amphiphilic PDI and NDI Derivatives with Opposite Thermoresponsive Fluorescent Behaviors in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6493-6505. [PMID: 38484325 DOI: 10.1021/acs.langmuir.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This work presents a study of the thermally induced aggregation of perylene diimide (PDI) and naphthalene diimide (NDI) derivatives modified with oligo ethylene glycol (OEG) chains in aqueous solution. Water-soluble and flexible OEG side chains were introduced into the π-core of glutamate-modified NDI and PDI structures, and the aggregation process was modulated by heating or cooling in water. Interestingly, a rare opposite temperature response of fluorescent behavior from the two amphiphilic chromophores was revealed, in which the PDI exhibited fluorescent enhancement, while fluorescent quenching upon temperature increase was observed from the NDI assembly. The mechanism of thermally induced aggregation is clearly explained by studies with various spectroscopic techniques including UV-visible, fluorescence, 1H NMR, 2D NMR spectroscopy, and SEM observation as well as control experiments operated in DMSO solution. It is found that although similar J-aggregates were formed by both amphiphilic chromophores in aqueous solution, the temperature response of the aggregates to temperature was opposite. The degree of PDI aggregation decreased, while that of NDI increased upon temperature rising. This research paves a valuable way for understanding the complicated supramolecular behaviors of amphiphilic chromophores.
Collapse
Affiliation(s)
- Bizhuo Wei
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huajing Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huan Chu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Yijun Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| |
Collapse
|
13
|
Lee S, Fan C, Movsesyan A, Bürger J, Wendisch FJ, de S Menezes L, Maier SA, Ren H, Liedl T, Besteiro LV, Govorov AO, Cortés E. Unraveling the Chirality Transfer from Circularly Polarized Light to Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202319920. [PMID: 38236010 DOI: 10.1002/anie.202319920] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.
Collapse
Affiliation(s)
- Seunghoon Lee
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Department of Chemistry, Dong-A University, Busan, 49315, South Korea
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan, 49315, South Korea)
| | - Chenghao Fan
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Artur Movsesyan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Fedja J Wendisch
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
- Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-University München, 80539, München, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
- The Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| | - Tim Liedl
- Department of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, 80799, München, Germany
| | | | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio, 45701, United States
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| |
Collapse
|
14
|
Jia S, Tao T, Xie Y, Yu L, Kang X, Zhang Y, Tang W, Gong J. Chirality Supramolecular Systems: Helical Assemblies, Structure Designs, and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307874. [PMID: 37890278 DOI: 10.1002/smll.202307874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Chirality, as one of the most striking characteristics, exists at various scales in nature. Originating from the interactions of host and guest molecules, supramolecular chirality possesses huge potential in the design of functional materials. Here, an overview of the recent progress in structure designs and functions of chiral supramolecular materials is present. First, three design routes of the chiral supramolecular structure are summarized. Compared with the template-induced and chemical synthesis strategies that depend on accurate molecular identification, the twisted-assembly technique creates chiral materials through the ordered stacking of the nanowire or films. Next, chirality inversion and amplification are reviewed to explain the chirality transfer from the molecular level to the macroscopic scale, where the available external stimuli on the chirality inversion are also given. Lastly, owing to the optical activity and the characteristics of the layer-by-layer stacking structure, the supramolecular chirality materials display various excellent performances, including smart response, shape-memorization, superior mechanical performance, and applications in biomedical fields. To sum up, this work provides a systematic review of the helical assemblies, structure design, and applications of supramolecular chirality systems.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang Kang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
15
|
Chen PG, Gao H, Tang B, Jin W, Rogach AL, Lei D. Universal Chiral-Plasmon-Induced Upward and Downward Transfer of Circular Dichroism to Achiral Molecules. NANO LETTERS 2024; 24:2488-2495. [PMID: 38198618 DOI: 10.1021/acs.nanolett.3c04219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Electromagnetic chirality transfer represents an effective means of the nanoscale manipulation of optical chirality. While most of the previous reports have exclusively focused on the circular dichroism (CD) transfer from UV-responsive chiral molecules toward visible-resonant achiral colloidal nanoparticles, here we demonstrate a reverse process in which plasmonic chirality can be transferred to achiral molecules, either upward from visible to UV or downward from visible to near infrared (NIR). By hybridizing achiral UV- or NIR-responsive dye molecules with chiral metal nanoparticles in solution, we observe a chiral-plasmon-induced CD (CPICD) signal at the intrinsically achiral molecular absorption bands. Full-wave electromagnetic modeling reveals that both near-field Coulomb interaction and far-field radiative coupling contribute to the observed CPICD, indicating that the mechanism considered here is universal for different material systems and types of optical resonances. Our study provides a set of design guidelines for broadband nanophotonic chiral sensing from the UV to NIR spectral regime.
Collapse
Affiliation(s)
- Pei-Gang Chen
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Han Gao
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Bing Tang
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Wei Jin
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
16
|
Qu A, Chen Q, Sun M, Xu L, Hao C, Xu C, Kuang H. Sensitive and Selective Dual-Mode Responses to Reactive Oxygen Species by Chiral Manganese Dioxide Nanoparticles for Antiaging Skin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308469. [PMID: 37766572 DOI: 10.1002/adma.202308469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Excessive accumulation of reactive oxygen species (ROS) can lead to oxidative stress and oxidative damage, which is one of the important factors for aging and age-related diseases. Therefore, real-time monitoring and the moderate elimination of ROS is extremely important. In this study, a ROS-responsive circular dichroic (CD) at 553 nm and magnetic resonance imaging (MRI) dual-signals chiral manganese oxide (MnO2 ) nanoparticles (NPs) are designed and synthesized. Both the CD and MRI signals show excellent linear ranges for intracellular hydrogen peroxide (H2 O2 ) concentrations, with limits of detection (LOD) of 0.0027 nmol/106 cells and 0.016 nmol/106 cells, respectively. The lower LOD achieved with CD detection may be attributable to its higher anti-interference capability from the intracellular matrix. Importantly, ROS-induced cell aging is intervened by chiral MnO2 NPs via redox reactions with excessive intracellular ROS. In vivo experiments confirm that chiral MnO2 NPs effectively eliminate ROS in skin tissue, reduce oxidative stress levels, and alleviate skin aging. This approach provides a new strategy for the diagnosis and treatment of age-related diseases.
