1
|
Ye W, Lin HZ, Li M, Jiang L, Chen D, Lu JM. Dimensional reduction in Cs 2AgBiBr 6 enables long-term stable Perovskite-based gas sensing. Nat Commun 2025; 16:4820. [PMID: 40410209 PMCID: PMC12102292 DOI: 10.1038/s41467-025-60206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 05/14/2025] [Indexed: 05/25/2025] Open
Abstract
Halide perovskite gas sensors have a low gas detection limit at room temperature, surpassing the performance of traditional metal oxide chemiresistors. However, they are prone to structural decomposition and performance loss due to the lack of coordination unsaturated surface metal ions and sensitivity to environmental factors such as water, oxygen, heat, and light. To address this issue, we present a general strategy: replacing the cation Cs+ in inorganic perovskite Cs2AgBiBr6 with long-chain alkylamines. This modification synthesizes perovskite sensor materials that effectively block moisture and exhibit excellent stability under real-working conditions. The chemiresistors show high sensitivity and stability to CO gas, with (BA)4AgBiBr8 detecting CO at a limit of 20 ppb, maintaining performance after 270 days of continuous exposure to ambient air. The exceptional performance of (BA)4AgBiBr8 is elucidated through density functional theory calculations combined with sum frequency generation spectroscopy, marking a significant breakthrough in halide perovskite-based gas sensing by surpassing the stability and sensitivity of traditional sensors.
Collapse
Affiliation(s)
- Wen Ye
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
- Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hong-Zhen Lin
- Department i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Menglong Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Lihua Jiang
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Dongyun Chen
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China.
| | - Jian-Mei Lu
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Gao H, Zhang Y, Ghani I, Xin M, Khan D, Wang J, Lu D, Cao T, Chen W, Yang X, Tang Z. Bifunctional 4,5-Diiodoimidazole Interfacial Engineering Enables Simultaneous Defect Passivation and Crystallization Control for High-Efficiency Inverted Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:766. [PMID: 40423155 DOI: 10.3390/nano15100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025]
Abstract
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer engineering strategy by introducing 4,5-diiodoimidazole (4,5-Di-I) at the Me-4PACz/perovskite interface. This approach uniquely addresses two fundamental limitations of SAM-based interfaces: the insufficient defect passivation capability of conventional Me-4PACz due to steric hindrance effects and the poor perovskite wettability on hydrophobic SAM surfaces that exacerbates interfacial voids. The imidazole derivatives not only form strong Pb-N coordination bonds with undercoordinated Pb2+ but also modulate the surface energy of Me-4PACz, enabling the growth of pinhole-free perovskite films with preferential crystal orientation. The champion device with 4,5-Di-I modification achieves a power conversion efficiency (PCE) of 24.10%, with a VOC enhancement from 1.12 V to 1.14 V, while maintaining 91% of initial PCE after 1300 h in N₂ atmosphere (25 °C), demonstrating superior stability under ISOS-L-2 protocols. This work establishes a universal strategy for interfacial multifunctionality design, proving that simultaneous defect suppression and crystallization control can break the long-standing trade-off between efficiency and stability in solution-processed photovoltaics.
Collapse
Affiliation(s)
- Huaxi Gao
- School of Energy and Environmental Sciences, Yunnan Normal University, Juxian Road 768, Kunming 650500, China
- The College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Shenzhen 518118, China
| | - Yu Zhang
- The College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Shenzhen 518118, China
| | - Ihtesham Ghani
- The College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Shenzhen 518118, China
| | - Min Xin
- School of Energy and Environmental Sciences, Yunnan Normal University, Juxian Road 768, Kunming 650500, China
- The College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Shenzhen 518118, China
| | - Danish Khan
- The College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Shenzhen 518118, China
| | - Junyu Wang
- The College of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China
| | - Di Lu
- The College of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China
| | - Tao Cao
- College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Wei Chen
- College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Xin Yang
- School of Energy and Environmental Sciences, Yunnan Normal University, Juxian Road 768, Kunming 650500, China
| | - Zeguo Tang
- The College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Shenzhen 518118, China
| |
Collapse
|
3
|
Nirmal A, Tay DJJ, Yantara N, Ng Timothy SE, Sharma D, Tay YB, Mathews N. Optical Learning and Reconfigurable Logic Utilizing Halide Perovskite Thin Film Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409373. [PMID: 40318174 DOI: 10.1002/smll.202409373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Metal halide perovskites with their superior electronic properties, solution processibility, and scalability, are promising candidates for optoelectronic applications such as solar cells and LEDs. Although of importance for ubiquitous, intelligent electronics, reports on the application of thin film transistors (TFTs) fabricated from perovskites are sparse, primarily due to operational conditions limitations and stability issues. Precise control of composition, microstructure as well as novel chemical treatments have been proposed as solutions to this quandary. Here, a room temperature operational n-type solution-processed Cs0.05(MA0.15FA0.7)Pb(Br0.5I2.4) triple cation transistor enabled using tin-doped indium oxide as source/drain contacts is reported. Optical learning is demonstrated by exploiting the inherent photo response of the perovskite channel and gate bias modulation capability of such perovskite TFT optical pixels. The pixels show modulatable learning and forgetting behavior as demonstrated by the training of alphabets. Noise-free optoelectronic relearning is also demonstrated. Finally, the intelligent transistor is also utilized to demonstrate reconfigurable logic, switchable between 'OR' and 'AND' states, demonstrating the versatility of the halide perovskite pixel.
