1
|
Huang S, Zhu L, Zhao Y, Watanabe K, Taniguchi T, Xiao J, Wang L, Mei J, Huang H, Zhang F, Wang M, Fu D, Zhang R. Giant magnetoresistance induced by spin-dependent orbital coupling in Fe 3GeTe 2/graphene heterostructures. Nat Commun 2025; 16:2866. [PMID: 40128534 PMCID: PMC11933411 DOI: 10.1038/s41467-025-58224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Information technology has a great demand for magnetoresistance (MR) sensors with high sensitivity and wide-temperature-range operation. It is well known that space charge inhomogeneity in graphene (Gr) leads to finite MR in its pristine form, and can be enhanced by increasing the degree of spatial disorder. However, the enhanced MR usually diminishes drastically as the temperature decreases. Here, by stacking a van der Waals ferromagnet Fe3GeTe2 (FGT) on top of graphene to form an FGT/Gr heterostructure, we demonstrate a positive MR of up to ~9400% under a magnetic field of 9 T at room temperature (RT), an order of magnitude larger MR compared to pure graphene. More strikingly, the giant MR of the FGT/Gr heterostructure sustains over a wide temperature range from RT down to 4 K. Both control experiments and DFT calculations show that the enhanced MR originates from spin-dependent orbital coupling between FGT and graphene, which is temperature insensitive. Our results open a new route for realizing high-sensitivity and wide-temperature-range MR sensors.
Collapse
Affiliation(s)
- Shiming Huang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China
| | - Lianying Zhu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China
| | - Yongxin Zhao
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Jie Xiao
- Department of Physics, Southern University of Science and Technology, Shenzhen, China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Mei
- Department of Physics, Southern University of Science and Technology, Shenzhen, China
| | - Huolin Huang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | - Feng Zhang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China.
| | - Maoyuan Wang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China.
| | - Deyi Fu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China.
| | - Rong Zhang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Rahman MM, Oh S, Adhikari PR, Lee J. Complete Mapping of Thermodynamic Stability of Ternary Oxide SrTiO 3 (001) Surface at Finite Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405450. [PMID: 39236297 PMCID: PMC11538646 DOI: 10.1002/advs.202405450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/22/2024] [Indexed: 09/07/2024]
Abstract
The oxide surface structure plays a vital role in controlling and utilizing the emergent phenomena occurring at the interface of nanoarchitecture. A complete understanding of ternary oxide surfaces remains challenging due to complex surface reconstructions in various chemical and physical environments. Here a thermodynamic framework is developed to treat the stability of ternary oxide surfaces with finite temperature and chemical environments. Strontium titanate, as a representative ternary oxide, is used to establish the complete energy landscape of SrTiO3 (001) surface. The complete mapping yields a comprehensive understanding of various stable SrTiO3 surfaces with finite temperature and chemical potential or vapor pressure of the constituents, i.e., Sr (or Ti) metal and oxygen. This treatment also reveals a stable surface unknown yet with SrTi2O3 stoichiometry, which unveils the missing link between numerous previous experimental observations and the current understanding of SrTiO3 surface. Interestingly, the new surface shows an anisotropic surface-localized metallic state originating from the characteristic surface structure. The findings would provide a viable way to understand ternary oxide surfaces and further utilize SrTiO3 surfaces for oxide nanoarchitectures.
Collapse
Affiliation(s)
- Md Mokhlesur Rahman
- School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwon‐siGyeonggi‐do16419South Korea
| | - Sehoon Oh
- School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwon‐siGyeonggi‐do16419South Korea
| | - Puspa Raj Adhikari
- School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwon‐siGyeonggi‐do16419South Korea
| | - Jaichan Lee
- School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwon‐siGyeonggi‐do16419South Korea
| |
Collapse
|
3
|
Su S, Zhao J, Ly TH. Scanning Probe Microscopies for Characterizations of 2D Materials. SMALL METHODS 2024; 8:e2400211. [PMID: 38766949 PMCID: PMC11579571 DOI: 10.1002/smtd.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
2D materials are intriguing due to their remarkably thin and flat structure. This unique configuration allows the majority of their constituent atoms to be accessible on the surface, facilitating easier electron tunneling while generating weak surface forces. To decipher the subtle signals inherent in these materials, the application of techniques that offer atomic resolution (horizontal) and sub-Angstrom (z-height vertical) sensitivity is crucial. Scanning probe microscopy (SPM) emerges as the quintessential tool in this regard, owing to its atomic-level spatial precision, ability to detect unitary charges, responsiveness to pico-newton-scale forces, and capability to discern pico-ampere currents. Furthermore, the versatility of SPM to operate under varying environmental conditions, such as different temperatures and in the presence of various gases or liquids, opens up the possibility of studying the stability and reactivity of 2D materials in situ. The characteristic flatness, surface accessibility, ultra-thinness, and weak signal strengths of 2D materials align perfectly with the capabilities of SPM technologies, enabling researchers to uncover the nuanced behaviors and properties of these advanced materials at the nanoscale and even the atomic scale.
