1
|
Wang B, Tang X, Xiao C, Yu Z, Bo H, Wang J, Wang J. Nucleus-targeted ruthenium(II) complex triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy by activating cGAS-STING pathway. J Inorg Biochem 2025; 267:112871. [PMID: 40022761 DOI: 10.1016/j.jinorgbio.2025.112871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
A significant challenge in the treatment of melanoma with immune checkpoint blockades (ICBs) is the limited T cells response often observed in immunologically "cold" tumors. By leveraging the immunogenicity of immunogenic cell death (ICD), which increases the susceptibility of tumor cells to ICBs, this study investigated the potential of a nucleus-targeted ruthenium(II) complex (Ru1) as an inducer of ICD. Treatment with Ru1 induced DNA damage in melanoma cells, activating the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway. This triggered endoplasmic reticulum (ER) stress, leading to ICD. Ru1-treated dying melanoma cells exhibited characteristics such as cell exposure of calreticulin (CRT) on the cell surface, release of adenosine triphosphate (ATP), and secretion of high-mobility group box 1 (HMGB1). Vaccination with Ru1-treated, dying melanoma cells elicited robust antitumor immune responses, as evidenced by CD8+ T cells activation, reduced Foxp3+ T cells count, and the development of a memory immune response that protected mice from subsequent melanoma challenges. Combining Ru1 with anti-PD-1 therapy significantly promoted T cells infiltration, enhanced dendritic cell activation, and reduced tumor-associated immunosuppressive factors, indicating a reprogramming of the tumor microenvironment. These findings suggest that Ru1 is a promising therapeutic agent for treating "cold" tumors in cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Bishu Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xingguo Tang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuntao Xiao
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijie Yu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huaben Bo
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Yang GG, Liu B, Liu W, Zhang L, Ke C, Han X, Cao Q, Mao ZW. Tumor-Specific On-Site Activation of Cisplatin via Cascade Catalytic-Redox Reactions for Highly Efficient Chemo-Immunotherapy. Angew Chem Int Ed Engl 2025:e202500996. [PMID: 40320367 DOI: 10.1002/anie.202500996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
The therapeutic efficiency of platinum drugs is always limited by low utilization, side effects, and Pt-resistance. Herein, a double-lock protected PtII nanomedicine named PtNP@Cu has been developed, which performs cascade unlocking of dechlorinated cisplatin (DP) via catalytic-redox reactions, thus achieving tumor-specific "on-site" activation of cisplatin (cDDP) in the nucleus accompanied with substantial induction of ferroptosis of cancer cells. This design avoids the premature release of active PtII species in normal cells or in the cytoplasm of cancer cells before reaching nucleus, thereby ensuring maximum amplification of Pt-DNA crosslinking with tumor-specificity. Meanwhile, substantial GSH depletion and ROS production induced by cascade catalytic-redox reactions results in ferroptosis of cancer cells, which further reduces GSH-mediated cDDP detoxification, overcomes Pt-resistance, and enhances immunogenicity, ultimately realizing highly efficient tumor-specific chemotherapy and antitumor immunity in vivo. This work provides a new strategy for effectively and comprehensively addressing the issues of low utilization, side effects, and drug resistance problems of platinum drugs, which is also promising for chemo-immunotherapy.
Collapse
Affiliation(s)
- Gang-Gang Yang
- School of Chemistry and Chemical Engineering Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Bin Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Wei Liu
- School of Chemistry and Chemical Engineering Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Lan Zhang
- School of Chemistry and Chemical Engineering Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Can Ke
- School of Chemistry and Chemical Engineering Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
3
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
4
|
Liu Y, Yu D, Ge X, Huang L, Pan PY, Shen H, Pettigrew RI, Chen SH, Mai J. Novel platinum therapeutics induce rapid cancer cell death through triggering intracellular ROS storm. Biomaterials 2025; 314:122835. [PMID: 39276409 PMCID: PMC11560510 DOI: 10.1016/j.biomaterials.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Induction of reactive oxygen species (ROS) production in cancer cells plays a critical role for cancer treatment. However, therapeutic efficiency remains challenging due to insufficient ROS production of current ROS inducers. We designed a novel platinum (Pt)-based drug named "carrier-platin" that integrates ultrasmall Pt-based nanoparticles uniformly confined within a poly(amino acids) carrier. Carrier-platin dramatically triggered a burst of ROS in cancer cells, leading to cancer cell death as quick as 30 min. Unlike traditional Pt-based drugs which induce cell apoptosis through DNA intercalation, carrier-platin with superior ROS catalytic activities induces a unique pattern of cancer cell death that is neither apoptosis nor ferroptosis and operates independently of DNA damage. Importantly, carrier-platin demonstrates superior anti-tumor efficacy against a broad spectrum of cancers, particularly those with multidrug resistance, while maintaining minimal systemic toxicity. Our findings reveal a distinct mechanism of action of Pt in cancer cell eradication, positioning carrier-platin as a novel category of anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| | - Dongfang Yu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Xueying Ge
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Lingyi Huang
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Roderic I Pettigrew
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Xia Y, Wang ZY, Zhuang ZN, Dai XY, He Z, Chen C, Feng J. Biomimetic Sealing of Cisplatin by Cancer Cell Membranes to Achieve Nucleophile Resistance and Tumor Targeting for Improved Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12597-12609. [PMID: 39950428 DOI: 10.1021/acsami.4c20345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Platinum-based anticancer drugs (PBCs), particularly cisplatin, play a key role in over 70% of cancer treatment protocols. PBCs suffer from their strong affinity with numerous nucleophiles present in the body, leading to significant systematic toxicity and rapid drug inactivation. The cell membrane's selective and energy-dependent transport properties, inherent to its unique biological structure, offer a strategic opportunity for employing cell membranes (CMs) in the development of PBC delivery systems that repel nucleophiles. To prove this idea, we harness cancer CMs to develop a dual-package approach for sealing cisplatin in a nanoformulation that is both nucleophile-resistant and tumor-targeted without the need for synthetic materials. The dual-package process begins by conjugating cisplatin to cancer CMs, creating positively charged nanoparticles. These isolated nanoparticles are then recomplexed with cancer CMs. Our strategy, which tightly seals cisplatin within the cancer CMs, ensures that cisplatin is safely sequestered from reactive molecules in the body while simultaneously guiding it specifically to homologous tumors. The resulting nanoformulation demonstrates immune evasion and a prolonged circulation time due to the native-like identity conferred by cancer CMs. The biomimetic sealing of cisplatin within CMs prevented the transmembrane attack of nucleophiles, including not only macromolecular proteins but also small-molecule compounds such as glutathione, thereby ensuring a high level of cytotoxicity when challenged by these nucleophiles. It also displays precise targeting at homologous tumors, ensures sustained drug release, and achieves significant tumor suppression. These features together adumbrate the nanoformulation's potential as a revolutionary tool in cisplatin cancer therapy. Given the prevalence of metal ion-based drugs and their common susceptibility to nucleophile-associated issues, the strategy presented in this study may offer a widely applicable solution to developing nucleophile-resistant metal-ion-based medications.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Zi-Yang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Ze-Nan Zhuang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xin-Yi Dai
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Zhilin He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Cheng Chen
- Radiation Treatment Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
6
|
Li W, Lin Z, Liu J, Zhang J, Li Y, Liu Y, Yuan X, Li H, Shen H. Pt(IV) prodrug as a potent nanosonosensitizer self-cyclically amplifies sonodynamic-chemotherapy with dually reversing cisplatin resistance. J Mater Chem B 2025; 13:3186-3197. [PMID: 39905853 DOI: 10.1039/d4tb02615b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Although sonodynamic therapy (SDT) has shown promising advancements in combination with chemotherapy, it frequently necessitates the requirement of conventional sonosensitizers and chemotherapeutic agents, engendering intricate systems and potential drug resistance. Herein, we fabricated a potent Pt(IV)-poly(amino acid) coordination nanosonosensitizer (PHPt) with dual reversal of cisplatin resistance, producing abundant 1O2 and ˙OH upon ultrasound irradiation without the use of any external sonosensitizers. The Pt(IV) prodrug in PHPt efficiently reduced to cisplatin through SDT-induced ˙H and glutathione (GSH), inducing ˙OH accumulation and CDDP release, which further amplified the oxidative stress on SDT. Moreover, the high GSH depletion performance of PHPt and administration of aspirin effectively inhibited cisplatin detoxification and activation of the nuclear factor-kappa B pathway, respectively. This cooperative action between the Pt(IV) prodrug and SDT in the tumor microenvironment promoted self-cyclic amplification of sonodynamic-chemotherapy, achieving a significant tumor inhibition rate of 99.4%. Thus, this study offers novel perspectives on the sonosensitizer development and cisplatin application in SDT.