Collapse
Affiliation(s)
- Amoolya Nirmal
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Darrell Jun Jie Tay
- Energy Research Institute @ Nanyang Technological University (ERI@N), Nanyang Technological University, Singapore, 637553, Singapore
- Interdisciplinary Graduate Programme (IGP), Graduate College, Nanyang Technological University, Singapore, 637460, Singapore
| | - Natalia Yantara
- Energy Research Institute @ Nanyang Technological University (ERI@N), Nanyang Technological University, Singapore, 637553, Singapore
| | - Si En Ng Timothy
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Divyam Sharma
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yeow Boon Tay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Energy Research Institute @ Nanyang Technological University (ERI@N), Nanyang Technological University, Singapore, 637553, Singapore
| |
Collapse
|
4
|
Miglani A, Ogale SB, Game OS. Architectural Innovations in Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411355. [PMID: 40059584 DOI: 10.1002/smll.202411355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Indexed: 04/17/2025]
Abstract
Meeting future energy demands with sustainable sources like photovoltaics (PV) presents significant land and logistical challenges, which can be mitigated by improving PV power conversion efficiency (PCE) and decentralized solutions like building-integrated photovoltaics and solar-integrated mobility systems (e.g., Unmanned Aerial Vehicles (UAVs)). Metal Halide Perovskites Solar Cells (MH-PSCs) provide a transformative, low-cost solution for high-efficiency PV with diverse compositions, exceptional optoelectronic properties, and low-temperature, solution-based processability. Conventionally the MH-PSCs are fabricated in "p-i-n" or "n-i-p" configuration on glass-Transparent Conductive Oxide (TCO) substrates. While glass-based Perovskite Solar Cells (PSCs) have achieved remarkable efficiencies, their limited scalability, high areal-weight, and mechanical rigidity greatly limit their usage in wearables electronics, BIPVs, and e-mobility applications. Addressing these challenges requires "targeted architectural innovations" in MH-PSCs, tailored to specific applications, to drive their practical deployment forward. This study reviews four innovative PSC architectures-Interdigitated Back Contact (IBC) PSCs, Lateral Configuration (LC) PSCs, Fiber-Shaped (FS) PSCs, and Substrate-Configuration (SC) PSCs-highlighting their design advancements for enhanced efficiency, flexibility, lightweight, and application-specific integration. Importantly, the review discusses the precise engineering required in each layer of these architectural innovations to ensure compatibility, efficient charge transport, durability, and scalability while optimizing performance, while also identifying key challenges and outlining directions for future R&D.
Collapse
Affiliation(s)
- Aayushi Miglani
- Department of Physics, Indian Institute of Technology (IIT) - Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Satishchandra B Ogale
- Department of Physics and Center for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
- Research Institute for Sustainable Energy (TCG-CREST), Kolkata, 700091, India
| | - Onkar S Game
- Department of Physics, Indian Institute of Technology (IIT) - Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
5
|
Jiang J, Luo J, Ding K, Tang Y, Zhang H, Ye L, Pang D, Li H, Li W. High-Performance Broad-Spectrum UV Photodetectors with Uniform Response: Engineering β-Ga 2O 3:Si/GaN:Si Heterojunctions via Thermal Oxidation for Optoelectronic Logic Gate and Multispectral Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406447. [PMID: 39617971 DOI: 10.1002/smll.202406447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Indexed: 03/28/2025]
Abstract
Developing high-performance, broad-spectrum ultraviolet photodetectors (PDs) with uniform response is crucial for optoelectronic applications like spectral analysis, optoelectronic logic gates, and multispectral imaging. This study constructs n-n type β-Ga2O3:Si/GaN:Si heterojunction PDs using thermal oxidation, combining the advantages of β-Ga2O3:Si and GaN:Si for excellent broad-spectrum response (UV-A to UV-C). A proposed channel model for GaN:Si oxidation includes hole formation, vortex structure development, channel formation, and grain growth, providing a basis for understanding β-Ga2O3:Si/GaN:Si heterojunction formation. Uniform Si doping in the β-Ga2O3 layer, achieved through thermal oxidation, reduces resistivity, enhances the collection of photogenerated carriers from the underlying GaN layer, and hence enhances broad-spectrum response performance. The devices exhibit outstanding uniformity and sensitivity across the UV-A to UV-C range, with a peak responsivity of 2.44 × 104 A W-1 and a photocurrent-to-dark current ratio of 1.3 × 105. Applications include optoelectronic logic gates executing "OR gate" and "AND gate" logic operations with 254 and 365 nm UV light, and a single-pixel multispectral imaging system producing high-contrast, clear "CNU" images with 254, 295, and 365 nm UV light. This research advances the understanding of oxide heterojunction formation and offers a method for developing high-performance, uniformly responsive broad-spectrum UV photodetectors for optoelectronic applications.
Collapse
Affiliation(s)
- Jili Jiang
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Jiangshuai Luo
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Ke Ding
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Yan Tang
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Hong Zhang
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Lijuan Ye
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Di Pang
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Honglin Li
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Wanjun Li
- Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, P. R. China
| |
Collapse
|
6
|
Tao Y, Zhuang W, Fan W, Zhou L, Fan L, Qin H, Zhu Y. Dual-functional silver nanoparticle-enhanced ZnO nanorods for improved reactive oxygen species generation and cancer treatment. iScience 2025; 28:111858. [PMID: 40017508 PMCID: PMC11867527 DOI: 10.1016/j.isci.2025.111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/22/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025] Open
Abstract
Recent advancements in sonodynamic therapy (SDT) for cancer treatment have highlighted the potential of enhancing reactive oxygen species (ROS) generation and improving therapeutic outcomes. This study introduces zinc oxide (ZnO) nanorods (NRs) in situ loaded with silver nanoparticles (ZnO@Ag NRs), designed to optimize ROS production under ultrasound irradiation and offer significant advantages in tumor specificity and biosafety. The transmission electron microscopy and elemental mapping confirmed the consistent size and monodispersed Ag nanoparticle for ZnO@Ag NR. Sonodynamic properties showed that ZnO@Ag NRs produce higher singlet oxygen and hydroxyl radicals under ultrasound. In vitro studies demonstrated excellent biocompatibility and enhanced cell-killing effects of ZnO@Ag NRs on CT-26 cells, while in vivo results confirmed its superior anti-tumor efficacy and biosafety. Furthermore, the ZnO@Ag NRs' antibacterial properties were also confirmed, suggesting additional benefits in treating cancers associated with bacterial infections. Collectively, these findings establish ZnO@Ag NRs as a potent and safe agent for ultrasound-driven cancer therapy.
Collapse
Affiliation(s)
- Yichao Tao
- School of Medicine, Nantong University, Nantong 226001, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou 215600, China
| | - Wenbin Zhuang
- School of Medicine, Nantong University, Nantong 226001, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wensi Fan
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Longxiang Zhou
- Department of General Surgery, Jinshan Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, No.147, Jiankang Road, Shanghai 201599, China
| | - Lihong Fan
- School of Medicine, Nantong University, Nantong 226001, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Huanlong Qin
- School of Medicine, Nantong University, Nantong 226001, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yefei Zhu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
7
|
Lee S, Hong BK, Lee SU, Huh JI, Yoon GW, Park NG, Jung HS. Crystallization control of Cu(I)-halide via thermal evaporation for improving resistive switching memory performance. NANOSCALE 2025; 17:4008-4014. [PMID: 39760509 DOI: 10.1039/d4nr04200j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
CsCu2I3 is considered a promising material for lead-free resistive switching (RS) memory devices due to its low operating voltage, high on/off ratio, and excellent thermal and environmental stability. However, conventional lead-free halide-based RS memory devices typically require solvent-based thin-film formation processes that involve toxic organic and acidic solvents, and the effects of process conditions on device performance are often not fully understood. This study investigates the effect of crystallinity on CsCu2I3-based RS memory devices fabricated via thermal evaporation. Crystallinity increases with higher substrate deposition temperatures but decreases with increasing post-annealing temperatures, leading to film decomposition. At a substrate deposition temperature of 180 °C, without post-annealing, the CsCu2I3-based device demonstrates enhanced performance, including an endurance of 190 cycles and a retention time of 6500 s. The devices operate through a space-charge-limited conduction mechanism, as shown by logarithmic I-V characteristics. Trap density calculations reveal that higher crystallinity reduces defects, leading to improved endurance and retention by promoting the formation of stable conductive filaments. This study establishes a relationship between crystallinity and the enhanced endurance and retention of CsCu2I3-based RS memory devices prepared using thermal evaporation as a function of deposited substrate temperature and post-annealing temperature.