Collapse
Affiliation(s)
- Shaoqiang Su
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077China
| | - Jiong Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518057China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super‐Diamond & Advanced Films (COSDAF)City University of Hong KongKowloon999077China
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
4
|
Sun RX, Hu Z, Zhao X, Zha MJ, Zhang J, Chen XD, Liu Z, Tian J. Strain-Prompted Giant Flexo-Photovoltaic Effect in Two-Dimensional Violet Phosphorene Nanosheets. ACS NANO 2024; 18:13298-13307. [PMID: 38727530 DOI: 10.1021/acsnano.4c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As a second-order nonlinear optical phenomenon, the bulk photovoltaic (BPV) effect is expected to break through the Shockley-Queisser limit of thermodynamic photoelectron conversion and improve the energy conversion efficiency of photovoltaic cells. Here, we have successfully induced a strong flexo-photovoltaic (FPV) effect, a form of BPV effect, in strained violet phosphorene nanosheets (VPNS) by utilizing strain engineering at the h-BN nanoedge, which was first observed in nontransition metal dichalcogenide (TMD) systems. This BPV effect was found to originate from the disruption of inversion symmetry induced by uniaxial strain applied to VPNS at the h-BN nanoedge. We have revealed the intricate relationship between the bulk photovoltaic effect and strain gradients in VPNS through thickness-dependent photovoltaic response experiments. A bulk photovoltaic coefficient of up to 1.3 × 10-3 V-1 and a polarization extinction ratio of 21.6 have been achieved by systematically optimizing the height of the h-BN nanoedge and the thickness of VPNS, surpassing those of reported TMD materials (typically less than 3). Our results have revealed the fundamental relationship between the FPV effect and the strain gradients in low-dimensional materials and inspired further exploration of optoelectronic phenomena in strain-gradient engineered materials.
Collapse
Affiliation(s)
- Ruo-Xuan Sun
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China
| | - Zhen Hu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China
| | - Xuewen Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ming-Jie Zha
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xu-Dong Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China
| | - Zhibo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianguo Tian
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Wang J, Huang C, Xing Y, Shao X. Facet-Dependent Interfacial Charge Transfer between T-Phase VS 2 Nanoflakes and Rutile TiO 2 Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38621278 DOI: 10.1021/acsami.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The hybridizations of two-dimensional (2D) metallic materials with semiconducting transition metal oxides (TMOs) register attractive heterojunctions, which can find various applications in photostimulated circumstances. In this work, we developed an ambient-pressure chemical vapor deposition method to directly grow T-VS2 on atomically smooth rutile TiO2 single crystals with different terminations and thus successfully constructed a heterojunction model of VS2/TiO2 with a well-defined clean interface. Detailed measurements with Kelvin probe force microscopy revealed the facet-dependent charge transfer occurring at the VS2/TiO2 interfaces, seeing variations not only in the amount and direction of the transferred electrons but also in the photoinduced surface potential changes and the dynamics of photogenerated charge carriers under ultraviolet irradiation. Interestingly, ultrathin T-VS2 was found with considerable magnetism at room temperature, disregarding the charge exchange with the TiO2 substrates. These results may bring deep insights into the photoinspired functionalities of the hybridized system combining metallic transition metal dichalcogenides and TMO materials.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chenxi Huang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Xing
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Shao
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Hu J, Han Y, Chi X, Omar GJ, Al Ezzi MME, Gou J, Yu X, Andrivo R, Watanabe K, Taniguchi T, Wee ATS, Qiao Z, Ariando A. Tunable Spin-Polarized States in Graphene on a Ferrimagnetic Oxide Insulator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305763. [PMID: 37811809 DOI: 10.1002/adma.202305763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Spin-polarized two-dimensional (2D) materials with large and tunable spin-splitting energy promise the field of 2D spintronics. While graphene has been a canonical 2D material, its spin properties and tunability are limited. Here, this work demonstrates the emergence of robust spin-polarization in graphene with large and tunable spin-splitting energy of up to 132 meV at zero applied magnetic fields. The spin polarization is induced through a magnetic exchange interaction between graphene and the underlying ferrimagnetic oxide insulating layer, Tm3 Fe5 O12 , as confirmed by its X-ray magnetic circular dichroism (XMCD). The spin-splitting energies are directly measured and visualized by the shift in their Landau-fan diagram mapped by analyzing the measured Shubnikov-de-Haas (SdH) oscillations as a function of applied electric fields, showing consistent fit with the first-principles and machine learning calculations. Further, the observed spin-splitting energies can be tuned over a broad range between 98 and 166 meV by field cooling. The methods and results are applicable to other 2D (magnetic) materials and heterostructures, and offer great potential for developing next-generation spin logic and memory devices.