Collapse
Affiliation(s)
- Wenxin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiahui Liu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuxuan Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yian Liu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinru Yuan
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Huimin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Zou T, Huang Y, Zhou Z, He S, Liu J, Chen Y, Liu H, Luo Z, Liu M, Wei H, Yu C. A minimalist multifunctional nano-prodrug for drug resistance reverse and integration with PD-L1 mAb for enhanced immunotherapy of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:750. [PMID: 39627819 PMCID: PMC11613529 DOI: 10.1186/s12951-024-03027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
Clinical treatment of hepatocellular carcinoma (HCC) with 5-fluorouracil (5-FU), the primary anticancer agent, remains unsatisfactory due to the glutathione (GSH)-associated drug resistance and immunosuppressive microenvironment of HCC. To develop a facile yet robust strategy to overcome 5-FU resistance for enhanced immunotherapy treatment of HCC via all dimensional GSH exhaustion, we report in this study construction of a minimalist prodrug consisting of 5-FU linked to an indoleamine-(2,3)-dioxygenase (IDO) inhibitor (IND) via a disulfide bridge, FU-SS-IND that can further self-assemble into stabilized nanoparticles, FU-SS-IND NPs. Specifically, besides the disulfide linker-induced GSH exhaustion, IND inhibits GSH biosynthesis and enhances the effector function of T cells for turning a "cold" tumor to a "hot" one, which synergistically achieving a tumor inhibition rate (TIR) of 92.5% in a 5-FU resistant mice model. Most importantly, FU-SS-IND NPs could upregulate programmed death ligand 1 (PD-L1) expression on the surface of tumor cells, which enables facile combination with immune checkpoint blockade (ICB) for a ultimate prolonged survival lifetime of 5-FU-resistant tumors-bearing mice. Overall, the minimalist bioreducible nano-prodrug developed herein demonstrates great translatable potential for efficiently reversing drug resistance and enhancing immunotherapy of HCC.
Collapse
Affiliation(s)
- Ting Zou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yun Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zongtao Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuangyan He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jia Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yalan Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hongdu Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhonghui Luo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Miaoxin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - CuiYun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China.
| |
Collapse
|
8
|
Tang L, Yin Y, Cao Y, Liu H, Qing G, Fu C, Li Z, Zhu Y, Shu W, He S, Gao J, Zhang Y, Wang Z, Bu J, Li X, Zhu M, Liang XJ, Wang W. Bioorthogonal Chemistry-Guided Inhalable Nanoprodrug to Circumvent Cisplatin Resistance in Orthotopic Nonsmall Cell Lung Cancer. ACS NANO 2024; 18:32103-32117. [PMID: 39520399 DOI: 10.1021/acsnano.4c10947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Pulmonary delivery of anticancer therapeutics has shown encouraging performance in treating nonsmall cell lung cancer (NSCLC), which is characterized by high aggressiveness and poor prognosis. Cisplatin, a key member of the family of DNA alkylating agents, is extensively employed during NSCLC therapy. However, the development of chemoresistance and the occurrence of side effects severely impede the long-term application of cisplatin-based chemotherapies. Herein, we propose a meaningful strategy to precisely treat cisplatin-resistant NSCLC based on the combination of bioorthogonal chemistry with an inhalation approach. Ethacraplatin (EA-Pt), a platinum prodrug (IV), was synthesized and encapsulated in nitric oxide (NO)-containing micelles to overcome cisplatin chemoresistance. By further modifying bioorthogonal molecules in this nanoplatform (EA-Pt@MDBCO), an improved targeting performance toward pulmonary cancerous regions is achieved after prelabeling with azide via inhalation. Upon entering acidic cancer cells, EA-Pt is swiftly released due to the pH sensitivity of bioorthogonal micelles, which enables its bifunctions to inhibit glutathione S-transferase activity and deplete intracellular glutathione, eventually reversing cisplatin resistance. Moreover, the released NO also improves the overall therapeutic outcome against NSCLC. Consequently, inhalable EA-Pt@MDBCO prelabeled by azide effectively inhibits the progression of cisplatin-resistant orthotopic NSCLC, offering a feasible nanostrategy to expand the treatment options for NSCLC.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guangchao Qing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zixuan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuanbo Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weijie Shu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jifan Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zihan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jianlan Bu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xuejing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
9
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
10
|
Guan Z, Li S, Liu Y, Zhang X, Liu Y, Zou F, Liu S, Shan X, Duan Y, Ma L, Hu J, Chen J. A Specific Targeted Enhanced Nanotherapy Strategy for Inducing Ferroptosis by Regulating the Iron Pool Levels in Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56837-56849. [PMID: 39388531 DOI: 10.1021/acsami.4c13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ferroptosis is an iron-dependent cell death pathway triggered by the toxic accumulation of lipid peroxides on cellular membranes. However, an imbalance in iron metabolism in tumor cells leads to the insufficient accumulation of iron ions in the iron pool, which inhibits ferroptosis. Nonspecific delivery of iron species may increase the risk of promoting tumor proliferation as well as trigger undesirable detrimental effects such as anaphylactic reactions in normal tissues. This study found that a constructed self-enhancing targeted nanocarrier can accurately regulate the iron pool levels in tumor cells. We constructed a programmatic targeted enhanced nanotherapy strategy by loading the ferroptosis inducer erastin into a self-enhancing targeted nanocarrier. This nanosystem was more effective at inducing tumor ferroptosis after upregulating the iron pool levels in tumor cells with self-enhancing targeted nanocarriers. Both in vitro and in vivo outcomes demonstrated notable anticancer ferroptosis efficacy, indicating that self-enhancing targeted nanocarriers can effectively regulate the level of the iron pool in tumor cells and promote ferroptosis. The combination of this nanotherapy strategy with self-enhancing targeted chemotherapy nanomedicines can achieve complete tumor clearance. Moreover, this self-enhancing targeted ferroptosis nanotherapy strategy is expected to be beneficial for future progress in the field of cancer self-enhancing targeted therapy.