Collapse
Affiliation(s)
- SangMyeong Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Bong Ki Hong
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sang-Uk Lee
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong-In Huh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Geon Woo Yoon
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Nam-Gyu Park
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Suk Jung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Xu Y, Zhang S, Yuan H, Jiao Y, Guo X, Hu Z, Hu XG, Lin Z, Hao Y, Ding L, Chang J. Mechanically Resilient and Highly Efficient Flexible Perovskite Solar Cells with Octylammonium Acetate for Surface Adhesion and Stress Relief. ACS NANO 2025; 19:4867-4875. [PMID: 39838949 DOI: 10.1021/acsnano.4c16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing. The results showed that OAAc with high structural flexibility and strong molecular interactions can act as a mechanical release layer in releasing residual tensile stress, confirmed by the film and device characterizations as well as finite-element simulation. Moreover, the passivation of the OAAc could increase the formation energy of defects including I vacancy, Pb vacancy, and Pb-I antisite. The experimental results showed that the trap states of perovskites were significantly suppressed after OAAc modification, which is beneficial to the construction of high-quality films. With a high open-circuit voltage of 1.196 V, the efficiency of the OAAc-treated devices increased from 23.14% to 25.47% on a rigid substrate (23.12% on a flexible substrate), yielding superior long-term and mechanical durability. The corresponding flexible device retains 74% of the initial value even after 8000 bending cycles at a bending radius of 5 mm.
Collapse
Affiliation(s)
- Yumeng Xu
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China
| | - Siyu Zhang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China
| | - Haidong Yuan
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, 710071 Xi'an, China
| | - Yong Jiao
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China
| | - Xing Guo
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, 710071 Xi'an, China
| | - Zhaosheng Hu
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China
| | - Xian-Gang Hu
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, 710071 Xi'an, China
| | - Zhenhua Lin
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China
| | - Yue Hao
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, 710071 Xi'an, China
| | - Liming Ding
- National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Jingjing Chang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, 710071 Xi'an, China
| |
Collapse
|
9
|
Bhange M, Telange D. Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review. Discov Oncol 2025; 16:77. [PMID: 39841330 PMCID: PMC11754566 DOI: 10.1007/s12672-025-01821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Liver cancer is one of the most challenging malignancies, often associated with poor prognosis and limited treatment options. Recent advancements in nanotechnology and artificial intelligence (AI) have opened new frontiers in the fight against this disease. Nanotechnology enables precise, targeted drug delivery, enhancing the efficacy of therapeutics while minimizing off-target effects. Simultaneously, AI contributes to improved diagnostic accuracy, predictive modeling, and the development of personalized treatment strategies. This review explores the convergence of nanotechnology and AI in liver cancer treatment, evaluating current progress, identifying existing research gaps, and discussing future directions. We highlight how AI-powered algorithms can optimize nanocarrier design, facilitate real-time monitoring of treatment efficacy, and enhance clinical decision-making. By integrating AI with nanotechnology, clinicians can achieve more accurate patient stratification and treatment personalization, ultimately improving patient outcomes. This convergence holds significant promise for transforming liver cancer therapy into a more precise, individualized, and efficient process. However, data privacy, regulatory hurdles, and the need for large-scale clinical validation remain. Addressing these issues will be essential to fully realizing the potential of these technologies in oncology.
Collapse
Affiliation(s)
- Manjusha Bhange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India.
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India
| |
Collapse
|
10
|
Kucheriv OI, Haleliuk DA, Shova S, Gural'skiy IA. Fine-tuning of optical band gap in mixed halide aziridinium lead perovskites. Dalton Trans 2025; 54:1618-1624. [PMID: 39660551 DOI: 10.1039/d4dt02879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Hybrid halide perovskites form a promising class of light-absorbing materials. Among the numerous 3D semiconducting perovskites, there is a group of emerging aziridinium-based hybrids that are considered to be prospective materials for optoelectronic applications. In this work, we report the mixed halide aziridinium perovskites of (AzrH)PbBrxI3-x series (AzrH = aziridinium). Small changes in the composition of perovskites are shown to have a defining impact on the optoelectronic properties of the reported materials. Halogen substitution allowed a variation in band gap values of these compounds, ranging from 1.57 to 2.23 eV, as established using electronic spectroscopy. Crystal structures of (AzrH)PbBrxI3-x perovskites were studied using single crystal and powder X-ray diffraction analysis. The lattice constant had a linear dependence on the Br content in the structure, thus strictly following Vegards's law. Importantly, the reported compounds displayed a preferential inclusion of iodine upon synthesis, revealing that the mixed halide perovskite composition cannot be estimated based on the precursors' ratio only, and it should be post-synthetically checked. The reported results expand the range of hybrid perovskites with tuneable band gaps beyond the conventional methylammonium and formamidinium-based perovskites and offer a new series of metal-halide hybrids suitable for photovoltaic and other optoelectronic applications.
Collapse
Affiliation(s)
- Olesia I Kucheriv
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, 01601 Kyiv, Ukraine.
| | - Dmytro A Haleliuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, 01601 Kyiv, Ukraine.