Collapse
Affiliation(s)
- Junxiong Hu
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Yulei Han
- International Center for Quantum Design of Functional Materials, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Physics, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiao Chi
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Ganesh Ji Omar
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Mohammed Mohammed Esmail Al Ezzi
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Rusydi Andrivo
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Zhenhua Qiao
- International Center for Quantum Design of Functional Materials, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - A Ariando
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| |
Collapse
|
7
|
Hu J, Tan J, Al Ezzi MM, Chattopadhyay U, Gou J, Zheng Y, Wang Z, Chen J, Thottathil R, Luo J, Watanabe K, Taniguchi T, Wee ATS, Adam S, Ariando A. Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures. Nat Commun 2023; 14:4142. [PMID: 37438404 DOI: 10.1038/s41467-023-39893-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
The supermoiré lattice, built by stacking two moiré patterns, provides a platform for creating flat mini-bands and studying electron correlations. An ultimate challenge in assembling a graphene supermoiré lattice is in the deterministic control of its rotational alignment, which is made highly aleatory due to the random nature of the edge chirality and crystal symmetry. Employing the so-called "golden rule of three", here we present an experimental strategy to overcome this challenge and realize the controlled alignment of double-aligned hBN/graphene/hBN supermoiré lattice, where the twist angles between graphene and top/bottom hBN are both close to zero. Remarkably, we find that the crystallographic edge of neighboring graphite can be used to better guide the stacking alignment, as demonstrated by the controlled production of 20 moiré samples with an accuracy better than ~ 0.2°. Finally, we extend our technique to low-angle twisted bilayer graphene and ABC-stacked trilayer graphene, providing a strategy for flat-band engineering in these moiré materials.
Collapse
Affiliation(s)
- Junxiong Hu
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Junyou Tan
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Mohammed M Al Ezzi
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Udvas Chattopadhyay
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yuntian Zheng
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Zihao Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Jiayu Chen
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Reshmi Thottathil
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Jiangbo Luo
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Shaffique Adam
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - A Ariando
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore.
| |
Collapse
|
8
|
Yang AJ, Wang SX, Xu J, Loh XJ, Zhu Q, Wang XR. Two-Dimensional Layered Materials Meet Perovskite Oxides: A Combination for High-Performance Electronic Devices. ACS NANO 2023. [PMID: 37171107 DOI: 10.1021/acsnano.3c00429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
As the Si-based transistors scale down to atomic dimensions, the basic principle of current electronics, which heavily relies on the tunable charge degree of freedom, faces increasing challenges to meet the future requirements of speed, switching energy, heat dissipation, and packing density as well as functionalities. Heterogeneous integration, where dissimilar layers of materials and functionalities are unrestrictedly stacked at an atomic scale, is appealing for next-generation electronics, such as multifunctional, neuromorphic, spintronic, and ultralow-power devices, because it unlocks technologically useful interfaces of distinct functionalities. Recently, the combination of functional perovskite oxides and two-dimensional layered materials (2DLMs) led to unexpected functionalities and enhanced device performance. In this paper, we review the recent progress of the heterogeneous integration of perovskite oxides and 2DLMs from the perspectives of fabrication and interfacial properties, electronic applications, and challenges as well as outlooks. In particular, we focus on three types of attractive applications, namely field-effect transistors, memory, and neuromorphic electronics. The van der Waals integration approach is extendible to other oxides and 2DLMs, leading to almost unlimited combinations of oxides and 2DLMs and contributing to future high-performance electronic and spintronic devices.