Collapse
Affiliation(s)
- Zhenxin Guan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Song Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yurong Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaokang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunheng Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fangying Zou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shaojiao Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xinhui Shan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Duan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Li Ma
- Yantai Engineering Research Center for Digital Technology of Stomatology, The affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai 264003, China
| | - Jinghui Hu
- School of stomatology, Binzhou Medical University, Yantai 264003, China
| | - Jing Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
11
|
Welsh A, Matshitse R, Khan SF, Nyokong T, Prince S, Smith GS. Trinuclear ruthenium(II) polypyridyl complexes: Evaluation as photosensitizers for enhanced cervical cancer treatment. J Inorg Biochem 2024; 256:112545. [PMID: 38581803 DOI: 10.1016/j.jinorgbio.2024.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Trinuclear ruthenium(II) polypyridyl complexes anchored to benzimidazole-triazine / trisamine scaffolds were investigated as photosensitizers for photodynamic therapy. The trinuclear complexes were noted to produce a significant amount of singlet oxygen in both DMF and aqueous media, are photostable and show appreciable emission quantum yields (ɸem). In our experimental setting, despite the moderate phototoxic activity in the HeLa cervical cancer cell line, the phototoxic indices (PI) of the trinuclear complexes are superior relative to the PIs of a clinically approved photosensitizer, Photofrin®, and the pro-drug 5-aminolevulinic acid (PI: >7 relative to PI: >1 and PI: 4.4 for 5-aminolevulinic acid and Photofrin®, respectively). Furthermore, the ruthenium complexes were noted to show appreciable long-term cytotoxicity upon light irradiation in HeLa cells in a concentration-dependent manner. Consequently, this long-term activity of the ruthenium(II) polypyridyl complexes embodies their ability to reduce the probability of the recurrence of cervical cancer. Taken together, this presents a strong motivation for the development of polymetallic complexes as anticancer agents.
Collapse
Affiliation(s)
- Athi Welsh
- Department of Chemistry, University of Cape Town, Rondebosch 7700, ,South Africa
| | - Refilwe Matshitse
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Saif F Khan
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7700, ,South Africa.
| |
Collapse
|
12
|
Abd-El-Aziz A, Ahmed SA, Zhang X, Ma N, Abd-El-Aziz AS. Macromolecules incorporating transition metals in the treatment and detection of cancer and infectious diseases: Progress over the last decade. Coord Chem Rev 2024; 510:215732. [DOI: 10.1016/j.ccr.2024.215732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Chen M, Fu Y, Liu Y, Zhang B, Song X, Chen X, Zhu Z, Gao H, Yang J, Shi X. NIR-Light-Triggered Mild-Temperature Hyperthermia to Overcome the Cascade Cisplatin Resistance for Improved Resistant Tumor Therapy. Adv Healthc Mater 2024; 13:e2303667. [PMID: 38178648 DOI: 10.1002/adhm.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Currently, cisplatin resistance has been recognized as a multistep cascade process for its clinical chemotherapy failure. Hitherto, it remains challenging to develop a feasible and promising strategy to overcome the cascade drug resistance (CDR) issue for achieving fundamentally improved chemotherapeutic efficacy. Herein, a novel self-assembled nanoagent is proposed, which is constructed by Pt(IV) prodrug, cyanine dye (cypate), and gadolinium ion (Gd3+), for systematically conquering the cisplatin resistance by employing near-infrared (NIR) light activated mild-temperature hyperthermia in tumor targets. The proposed nanoagents exhibit high photostability, GSH/H+-responsive dissociation, preferable photothermal conversion, and enhanced cellular uptake performance. In particular, upon 785-nm NIR light irradiation, the generated mild temperature of ≈ 43 °C overtly improves the cell membrane permeability and drug uptake, accelerates the disruption of intracellular redox balance, and apparently enhances the formation of Pt-DNA adducts, thereby effectively overcoming the CDR issue and achieves highly improved therapeutic efficacy for cisplatin-resistant tumor ablation.
Collapse
Affiliation(s)
- Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yulei Fu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Baihe Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xinchun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhengjia Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Hang Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
14
|
Ruan F, Fang H, Chen F, Xie X, He M, Wang R, Lu J, Wu Z, Liu J, Guo F, Sun W, Shao D. Leveraging Radiation-triggered Metal Prodrug Activation Through Nanosurface Energy Transfer for Directed Radio-chemo-immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202317943. [PMID: 38078895 DOI: 10.1002/anie.202317943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 12/30/2023]
Abstract
Metal-based drugs currently dominate the field of chemotherapeutic agents; however, achieving the controlled activation of metal prodrugs remains a substantial challenge. Here, we propose a universal strategy for the radiation-triggered activation of metal prodrugs via nanosurface energy transfer (NSET). The core-shell nanoplatform (Ru-GNC) is composed of gold nanoclusters (GNC) and ruthenium (Ru)-containing organic-inorganic hybrid coatings. Upon X-ray irradiation, chemotherapeutic Ru (II) complexes were released in a controlled manner through a unique NSET process involving the transfer of photoelectron energy from the radiation-excited Ru-GNCs to the Ru-containing hybrid layer. In contrast to the traditional radiation-triggered activation of prodrugs, such an NSET-based system ensures that the reactive species in the tumor microenvironment are present in sufficient quantity and are not easily quenched. Additionally, ultrasmall Ru-GNCs preferably target mitochondria and profoundly disrupt the respiratory chain upon irradiation, leading to radiosensitization by generating abundant reactive oxygen species. Consequently, Ru-GNC-directed radiochemotherapy induces immunogenic cell death, resulting in significant therapeutic outcomes when combined with the programmed cell death-ligand 1 (PD-L1) checkpoint blockade. This NSET strategy represents a breakthrough in designing radiation-triggered nanoplatforms for metal-prodrug-mediated cancer treatment in an efficient and controllable manner.
Collapse
Affiliation(s)
- Feixia Ruan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hui Fang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Junna Lu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Ziping Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jiali Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Feng Guo
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
15
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Gan Y, Xie W, Wang M, Wang P, Li Q, Cheng J, Yan M, Xia J, Wu Z, Zhang G. Cancer cell membrane-camouflaged CuPt nanoalloy boosts chemotherapy of cisplatin prodrug to enhance anticancer effect and reverse cisplatin resistance of tumor. Mater Today Bio 2024; 24:100941. [PMID: 38269055 PMCID: PMC10805937 DOI: 10.1016/j.mtbio.2023.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
The biotoxicity and chemotherapeutic resistance of cisplatin (CDDP) pose a challenge for tumor therapy. Practically, the change in the therapeutic response of tumor from resistance to sensitivity are impressive but challenging. To this end, we propose a strategy of "one stone, three birds" by designing a CuPt nanoalloy to simultaneously eliminate GSH, relieve hypoxia, and promote ROS production for effectively reversing the platinum (IV) (Pt(IV), (c,c,t-[Pt(NH3)2Cl2(OOCCH2CH2COOH)2)) resistance. Notably, the CuPt nanoalloy exhibits ternary catalytic capabilities including mimicking GSH oxidase, catalase and peroxidase. With the subsequent disguise of tumor cell membrane, the CuPt nanoalloy is conferred with homologous targeting ability, making it actively recognize tumor cells and then effectively internalized by tumor cells. Upon entering tumor cell, it gives rise to GSH depletion, hypoxia relief, and oxidative stress enhancement by catalyzing the reaction of GSH and H2O2, which mitigates the vicious milieu and ultimately reinforces the tumor response to Pt(IV) treatment. In vivo results prove that combination therapy of mCuPt and Pt(IV) realizes the most significant suppression on A549 cisplatin-resistant tumor. This study provides a potential strategy to design novel nanozyme for conquering resistant tumor.
