1
|
Kang Q, Yan H, Niu F, Liu K, Suga T, Wang C. InP/LiNbO 3 Covalent Heterointerface Construction via an Asymmetric Plasma Activation Strategy for Hybrid Integrated Quantum Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48502-48516. [PMID: 39193874 DOI: 10.1021/acsami.4c08823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Lithium niobate (LiNbO3) is emerging as an appealing candidate for integrated optical applications with enhanced complexity, owing to its inherent abundant optoelectronic properties. To compensate for the inability of LiNbO3 to generate indistinguishable single photons, the evanescent coupling heterointerface constructed between III-V compound semiconductors (e.g., InP) and LiNbO3 through plasma activation provides a feasible solution for balancing the integration efficiency and interfacial stability while achieving sub-50 nm alignment accuracy between devices, thus offering ultracompact on-chip light sources for classical optoelectronics and quantum optics. However, a challenge remains in the formation of the InP/LiNbO3 platform due to the huge mismatch in the coefficient of thermal expansion. Here, we demonstrate the InP/LiNbO3 covalent heterointerface using an asymmetric plasma activation strategy. Different plasmas are used for the activation of InP and LiNbO3 specifically, balancing the enhancement of surface functional group density with the avoidance of defect generation effectively. More importantly, combined with surface comprehensive characterizations and interface performance, we determine that the introduction of ammonia solution enables the surface hydroxyl groups to be "effective" as LiNbO3 surface relaxation increases the chance of -OH groups' contact. Therefore, a robust covalent bond network is established across the InP/LiNbO3 interface at 80 °C with an enhanced bonding strength of 9.7 MPa. Moreover, a hybrid quantum photonic chip based on the InP/LiNbO3 platform is designed to compute the coupling efficiency and the impact of misalignment on it, demonstrating the potential of extending the platform to hybrid integrated quantum systems.
Collapse
Affiliation(s)
- Qiushi Kang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Han Yan
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Fanfan Niu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Kaimeng Liu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Tadatomo Suga
- Collaborative Research Center, Meisei University, Tokyo 191-8506, Japan
| | - Chenxi Wang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Wang J, Ilyas N, Ren Y, Ji Y, Li S, Li C, Liu F, Gu D, Ang KW. Technology and Integration Roadmap for Optoelectronic Memristor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307393. [PMID: 37739413 DOI: 10.1002/adma.202307393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Optoelectronic memristors (OMs) have emerged as a promising optoelectronic Neuromorphic computing paradigm, opening up new opportunities for neurosynaptic devices and optoelectronic systems. These OMs possess a range of desirable features including minimal crosstalk, high bandwidth, low power consumption, zero latency, and the ability to replicate crucial neurological functions such as vision and optical memory. By incorporating large-scale parallel synaptic structures, OMs are anticipated to greatly enhance high-performance and low-power in-memory computing, effectively overcoming the limitations of the von Neumann bottleneck. However, progress in this field necessitates a comprehensive understanding of suitable structures and techniques for integrating low-dimensional materials into optoelectronic integrated circuit platforms. This review aims to offer a comprehensive overview of the fundamental performance, mechanisms, design of structures, applications, and integration roadmap of optoelectronic synaptic memristors. By establishing connections between materials, multilayer optoelectronic memristor units, and monolithic optoelectronic integrated circuits, this review seeks to provide insights into emerging technologies and future prospects that are expected to drive innovation and widespread adoption in the near future.
Collapse
Affiliation(s)
- Jinyong Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Nasir Ilyas
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Changcun Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
3
|
Huang S, Shen Z, Liao Y, Liu Z, Hu Z, Li Q, Zhang Z, Dong S, Luo J, Du J, Tang J, Leng Y. Water-Resistant Subwavelength Perovskite Lasing from Transparent Silica-Based Nanocavity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306102. [PMID: 37669761 DOI: 10.1002/adma.202306102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Indexed: 09/07/2023]
Abstract
Great research efforts are devoted to exploring the miniaturization of chip-scale coherent light sources possessing excellent lasing performance. Despite the indispensable role in Si photonics, SiO2 is generally considered not contributing to the starting up and operation of integrated lasers. Here, this work demonstrates an extraordinary-performance subwavelength-scale perovskite vertical cavity laser with all-transparent SiO2 cavity, whose cavity is ultra-simple and composed of only two parallel SiO2 plates. By introducing a ligand-assisted thermally co-evaporation strategy, highly luminescent perovskite film with high reproducibility and excellent optical gain is grown directly on SiO2 . Benefitting from their high-refractive-index contrast, low-threshold, high-quality factor, and single-mode lasing is achieved in subwavelength range of ≈120 nm, and verified by long-range coherence distance (115.6 µm) and high linear polarization degree (82%). More importantly, the subwavelength perovskite laser device could operate in water for 20 days without any observable degradation, exhibiting ultra-stable water-resistant performance. These findings would provide a simple but robust and reliable strategy for the miniaturized on-chip lasers compatible with Si photonics.