Collapse
Affiliation(s)
- Allen Jian Yang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Su-Xi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 13863, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 13863, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 13863, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 13863, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 13863, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 13863, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiao Renshaw Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| |
Collapse
|
9
|
Xin N, Lourembam J, Kumaravadivel P, Kazantsev AE, Wu Z, Mullan C, Barrier J, Geim AA, Grigorieva IV, Mishchenko A, Principi A, Fal'ko VI, Ponomarenko LA, Geim AK, Berdyugin AI. Giant magnetoresistance of Dirac plasma in high-mobility graphene. Nature 2023; 616:270-274. [PMID: 37045919 PMCID: PMC10097601 DOI: 10.1038/s41586-023-05807-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/08/2023] [Indexed: 04/14/2023]
Abstract
The most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering3-5 and hydrodynamic flow6-8. However, little is known about the plasma's behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering3-5,9-14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron-hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals12-14 and so-called quantum linear magnetoresistance predicted for Weyl metals16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.
Collapse
Affiliation(s)
- Na Xin
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - James Lourembam
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Piranavan Kumaravadivel
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - A E Kazantsev
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Zefei Wu
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Ciaran Mullan
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Julien Barrier
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Alexandra A Geim
- National Graphene Institute, University of Manchester, Manchester, UK
| | - I V Grigorieva
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - A Mishchenko
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - A Principi
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - V I Fal'ko
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - L A Ponomarenko
- Department of Physics, University of Lancaster, Lancaster, UK.
| | - A K Geim
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| | - Alexey I Berdyugin
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Žurauskienė N. Engineering of Advanced Materials for High Magnetic Field Sensing: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2939. [PMID: 36991646 PMCID: PMC10059877 DOI: 10.3390/s23062939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Advanced scientific and industrial equipment requires magnetic field sensors with decreased dimensions while keeping high sensitivity in a wide range of magnetic fields and temperatures. However, there is a lack of commercial sensors for measurements of high magnetic fields, from ∼1 T up to megagauss. Therefore, the search for advanced materials and the engineering of nanostructures exhibiting extraordinary properties or new phenomena for high magnetic field sensing applications is of great importance. The main focus of this review is the investigation of thin films, nanostructures and two-dimensional (2D) materials exhibiting non-saturating magnetoresistance up to high magnetic fields. Results of the review showed how tuning of the nanostructure and chemical composition of thin polycrystalline ferromagnetic oxide films (manganites) can result in a remarkable colossal magnetoresistance up to megagauss. Moreover, by introducing some structural disorder in different classes of materials, such as non-stoichiometric silver chalcogenides, narrow band gap semiconductors, and 2D materials such as graphene and transition metal dichalcogenides, the possibility to increase the linear magnetoresistive response range up to very strong magnetic fields (50 T and more) and over a large range of temperatures was demonstrated. Approaches for the tailoring of the magnetoresistive properties of these materials and nanostructures for high magnetic field sensor applications were discussed and future perspectives were outlined.
Collapse
Affiliation(s)
- Nerija Žurauskienė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, 10257 Vilnius, Lithuania;
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| |
Collapse
|
11
|
Smaisim GF, Abed AM, Al-Madhhachi H, Hadrawi SK, Al-Khateeb HMM, Kianfar E. Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Puebla S, Pucher T, Rouco V, Sanchez-Santolino G, Xie Y, Zamora V, Cuellar FA, Mompean FJ, Leon C, Island JO, Garcia-Hernandez M, Santamaria J, Munuera C, Castellanos-Gomez A. Combining Freestanding Ferroelectric Perovskite Oxides with Two-Dimensional Semiconductors for High Performance Transistors. NANO LETTERS 2022; 22:7457-7466. [PMID: 36108061 PMCID: PMC9523702 DOI: 10.1021/acs.nanolett.2c02395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We demonstrate the fabrication of field-effect transistors based on single-layer MoS2 and a thin layer of BaTiO3 (BTO) dielectric, isolated from its parent epitaxial template substrate. Thin BTO provides an ultrahigh-κ gate dielectric effectively screening Coulomb scattering centers. These devices show mobilities substantially larger than those obtained with standard SiO2 dielectrics and comparable with values obtained with hexagonal boron nitride, a dielectric employed for fabrication of high-performance two-dimensional (2D) based devices. Moreover, the ferroelectric character of BTO induces a robust hysteresis of the current vs gate voltage characteristics, attributed to its polarization switching. This hysteresis is strongly suppressed when the device is warmed up above the tetragonal-to-cubic transition temperature of BTO that leads to a ferroelectric-to-paraelectric transition. This hysteretic behavior is attractive for applications in memory storage devices. Our results open the door to the integration of a large family of complex oxides exhibiting strongly correlated physics in 2D-based devices.