Collapse
Affiliation(s)
- Yuehao Gan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, PR China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Wenteng Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- Engineering and Materials Science Experiment Center, University of Science and Technology of China, Hefei, 230026, PR China
| | - Miaomiao Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, PR China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Peng Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, PR China
| | - Qingdong Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, PR China
| | - Junjie Cheng
- Engineering and Materials Science Experiment Center, University of Science and Technology of China, Hefei, 230026, PR China
| | - Miao Yan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, PR China
| | - Jikai Xia
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, PR China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, PR China
| |
Collapse
|
17
|
Wei D, Fan J, Yan J, Liu C, Cao J, Xu C, Sun Y, Xiao H. Nuclear-Targeting Lipid Pt IV Prodrug Amphiphile Cooperates with siRNA for Enhanced Cancer Immunochemotherapy by Amplifying Pt-DNA Adducts and Reducing Phosphatidylserine Exposure. J Am Chem Soc 2024; 146:1185-1195. [PMID: 38148611 DOI: 10.1021/jacs.3c12706] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Patients treated with Pt-based anticancer drugs (PtII) often experience severe side effects and are susceptible to cancer recurrence due to the limited bioavailability of PtII and tumor-induced immunosuppression. The exposure of phosphatidylserine on the cell's outer surface induced by PtII results in profound immunosuppression through the binding of phosphatidylserine to its receptors on immune cells. Here, we report a novel approach for enhanced cancer chemoimmunotherapy, where a novel nuclear-targeting lipid PtIV prodrug amphiphile was used to deliver a small interfering RNA (siXkr8) to simultaneously amplify Pt-DNA adducts and reduce the level of exposure of phosphatidylserine. This drug delivery vehicle is engineered by integrating the PtIV prodrug with self-assembly performance and siXkr8 into a lipid nanoparticle, which shows tumor accumulation, cancer cell nucleus targeting, and activatable in a reduced microenvironment. It is demonstrated that nuclear-targeting lipid PtIV prodrug increases the DNA cross-linking, resulting in increased Pt-DNA adduct formation. The synergistic effects of the PtIV prodrug and siXkr8 contribute to the improvement of the tumor immune microenvironment. Consequently, the increased Pt-DNA adducts and immunogenicity effectively inhibit primary tumor growth and prevent tumor recurrence. These results underscore the potential of utilizing the nuclear-targeting lipid PtIV prodrug amphiphile to enhance Pt-DNA adduct formation and employing siXkr8 to alleviate immunosuppression during chemotherapy.
Collapse
Affiliation(s)
- Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy and Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Junning Fan
- Department of Pharmaceutics, School of Pharmacy and Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy and Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy and Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy and Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy and Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
19
|
Zhang Z, He M, Wang R, Fan J, Peng X, Sun W. Development of Ruthenium Nanophotocages with Red or Near-Infrared Light-Responsiveness. Chembiochem 2023; 24:e202300606. [PMID: 37837285 DOI: 10.1002/cbic.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
The development of light-triggered ruthenium (Ru) nanophotocages has revolutionized conventional methods of drug administration, thereby facilitating cancer therapy in a noninvasive and temperate manner. Ru nanophotocages employ a distinct approach known as photoactivated chemotherapy (PACT), wherein light-induced ligand dissociation yields a toxic metal complex or a ligand capable of performing other functions such as optically controlled protein degradation and drug delivery. Simultaneously, this process is accompanied by the generation of reactive oxygen species (ROS), which serve as an effective anticancer agent in combination with PACT and photodynamic therapy (PDT). Due to its exceptional attributes of extended tissue penetration, and minimized tissue damage, red light or near-infrared light is widely acknowledged as the "phototherapeutic window" (650-900 nm). In this Concept, we present an overview of the most recent advancements in Ru nanophotocages within the phototherapeutic range. Diverse aspects, including design principles, photocaging efficacy, photoactivation mechanisms, and potential applications in the field of biomedical chemistry, are discussed. Questions and challenges regarding their synthesis, characterization, and applications are also discussed. This Concept would foster further exploration into the realm of Ru nanophotocages.
Collapse
Affiliation(s)
- Zongwei Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| |
Collapse
|
20
|
Zhang S, Jiang W, Wang S, Song K, Ge M, Zhang L, Yan X, Jiang B. Cancer cell membrane fused liposomal platinum(IV) prodrugs overcome cisplatin resistance in esophageal squamous cell carcinoma chemotherapy. J Mater Chem B 2023; 11:11384-11393. [PMID: 38014915 DOI: 10.1039/d3tb01997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a major health challenge, with cisplatin (CDDP) being the primary chemotherapy drug, albeit accompanied by resistance development over time. This study introduces a novel platinum drug delivery system, EMLipoPt(IV), tailored to enhance platinum uptake and diminish its inactivation, providing a solution to CDDP resistance in ESCC. By synthesizing a fusion of the ESCC cell membrane with liposomal Pt(IV) prodrugs, we integrated the tumor-targeting capacity of the ESCC membrane with the inactivation resistance of Pt(IV) prodrugs. In vivo and in vitro evaluations illustrated EMLipoPt(IV)'s robustness against inactivating agents, superior tumor-targeting capacity, and remarkable ability to suppress CDDP-resistant tumor progression. Importantly, the biosafety profile of EMLipoPt(IV) surpassed existing treatments, offering a prolonged survival rate in animal models. Collectively, this work not only presents a pioneering approach in ESCC chemotherapy but also provides a blueprint for combating drug resistance in other cancers, emphasizing the broader potential for tailored drug delivery systems.
Collapse
Affiliation(s)
- Shuaibing Zhang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shenghui Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Kexu Song
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Mengyue Ge
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment, Henan, 450001, China
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Huang YS, Zhou Y, Zeng X, Zhang D, Wu S. Reversible Crosslinking of Commodity Polymers via Photocontrolled Metal-Ligand Coordination for High-Performance and Recyclable Thermoset Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305517. [PMID: 37401043 DOI: 10.1002/adma.202305517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Thermoset plastics, highly desired for their stability, durability, and chemical resistance, are currently consumed in over 60 million tons annually across the globe, but they are difficult to recycle due to their crosslinked structures. The development of recyclable thermoset plastics is an important but challenging task. In this work, recyclable thermoset plastics are prepared by crosslinking a commodity polymer, polyacrylonitrile (PAN), with a small percentage of a Ru complex via nitrile-Ru coordination. PAN is obtained from industry and the Ru complex is synthesized in one step, which enables the production of recyclable thermoset plastics in an efficient way. In addition, the thermoset plastics exhibit impressive mechanical performance, boasting a Young's modulus of 6.3 GPa and a tensile strength of 109.8 MPa. Moreover, they can be de-crosslinked when exposed to both light and a solvent and can then be re-crosslinked upon heating. This reversible crosslinking mechanism enables the recycling of thermosets from a mixture of plastic waste. The preparation of recyclable thermosets from other commodity polymers such as poly(styrene-coacrylonitrile) (SAN) resins and polymer composites through reversible crosslinking is also demonstrated. This study shows that reversible crosslinking via metal-ligand coordination is a new strategy for designing recyclable thermosets using commodity polymers.