Collapse
Affiliation(s)
- Sihao Huang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zixi Shen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yang Liao
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhengzheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiping Hu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zeyu Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Siyu Dong
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Du
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Babu R, López-Fernández I, Prasanthkumar S, Polavarapu L. All-Inorganic Lead-Free Doped-Metal Halides for Bright Solid-State Emission from Primary Colors to White Light. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35206-35215. [PMID: 37459212 PMCID: PMC10375434 DOI: 10.1021/acsami.3c06546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Metal halides have been explored with the aid of strong photoluminescence for optical and optoelectronic applications. However, the preparation of lead (Pb)-free solid-state emitters with high photoluminescence quantum yields (PLQYs) and tunable emission remains exceptionally challenging. Herein, we report metal ion (Cu(I), Mn(II), and Sn(II))-doped Cs3ZnI5 single crystals that are primary color (violet, green, and orange/red) emitters with extremely high PLQYs. Whereas the Mn-doping leads to bright green emissions with 100% PLQY, the Cu- and Sn-doping give rise to blue and red emissions with PLQYs of 57 and 64%, respectively. Interestingly, higher Mn doping results in white light emissive crystals as a side product, which are found to be Mn-doped CsI single crystals. The bright white light emissive crystals can be synthesized in a pure form in large quantities and exhibit a high color rendering index (CRI) of 78 and CIE coordinates of (0.30, 0.38), which are close to daylight conditions. To the best of our knowledge, this is the first demonstration of white light emission from a complete inorganic system. Importantly, the single crystals of all colors exhibit high long-term stability as their PLQY remains unchanged even after 2 months of preparation, and are thermally stable up to 600 °C.
Collapse
Affiliation(s)
- Ramavath Babu
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, India
| | - Iago López-Fernández
- CINBIO, Materials Chemistry and Physics Group, University of Vigo, Campus Universitario Marcosende, Vigo 36310, Spain
| | - Seelam Prasanthkumar
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Lakshminarayana Polavarapu
- CINBIO, Materials Chemistry and Physics Group, University of Vigo, Campus Universitario Marcosende, Vigo 36310, Spain
| |
Collapse
|
5
|
Rando RG, Buchaim DV, Cola PC, Buchaim RL. Effects of Photobiomodulation Using Low-Level Laser Therapy on Alveolar Bone Repair. PHOTONICS 2023; 10:734. [DOI: 10.3390/photonics10070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Alveolar bone repair is a complex and extremely important process, so that functions such as the mastication, occlusion and osseointegration of implants can be properly reestablished. Therefore, in order to optimize this process, many procedures have been used, such as grafting with biomaterials and the application of platelet-rich fibrin (PRF). Another method that has been studied is the use of photobiomodulation (PBM) with the use of low-level laser therapy (LLLT), which, through the absorption of photons by the tissue, triggers photochemical mechanisms in the cells so that they start to act in the search for homeostasis of the affected region. Therefore, the objective of this review was to analyze the use of LLLT as a possible auxiliary tool in the alveolar bone repair process. A search was carried out in scientific databases (PubMed/MEDLINE, Web of Science, Scopus and Cochrane) regarding the following descriptors: “low-level laser therapy AND alveolar bone repair” and “photobiomodulation AND alveolar bone repair”. Eighteen studies were selected for detailed analysis, after excluding duplicates and articles that did not meet predetermined inclusion or non-inclusion criteria. According to the studies, it has been seen that LLLT promotes the acceleration of alveolar repair due to the stimulation of ATP production, activation of transcription and growth factors, attenuation of the inflammatory process and induction of angiogenesis. These factors depend on the laser application protocol, and the Gallium Aluminum Arsenide—GaAlAs laser, with a wavelength of 830 nm, was the most used and, when applications of different energy densities were compared, the highest dosages showed themselves to be more efficient. Thus, it was possible to conclude that PBM with LLLT has beneficial effects on the alveolar bone repair process due to its ability to reduce pain, the inflammatory process, induce vascular sprouting and, consequently, accelerate the formation of a new bone matrix, favoring the maintenance or increase in height and/or thickness of the alveolar bone ridge.