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Il'ya A Gural'skiy
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, 01601 Kyiv, Ukraine.
| |
Collapse
|
11
|
Ruvubu SB, Roy I. Advances in Heavy Metal Sensing: Utilizing Immobilized Chromogenic Reagents, Nanomaterials Perovskite and Nanonzymes. Crit Rev Anal Chem 2025:1-28. [PMID: 39755954 DOI: 10.1080/10408347.2024.2440697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes. Immobilized chromogenic reagents, with their high specificity and visual detection capabilities, provide cost effective solutions for heavy metal detection. Techniques to improve their stability and sensitivity, including surface modifications and hybrid materials, are discussed. Nanomaterials, including quantum dots, metal-organic frameworks, and carbon-based nanostructures, have emerged as versatile platforms due to their unique physicochemical properties. These materials enable highly sensitive and selective sensing mechanisms, such as fluorescence quenching and electrochemical sensing. Perovskites, a class of materials known for their tunable optoelectronic properties, have shown great promise in the optical and electrochemical detection of heavy metals. Despite challenges related to stability and environmental safety, their potential for low-cost and scalable applications is remarkable. Nanozymes, synthetic enzyme mimics, offer robust and catalytic sensing capabilities, particularly in colorimetric and electrochemical analyses. Their superior stability and reusability compared to natural enzymes make them ideal candidates for environmental monitoring. This review provides a comparative analysis of these techniques, highlighting their strengths, limitations, and real-world applicability. Emerging trends include hybrid systems that combine the benefits of multiple approaches. The discussion concludes by addressing current challenges and providing perspectives on future directions for advancing heavy metal detection technologies to improve environmental health and safety. Integrating chromogenic reagents with perovskite materials represents a promising direction for developing robust, sensitive, and easy-to-use sensors for health and environmental safety monitoring.
Collapse
Affiliation(s)
- Sylvanus Bisaba Ruvubu
- Department of Chemistry, University of Delhi, New Delhi, India
- Department of Chemistry and Physics, College of Natural and Applied Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
12
|
Kucheriv OI, Apostu MO, Prysiazhna O, Potaskalov VA, Malinkin SO. Crystal structure and Hirshfeld surface analysis of the layered hybrid metal halide poly[bis-(2-iodoethyl-ammonium) [di-μ-iodido-di-iodido-germanate(II)]]. Acta Crystallogr E Crystallogr Commun 2025; 81:34-38. [PMID: 39776637 PMCID: PMC11701769 DOI: 10.1107/s2056989024011800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
The title compound is a germanium-based hybrid metal halide that represents a less-toxic alternative to more popular lead-based analogues in optoelectronic applications. {(2-IC2H4NH3)2[GeI4]} n is composed of infinite inorganic layers that are formed by [GeI6]4- octa-hedra connected in a corner-sharing manner with four equatorial I atoms. The organic (2-IC2H4NH3)+ cations inter-leave the inorganic layers. There are two types of 2-iodo-ethyl-ammonium cations, with synclinal and anti-periplanar conformations. The organic cations inter-act with the inorganic layers through hydrogen bonds and I⋯I contacts. The crystal under investigation was twinned by a 180° rotation around [100].
Collapse
Affiliation(s)
- Olesia I. Kucheriv
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| | - Mircea-Odin Apostu
- Department of Chemistry, Faculty of Chemistry, Al. I. Cuza University of Iasi, Carol I Blvd. 11, Iasi 700506, Romania
| | - Olena Prysiazhna
- Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, Avtozavodskaya St. 2, Kyiv 04074, Ukraine
- Department of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Ave. 31, Kyiv 03680, Ukraine
| | - Vadim A. Potaskalov
- Department of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Pr. 37, 03056 Kyiv, Ukraine
| | - Sergey O. Malinkin
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| |
Collapse
|
13
|
Samatov MR, Liu D, Zhao L, Kazakova EA, Abrameshin DA, Das A, Vasenko AS, Prezhdo OV. Ion Migration at Metal Halide Perovskite Grain Boundaries Elucidated with a Machine Learning Force Field. J Phys Chem Lett 2024; 15:12362-12369. [PMID: 39652334 DOI: 10.1021/acs.jpclett.4c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Metal halide perovskites are promising optoelectronic materials with excellent defect tolerance in carrier recombination, believed to arise largely from their unique soft lattices. However, weak lattice interactions also promote ion migration, leading to serious stability issues. Grain boundaries (GBs) have been experimentally identified as the primary migration channels, but the relevant mechanism remains elusive. Using molecular dynamics with a machine learning force field, we directly model ion migration at a common CsPbBr3 GB. We demonstrate that the as-built GB model, containing 6400 atoms, experiences structural reconstruction over several nanoseconds, and only Br atoms diffuse after that. A fraction of Br atoms near the GB either migrate toward the GB center or along the GB through different migration channels. Increasing the temperature not only accelerates the ion migration via the Arrhenius activation but also allows more Br atoms to migrate. The activation energies are much lower at the GB than in the bulk due to large-scale structural distortions and favorable non-stoichiometric local environments available at GBs. Making the local GB composition more stoichiometric by doping or annealing can suppress the ion migration. The reported results provide valuable atomistic insights into the GB properties and ion migration in metal halide perovskites.
Collapse
Affiliation(s)
| | | | - Long Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Elena A Kazakova
- Department of Biochemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Abinash Das
- PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu 641004, India
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- Donostia International Physics Center (DIPC), 20018 San Sebastián-Donostia, Euskadi, Spain
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Petrosova HR, Naumova DD, Golenya IA, Buta I, Gural’skiy IA. Crystal structure and Hirshfeld surface analysis of the salt 2-iodo-ethyl-ammonium iodide - a possible side product upon synthesis of hybrid perovskites. Acta Crystallogr E Crystallogr Commun 2024; 80:1226-1229. [PMID: 39712163 PMCID: PMC11660464 DOI: 10.1107/s205698902401034x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024]
Abstract
The title organic-inorganic hybrid salt, C2H7IN+·I-, is isotypic with its bromine analog, C2H7BrN+·Br- [Semenikhin et al. (2024 ▸). Acta Cryst. E80, 738-741]. Its asymmetric unit consists of one 2-iodo-ethyl-ammonium cation and one iodide anion. The NH3 + group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supra-molecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N-H⋯I inter-actions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001].
Collapse
Affiliation(s)
- Hanna R. Petrosova
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| | - Dina D. Naumova
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| | - Irina A. Golenya
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| | - Ildiko Buta
- "Coriolan Dragulescu" Institute of Chemistry, Mihai Viteazu Bvd. 24, Timisoara 300223, Romania
| | - Il’ya A. Gural’skiy
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine
| |
Collapse
|
15
|
Ma X, Fan S, Yang W, Wei J, Wang X, Ni J, Cheng W, Zhang Q. Preparation and Properties Study of CsPbX 3@PMMA Luminescent Resin. MICROMACHINES 2024; 15:1150. [PMID: 39337810 PMCID: PMC11434466 DOI: 10.3390/mi15091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Perovskite as an emerging semiconductor luminescent material has attracted widespread attention due to its simple preparation, high luminescence quantum yield, high color purity, tunable spectrum, and ability to cover the entire visible light band. However, due to the influence of water or other highly polar solvents, oxygen, temperature, and radiation, perovskite nanocrystals will aggregate or collapse in the lattice, eventually leading to luminescence quenching. This study starts from the postprocessing of perovskite, uses methyl methacrylate as the monomer and TPO as the photoinitiator, and encapsulates the perovskite powder prepared by the hot injection method through ultraviolet light initiation. A method is proposed to improve the luminescence and crystal structure stability of perovskite. By eliminating the influence of environmental factors on perovskite nanocrystals through the dense structure formed by organic polymers, the resistance of perovskite to strong polar solvents such as water will be greatly improved, and it has great potential in the protection of perovskite. Finally, by changing the proportion of halogen elements in the perovskite resin to change the color of the luminescent resin, a fluorescent coating emitting light in all visible light bands is prepared. Fluorescent coatings are widely used in life and industry fields such as plastics, sol, and paper.