Collapse
Affiliation(s)
- Yun-Shuai Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zeng
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Dachuan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Shee M, Zhang D, Banerjee M, Roy S, Pal B, Anoop A, Yuan Y, Singh NDP. Interrogating bioinspired ESIPT/PCET-based Ir(iii)-complexes as organelle-targeted phototherapeutics: a redox-catalysis under hypoxia to evoke synergistic ferroptosis/apoptosis. Chem Sci 2023; 14:9872-9884. [PMID: 37736623 PMCID: PMC10510766 DOI: 10.1039/d3sc03096b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Installing proton-coupled electron transfer (PCET) in Ir-complexes is indeed a newly explored phenomenon, offering high quantum efficiency and tunable photophysics; however, the prospects for its application in various fields, including interrogating biological systems, are quite open and exciting. Herein, we developed various organelle-targeted Ir(iii)-complexes by leveraging the photoinduced PCET process to see the opportunities in phototherapeutic application and investigate the underlying mechanisms of action (MOAs). We diversified the ligands' nature and also incorporated a H-bonded benzimidazole-phenol (BIP) moiety with π-conjugated ancillary ligands in Ir(iii) to study the excited-state intramolecular proton transfer (ESIPT) process for tuning dual emission bands and to tempt excited-state PCET. These visible or two-photon-NIR light activatable Ir-catalysts generate reactive hydroxyl radicals (˙OH) and simultaneously oxidize electron donating biomolecules (1,4-dihydronicotinamide adenine dinucleotide or glutathione) to disrupt redox homeostasis, downregulate the GPX4 enzyme, and amplify oxidative stress and lipid peroxide (LPO) accumulation. Our homogeneous photocatalytic platform efficiently triggers organelle dysfunction mediated by a Fenton-like pathway with spatiotemporal control upon illumination to evoke ferroptosis poised with the synergistic action of apoptosis in a hypoxic environment leading to cell death. Ir2 is the most efficient photochemotherapy agent among others, which provided profound cytophototoxicity to 4T1 and MCF-7 cancerous cells and inhibited solid hypoxic tumor growth in vitro and in vivo.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur West Bengal-721302 India
| | - Dan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus Guangzhou 511442 PR China
| | - Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur West Bengal-721302 India
| | - Samrat Roy
- Department of Physics, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Bipul Pal
- Department of Physics, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur West Bengal-721302 India
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus Guangzhou 511442 PR China
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur West Bengal-721302 India
| |
Collapse
|
23
|
Karges J. Encapsulation of Ru(II) Polypyridine Complexes for Tumor-Targeted Anticancer Therapy. BME FRONTIERS 2023; 4:0024. [PMID: 37849670 PMCID: PMC10392611 DOI: 10.34133/bmef.0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/02/2023] [Indexed: 10/19/2023] Open
Abstract
Ru(II) polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical, photochemical, and biological properties. Despite their promising therapeutic profile, the vast majority of compounds are associated with poor water solubility and poor cancer selectivity. Among the different strategies employed to overcome these pharmacological limitations, many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II) polypyridine complexes into nanoparticles. This article highlights recent developments in the design, preparation, and physicochemical properties of Ru(II) polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
24
|
Wei F, Ke L, Gao S, Karges J, Wang J, Chen Y, Ji L, Chao H. In situ oxidative polymerization of platinum(iv) prodrugs in pore-confined spaces of CaCO 3 nanoparticles for cancer chemoimmunotherapy. Chem Sci 2023; 14:7005-7015. [PMID: 37389267 PMCID: PMC10306087 DOI: 10.1039/d3sc02264a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Drug resistance and metastases are the leading causes of death in clinics. To overcome this limitation, there is an urgent need for new therapeutic agents and drug formulations that are able to therapeutically intervene by non-traditional mechanisms. Herein, the physical adsorption and oxidative polymerization of Pt(iv) prodrugs in pore-confined spaces of CaCO3 nanoparticles is presented, and the nanomaterial surface was coated with DSPE-PEG2000-Biotin to improve aqueous solubility and tumor targeting. While the nanoparticle scaffold remained stable in an aqueous solution, it quickly degraded into Ca2+ in the presence of acid and into cisplatin in the presence of GSH. The nanoparticles were found to interact in cisplatin-resistant non-small lung cancer cells by a multimodal mechanism of action involving mitochondrial Ca2+ overload, dual depletion of GSH, nuclear DNA platination, and amplification of ROS and lipid peroxide generation, resulting in triggering cell death by a combination of apoptosis, ferroptosis and immunogenic cell death in vitro and in vivo. This study could present a novel strategy for the treatment of drug-resistant and metastatic tumors and therefore overcome the limitations of currently used therapeutic agents in the clinics.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Siyuan Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
25
|
Yu J, Li Y, Yan A, Gao Y, Xiao F, Xu Z, Xu J, Yu S, Liu J, Sun H. Self-Propelled Enzymatic Nanomotors from Prodrug-Skeletal Zeolitic Imidazolate Frameworks for Boosting Multimodel Cancer Therapy Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301919. [PMID: 37189219 PMCID: PMC10401186 DOI: 10.1002/advs.202301919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Self-propelled nanomotors, which can autonomous propelled by harnessing others type of energy, have shown tremendous potential as drug delivery systems for cancer therapy. However, it remains challenging for nanomotors in tumor theranostics because of their structural complexity and deficient therapeutic model. Herein, glucose-fueled enzymatic nanomotors (GC6@cPt ZIFs) are developed through encapsulation of glucose oxidase (GOx), catalase (CAT), and chlorin e6 (Ce6) using cisplatin-skeletal zeolitic imidazolate frameworks (cPt ZIFs) for synergetic photochemotherapy. The GC6@cPt ZIFs nanomotors can produce O2 through enzymatic cascade reactions for propelling the self-propulsion. Trans-well chamber and multicellular tumor spheroids experiments demonstrate the deep penetration and high accumulation of GC6@cPt nanomotors. Importantly, the glucose-fueled nanomotor can release the chemotherapeutic cPt and generate reactive oxygen species under laser irradiation, and simultaneously consume intratumoral over-expressed glutathione. Mechanistically, such processes can inhibit cancer cell energy and destroy intratumoral redox balance to synergistically damage DNA and induce tumor cell apoptosis. Collectively, this work demonstrates that the self-propelled prodrug-skeleton nanomotors with oxidative stress activation can highlight a robust therapeutic capability of oxidants amplification and glutathione depletion to boost the synergetic cancer therapy efficiency.
Collapse
Affiliation(s)
- Jieyu Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - An Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Yuwei Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Fei Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Zhengwei Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| |
Collapse
|
26
|
Jiang J, Chen Q, Xu M, Chen J, Wu S. Photoresponsive Diarylethene-Containing Polymers: Recent Advances and Future Challenges. Macromol Rapid Commun 2023:e2300117. [PMID: 37183270 DOI: 10.1002/marc.202300117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Photoresponsive polymers have attracted increasing interest owing to their potential applications in anticounterfeiting, information encryption, adhesives, etc. Among them, diarylethene (DAE)-containing polymers are one of the most promising photoresponsive polymers and have unique thermal stability and fatigue resistance compared to azobenzene- and spiropyran-containing polymers. Herein, the design of DAE-containing polymers based on different types of structures, including main chain polymers, side-chain polymers, and crosslinked polymers, is introduced. The mechanism and applications of DAE-containing polymers in anti-counterfeiting, information encryption, light-controllable adhesives, and photoinduced healable materials are reviewed. In addition, the remaining challenges of DAE-containing polymers are also discussed.