Collapse
Affiliation(s)
- Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, China
| | - Qiwen Chen
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, China
| |
Collapse
|
17
|
Cheng Q, Hao A, Xing P. Selective chiral dimerization and folding driven by arene-perfluoroarene force. Chem Sci 2024; 15:618-628. [PMID: 38179513 PMCID: PMC10762935 DOI: 10.1039/d3sc05212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Oligomerization and folding of chiral compounds afford diversified chiral molecular architectures with interesting chiroptical properties, but their rational and precise control remain poorly understood. In this work, we employed arene-perfluoroarene (AP) interaction to manipulate the folding and dimerization of alanine derivatives bearing pyrene and a perfluoronaphthalene derivative. Based on X-ray crystallography and nuclear magnetic resonance, the compound with a smaller tether and high skeleton rigidity self-assembled into double helical dimers by duplex hydrogen bonding and AP forces in a less polar solvent. Reversible disassociation occurred upon switching to a dipolar solvent or applying heating-cooling cycles. In comparison, the compound with increased skeleton flexibility folds into chiral molecular clamps in a less polar solvent, and is transformed into planar dimers upon switching to a polar solvent. The dynamic geometrical transformation between dimerization and folding was accompanied by chiroptical switching. Beyond the molecular and supramolecular level, we showed hierarchy control in the self-assembled nanoarchitectures and columnar and lamellar arrangements of their molecular packing. This work utilized AP forces to prepare and manipulate the chiral architectures at different hierarchical levels, enriching methodologies in precise chiral synthetic chemistry.
Collapse
Affiliation(s)
- Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
18
|
Zhang L, Chen Y, Zheng J, Lewis GR, Xia X, Ringe E, Zhang W, Wang J. Chiral Gold Nanorods with Five-Fold Rotational Symmetry and Orientation-Dependent Chiroptical Properties of Their Monomers and Dimers. Angew Chem Int Ed Engl 2023; 62:e202312615. [PMID: 37945530 DOI: 10.1002/anie.202312615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Chiral plasmonic nanoparticles have attracted much attention because of their strong chiroptical responses and broad scientific applications. However, the types of chiral plasmonic nanoparticles have remained limited. Herein we report on a new type of chiral nanoparticle, chiral Au nanorod (NR) with five-fold rotational symmetry, which is synthesized using chiral molecules. Three different types of Au seeds (Au elongated nanodecahedrons, nanodecahedrons, and nanobipyramids) are used to study the growth behaviors. Different synthesis parameters, including the chiral molecules, surfactant, reductant, seeds, and Au precursor, are systematically varied to optimize the chiroptical responses of the chiral Au NRs. The chiral scattering measurements on the individual chiral Au NRs and their dimers are performed. Intriguingly, the chiroptical signals of the individual chiral Au NRs and their end-to-end dimers are similar, while those of the side-by-side dimers are largely reduced. Theoretical calculations and numerical simulations reveal that the different chiroptical responses of the chiral NR dimers are originated from the coupling effect between the plasmon resonance modes. Our study enriches chiral plasmonic nanoparticles and provides valuable insight for the design of plasmonic nanostructures with desired chiroptical properties.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Yilin Chen
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - George R Lewis
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| |
Collapse
|
19
|
Yao Q, Liu R, Yang Z, Wei J. Using a molecular additive to control chiral supramolecular assembly and the subsequent chirality transfer process. SOFT MATTER 2023; 19:8680-8683. [PMID: 37916423 DOI: 10.1039/d3sm01211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Hierarchical assembly of chiral molecules is achieved through the introduction of molecular additives, which enables the chiral assembly of nanosheets into helical nanorods with inverted chirality. Moreover, the hierarchical assembly of chiral molecules in the presence of a molecular additive can lead to the subsequent chirality transfer from a molecular system to nanoparticle assemblies.
Collapse
Affiliation(s)
- Qingyuan Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| |
Collapse
|
20
|
Lee YH, Won Y, Mun J, Lee S, Kim Y, Yeom B, Dou L, Rho J, Oh JH. Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption. Nat Commun 2023; 14:7298. [PMID: 37949853 PMCID: PMC10638435 DOI: 10.1038/s41467-023-43112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Chiral metamaterials have received significant attention due to their strong chiroptical interactions with electromagnetic waves of incident light. However, the fabrication of large-area, hierarchically manufactured chiral plasmonic structures with high dissymmetry factors (g-factors) over a wide spectral range remains the key barrier to practical applications. Here we report a facile yet efficient method to fabricate hierarchical chiral nanostructures over a large area (>11.7 × 11.7 cm2) and with high g-factors (up to 0.07 in the visible region) by imparting extrinsic chirality to nanostructured polymer substrates through the simple exertion of mechanical force. We also demonstrate the application of our approach in the polarized emission of quantum dots and information encryption, including chiral quick response codes and anti-counterfeiting. This study thus paves the way for the rational design and fabrication of large-area chiral nanostructures and for their application in quantum communications and security-enhanced optical communications.