Collapse
Affiliation(s)
- Xinqiang Ma
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, 17923 Jingshi Rd., Jinan 250061, China
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
- Shandong Qiangyuan Laser of SDIIT Ltd., Liaocheng 252000, China
| | - Shengying Fan
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Wenwen Yang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Jiajie Wei
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Xiaolei Wang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Jincheng Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Wei Cheng
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Qinhe Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, 17923 Jingshi Rd., Jinan 250061, China
| |
Collapse
|
16
|
Wang L, Song Y, Wang J, Bi W, Ding L, Liu H, Yang X, Wang Y, Yuan S, Dong Q, Yang D, Fang Y. Rapid Recovery of Degraded Perovskite Single-Crystal Radiation Detectors via Infrared Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44202-44209. [PMID: 39134470 DOI: 10.1021/acsami.4c06568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Radiation detectors based on metal halide perovskite (MHP) single crystals (SCs) have exhibited exceptional sensitivity, low detection limit, and remarkable energy resolution. However, the operational stability issue still dramatically impedes their commercialization due to degradation induced by high-energy irradiation and large bias. Here, we propose an innovative infrared healing strategy to restore the devices that have undergone severe damage from both long-term biasing and X-ray irradiation. Compared to the slow and inefficient intrinsic self-healing process of MHPs, the infrared healing method demonstrates the capacity to achieve rapid recovery of the detection performance of the degraded devices within just 1 h. We reveal that the healing mechanism is mainly related to the reduction of the ion-migration activation energy in MHP SCs under infrared illumination, which promotes the back diffusion of the displaced ions to their original lattice positions and remedies defects. Finally, the healing effect is further confirmed through the gamma-ray spectroscopy acquisition with degraded MHP SCs, whose energy resolution at 59.5 keV of 241Am source is improved from 36% to 12% following infrared illumination. These results present infrared healing as a simple and economic method to extend the service life of MHP SC-based detectors.
Collapse
Affiliation(s)
- Lixiang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yilong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jing Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Weihui Bi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Li Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Hui Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xueying Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yingqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuai Yuan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
- Shangyu Institute of Semiconductor Materials, Shaoxing 312366, PR China
| | - Qingfeng Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
- Shangyu Institute of Semiconductor Materials, Shaoxing 312366, PR China
| | - Yanjun Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
- Shangyu Institute of Semiconductor Materials, Shaoxing 312366, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, PR China
| |
Collapse
|
17
|
Loizos M, Rogdakis K, Kymakis E. Sustainable Mixed-Halide Perovskite Resistive Switching Memories Using Self-Assembled Monolayers as the Bottom Contact. J Phys Chem Lett 2024; 15:7635-7644. [PMID: 39037751 PMCID: PMC11299189 DOI: 10.1021/acs.jpclett.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The complex ionic-electronic conduction in mixed halide perovskites enables their use beyond von Neumann architectures implemented in resistive switching memory devices. Although device fabrication based on perovskite compounds involves solution-processing at low temperatures, reducing further fabrication costs by eliminating expensive materials can improve their compatibility with upscalable deposition techniques. Notably, the substrate on which the perovskite active layer is developed has been reported to severely affect its quality and thus the overall device performance. Hereby, we demonstrate the sustainable manufacturing of memristive perovskite solar cells by replacing the expensive poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) that serves as a hole transporting layer (HTL) with a self-assembled monolayer (SAM), namely [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz). Multiple sequential memristive current-voltage characteristics of single devices are reported, and average data of multiple reference and targeted devices are compared. Resistive switching memory devices based on SAM exhibit improved performance having reduced average SET voltage values and narrower statistical variation compared to reference devices with PTAA. It is shown that both PTAA and SAM based devices exhibit high ON/OFF ratio of about 103 operating at low switching electric fields. Replacing an expensive polymer-based HTL with this approach reduces fabrication costs compared to PTAA.
Collapse
Affiliation(s)
- Michalis Loizos
- Department
of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Heraklion 71410, Crete, Greece
| | - Konstantinos Rogdakis
- Department
of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Heraklion 71410, Crete, Greece
- Institute
of Emerging Technologies, University Research
and Innovation Center, HMU, Heraklion 71410, Crete, Greece
| | - Emmanuel Kymakis
- Department
of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Heraklion 71410, Crete, Greece
- Institute
of Emerging Technologies, University Research
and Innovation Center, HMU, Heraklion 71410, Crete, Greece
| |
Collapse
|
18
|
Wei H, Gong J, Liu J, He G, Ni Y, Fu C, Yang L, Guo J, Xu Z, Xu W. Thermally and Mechanically Stable Perovskite Artificial Synapse as Tuned by Phase Engineering for Efferent Neuromuscular Control. NANO LETTERS 2024. [PMID: 39023921 DOI: 10.1021/acs.nanolett.4c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The doping of perovskites with mixed cations and mixed halides is an effective strategy to optimize phase stability. In this study, we introduce a cubic black phase perovskite CsyFA(1-y)Pb(BrxI(1-x))3 artificial synapse, using phase engineering by adjusting the cesium-bromide content. Low-bromine mixed perovskites are suitable to improve the electric pulse excitation sensitivity and stability of the device. Specifically, the low-bromine and low-cesium mixed perovskite (x = 0.15, y = 0.22) annealed at 373 K allows the device to maintain logic response even after 1000 mechanical flex/flat cycles. The device also shows good thermal stability up to temperatures of 333 K. We have demonstrated reflex-arc behavior with MCMHP synaptic units, capable of making sensory warnings at high frequency. This compositionally engineered, dual-mixed perovskite synaptic device provides significant potential for perceptual soft neurorobotic systems and prostheses.