Collapse
Affiliation(s)
- Jiawei Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qing Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muhuan Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
27
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Yang G, Liu Y, Chen J, Ding J, Chen X. Self-Adaptive Nanomaterials for Rational Drug Delivery in Cancer Therapy. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:1232-1247. [DOI: 10.1021/accountsmr.2c00147] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Affiliation(s)
- Guanqing Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| |
Collapse
|
29
|
Zeng X, Wang Y, Huang YS, Han J, Sun W, Butt HJ, Liang XJ, Wu S. Amphiphilic Metallodrug Assemblies with Red-Light-Enhanced Cellular Internalization and Tumor Penetration for Anticancer Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205461. [PMID: 36366920 DOI: 10.1002/smll.202205461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Metallodrugs are widely used in cancer treatment. The modification of metallodrugs with polyethylene glycol (PEGylation) prolongs blood circulation and improves drug accumulation in tumors; it represents a general strategy for drug delivery. However, PEGylation hinders cellular internalization and tumor penetration, which reduce therapeutic efficacy. Herein, the red-light-enhanced cellular internalization and tumor penetration of a PEGylated anticancer agent, PEGylated Ru complex (Ru-PEG), are reported upon. Ru-PEG contains a red-light-cleavable PEG ligand, anticancer Ru complex moiety, and fluorescent pyrene group for imaging and self-assembly. Ru-PEG self-assembles into vesicles that circulate in the bloodstream and accumulate in the tumors. Red-light irradiation induces dePEGylation and changes the Ru-PEG vesicles to large compound micelles with smaller diameters and higher zeta potentials, which enhance tumor penetration and cellular internalization. Red-light irradiation also generates intracellular 1 O2 , which induces the death of cancer cells. This work presents a new strategy to enhance the cellular internalization and tumor penetration of anticancer agents for efficient phototherapy.
Collapse
Affiliation(s)
- Xiaolong Zeng
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yufei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Shuai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jianxiong Han
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian, 116024, China
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
30
|
Guo D, Lei JH, Rong D, Zhang T, Zhang B, Tang Z, Shen H, Deng C, Qu S. Photocatalytic Pt(IV)-Coordinated Carbon Dots for Precision Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205106. [PMID: 36307905 PMCID: PMC9798972 DOI: 10.1002/advs.202205106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Indexed: 05/13/2023]
Abstract
Rapid, efficient, and precise cancer therapy is highly desired. Here, this work reports solvothermally synthesized photoactivatable Pt(IV)-coordinated carbon dots (Pt-CDs) and their bovine serum albumin (BSA) complex (Pt-CDs@BSA) as a novel orange light-triggered anti-tumor therapeutic agent. The homogeneously distributed Pt(IV) in the Pt-CDs (Pt: 17.2 wt%) and their carbon cores with significant visible absorption exhibit excellent photocatalytic properties, which not only efficiently releases cytotoxic Pt(II) species but also promotes hydroxy radical generation from water under orange light. When triggered with a 589 nm laser, Pt-CDs@BSA possesses the ultrastrong cancer cell killing capacities of intracellular Pt(II) species release, hydroxyl radical generation, and acidification, which induce powerful immunogenic cell death. Activation of Pt-CDs@BSA by a single treatment with a 589 nm laser effectively eliminated the primary tumor and inhibited distant tumor growth and lung metastasis. This study thus presents a new concept for building photoactivatable Pt(IV)-enriched nanodrug-based CDs for precision cancer therapy.
Collapse
Affiliation(s)
- Dongbo Guo
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
- School of Biomedical EngineeringState Key Laboratory of Marine Resource Utilization in South China SeaHainan University570228HaikouChina
| | - Josh Haipeng Lei
- Faculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
| | - Dade Rong
- Faculty of Health SciencesUniversity of MacauTaipaMacau SARChina
| | - Tesen Zhang
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
| | - Bohan Zhang
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- Department of Physics and ChemistryUniversity of MacauTaipaMacau SARChina
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
| | - Chu‐Xia Deng
- Faculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- Department of Physics and ChemistryUniversity of MacauTaipaMacau SARChina
| |
Collapse
|
31
|
Li C, Deng Z, Gillies ER. Designing polymers with stimuli-responsive degradation for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Wang C, Li F, Zhang T, Yu M, Sun Y. Recent advances in anti-multidrug resistance for nano-drug delivery system. Drug Deliv 2022; 29:1684-1697. [PMID: 35616278 PMCID: PMC9154776 DOI: 10.1080/10717544.2022.2079771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy for tumors occasionally results in drug resistance, which is the major reason for the treatment failure. Higher drug doses could improve the therapeutic effect, but higher toxicity limits the further treatment. For overcoming drug resistance, functional nano-drug delivery system (NDDS) has been explored to sensitize the anticancer drugs and decrease its side effects, which are applied in combating multidrug resistance (MDR) via a variety of mechanisms including bypassing drug efflux, controlling drug release, and disturbing metabolism. This review starts with a brief report on the major MDR causes. Furthermore, we searched the papers from NDDS and introduced the recent advances in sensitizing the chemotherapeutic drugs against MDR tumors. Finally, we concluded that the NDDS was based on several mechanisms, and we looked forward to the future in this field.
Collapse
Affiliation(s)
- Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Min Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Chen QB, Zhou LY, Shi LX, Cheng Y, Wu K, Yuan Q, Dong ZJ, Gu HZ, Zhang XZ, Zou T. Platinum(IV) Complex-Loaded nanoparticles with photosensitive activity for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
35
|
Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022; 13:1035217. [PMID: 36324675 PMCID: PMC9618881 DOI: 10.3389/fphar.2022.1035217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. More efficient treatments are desperately needed. For decades, the success of platinum-based anticancer drugs has promoted the exploration of metal-based agents. Four ruthenium-based complexes have also entered clinical trials as candidates of anticancer metallodrugs. However, systemic toxicity, severe side effects and drug-resistance impeded their applications and efficacy. Stimuli-responsiveness of Pt- and Ru-based complexes provide a great chance to weaken the side effects and strengthen the clinical efficacy in drug design. This review provides an overview on the stimuli-responsive Pt- and Ru-based metallic anticancer drugs for lung cancer. They are categorized as endo-stimuli-responsive, exo-stimuli-responsive, and dual-stimuli-responsive prodrugs based on the nature of stimuli. We describe various representative examples of structure, response mechanism, and potential medical applications in lung cancer. In the end, we discuss the future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tong Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyi Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| |
Collapse
|
36
|
Ding C, Chen C, Zeng X, Chen H, Zhao Y. Emerging Strategies in Stimuli-Responsive Prodrug Nanosystems for Cancer Therapy. ACS NANO 2022; 16:13513-13553. [PMID: 36048467 DOI: 10.1021/acsnano.2c05379] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prodrugs are chemically modified drug molecules that are inactive before administration. After administration, they are converted in situ to parent drugs and induce the mechanism of action. The development of prodrugs has upgraded conventional drug treatments in terms of bioavailability, targeting, and reduced side effects. Especially in cancer therapy, the application of prodrugs has achieved substantial therapeutic effects. From serendipitous discovery in the early stage to functional design with pertinence nowadays, the importance of prodrugs in drug design is self-evident. At present, studying stimuli-responsive activation mechanisms, regulating the stimuli intensity in vivo, and designing nanoscale prodrug formulations are the major strategies to promote the development of prodrugs. In this review, we provide an outlook of recent cutting-edge studies on stimuli-responsive prodrug nanosystems from these three aspects. We also discuss prospects and challenges in the future development of such prodrugs.