Collapse
Affiliation(s)
- Yoon Ho Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yousang Won
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sanghyuk Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
Fu W, Tan L, Wang PP. Chiral Inorganic Nanomaterials for Photo(electro)catalytic Conversion. ACS NANO 2023; 17:16326-16347. [PMID: 37540624 DOI: 10.1021/acsnano.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Chiral inorganic nanomaterials due to their unique asymmetric nanostructures have gradually demonstrated intriguing chirality-dependent performance in photo(electro)catalytic conversion, such as water splitting. However, understanding the correlation between chiral inorganic characteristics and the photo(electro)catalytic process remains challenging. In this perspective, we first highlight the chirality source of inorganic nanomaterials and briefly introduce photo(electro)catalysis systems. Then, we delve into an in-depth discussion of chiral effects exerted by chiral nanostructures and their photo-electrochemistry properties, while emphasizing the emerging chiral inorganic nanomaterials for photo(electro)catalytic conversion. Finally, the challenges and opportunities of chiral inorganic nanomaterials for photo(electro)catalytic conversion are prospected. This perspective provides a comprehensive overview of chiral inorganic nanomaterials and their potential in photo(electro)catalytic conversion, which is beneficial for further research in this area.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
22
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
23
|
Wu J, Zhang X, You S, Zhu ZK, Zhu T, Wang Z, Li R, Guan Q, Liang L, Niu X, Luo J. Low Detection Limit Circularly Polarized Light Detection Realized by Constructing Chiral Perovskite/Si Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302443. [PMID: 37156749 DOI: 10.1002/smll.202302443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite-based CPL detectors with both high distinguishability of left- and right-handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R-MPA)2 MAPb2 I7 /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high-sensitive and low-limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built-in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure-based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm-2 under the self-driven mode. As a pioneering study, this work paves the way for designing high-sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Shihai You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Zeng-Kui Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Tingting Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Ziyang Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Ruiqing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qianwen Guan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lishan Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Xinyi Niu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, 330022, P. R. China
| |
Collapse
|
24
|
Goerlitzer ESA, Zapata-Herrera M, Ponomareva E, Feller D, Garcia-Etxarri A, Karg M, Aizpurua J, Vogel N. Molecular-Induced Chirality Transfer to Plasmonic Lattice Modes. ACS PHOTONICS 2023; 10:1821-1831. [PMID: 37363627 PMCID: PMC10288536 DOI: 10.1021/acsphotonics.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/28/2023]
Abstract
Molecular chirality plays fundamental roles in biology. The chiral response of a molecule occurs at a specific spectral position, determined by its molecular structure. This fingerprint can be transferred to other spectral regions via the interaction with localized surface plasmon resonances of gold nanoparticles. Here, we demonstrate that molecular chirality transfer occurs also for plasmonic lattice modes, providing a very effective and tunable means to control chirality. We use colloidal self-assembly to fabricate non-close packed, periodic arrays of achiral gold nanoparticles, which are embedded in a polymer film containing chiral molecules. In the presence of the chiral molecules, the surface lattice resonances (SLRs) become optically active, i.e., showing handedness-dependent excitation. Numerical simulations with varying lattice parameters show circular dichroism peaks shifting along with the spectral positions of the lattice modes, corroborating the chirality transfer to these collective modes. A semi-analytical model based on the coupling of single-molecular and plasmonic resonances rationalizes this chirality transfer.
Collapse
Affiliation(s)
- Eric Sidney Aaron Goerlitzer
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| | - Mario Zapata-Herrera
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Ekaterina Ponomareva
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Déborah Feller
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Matthias Karg
- Institut
für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225 Germany
| | - Javier Aizpurua
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
| |
Collapse
|
25
|
Mohammadi E, Raziman TV, Curto AG. Nanophotonic Chirality Transfer to Dielectric Mie Resonators. NANO LETTERS 2023; 23:3978-3984. [PMID: 37126640 PMCID: PMC10176573 DOI: 10.1021/acs.nanolett.3c00739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanophotonics can boost the weak circular dichroism of chiral molecules. One mechanism for enhanced chiral sensing relies on using a resonator to create fields with high optical chirality at the molecular position. Here, we elucidate how the reverse interaction between molecules and the resonator, called chirality transfer, can produce stronger circular dichroism. The chiral analyte modifies the electric and magnetic dipole moments of the resonator, imprinting a chiral response on an otherwise achiral resonance. We demonstrate that silicon nanoparticles and metasurfaces tailored for chirality transfer generate chiroptical signals orders of magnitude higher than the contribution from optical chirality alone. We derive closed-form equations for the dependence of chirality transfer on molecular chirality, molecule-resonator distance, and Mie coefficients. We propose a dielectric metasurface for a 900-fold circular dichroism enhancement on the basis of these principles. Finally, we identify a fundamental limit to chirality transfer. Our findings thus establish key concepts for nanophotonic chiral sensing.
Collapse
Affiliation(s)
- Ershad Mohammadi
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - T V Raziman
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Alberto G Curto
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Photonics Research Group, Ghent University-imec, 9052 Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
26
|
Lu X, Wang X, Wang S, Ding T. Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams. Nat Commun 2023; 14:1422. [PMID: 36918571 PMCID: PMC10015062 DOI: 10.1038/s41467-023-37048-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Chirality is pivotal in nature which attracts wide research interests from all disciplines and creating chiral matter is one of the central themes for chemists and material scientists. Despite of significant efforts, a simple, cost-effective and general method that can produce different kinds of chiral metamaterials with high regularity and tailorability is still demanding but greatly missing. Here, we introduce polarization-directed growth of spiral nanostructures via vector beams, which is simple, tailorable and generally applicable to both plasmonic and dielectric materials. The self-aligned near field enhances the photochemical growth along the polarization, which is crucial for the oriented growth. The obtained plasmonic chiral nanostructures present prominent optical activity with a g-factor up to 0.4, which can be tuned by adjusting the spirality of the vector beams. These spiral plasmonic nanostructures can be used for the sensing of different chiral enantiomers. The dielectric chiral metasurfaces can also be formed in arrays of sub-mm scale, which exhibit a g-factor over 0.1. However, photoluminescence of chiral cadmium sulfide presents a very weak luminescence g-factor with the excitation of linearly polarized light. A number of applications can be envisioned with these chiral nanostructures such as chiral sensing, chiral separation and chiral information storage.
Collapse
Affiliation(s)
- Xiaolin Lu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xujie Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shuangshuang Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
27
|
Zhao W, Zhang Q, Zheng H, Bai Y, Yu Y, Chen Z, Yun X, Liu SD. Resonance coupling between chiral quasi-BICs and achiral molecular excitons in dielectric metasurface J-aggregate heterostructures. OPTICS LETTERS 2023; 48:1252-1255. [PMID: 36857260 DOI: 10.1364/ol.483147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The realization of flexible tuning and enhanced chiral responses is vital for many applications in nanophotonics. This study proposes to manipulate the collective optical responses with heterostructures consisting of chiral dielectric metasurfaces and achiral J-aggregates. Owing to the resonance coupling between the chiral quasi-bound states in the continuum (QBICs) and the achiral exciton mode, large mode splitting and anticrossing are observed in both the transmission and circular dichroism (CD) spectra, which indicates the formation of hybrid chiral eigenmodes and the realization of the strong coupling regime. Considering that the radiative and dissipative damping of the hybrid eigenmodes depends on the coherent energy exchange, the chiral resonances can be flexibly tuned by adjusting the geometry and optical constants for the heterostructure, and the CD of the three hybrid eigenmodes approach the maximum (∼1) simultaneously when the critical coupling conditions are satisfied, which can be promising for enhanced chiral light-matter interactions.