Collapse
Affiliation(s)
| | - Jiangdong Gong
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, People's Republic of China
| | | | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | | | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiahao Guo
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhipeng Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, People's Republic of China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
19
|
Dong W, Li H, Li J, Hua Y, Yang F, Dong Q, Zhang X, Zheng W. Precursor Engineering Induced High-Efficiency Electroluminescence of Quasi-Two-Dimensional Perovskites: A Synergistic Defect Inhibition and Passivation Approach. NANO LETTERS 2024; 24:3952-3960. [PMID: 38527956 DOI: 10.1021/acs.nanolett.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Despite light-emitting diodes (LEDs) based on quasi-two-dimensional (Q-2D) perovskites being inexpensive and exhibiting high performance, defects still limit the improvement of electroluminescence efficiency and stability by causing nonradiative recombination. Here, an organic molecule, 1-(o-tolyl) biguanide, is used to simultaneously inhibit and passivate defects of Q-2D perovskites via in situ synchronous crystallization. This molecule not only prevents surface bromine vacancies from forming through hydrogen bonding with the bromine of intermediaries but also passivates surface defects through its interaction with uncoordinated Pb. Via combination of defect inhibition and passivation, the trap density of Q-2D perovskite films can be significantly reduced, and the emission efficiency of the film can be improved. Consequently, the corresponding LED shows an external quantum efficiency of 24.3%, and its operational stability has been increased nearly 15 times.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Hanming Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jing Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Yulu Hua
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Fan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qingfeng Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
20
|
Dai Q, Luo Z, Ma G, Miao Y, Wang X, Zhao Z, Zhao F, Zheng F, Zhu L, Hu Z. Multifunctional two-dimensional perovskite based solar cells for photodetectors and resistive switching. NANOSCALE 2024; 16:4148-4156. [PMID: 38348698 DOI: 10.1039/d3nr04861f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The escalating interest in low-dimensional perovskites stems from their tunable optoelectronic traits and robust stability. The pursuit of multifaceted optoelectronic devices holds substantial importance for energy-efficient and space-constrained systems. This investigation showcases the realization of multifunctional two-dimensional perovskite solar cells, incorporating transient light detection and resistive switching functions within a single device, achievable by facile external bias adjustments. Serving as a photodetector, the device exhibits commendable self-powered photodetection attributes, including an exceptionally low dark current density of 1 nA mm-2, a remarkable specific detectivity of 7.67 × 1012 Jones, a swift response time of 0.60 μs, and an expansive linear dynamic range of 72 dB. As a memristor, it showcases enduring performance across 4 × 102 cycles, a substantial on/off ratio of 106, and a rapid operation time of less than 1 μs. This endeavor unveils a pioneering avenue for advancing high-performance, air-stable multifunctional two-dimensional perovskite electronics.
Collapse
Affiliation(s)
- Qing Dai
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Zhenwang Luo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Guohua Ma
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Yuchen Miao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Xu Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Zhenfu Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Feiyu Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Fei Zheng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Liqiang Zhu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
21
|
Yao R, Ji S, Zhou T, Quan C, Liu W, Li X. Self-energy correction and numerical simulation for efficient lead-free double perovskite solar cells. Phys Chem Chem Phys 2024; 26:5253-5261. [PMID: 38263913 DOI: 10.1039/d3cp03639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Inorganic double perovskites have garnered significant attention due to their desirable characteristics, such as low-toxicity, stability and long charge-carrier lifetimes. However, most double perovskites, especially Cs2AgBiBr6, have wide bandgaps, which limits power conversion efficiencies. In this work, through the first principles method corrected by self-energy, we investigate the mechanical, electric and optical properties of Cs2B'B''Br6 (B' = Ag, Au, Cu; B'' = Bi, Al, Sb, In). Based on performance screening, three kinds of materials with good toughness, high carrier mobility and wide visible-light absorption (around 105 cm-1) are obtained, which are compared with Cs2AgBiBr6. Meanwhile, we use a SACPS-1D simulation to design lead-free double perovskites with excellent properties suitable for photovoltaic solar cell devices, which are made into a planar perovskite heterojunction. Ultimately, the optimal structure is determined to be FTO/WS2/Cs2CuBiBr6/spiro-OMeTAD/Ag, which achieves a power conversion efficiency of 14.08%, surpassing the conventional structure efficiency of 6.1%. It provides valuable guidance for the structure design of a lead-free double perovskite device and offers new insights into the development of optoelectronic devices for solar energy utilization.
Collapse
Affiliation(s)
- Ruijia Yao
- New Energy Technology Engineering Laboratory of Jiangsu Province & Institute of Advanced Materials & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
| | - Shilei Ji
- New Energy Technology Engineering Laboratory of Jiangsu Province & Institute of Advanced Materials & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
| | - Tingxue Zhou
- New Energy Technology Engineering Laboratory of Jiangsu Province & Institute of Advanced Materials & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
| | - Chuye Quan
- New Energy Technology Engineering Laboratory of Jiangsu Province & Institute of Advanced Materials & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
| | - Wei Liu
- New Energy Technology Engineering Laboratory of Jiangsu Province & Institute of Advanced Materials & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
| | - Xingao Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & Institute of Advanced Materials & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
- School of Science, Zhejiang University of Science and Technology (ZUST), Hangzhou 310023, China
| |
Collapse
|
22
|
Xu Y, Di M, Liu J, Li Z, Wang Y, Tang N. Enhancing Visible-Light Absorption of 2D Carbon Nitride by Constructing 2D/2D van der Waals Heterojunctions of Carbon Nitride/Nitrogen-Superdoped Graphene. ACS OMEGA 2024; 9:4804-4810. [PMID: 38313550 PMCID: PMC10831856 DOI: 10.1021/acsomega.3c08308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
Carbon nitride sheets (CNs) down to the two-dimensional (2D) limit have been widely used in photoelectric conversion due to their inherent band gap and extremely short charge-carrier diffusion distance. However, the utilization of visible light remains low due to the rapid recombination of photogenerated electron-hole pairs and enlarged band gap. Here, atomically thin 2D/2D van der Waals heterojunctions (vdWHs) of N-superdoped graphene (NG) and CNs (CNs/NG) are fabricated via a facile electrostatic self-assembly method. Our results revealed that the vdWHs can increase the visible-light absorption of CNs by extending the absorption edge from 455 to up to 490 nm. The recombination of photogenerated electron-hole pairs is inhibited because superdoped N in CNs/NG facilitates the transmission of photogenerated carriers in the melon chain. This study opens a new avenue for narrowing the band gap and promoting photoexcited carrier separation in carbon-nitride-based materials.