Collapse
Affiliation(s)
- Sergio Puebla
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
| | - Thomas Pucher
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
| | - Victor Rouco
- GFMC,
Department Fisica de Materiales, Facultad de Fisica, Universidad Complutense 28040 Madrid, Spain
| | - Gabriel Sanchez-Santolino
- GFMC,
Department Fisica de Materiales, Facultad de Fisica, Universidad Complutense 28040 Madrid, Spain
- Laboratorio
de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, 28040 Madrid, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, 28040 Madrid, Spain
| | - Yong Xie
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
- School
of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China
| | - Victor Zamora
- GFMC,
Department Fisica de Materiales, Facultad de Fisica, Universidad Complutense 28040 Madrid, Spain
| | - Fabian A. Cuellar
- GFMC,
Department Fisica de Materiales, Facultad de Fisica, Universidad Complutense 28040 Madrid, Spain
| | - Federico J. Mompean
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
- Laboratorio
de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, 28040 Madrid, Spain
| | - Carlos Leon
- GFMC,
Department Fisica de Materiales, Facultad de Fisica, Universidad Complutense 28040 Madrid, Spain
- Laboratorio
de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, 28040 Madrid, Spain
| | - Joshua O. Island
- Department
of Physics and Astronomy, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Mar Garcia-Hernandez
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
- Laboratorio
de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, 28040 Madrid, Spain
| | - Jacobo Santamaria
- GFMC,
Department Fisica de Materiales, Facultad de Fisica, Universidad Complutense 28040 Madrid, Spain
- Laboratorio
de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, 28040 Madrid, Spain
| | - Carmen Munuera
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
- Laboratorio
de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, 28040 Madrid, Spain
| | - Andres Castellanos-Gomez
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
- Laboratorio
de Heteroestructuras con aplicación en spintrónica, Unidad Asociada UCM/CSIC, 28040 Madrid, Spain
| |
Collapse
|
13
|
Islam S, Shamim S, Ghosh A. Benchmarking Noise and Dephasing in Emerging Electrical Materials for Quantum Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109671. [PMID: 35545231 DOI: 10.1002/adma.202109671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/01/2022] [Indexed: 06/15/2023]
Abstract
As quantum technologies develop, a specific class of electrically conducting materials is rapidly gaining interest because they not only form the core quantum-enabled elements in superconducting qubits, semiconductor nanostructures, or sensing devices, but also the peripheral circuitry. The phase coherence of the electronic wave function in these emerging materials will be crucial when incorporated in the quantum architecture. The loss of phase memory, or dephasing, occurs when a quantum system interacts with the fluctuations in the local electromagnetic environment, which manifests in "noise" in the electrical conductivity. Hence, characterizing these materials and devices therefrom, for quantum applications, requires evaluation of both dephasing and noise, although there are very few materials where these properties are investigated simultaneously. Here, the available data on magnetotransport and low-frequency fluctuations in electrical conductivity are reviewed to benchmark the dephasing and noise. The focus is on new materials that are of direct interest to quantum technologies. The physical processes causing dephasing and noise in these systems are elaborated, the impact of both intrinsic and extrinsic parameters from materials synthesis and devices realization are evaluated, and it is hoped that a clearer pathway to design and characterize both material and devices for quantum applications is thus provided.
Collapse
Affiliation(s)
- Saurav Islam
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Saquib Shamim
- Experimentelle Physik III, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Topological Insulators, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
14
|
Yang J, Song ZY, Guo L, Gao H, Dong Z, Yu Q, Zheng RK, Kang TT, Zhang K. Nontrivial Giant Linear Magnetoresistance in Nodal-Line Semimetal ZrGeSe 2D Layers. NANO LETTERS 2021; 21:10139-10145. [PMID: 34543026 DOI: 10.1021/acs.nanolett.1c01647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Linear magnetoresistance (LMR) is usually observed in topological quantum materials and plausibly connected with the topologically nontrivial surface state with Dirac-cone-like linear dispersion because the frequently encountered large Hall resistivity can be trivially mixed into the LMR via charge inhomogeneity. Herein, by applying an optimal gate voltage to nodal-line semimetal ZrGeSe two-dimensional (2D) layers with specific thicknesses, we observe a giant nonsaturated LMR of 8 × 104% at 2 K and a magnetic field of 9 T. This giant LMR is accompanied by a very small Hall resistivity, which is inconsistent with the charge inhomogeneity mechanism. Our systematic results confirm that the giant LMR is maximized when the topological semimetal is in the "even-metal" regime and suppressed upon evolution to the normal "odd-metal" regime. The "even-to-odd" transition is universal regardless of the thicknesses of the crystals. A comparison with Abrikosov's quantum LMR theory indicates that the observed LMR cannot be trivial.