Collapse
|
28
|
Li H, Zhang J, Jiang L, Yuan R, Yang X. Chiral plasmonic Au-Ag core shell nanobipyramid for SERS enantiomeric discrimination of biologically relevant small molecules. Anal Chim Acta 2023; 1239:340740. [PMID: 36628734 DOI: 10.1016/j.aca.2022.340740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The identification of enantiomers is of great importance in chiral separations and medicinal chemistry. While Surface-enhanced Raman spectroscopy (SERS) is a technique that provides vibrational fingerprints of analytes. The enantiomers identification relies on the SERS difference between left and right-handed circularly polarized light or additional selectors for indirect distinction. In this work, Au-Ag core shell nanobipyramid (L/D-Au@Ag BPs) were synthesized guiding by chiral encoder of L/D-cysteine. L/D-Au@Ag BPs produced plasmon-induced circular dichroism signals in the plasmon resonance absorption band, which can be tuned by modulation the amount of cysteine. Moreover, the chiral anisotropy factor of L/D-Au@Ag BPs at 532 nm can reach 5.11 × 10-3. Due to the selective resonance coupling between L/D-Au@Ag BPs and different enantiomers, L/D-Au@Ag BPs were further used as SERS substrates for efficient discrimination of biologically relevant small molecules. Chiral Au@Ag BPs display the potential for chiral drug identification.
Collapse
Affiliation(s)
- Hongying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Jiale Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China.
| |
Collapse
|
29
|
Sun X, Yang J, Sun L, Yang G, Liu C, Tao Y, Cheng Q, Wang C, Xu H, Zhang Q. Tunable Reversal of Circular Dichroism in the Seed-Mediated Growth of Bichiral Plasmonic Nanoparticles. ACS NANO 2022; 16:19174-19186. [PMID: 36251931 DOI: 10.1021/acsnano.2c08381] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles with an intrinsic chiral structure have emerged as a promising chiral platform for applications in biosensing, medicine, catalysis, separation, and photonics. Quantitative understanding of the correlation between nanoparticle structure and optical chirality becomes increasingly important but still represents a significantly challenging task. Here we demonstrate that tunable signal reversal of circular dichroism in the seed-mediated chiral growth of plasmonic nanoparticles can be achieved through the hybridization of bichiral centers without inverting the geometric chirality. Both experimental and theoretical results demonstrated the opposite sign of circular dichroism of two different bichiral geometries. Chiral molecules were found to not only contribute to the chirality transfer from molecules to nanoparticles but also manipulate the structural evolution of nanoparticles that synergistically drive the formation of two different chiral centers. By deliberately adjusting the concentration of chiral molecules and other synthetic parameters, such as the reducing agent concentration, the capping surfactant concentration, and the amount of Au precursor, we have been able to fine-tune the circular dichroism reversal of bichiral Au nanoparticles. We further demonstrate that the structure of chiral molecules and the crystal structure of Au seeds play crucial roles in the formation of Au nanoparticles with bichiral centers. The insights gained from this work not only shed light on the underlying mechanisms dictating the intriguing geometric and chirality evolution of bichiral plasmonic nanoparticles but also provide an important knowledge framework that guides the rational design of bichiral plasmonic nanostructures toward chiroptical applications.
Collapse
Affiliation(s)
- Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Wang Y, Ai B, Wang Z, Guan Y, Chen X, Zhang G. Chiral nanohelmet array films with Three-Dimensional (3D) resonance cavities. J Colloid Interface Sci 2022; 626:334-344. [DOI: 10.1016/j.jcis.2022.06.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
|
31
|
Li H, Gao X, Zhang C, Ji Y, Hu Z, Wu X. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. BIOSENSORS 2022; 12:957. [PMID: 36354466 PMCID: PMC9688444 DOI: 10.3390/bios12110957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 05/27/2023]
Abstract
As chiral antennas, plasmonic nanoparticles (NPs) can enhance chiral responses of chiral materials by forming hybrid structures and improving their own chirality preference as well. Chirality-dependent properties of plasmonic NPs broaden application potentials of chiral nanostructures in the biomedical field. Herein, we review the wet-chemical synthesis and self-assembly fabrication of gold-NP-based chiral nanostructures. Discrete chiral NPs are mainly obtained via the seed-mediated growth of achiral gold NPs under the guide of chiral molecules during growth. Irradiation with chiral light during growth is demonstrated to be a promising method for chirality control. Chiral assemblies are fabricated via the bottom-up assembly of achiral gold NPs using chiral linkers or guided by chiral templates, which exhibit large chiroplasmonic activities. In describing recent advances, emphasis is placed on the design and synthesis of chiral nanostructures with the tuning and amplification of plasmonic circular dichroism responses. In addition, the review discusses the most recent or even emerging trends in biomedical fields from biosensing and imaging to disease diagnosis and therapy.
Collapse
Affiliation(s)
- Hanbo Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinshuang Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhijian Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Jafar-Nezhad Ivrigh Z, Fahimi-Kashani N, Morad R, Jamshidi Z, Hormozi-Nezhad MR. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe. Anal Chim Acta 2022; 1231:340386. [DOI: 10.1016/j.aca.2022.340386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
|
33
|
Feng Z, He C, Xie Y, Zhang C, Li J, Liu D, Jiang Z, Chen X, Zou G. Chiral biosensing at both interband transition and plasmonic extinction regions using twisted-stacked nanowire arrays. NANOSCALE 2022; 14:10524-10530. [PMID: 35833497 DOI: 10.1039/d2nr03357g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral metal nanostructures that exhibit strong chiroptical properties and enhanced light-matter interactions have recently attracted great interest due to their potential applications including chiral sensing and asymmetric synthesis. Most studies in this field focused on chiral sensing using circular dichroism (CD) responses at the plasmonic extinction region. In comparison, little is known about their CD responses at interband transition regions and their utility in chiral biosensing. Herein, we constructed a series of twisted-stacked silver nanowire arrays (TNAs) featuring CD signals at both the interband transition and plasmonic extinction regions and that are independently controllable. These TNAs are highly sensitive towards protein secondary structures. Proteins containing more β-sheets are more sensitive toward strong chiral plasmonic fields, whereas proteins rich in α-helices tend to generate larger CD shifts at the interband transition region of TNAs. The mutually independent optical activities at the interband transition and plasmonic extinction regions complement each other, providing more sensitivity and reliability in chiral biosensing.