Collapse
Affiliation(s)
- Yongjie Xu
- School
of Education, Jiangsu Open University, Nanjing 210036, China
| | - Maoyun Di
- Laboratory
of Magnetic and Electric Functional Materials and the Applications,
The Key Laboratory of Shanxi Province, College of Material Science
and Technology, Taiyuan University of Science
and Technology, Taiyuan 030024, China
| | - Jiawei Liu
- National
Laboratory of Solid State Microstructures, Collaborative Innovation
Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory
for Nanotechnology, Nanjing University, Nanjing 210093, China
| | - Ziying Li
- National
Laboratory of Solid State Microstructures, Collaborative Innovation
Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory
for Nanotechnology, Nanjing University, Nanjing 210093, China
| | - Yong Wang
- Wide
Bandgap Semiconductor Technology Disciplines State Key Laboratory,
School of Microelectronics, Academy of Advanced Interdisciplinary
Research, Xidian University, Xi’an 710071, China
- Emerging
Device and Chip Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Nujiang Tang
- National
Laboratory of Solid State Microstructures, Collaborative Innovation
Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory
for Nanotechnology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
23
|
Xiao Y, Zou G, Huo J, Sun T, Peng J, Li Z, Shen D, Liu L. Local modulation of Au/MoS 2 Schottky barriers using a top ZnO nanowire gate for high-performance photodetection. NANOSCALE HORIZONS 2024; 9:285-294. [PMID: 38063807 DOI: 10.1039/d3nh00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Schottky junctions are commonly used for fabricating heterojunction-based 2D transition metal dichalcogenide (TMD) photodetectors, characteristically offering a wide detection range, high sensitivity and fast response. However, these devices often suffer from reduced detectivity due to the high dark current, making it challenging to discover a simple and efficient universal way to improve the photoelectric performances. Here, we demonstrate a novel approach for integrating ZnO nanowire gates into a MoS2-Au Schottky junction to improve the photoelectric performances of photodetectors by locally controlling the Schottky barrier. This strategy remarkably reduces the dark current level of the device without affecting its photocurrent and the Schottky detectivity can be modified to a maximum detectivity of 1.4 × 1013 Jones with -20 V NG bias. This work provides potential possibilities for tuning the band structure of other materials and optimizing the performance of heterojunction photodetectors.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
24
|
Thien GSH, Chan KY, Marlinda AR, Yap BK. Polymer-enhanced perovskite oxide-based photocatalysts: a review. NANOSCALE 2023; 15:19039-19061. [PMID: 37987540 DOI: 10.1039/d3nr03874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Oxide perovskites (OPs) have emerged as promising photocatalysts for numerous applications, such as energy conversion, renewable fuels, and environmental remediation. Although OPs are gaining traction, their efficacies are still hindered by low charge carrier mobility and poor stability. This study investigated the function of polymers actively participating in OP structures to improve the overall characteristics. An overview of the polymer-enhanced perovskite oxide photocatalyst (PEPOP) field was effectively reviewed. These PEPOPs were demonstrated in photovoltaics, pollutant degradation, and gas conversion and reduction. Nonetheless, additional research is needed to explore the potential of PEPOPs to establish their efficacy in photocatalytic applications. The technological improvements of PEPOPs were hindered by significant challenges related to stability and sensitivity. The urgency of this review was apparent due to the fast-paced nature of research in the field of photocatalysis. Recent breakthroughs and emerging applications highlight the need for a comprehensive overview of PEPOPs and their enhanced catalytic capabilities. Consequently, a broad outlook was provided for the current state of PEPOP-related studies, highlighting the potential of these materials for future applications.
Collapse
Affiliation(s)
- Gregory Soon How Thien
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia.
| | - Kah-Yoong Chan
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia.
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Boon Kar Yap
- Electronic and Communications Department, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
- International School of Advanced Materials, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
25
|
Liu X, Fan Z, Zheng Y, Zha J, Zhang Y, Zhu S, Zhang Z, Zhang X, Huang F, Liang T, Li C, Wang Q, Tan C. Controlled Synthesis of Lead-Free Double Perovskite Colloidal Nanocrystals for Nonvolatile Resistive Memory Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55991-56002. [PMID: 37987746 DOI: 10.1021/acsami.3c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Although lead-free double perovskites such as Cs2AgBiBr6 have been widely explored, they still remain a daunting challenge for the controlled synthesis of lead-free double perovskite nanocrystals with highly tunable morphology and band structure. Here, we report the controlled synthesis of lead-free double perovskite colloidal nanocrystals including Cs2AgBiBr6 and Cs2AgInxBi1-xBr6 via a facile wet-chemical synthesis method for the fabrication of high-performance nonvolatile resistive memory devices. Cs2AgBiBr6 colloidal nanocrystals with well-defined cuboidal, hexagonal, and triangular morphologies are synthesized through a facile wet-chemical approach by tuning the reaction temperature from 150 to 190 °C. Further incorporating indium into Cs2AgBiBr6 to synthesize alloyed Cs2AgInxBi1-xBr6 nanocrystals not only can induce the indirect-to-direct bandgap transition with enhanced photoluminescence but also can improve its structural stability. After optimizing the active layers and device structure, the fabricated Ag/polymethylene acrylate@Cs2AgIn0.25Bi0.75Br6/ITO resistive memory device exhibits a low power consumption (the operating voltage is ∼0.17 V), excellent cycling stability (>10 000 cycles), and good synaptic property. Our study would enable the facile wet-chemical synthesis of lead-free double perovskite colloidal nanocrystals in a highly controllable manner for the development of high-performance resistive memory devices.
Collapse
Affiliation(s)
- Xingyu Liu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yuhui Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiajia Zha
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Yong Zhang
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Siyuan Zhu
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Zhang Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Xuyan Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Fei Huang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Tong Liang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Chunxia Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Qianming Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
26
|
Ding X, He R, Zhang T, Mei L, Zhu S, Wang C, Liao Y, Wang D, Wang H, Guo J, Chen L, Gu Z, Hu H. Lung Toxicity and Molecular Mechanisms of Lead-Based Perovskite Nanoparticles in the Respiratory System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42139-42152. [PMID: 37650305 DOI: 10.1021/acsami.3c04255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Lead-based perovskite nanoparticles (Pb-PNPs) have found extensive applications across diverse fields. However, because of poor stability and relatively strong water solubility, the potential toxicity of Pb-PNPs released into the environment during their manufacture, usage, and disposal has attracted significant attention. Inhalation is a primary route through which human exposure to Pb-PNPs occurs. Herein, the toxic effects and underlying molecular mechanisms of Pb-PNPs in the respiratory system are investigated. The in vitro cytotoxicity of CsPbBr3 nanoparticles in BEAS-2B cells is studied using multiple bioassays and electron microscopy. CsPbBr3 nanoparticles of different concentrations induce excessive oxidative stress and cell apoptosis. Furthermore, CsPbBr3 nanoparticles specifically recruit the TGF-β1, which subsequently induces epithelial-mesenchymal transition. In addition, the biodistribution and lung toxicity of representative CsPbBr3 nanoparticles in ICR mice are investigated following intranasal administration. These findings indicate that CsPbBr3 nanoparticles significantly induce pulmonary inflammation and epithelial-mesenchymal transition and can even lead to pulmonary fibrosis in mouse models. Above findings expose the adverse effects and molecular mechanisms of Pb-PNPs in the lung, which broadens the safety data of Pb-PNPs.