Collapse
Affiliation(s)
- Chendi Ding
- Clinical Research Center, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, China
- School of Medicine, Jinan University, 855 Xingye East Road, Guangzhou 510632, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chunbo Chen
- Clinical Research Center, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
37
|
Chen J, Yu X, Liu X, Ni J, Yang G, Zhang K. Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. NANOSCALE 2022; 14:12984-12998. [PMID: 36056710 DOI: 10.1039/d2nr04418h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multidrug resistance (MDR) is one of the main reasons for the failure of tumor chemotherapy and has a negative influence on the therapeutic effect. MDR is primarily attributable to two mechanisms: the activation of efflux pumps for drugs, which can transport intracellular drug molecules from cells, and other mechanisms not related to efflux pumps, e.g., apoptosis prevention, strengthened DNA repair, and strong oxidation resistance. Nanodrug-delivery systems have recently attracted much attention, showing some unparalleled advantages such as drug targeting and reduced drug efflux, drug toxicity and side effects in reversing MDR. Notably, in drug-delivery platforms based on nanotechnology, multiple therapeutic strategies are integrated into one system, which can compensate for the limitations of individual strategies. In this review, the mechanisms of tumor MDR as well as common vectors and nanocarrier-combined therapy strategies to reverse MDR were summarized to promote the understanding of the latest progress in improving the efficiency of chemotherapy and synergistic strategies. In particular, the adoption of nanotechnology has been highlighted and the principles underlying this phenomenon have been elucidated, which may provide guidance for the development of more effective anticancer strategies.
Collapse
Affiliation(s)
- Jie Chen
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
- Department of Medical Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241 West Huaihai Road, Shanghai 200030, P. R. China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Jinliang Ni
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Guangcan Yang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| |
Collapse
|
38
|
Liang W, He S, Wu S. Fluorescence Imaging in Second Near‐infrared Window: Developments, Challenges, and Opportunities. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Weijun Liang
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Shuqing He
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
39
|
Zhang R, You X, Luo M, Zhang X, Fang Y, Huang H, Kang Y, Wu J. Poly(β-cyclodextrin)/platinum prodrug supramolecular nano system for enhanced cancer therapy: Synthesis and in vivo study. Carbohydr Polym 2022; 292:119695. [PMID: 35725183 DOI: 10.1016/j.carbpol.2022.119695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
The use of cisplatin is restricted by systemic toxicity and drug resistance. Supramolecular nano-drug delivery systems involving drugs as building blocks circumvent these limitations promisingly. Herein, we describe a novel supramolecular system [Pt(IV)-SSNPs] based on poly(β-cyclodextrin), which was synthesized for efficient loading of adamantly-functionalized platinum(IV) prodrug [Pt(IV)-ADA2] via the host-guest interaction between β-cyclodextrin and adamantyl. Pt(IV)-ADA2 can be converted to active cisplatin in reducing environment in cancer cells, which further reduces systemic toxicity. The introduction of the adamantane group-tethered mPEG2k endowed the Pt(IV)-SSNPs with a longer blood circulation time. In vitro assays exhibited that the Pt(IV)-SSNPs could be uptaken by CT26 cells, resulting in cell cycle arrest in the G2/M and S phases, together with apoptosis. Furthermore, the Pt(IV)-SSNPs showed effective tumor accumulation, better antitumor effect, and negligible cytotoxicity to major organs. These results indicate that supramolecular nanoparticles are a promising platform for efficient cisplatin delivery and cancer treatment.
Collapse
Affiliation(s)
- Ruhe Zhang
- School of Biomedical Engineering; State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Moucheng Luo
- School of Biomedical Engineering; State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyu Zhang
- School of Biomedical Engineering; State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- School of Biomedical Engineering; State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
40
|
Yin Y, Liu M, Shi L, Zhang S, Hirani RAK, Zhu C, Chen C, Yuan A, Duan X, Wang S, Sun H. Highly dispersive Ru confined in porous ultrathin g-C 3N 4 nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128939. [PMID: 35483264 DOI: 10.1016/j.jhazmat.2022.128939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Ru species were loaded on a two-dimensional (2D) material of graphitic carbon nitride (2D g-C3N4) to serve as the efficient AOP catalysts. The catalytic activity was closely related to the dispersion degree of Ru, as determined by the inherent nanoarchitecture of the supporting material. Ultrathin g-C3N4 nanosheets with a unique porous structure were fabricated by further thermally oxidizing and etching bulk g-C3N4 (bCN) in air. Homogeneous dispersion of Ru species was successfully achieved on the porous few-layered g-C3N4 nanosheets (pCN) by stirring, washing, freeze drying and annealing processes to obtain Ru-pCN catalysts, whereas bCN or multilayered g-C3N4 (mCN) led to the aggregation of Ru nanoparticles in Ru-bCN and Ru-mCN materials. The conventional impregnation method also caused the resulting Ru-pCN-imp catalyst with undesirable Ru aggregation in spite of employing pCN. The optimal 4.4Ru-pCN removed 100% of 2,4,6-trichlorophenol (TCP) within only 3 min, superior to its counterpart samples, and exhibited remarkable degradation efficiencies for methyl orange, neutral red, 4-chlorophenol, tetracycline and oxytetracycline. Mechanistic studies suggested that four radicals, e.g., •OH, SO4• -, O2• - and 1O2 were generated during the peroxymonosulfate (PMS) activation, in which SO4• - and 1O2 played a major role.
Collapse
Affiliation(s)
- Yu Yin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Mengxuan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | | - Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia.
| |
Collapse
|
41
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
42
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
43
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
44
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
45
|
Chen M, Gong N, Sun W, Han J, Liu Y, Zhang S, Zheng A, Butt HJ, Liang XJ, Wu S. Red-Light-Responsive Metallopolymer Nanocarriers with Conjugated and Encapsulated Drugs for Phototherapy Against Multidrug-Resistant Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201672. [PMID: 35665442 DOI: 10.1002/smll.202201672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
It is challenging to treat multidrug-resistant tumors because such tumors are resistant to a broad spectrum of structurally and functionally unrelated drugs. Herein, treatment of multidrug-resistant tumors using red-light-responsive metallopolymer nanocarriers that are conjugated with the anticancer drug chlorambucil (CHL) and encapsulated with the anticancer drug doxorubicin (DOX) is reported. An amphiphilic metallopolymer PolyRuCHL that contains a poly(ethylene glycol) (PEG) block and a red-light-responsive ruthenium (Ru)-containing block is synthesized. Chlorambucil is covalently conjugated to the Ru moieties of PolyRuCHL. Encapsulation of DOX into PolyRuCHL in an aqueous solution results in DOX@PolyRuCHL micelles. The DOX@PolyRuCHL micelles are efficiently taken up by the multidrug-resistant breast cancer cell line MCF-7R and which carries DOX into the cells. Free DOX, without the nanocarriers, is not taken up by MCF-7R or pumped out of MCF-7R via P-glycoproteins. Red light irradiation of DOX@PolyRuCHL micelles triggers the release of chlorambucil-conjugated Ru moieties and DOX. Both act synergistically to inhibit the growth of multidrug-resistant cancer cells. Furthermore, the inhibition of the growth of multidrug-resistant tumors in a mouse model using DOX@PolyRuCHL micelles is demonstrated. The design of red-light-responsive metallopolymer nanocarriers with both conjugated and encapsulated drugs opens up an avenue for photoactivated chemotherapy against multidrug-resistant tumors.