Collapse
Affiliation(s)
- Zeyu Feng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China.
| | - Chenlu He
- Department of Chemistry, National University of Singapore, Singapore 117549, Singapore.
| | - Yifan Xie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China.
| | - Chutian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China.
| | - Jiahe Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China.
| | - Dingdong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China.
| | - Zifan Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China.
| | - Xin Chen
- GuSu Laboratory of Materials, No. 388, Ruoshui Street, SIP, Jiangsu 215123, China
| | - Gang Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China.
| |
Collapse
|
34
|
Chiral Nanocluster Complexes Formed by Host-Guest Interaction between Enantiomeric 2,6-Helic[6]arenes and Silver Cluster Ag 20: Emission Enhancement and Chirality Transfer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123932. [PMID: 35745054 PMCID: PMC9230552 DOI: 10.3390/molecules27123932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022]
Abstract
A pair of chiral nanocluster complexes were formed by the host−guest interaction between the enantiomeric 2,6-helic[6]arenes and nanocluster Ag20. The formation and stability of the nanocluster complexes were experimentally and theoretically confirmed. Meanwhile, the chiral nanocluster complexes exhibited enhanced luminescence and induced CD signals at room temperature in the solid state, revealing the stable complexation and chirality transfer from the chiral macrocycles to the nanocluster Ag20.
Collapse
|
35
|
Aiello CD, Abendroth JM, Abbas M, Afanasev A, Agarwal S, Banerjee AS, Beratan DN, Belling JN, Berche B, Botana A, Caram JR, Celardo GL, Cuniberti G, Garcia-Etxarri A, Dianat A, Diez-Perez I, Guo Y, Gutierrez R, Herrmann C, Hihath J, Kale S, Kurian P, Lai YC, Liu T, Lopez A, Medina E, Mujica V, Naaman R, Noormandipour M, Palma JL, Paltiel Y, Petuskey W, Ribeiro-Silva JC, Saenz JJ, Santos EJG, Solyanik-Gorgone M, Sorger VJ, Stemer DM, Ugalde JM, Valdes-Curiel A, Varela S, Waldeck DH, Wasielewski MR, Weiss PS, Zacharias H, Wang QH. A Chirality-Based Quantum Leap. ACS NANO 2022; 16:4989-5035. [PMID: 35318848 PMCID: PMC9278663 DOI: 10.1021/acsnano.1c01347] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.
Collapse
Affiliation(s)
- Clarice D. Aiello
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John M. Abendroth
- Laboratory
for Solid State Physics, ETH Zürich, Zürich 8093, Switzerland
| | - Muneer Abbas
- Department
of Microbiology, Howard University, Washington, D.C. 20059, United States
| | - Andrei Afanasev
- Department
of Physics, George Washington University, Washington, D.C. 20052, United States
| | - Shivang Agarwal
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Amartya S. Banerjee
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - David N. Beratan
- Departments
of Chemistry, Biochemistry, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Jason N. Belling
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Bertrand Berche
- Laboratoire
de Physique et Chimie Théoriques, UMR Université de Lorraine-CNRS, 7019 54506 Vandœuvre les
Nancy, France
| | - Antia Botana
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Justin R. Caram
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Giuseppe Luca Celardo
- Institute
of Physics, Benemerita Universidad Autonoma
de Puebla, Apartado Postal J-48, 72570, Mexico
- Department
of Physics and Astronomy, University of
Florence, 50019 Sesto Fiorentino, Italy
| | - Gianaurelio Cuniberti
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Arezoo Dianat
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural and Mathematical Sciences, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Yuqi Guo
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Rafael Gutierrez
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Carmen Herrmann
- Department
of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Joshua Hihath
- Department
of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Suneet Kale
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Philip Kurian
- Quantum
Biology Laboratory, Graduate School, Howard
University, Washington, D.C. 20059, United States
| | - Ying-Cheng Lai
- School
of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tianhan Liu
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander Lopez
- Escuela
Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Av. Diego de Robles
y Vía Interoceánica, Quito 170901, Ecuador
| | - Vladimiro Mujica
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Mohammadreza Noormandipour
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- TCM Group,
Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Julio L. Palma
- Department
of Chemistry, Pennsylvania State University, Lemont Furnace, Pennsylvania 15456, United States
| | - Yossi Paltiel
- Applied
Physics Department and the Center for Nano-Science and Nano-Technology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William Petuskey
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - João Carlos Ribeiro-Silva
- Laboratory
of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, 05508-900 São
Paulo, Brazil
| | - Juan José Saenz
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| | - Maria Solyanik-Gorgone
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Volker J. Sorger
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Dominik M. Stemer
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jesus M. Ugalde
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ana Valdes-Curiel
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Solmar Varela
- School
of Chemical Sciences and Engineering, Yachay
Tech University, 100119 Urcuquí, Ecuador
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Institute
for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California, 90095, United States
| | - Helmut Zacharias
- Center
for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Qing Hua Wang
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
36
|
Ferrer M, Gallen A, Martínez M, Rocamora M, Puttreddy R, Rissanen K. Homo- and heterometallic chiral dynamic architectures from allyl-palladium(II) building blocks. Dalton Trans 2022; 51:5913-5928. [PMID: 35348142 DOI: 10.1039/d1dt03706d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New chiral tetranuclear square-like homo- and heterometallamacrocycles containing allyl-palladium and either {Pd(P-P)*} or {Pt(P-P)*} optically pure moieties (P-P* = (2S,3S)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphanyl)butane ((S,S)-DIOP) and (2S,4S)-2,4-bis(diphenylphosphanyl)pentane ((S,S)-BDPP)) have been obtained by the self-assembly of [Pd(η3-2-Me-C3H4)(4-PPh2py)2]+ and [M(P-P)*(H2O)2]2+ building blocks in a 1 : 1 molar ratio. The supramolecular assemblies thus prepared [{Pd(η3-2-Me-C3H4)}2(4-PPh2py)4{M(P-P)*}2](CF3SO3)6 (M = Pd, Pt) have been fully characterised by multinuclear NMR spectroscopy and MS spectrometry. The structures display remarkable differences on their dynamic behaviour in solution that depend on the lability and thermodynamic strength of M-py bonds. The structural characteristics of the new metallamacrocyles obtained have also been unambiguously established by XRD analysis. The architectures have been assayed as catalytic precursors in the asymmetric allylic alkylation reaction.