Collapse
Affiliation(s)
- Renata Gonçalves Rando
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Paula Cristina Cola
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Speech Therapy Department, São Paulo State University (UNESP), Marilia 17525-900, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
6
|
Tardío C, Álvarez Conde J, Rodríguez AM, Prieto P, Hoz ADL, Cabanillas-González J, Torres-Moya I. Donor-Acceptor-Donor 1 H-Benzo[ d]imidazole Derivatives as Optical Waveguides. Molecules 2023; 28:4631. [PMID: 37375189 DOI: 10.3390/molecules28124631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A new series of donor-acceptor-donor (D-A-D) structures derived from arylethynyl 1H-benzo[d]imidazole was synthesized and processed into single crystals with the goal of testing such crystals' ability to act as optical waveguides. Some crystals displayed luminescence in the 550-600 nm range and optical waveguiding behavior with optical loss coefficients around 10-2 dB/μm, which indicated a notable light transport. The crystalline structure, confirmed by X-ray diffraction, contains internal channels that are important for light propagation, as we previously reported. The combination of a 1D assembly, a single crystal structure, and notable light emission properties with low losses from self-absorption made 1H-benzo[d]imidazole derivatives appealing compounds for optical waveguide applications.
Collapse
Affiliation(s)
- Carlos Tardío
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071 Ciudad Real, Spain
| | - Javier Álvarez Conde
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Ana María Rodríguez
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071 Ciudad Real, Spain
| | - Pilar Prieto
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071 Ciudad Real, Spain
| | - Antonio de la Hoz
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071 Ciudad Real, Spain
| | - Juan Cabanillas-González
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Iván Torres-Moya
- Department of Organic Chemistry, Faculty of Chemical Sciences, Campus of Espinardo, University of Murcia, 30010 Murcia, Spain
| |
Collapse
|
7
|
Khelifa R, Shan S, Moilanen AJ, Taniguchi T, Watanabe K, Novotny L. WSe 2 Light-Emitting Device Coupled to an h-BN Waveguide. ACS PHOTONICS 2023; 10:1328-1333. [PMID: 37215323 PMCID: PMC10197165 DOI: 10.1021/acsphotonics.2c01963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 05/24/2023]
Abstract
Optical information processing using photonic integrated circuits is a key goal in the field of nanophotonics. Extensive research efforts have led to remarkable progress in integrating active and passive device functionalities within one single photonic circuit. Still, to date, one of the central components, i.e., light sources, remain a challenge to be integrated. Here, we focus on a photonic platform that is solely based on two-dimensional materials to enable the integration of electrically contacted optoelectronic devices inside the light-confining dielectric of photonic structures. We combine light-emitting devices, based on exciton recombination in transition metal dichalcogenides, with hexagonal boron nitride photonic waveguides in a single van der Waals heterostructure. Waveguide-coupled light emission is achieved by sandwiching the light-emitting device between two hexagonal boron nitride slabs and patterning the complete van der Waals stack into a photonic structure. Our demonstration of on-chip light generation and waveguiding is a key component for future integrated van der Waals optoelectronics.
Collapse
Affiliation(s)
- Ronja Khelifa
- Photonics
Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Shengyu Shan
- Photonics
Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Lukas Novotny
- Photonics
Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Wang S, Liu X, Xu M, Liu L, Yang D, Zhou P. Two-dimensional devices and integration towards the silicon lines. NATURE MATERIALS 2022; 21:1225-1239. [PMID: 36284239 DOI: 10.1038/s41563-022-01383-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Despite technical efforts and upgrades, advances in complementary metal-oxide-semiconductor circuits have become unsustainable in the face of inherent silicon limits. New materials are being sought to compensate for silicon deficiencies, and two-dimensional materials are considered promising candidates due to their atomically thin structures and exotic physical properties. However, a potentially applicable method for incorporating two-dimensional materials into silicon platforms remains to be illustrated. Here we try to bridge two-dimensional materials and silicon technology, from integrated devices to monolithic 'on-silicon' (silicon as the substrate) and 'with-silicon' (silicon as a functional component) circuits, and discuss the corresponding requirements for material synthesis, device design and circuitry integration. Finally, we summarize the role played by two-dimensional materials in the silicon-dominated semiconductor industry and suggest the way forward, as well as the technologies that are expected to become mainstream in the near future.