Collapse
Affiliation(s)
- Mingjia Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ningqiang Gong
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen Sun
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jianxiong Han
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuanli Liu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shouwen Zhang
- Neurophysiology Department, Beijing ChaoYang Emergency Medical Center, Beijing, 100122, China
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology of Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Si Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
46
|
Xiao Z, Huang X, Wu J, Liu T, Zhao L, Wang Q, Wang M, Shen M, Miao S, Guo D, Li H. The endocytosis of nano-Pt into non-small cell lung cancer H1299 cells and intravital therapeutic effect in vivo. Biochem Biophys Res Commun 2022; 606:80-86. [PMID: 35339756 DOI: 10.1016/j.bbrc.2022.03.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer remains the most common fatal malignant disease, and the 5-year survival rate of patients with metastasis is merely 6%. In this research, the platinum nanocluster (short for nano-Pt) was used for optical imaging without the help of other fluorescent probes and possess targeted antitumor activity as well as low systemic toxicity. The endocytic pathway and distribution of nano-Pt in non-small cell lung cancer NSCLC H1299 cells was explored by the means of quantitative and qualitative tests. Furthermore, the targeting capability and antitumor efficiency of nano-Pt was detected by intravital imaging experiment and antitumor experiment. The research implies that nano-Pt entered H1299 cells dominatingly through macropinocytosis and clathrin-dependent endocytosis pathway, and has significant antitumor efficiency, targeting properties and reliable safety for mouse tumor, indicating this nano-Pt has great potential for clinical diagnosis and therapy of NSCLC H1299 cells.
Collapse
Affiliation(s)
- Zhongqing Xiao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Jie Wu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ting Liu
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710002, China
| | - Lingyun Zhao
- Department of Endocrinology of People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450008, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Minyu Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Meng Shen
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaoyi Miao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Di Guo
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
47
|
Chen H, Timashev P, Zhang Y, Xue X, Liang XJ. Nanotechnology-based combinatorial phototherapy for enhanced cancer treatment. RSC Adv 2022; 12:9725-9737. [PMID: 35424935 PMCID: PMC8977843 DOI: 10.1039/d1ra09067d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology-based phototherapy has attracted enormous attention to cancer treatment owning to its non-invasiveness, high controllability and accuracy. Given the fast development of anti-tumor strategies, we summarize various examples of multifunctional nanosystems to highlight the recent advances in nanotechnology-based combinatorial phototherapy towards improving cancer treatment. The limitations of the monotherapeutic approach and the superiority of the photo-involved combinatorial strategies are discussed in each part. The future breakthroughs and clinical perspectives of combinatorial phototherapy are also outlooked. Our perspectives may inspire researchers to develop more effective phototherapy-based cancer-treating approaches.
Collapse
Affiliation(s)
- Han Chen
- School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong Univeristy Shanghai 200240 China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University Moscow 119991 Russia
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University Moscow 119991 Russia
| | - Xiangdong Xue
- School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong Univeristy Shanghai 200240 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China Beijing 100190 China
| |
Collapse
|
48
|
Chen F, Zhang F, Wang Y, Peng J, Cao L, Mei Q, Ge M, Li L, Chen M, Dong WF, Chang Z. Biomimetic Redox-Responsive Mesoporous Organosilica Nanoparticles Enhance Cisplatin-Based Chemotherapy. Front Bioeng Biotechnol 2022; 10:860949. [PMID: 35372319 PMCID: PMC8966698 DOI: 10.3389/fbioe.2022.860949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin-based chemotherapy is dominated in several cancers; however, insufficient therapeutic outcomes and systemic toxicity hamper their clinical applications. Controlled release of cisplatin and reducing inactivation remains an urgent challenge to overcome. Herein, diselenide-bridged mesoporous organosilica nanoparticles (MON) coated with biomimetic cancer cell membrane were tailored for coordination responsive controlled cisplatin delivery and GSH depletion to strengthen Pt-based chemotherapy. Cisplatin-loaded MON (MON-Pt) showed high loading capacity due to robust coordination between selenium and platinum atoms and preventing premature leakage in normal tissue. MON-Pt exhibited a controlled release of activated cisplatin in response to the redox tumor microenvironment. Meanwhile, MON-Pt containing redox-responsive diselenide bonds could efficiently scavenge intracellular inactivation agents, such as GSH, to enhance Pt-based chemotherapy. 4T1 breast cancer cell membranes cloaked MON-Pt (MON-Pt@CM) performed efficient anticancer performance and low in vivo system toxicity due to long blood circulation time and high tumor accumulation benefiting from the tumor targeting and immune-invasion properties of the homologic cancer cell membrane. These results suggest a biomimetic nanocarrier to control release and reduce the inactivation of cisplatin for efficient and safe Pt-based chemotherapy by responding and regulating the tumor microenvironment.
Collapse
Affiliation(s)
- Fangman Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Yanbin Wang
- Nephrology Department of the Fourth Affiliated Hospital of XinJiang Medical University, Macau, China
| | - Jiahui Peng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Lei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Qian Mei
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Mingfeng Ge
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Li Li
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wen-fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Wen-fei Dong, ; Zhimin Chang,
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Wen-fei Dong, ; Zhimin Chang,
| |
Collapse
|
49
|
Strasser P, Monkowius U, Teasdale I. Main group element and metal-containing polymers as photoresponsive soft materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
He M, Wang R, Wan P, Wang H, Cheng Y, Miao P, Wei Z, Leng X, Li Y, Du J, Fan J, Sun W, Peng X. Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules 2022; 23:1733-1744. [PMID: 35107271 DOI: 10.1021/acs.biomac.1c01651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lack of selectivity between tumor and healthy cells, along with inefficient reactive oxygen species production in solid tumors, are two major impediments to the development of anticancer Ru complexes. The development of photoinduced combination therapy based on biodegradable polymers that can be light activated in the "therapeutic window" would be beneficial for enhancing the therapeutic efficacy of Ru complexes. Herein, a biodegradable Ru-containing polymer (poly(DCARu)) is developed, in which two different therapeutics (the drug and the Ru complex) are rationally integrated and then conjugated to a diblock copolymer (MPEG-b-PMCC) containing hydrophilic poly(ethylene glycol) and cyano-functionalized polycarbonate with good degradability and biocompatibility. The polymer self-assembles into micelles with high drug loading capacity, which can be efficiently internalized into tumor cells. Red light induces the generation of singlet oxygen and the release of anticancer drug-Ru complex conjugates from poly(DCARu) micelles, hence inhibiting tumor cell growth. Furthermore, the phototherapy of polymer micelles demonstrates remarkable inhibition of tumor growth in vivo. Meanwhile, polymer micelles exhibit good biocompatibility with blood and healthy tissues, which opens up opportunities for multitherapeutic agent delivery and enhanced phototherapy.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peiyuan Wan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hexiang Wang
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Cheng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|