Collapse
Affiliation(s)
- Montserrat Ferrer
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - Albert Gallen
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mercè Rocamora
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.
| | - Rakesh Puttreddy
- Department of Chemistry, University of Jyväskylä, POB 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä, POB 35, 40014 Jyväskylä, Finland
| |
Collapse
|
37
|
Cao Z, Chen J, Deng S, Chen H. A physical interpretation of coupling chiral metaatoms. NANOSCALE 2022; 14:3849-3857. [PMID: 35195644 DOI: 10.1039/d1nr05065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The physical origins of chiroptical responses from artificial optically active media are significant for developing high-performance circular dichroism (CD) spectroscopic techniques. Here, we present a biorthogonal approach based on temporal coupled-mode theory to unravel the underlying physics of chiral metasurfaces. Equipped with physically meaningful parameters, this approach inherits the intrinsic properties of open optical cavities, including time-reversal symmetry and non-Hermitian Hamiltonians, which are found to be in excellent agreement with numerical results. Remarkably, it identifies that the intrinsic chirality of coupled chiral nanocavities arises from (i) the asymmetric coupling between interlayer cross-polarized resonant modes and (ii) a coherent interference between doubly degenerate states. Based on this formalism, a critical coupling condition capable of achieving zero transmission for circularly polarized light is proposed.
Collapse
Affiliation(s)
- Zhaolong Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jianfa Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
38
|
Both S, Schäferling M, Sterl F, Muljarov EA, Giessen H, Weiss T. Nanophotonic Chiral Sensing: How Does It Actually Work? ACS NANO 2022; 16:2822-2832. [PMID: 35080371 DOI: 10.1021/acsnano.1c09796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanophotonic chiral sensing has recently attracted a lot of attention. The idea is to exploit the strong light-matter interaction in nanophotonic resonators to determine the concentration of chiral molecules at ultralow thresholds, which is highly attractive for numerous applications in life science and chemistry. However, a thorough understanding of the underlying interactions is still missing. The theoretical description relies on either simple approximations or on purely numerical approaches. We close this gap and present a general theory of chiral light-matter interactions in arbitrary resonators. Our theory describes the chiral interaction as a perturbation of the resonator modes, also known as resonant states or quasi-normal modes. We observe two dominant contributions: A chirality-induced resonance shift and changes in the modes' excitation and emission efficiencies. Our theory brings deep insights for tailoring and enhancing chiral light-matter interactions. Furthermore, it allows us to predict spectra much more efficiently in comparison to conventional approaches. This is particularly true, as chiral interactions are inherently weak and therefore perturbation theory fits extremely well for this problem.
Collapse
Affiliation(s)
- Steffen Both
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Martin Schäferling
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Florian Sterl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Egor A Muljarov
- Cardiff University, School of Physics and Astronomy, The Parade, CF24 3AA, Cardiff, United Kingdom
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Thomas Weiss
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Institute of Physics, University of Graz, and NAWI Graz, Universitätsplatz 5, 8010 Graz, Austria
| |
Collapse
|
39
|
Carone A, Mariani P, Désert A, Romanelli M, Marcheselli J, Garavelli M, Corni S, Rivalta I, Parola S. Insight on Chirality Encoding from Small Thiolated Molecule to Plasmonic Au@Ag and Au@Au Nanoparticles. ACS NANO 2022; 16:1089-1101. [PMID: 34994190 DOI: 10.1021/acsnano.1c08824] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral plasmonic nanomaterials exhibiting intense optical activity are promising for numerous applications. In order to prepare those nanostructures, one strategy is to grow metallic nanoparticles in the presence of chiral molecules. However, in such approach the origin of the observed chirality remains uncertain. In this work, we expand the range of available chiral plasmonic nanostructures and we propose another vision of the origin of chirality in such colloidal systems. For that purpose, we investigated the synthesis of two core-shell Au@Ag and Au@Au systems built from gold nanobipyramid cores, in the presence of cysteine. The obtained nanoparticles possess uniform shape and size and show plasmonic circular dichroism in the visible range, and were characterized by electron microscopy, circular dichroism, and UV-vis-NIR spectroscopy. Opto-chiral responses were found to be highly dependent on the morphology and the plasmon resonance. It revealed (i) the importance of the anisotropy for Au@Au nanoparticles and (ii) the role of the multipolar modes for Au@Ag nanoparticles on the way to achieve intense plasmonic circular dichroism. The role of cysteine as shaping agent and as chiral encoder was particularly evaluated. Our experimental results, supported by theoretical simulations, contrast the hypothesis that chiral molecules entrapped in the nanoparticles determine the chiral properties, highlighting the key role of the outmost part of the nanoparticles shell on the plasmonic circular dichroism. Along with these results, the impact of enantiomeric ratio of cysteine on the final shape suggested that the presence of a chiral shape or chiral patterns should be considered.
Collapse
Affiliation(s)
- Antonio Carone
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Pablo Mariani
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Anthony Désert
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| | - Marco Romanelli
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Jacopo Marcheselli
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- SISSA─Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
- Dipartimento di Chimica Industriale "Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Stephane Parola
- Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, F-69364 Lyon, France
| |
Collapse
|
40
|
Vila-Liarte D, Kotov NA, Liz-Marzán LM. Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures. Chem Sci 2022; 13:595-610. [PMID: 35173926 PMCID: PMC8768870 DOI: 10.1039/d1sc03327a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
The acquisition of strong chiroptical activity has revolutionized the field of plasmonics, granting access to novel light-matter interactions and revitalizing research on both the synthesis and application of nanostructures. Among the different mechanisms for the origin of chiroptical properties in colloidal plasmonic systems, the self-assembly of achiral nanoparticles into optically active materials offers a versatile route to control the structure-optical activity relationships of nanostructures, while simplifying the engineering of their chiral geometries. Such unconventional materials include helical structures with a precisely defined morphology, as well as large scale, deformable substrates that can leverage the potential of periodic patterns. Some promising templates with helical structural motifs like liquid crystal phases or confined block co-polymers still need efficient strategies to direct preferential handedness, whereas other templates such as silica nanohelices can be grown in an enantiomeric form. Both types of chiral structures are reviewed herein as platforms for chiral sensing: patterned substrates can readily incorporate analytes, while helical assemblies can form around structures of interest, like amyloid protein aggregates. Looking ahead, current knowledge and precedents point toward the incorporation of semiconductor emitters into plasmonic systems with chiral effects, which can lead to plasmonic-excitonic effects and the generation of circularly polarized photoluminescence.