Collapse
Affiliation(s)
- Jie Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhi-Yong Song
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Lei Guo
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Heng Gao
- International Centre for Quantum and Molecular Structures, Department of Physics, Shanghai University, Shanghai 200444, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Zhuo Dong
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Qiang Yu
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Ren-Kui Zheng
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ting-Ting Kang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
15
|
Joh H, Fan DE. Materials and Schemes of Multimodal Reconfigurable Micro/Nanomachines and Robots: Review and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101965. [PMID: 34410023 DOI: 10.1002/adma.202101965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Mechanically programmable, reconfigurable micro/nanoscale materials that can dynamically change their mechanical properties or behaviors, or morph into distinct assemblies or swarms in response to stimuli have greatly piqued the interest of the science community due to their unprecedented potentials in both fundamental research and technological applications. To date, a variety of designs of hard and soft materials, as well as actuation schemes based on mechanisms including chemical reactions and magnetic, acoustic, optical, and electric stimuli, have been reported. Herein, state-of-the-art micro/nanostructures and operation schemes for multimodal reconfigurable micro/nanomachines and swarms, as well as potential new materials and working principles, challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- Hyungmok Joh
- Materials Science and Engineering Program, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Donglei Emma Fan
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
16
|
Abstract
Magnetoresistance (MR) is the variation of a material’s resistivity under the presence of external magnetic fields. Reading heads in hard disk drives (HDDs) are the most common applications of MR sensors. Since the discovery of giant magnetoresistance (GMR) in the 1980s and the application of GMR reading heads in the 1990s, the MR sensors lead to the rapid developments of the HDDs’ storage capacity. Nowadays, MR sensors are employed in magnetic storage, position sensing, current sensing, non-destructive monitoring, and biomedical sensing systems. MR sensors are used to transfer the variation of the target magnetic fields to other signals such as resistance change. This review illustrates the progress of developing nanoconstructed MR materials/structures. Meanwhile, it offers an overview of current trends regarding the applications of MR sensors. In addition, the challenges in designing/developing MR sensors with enhanced performance and cost-efficiency are discussed in this review.
Collapse
|
17
|
Pezeshki A, Hamdi A, Yang Z, Lubio A, Shackery I, Ruediger A, Razzari L, Orgiu E. Effect of Extrinsic Disorder on the Magnetoresistance Response of Gated Single-Layer Graphene Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26152-26160. [PMID: 34028250 DOI: 10.1021/acsami.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Analogous to the case of classical metal oxide semiconductor field-effect transistors, transport properties of graphene-based devices are determined by scattering from adventitious charged impurities that are invariably present. The presence of charged impurities renders experimental graphene samples "extrinsic" in that their electrical performances also depend on the environment in which graphene operates. While the role of such an extrinsic disorder component has been studied for conventional charge transport in graphene, its impact on the magnetotransport remains unexplored. Here, we show that single-layer graphene transistors with a low density of extrinsic disorder feature a larger magnetoresistance (MR) than those with a high density. Importantly, in gated single-layer devices with a low density of charged impurities, we find that MR peaks at gate voltage values far from the charge neutrality point not only at a low temperature but also at room temperature; in particular, MR approaches 800% at room temperature and 1400% at 50 K in such devices. In addition, dynamic measurements of MR on devices with a low degree of extrinsic disorder lead to stable and reliable single-layer graphene magnetosensors endowed with an ultralow power consumption of 2.5 nW. Our work indicates that the initial value of the minimum conductivity σ0 at room temperature along with carrier mobility must be looked at to select the most promising devices for magnetosensing.
Collapse
Affiliation(s)
- Atiye Pezeshki
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Anoir Hamdi
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Zuchong Yang
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Aura Lubio
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Iman Shackery
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Andreas Ruediger
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Luca Razzari
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Emanuele Orgiu
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec J3X 1S2, Canada
| |
Collapse
|