Collapse
Affiliation(s)
- Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, China
| | - Xiaoxian Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, China
| | - Mingsheng Xu
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics & Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Liwei Liu
- Frontier Institute of Chip and System & Qizhi Institute, Fudan University, Shanghai, China
| | - Deren Yang
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics & Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Peng Zhou
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, China.
- Frontier Institute of Chip and System & Qizhi Institute, Fudan University, Shanghai, China.
- Hubei Yangtze Memory Laboratories, Wuhan, China.
| |
Collapse
|
9
|
Yan J, Zhu ZL, Lee CS, Liu SH, Chou PT, Chi Y. Probing Electron Excitation Characters of Carboline-Based Bis-Tridentate Ir(III) Complexes. Molecules 2021; 26:molecules26196048. [PMID: 34641591 PMCID: PMC8512491 DOI: 10.3390/molecules26196048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we report a series of bis-tridentate Ir(III) metal complexes, comprising a dianionic pyrazole-pyridine-phenyl tridentate chelate and a monoanionic chelate bearing a peripheral carbene and carboline coordination fragment that is linked to the central phenyl group. All these Ir(III) complexes were synthesized with an efficient one-pot and two-step method, and their emission hue was fine-tuned by variation of the substituent at the central coordination entity (i.e., pyridinyl and phenyl group) of each of the tridentate chelates. Their photophysical and electrochemical properties, thermal stabilities and electroluminescence performances are examined and discussed comprehensively. The doped devices based on [Ir(cbF)(phyz1)] (Cb1) and [Ir(cbB)(phyz1)] (Cb4) give a maximum external quantum efficiency (current efficiency) of 16.6% (55.2 cd/A) and 13.9% (43.8 cd/A), respectively. The relatively high electroluminescence efficiencies indicate that bis-tridentate Ir(III) complexes are promising candidates for OLED applications.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China;
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
- Correspondence: (C.-S.L.); (P.-T.C.); (Y.C.)
| | - Shih-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence: (C.-S.L.); (P.-T.C.); (Y.C.)
| | - Yun Chi
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China;
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
- Correspondence: (C.-S.L.); (P.-T.C.); (Y.C.)
| |
Collapse
|
10
|
Ma K, Li B, Zhou X, Jiang M, Liu Y, Kan C. Plasmon-enabled spectrally narrow ultraviolet luminescence device using Pt nanoparticles covered one microwire-based heterojunction. OPTICS EXPRESS 2021; 29:21783-21794. [PMID: 34265958 DOI: 10.1364/oe.431124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Owing to great luminescent monochromaticity, high stability, and independent of automatic color filter, low dimensional ultraviolet light-emitting diodes (LEDs) via the hyperpure narrow band have attracted considerable interest for fabricating miniatured display equipments, solid state lighting sources, and other ultraviolet photoelectrical devices. In this study, a near-ultraviolet LED composed of one Ga-doped ZnO microwire (ZnO:Ga MW) and p-GaN layer was fabricated. The diode can exhibit bright electroluminescence (EL) peaking at 400.0 nm, with a line width of approximately 35 nm. Interestingly, by introducing platinum nanoparticles (PtNPs), we achieved an ultraviolet plasmonic response; an improved EL, including significantly enhanced light output; an observed blueshift of main EL peaks of 377.0 nm; and a reduction of line width narrowing to 10 nm. Working as a powerful scalpel, the decoration of PtNPs can be employed to tailor the spectral line profiles of the ultraviolet EL performances. Also, a rational physical model was built up, which could help us study the carrier transportation, recombination of electrons and holes, and dynamic procedure of luminescence. This method offers a simple and feasible way, without complicated fabricating technology such as an added insulating layer or core shell structure, to realize hyperpure ultraviolet LED. Therefore, the proposed engineering of energy band alignment by introducing PtNPs can be employed to build up high performance, high spectral purity luminescent devices in the short wavelengths.
Collapse
|