Collapse
Affiliation(s)
- David Vila-Liarte
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
- Centro de Investigación Biomédica en Red, Biomateriales, Bioingeniería y Nanomedicina (CIBER-BBN) Spain
| | - Nicholas A Kotov
- Department of Chemical Engineering, Materials Science, Department of Biomedical Engineering, University of Michigan Ann Arbor USA
- Biointerfaces Institute, University of Michigan Ann Arbor USA
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
- Centro de Investigación Biomédica en Red, Biomateriales, Bioingeniería y Nanomedicina (CIBER-BBN) Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
41
|
Qu DH, Xu H, Zhang Q, Gan JA, Wang Z, Chen M, Shan Y, Chen S, Tong F. Hysteresis Nanoarchitectonics with Chiral Gel Fibers and Achiral Gold Nanospheres for Reversible Chiral Inversion. Chem Asian J 2022; 17:e202101354. [PMID: 35007397 DOI: 10.1002/asia.202101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Indexed: 11/07/2022]
Abstract
Intelligent control over the handedness of circular dichroism (CD) is of special significance in self-organized biological and artificial systems. Herein, we report a chiral organic molecule (R1) containing a disulfide unit self-assembles into M-type helical fibers gels, which undergoes chirality inversion by incorporating gold nanospheres due to the formation of Au-S bonds between R1 and gold nanospheres. Upon heating at 80oC, the aggregation of gold nanospheres results in a disappearance of the Au-S bond, allowing the reversible switching back to M-type helical fibers. The original chirality of M-type fibers could also be retained by adding anisotropic gold nanorods. A series of characterization methods, involving CD, Raman, Infrared spectroscopy, electric microscopy, and small-angle X-ray scattering (SAXS) measurements were used to investigate the mechanism of chiral evolutions. Our results provide a facile way of fabricating hysteresis nanoarchitectonics to achieve dynamic supramolecular chirality using inorganic metallic nanoparticles.
Collapse
Affiliation(s)
- Da-Hui Qu
- Key Labs for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, CHINA
| | - Hui Xu
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Qi Zhang
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Jia-An Gan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Zhuo Wang
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Meng Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Yahan Shan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Shaoyu Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Fei Tong
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, 200237, Shanghai, CHINA
| |
Collapse
|
42
|
Qu A, Xu L, Xu C, Kuang H. Chiral nanomaterials for biosensing, bioimaging, and disease therapies. Chem Commun (Camb) 2022; 58:12782-12802. [DOI: 10.1039/d2cc04420j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral plasmonic nanomaterials for biosensing, bioimaging and disease therapy.
Collapse
Affiliation(s)
- Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
43
|
Liu S, Ma X, Song M, Ji CY, Song J, Ji Y, Ma S, Jiang J, Wu X, Li J, Liu M, Wang RY. Plasmonic Nanosensors with Extraordinary Sensitivity to Molecularly Enantioselective Recognition at Nanoscale Interfaces. ACS NANO 2021; 15:19535-19545. [PMID: 34797065 DOI: 10.1021/acsnano.1c06467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular chirality recognition plays a pivotal role in chiral generation and transfer in living systems and makes important contribution to the development of diverse applications spanning from chiral separation to soft nanorobots. To detect chirality recognition, most of the molecular sensors described to date are based on the design and preparation of the host-guest complexation with chromophore or fluorophore at the reporter unit. Nevertheless, the involved tedious procedures and complicated chemical syntheses hamper their practical applications. Here, we report the plasmonically chiroptical detection of molecular chirality recognition without the need for a chromophore or fluorophore unit. This facile methodology is based on plasmonic nanotransducers that can convert molecular chirality recognitions occurring at nanoscale interfaces into asymmetrically amplified plasmonic circular dichroism readouts, enabling enantiospecific recognition and quantitative determination of the enantiomeric excess of small amino acids. Importantly, such a plasmon-based chirality sensing shows 102-103 amplification in the plasmonic circular dichroism signals from the detections of racemate and near-racemate of molecular analysts, demonstrating an extraordinary sensitivity to the host-guest enantioselective interactions. Furthermore, with advantages of easy-processing, cost-effective, and specific to interfacial molecular chirality, our chiroptical sensing scheme could hold considerable promise toward applications of enantioselective high-throughput screening in biology, stereochemistry, and pharmaceutics.
Collapse
Affiliation(s)
- Shengli Liu
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyun Ma
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Mei Song
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chang-Yin Ji
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Song
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Sijia Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jiafang Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong-Yao Wang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
44
|
Chen PG, Li Z, Qi Y, Lo TW, Wang S, Jin W, Wong KY, Fan S, Zayats AV, Lei D. Long-Range Directional Routing and Spatial Selection of High-Spin-Purity Valley Trion Emission in Monolayer WS 2. ACS NANO 2021; 15:18163-18171. [PMID: 34730338 DOI: 10.1021/acsnano.1c06955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Valley-dependent excitation and emission in transition metal dichalcogenides (TMDCs) have recently emerged as a new avenue for optical data manipulation, quantum optical technologies, and chiral photonics. The valley-polarized electronic states can be optically addressed through photonic spin-orbit interaction of excitonic emission, typically with plasmonic nanostructures, but their performance is limited by the low quantum yield of neutral excitons in TMDC multilayers and the large Ohmic loss of plasmonic systems. Here, we demonstrate a valleytronic system based on the trion emission in high-quantum-yield WS2 monolayers chirally coupled to a low-loss microfiber. The integrated system uses the spin properties of the waveguided modes to achieve long-range directional routing of valley excitations and also provides an approach to selectively address valley-dependent emission from different spatial locations around the microfiber. This valleytronic interface can be integrated with fiber communication devices, allowing for merging valley polarization and chiral photonics as an alternative mechanism for optical information transport and manipulation in classical and quantum regimes.
Collapse
Affiliation(s)
- Pei-Gang Chen
- Department of Materials Science and Engineering, The City University of Hong Kong, Hong Kong 999077, China
| | - Zhiyong Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yun Qi
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Tsz Wing Lo
- Department of Materials Science and Engineering, The City University of Hong Kong, Hong Kong 999077, China
| | - Shubo Wang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Wei Jin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Shanhui Fan
- Department of Electrical Engineering and Ginzton Laboratory, Stanford University, Stanford, California 94305-4088, United States
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, U.K
| | - Dangyuan Lei
- Department of Materials Science and Engineering, The City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
45
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
46
|
Zhang X, Weng W, Li L, Wu H, Yao Y, Wang Z, Liu X, Lin W, Luo J. Heterogeneous Integration of Chiral Lead-Chloride Perovskite Crystals with Si Wafer for Boosted Circularly Polarized Light Detection in Solar-Blind Ultraviolet Region. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102884. [PMID: 34480523 DOI: 10.1002/smll.202102884] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chiral hybrid organic-inorganic perovskites (HOIPs) have been well developed for circularly polarized light (CPL) detection, while new members that target at solar-blind ultraviolet (UV) region remain completely unexplored. Here, an effective design strategy to demonstrate circular polarization-sensitive solar-blind UV photodetection by growing wide-bandgap chiral HOIP [(R)-MPA]2 PbCl4 ((R)-MPA = methylphenethylammonium) single crystals onto silicon wafers, with well-defined heterostructures, is reported. The solid mechanical and electrical connection between the chiral HOIP and silicon wafer results in strong built-in electric field at heterojunction, providing a desirable driving force for separating/transporting carriers generated under CPL excitation at 266 nm. Unexpectedly, during such a transport process, not only the chirality of HOIP crystal is transferred to the heterostructure, but also the circular polarization sensitivity is significantly amplified. Consequently, anisotropy factor of the resultant detectors can reach up to 0.4 at zero bias, which is much higher than that of the pristine single-phase chiral HOIP (≈0.1), reaching the highest among the reported CPL-UV photodetectors. As far as we know, the integration of chiral HOIP crystals with silicon technology is unprecedent, which paves a way for designing boosted-performance CPL detectors in solar-blind UV region as well as for other advanced optoelectronic devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen Weng
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Hongchun Wu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yunpeng Yao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Ziyang Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Wenxiong Lin
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nangchang, 330022, P. R. China
| |
Collapse
|
47
|
Li J, Li J, Zheng C, Yang Y, Yue Z, Hao X, Zhao H, Li F, Tang T, Wu L, Li J, Zhang Y, Yao J. Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave. OPTICS EXPRESS 2021; 29:28329-28337. [PMID: 34614966 DOI: 10.1364/oe.430033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
It is difficult for single-layer metal metasurfaces to excite in-plane component of magnetic dipole moment, so achieving giant intrinsic optical chirality remains challenging. Fortunately, displacement current in dielectric metasurfaces can form the in-plane magnetic moment which is not orthogonal to the electric dipole moment and forms intrinsic chirality. Here, we show a lossless all-silicon metasurface which achieves giant intrinsic chirality in terahertz band. The leaky waveguide mode in the chiral silicon pillars simultaneously excite the in-plane electric and magnetic dipole moments, which triggers the spin-selected backward electromagnetic radiation, and then realizes the chiral response. The theoretical value of circular dichroism in the transmission spectrum reaches 69.4%, and the measured one is 43%. Based on the photoconductivity effect of the silicon metasurface, we demonstrate optical modulation of the intrinsic chirality using near-infrared continuous wave. In addition, by arranging the two kinds of meta-atoms which are enantiomers, we show the spin-dependent and tunable near-field image display. This simple-prepared all-silicon metasurface provides a new idea for the design of terahertz chiral meta-devices, and it is expected to be applied in the fields of terahertz polarization imaging or spectral detection.
Collapse
|
48
|
Vectorial holography-mediated growth of plasmonic metasurfaces. Sci Bull (Beijing) 2021; 66:1518-1524. [PMID: 36654280 DOI: 10.1016/j.scib.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 02/03/2023]
Abstract
Nowadays, the electromagnetic properties of artificial photonic materials can be well-tuned via designs over their composition and geometries. However, engineering the properties of artificial materials at the nanoscale is challenging and costly. Here we demonstrate a facile and low-cost method for fabricating large-area silver nanoparticle metasurfaces (AgNPMSs) by using the vectorial holography-mediated growth technique. The AgNPMS, which can be regarded as a hologram device, possesses excellent chiroptical properties. The vectorial holographic technique may open avenues for fabricating novel chiroptical metamaterials with large degrees of freedom, which can be further used for beam steering, photocatalysis, biosensing, etc.
Collapse
|
49
|
Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. SENSORS 2021; 21:s21165262. [PMID: 34450704 PMCID: PMC8401600 DOI: 10.3390/s21165262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.
Collapse
|
50
|
Wang ZY, Zhang NN, Li JC, Lu J, Zhao L, Fang XD, Liu K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. SOFT MATTER 2021; 17:6298-6304. [PMID: 34160542 DOI: 10.1039/d1sm00784j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral assemblies by combining natural biomolecules with plasmonic nanostructures hold great promise for plasmonic enhanced sensing, imaging, and catalytic applications. Herein, we demonstrate that human serum albumin (HSA) and porcine serum albumin (PSA) can guide the chiral assembly of gold nanorods (GNRs) with left-handed chiroptical responses opposite to those by a series of other homologous animal serum albumins (SAs) due to the difference of their surface charge distributions. Under physiological pH conditions, the assembly of HSA or PSA with GNRs yielded left-handed twisted aggregates, while bovine serum albumin (BSA), sheep serum albumin, and equine serum albumin behaved on the contrary. The driving force for the chiral assembly is mainly attributed to electrostatic interaction. The opposite chiroptical signals acquired are correlated with the chiral surface charge distributions of the tertiary structures of SAs. Moreover, the chirality of the assembly induced by both HSA and BSA can be enhanced or reversed by adjusting the pH values. This work provides new insights into the modulation of protein-induced chiral assemblies and promotes their applications.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Jin-Cheng Li
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Jun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China. and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Li Zhao
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Xue-Dong Fang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China.
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|