Collapse
Affiliation(s)
- Xuefeng Ding
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Rendong He
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tingjun Zhang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Li Chen
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
27
|
Nestoklon MO, Kirstein E, Yakovlev DR, Zhukov EA, Glazov MM, Semina MA, Ivchenko EL, Kolobkova EV, Kuznetsova MS, Bayer M. Tailoring the Electron and Hole Landé Factors in Lead Halide Perovskite Nanocrystals by Quantum Confinement and Halide Exchange. NANO LETTERS 2023; 23:8218-8224. [PMID: 37647545 DOI: 10.1021/acs.nanolett.3c02349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The tunability of the optical properties of lead halide perovskite nanocrystals makes them highly appealing for applications. Halide anion exchange and quantum confinement enable tailoring of the band gap. For spintronics, the Landé g-factors of electrons and holes are essential. Using empirical tight-binding and k·p methods, we calculate them for nanocrystals of all-inorganic lead halide perovskites CsPbX3 (X = I, Br, Cl). The hole g-factor band gap dependence follows the universal law found for bulk perovskites, while for electrons, a considerable modification is predicted. Based on the k·p analysis, we conclude that this difference arises from the interaction of the bottom conduction band with the spin-orbit split electron states. These predictions are confirmed experimentally for electron and hole g-factors in CsPbI3 nanocrystals in a glass matrix, measured by time-resolved Faraday ellipticity in a magnetic field at cryogenic temperatures.
Collapse
Affiliation(s)
- Mikhail O Nestoklon
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Erik Kirstein
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Dmitri R Yakovlev
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
- Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| | - Evgeny A Zhukov
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Mikhail M Glazov
- Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| | - Marina A Semina
- Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| | | | - Elena V Kolobkova
- ITMO University, 199034 St. Petersburg, Russia
- St. Petersburg State Institute of Technology, 190013 St. Petersburg, Russia
| | - Maria S Kuznetsova
- Spin Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Manfred Bayer
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
28
|
Xu S, Liu G, Zheng H, Tao Y, Zhang H, Zhang L, Zhu L, Ye J, Li J, Pan X. Regulating buried interface properties and alleviating micro-strain of crystals for efficient perovskite solar cells. Chem Commun (Camb) 2023; 59:10813-10816. [PMID: 37602429 DOI: 10.1039/d3cc02709k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface properties of SnO2 and their effects on the growth of perovskite films play a crucial role for perovskite solar cells (PSCs). Herein, a facile strategy to synchronously regulate the buried interface defects and energy level arrangement, as well as improve the crystallinity of perovskite films with alleviated micro-strain by pre-modifying the SnO2 surface with ammonium hexafluorophosphate (NH4PF6) is proposed. The device achieved the promising PCE of 22.50% and improved stability.
Collapse
Affiliation(s)
- Shendong Xu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Guozhen Liu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Haiying Zheng
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yuli Tao
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Hui Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Liying Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Liangzheng Zhu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Jiajiu Ye
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Jinfeng Li
- Institute of Systems Engineering, Chinese People's Liberation Army Academy of Military Sciences, Beijing 100141, P. R. China
| | - Xu Pan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
29
|
Bautista-Quijano JR, Telschow O, Paulus F, Vaynzof Y. Solvent-antisolvent interactions in metal halide perovskites. Chem Commun (Camb) 2023; 59:10588-10603. [PMID: 37578354 PMCID: PMC10470408 DOI: 10.1039/d3cc02090h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
The fabrication of metal halide perovskite films using the solvent-engineering method is increasingly common. In this method, the crystallisation of the perovskite layer is triggered by the application of an antisolvent during the spin-coating of a perovskite precursor solution. Herein, we introduce the current state of understanding of the processes involved in the crystallisation of perovskite layers formed by solvent engineering, focusing in particular on the role of antisolvent properties and solvent-antisolvent interactions. By considering the impact of the Hansen solubility parameters, we propose guidelines for selecting the appropriate antisolvent and outline open questions and future research directions for the fabrication of perovskite films by this method.
Collapse
Affiliation(s)
- Jose Roberto Bautista-Quijano
- Chair for Emerging Electronic Technologies, Technical University Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Oscar Telschow
- Chair for Emerging Electronic Technologies, Technical University Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Fabian Paulus
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, Technical University of Dresden, Helmholtz Str. 18, 01069, Dresden, Germany
| | - Yana Vaynzof
- Chair for Emerging Electronic Technologies, Technical University Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| |
Collapse
|
30
|
Zhang D, Zhu Y, Jiao R, Zhou J, Zhang Q, Poddar S, Ren B, Qiu X, Cao B, Zhou Y, Wang C, Wang KF, Zi Y, Zeng H, Li MG, Yu H, Zhou Q, Fan Z. Metal seeding growth of three-dimensional perovskite nanowire forests for high-performance stretchable photodetectors. NANO ENERGY 2023; 111:108386. [DOI: 10.1016/j.nanoen.2023.108386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Alosaimi G, Huang CY, Sharma P, Wu T, Seidel J. Morphology-Dependent Charge Carrier Dynamics and Ion Migration Behavior of CsPbBr 3 Halide Perovskite Quantum Dot Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207220. [PMID: 36807547 DOI: 10.1002/smll.202207220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/16/2023] [Indexed: 05/18/2023]
Abstract
Exceptional electronic, optoelectronic, and sensing properties of inorganic Cs-based perovskites are significantly influenced by the defect chemistry of the material. Although organic halide perovskites that have a polycrystalline structure are heavily studied, understanding of the defect properties at the grain boundaries (GB) of inorganic Cs-based perovskite quantum dots (QDs) is still limited. Here, morphology-dependent charge carrier dynamics of CsPbBr3 quantum dots at the nanoscale by performing scanning probe microscopy of thermally treated samples are investigated. The grain boundaries of defect-engineered samples show higher surface potential than the grain interiors under light illumination, suggesting an effective role of GBs as charge collection and transport channels. The lower density of crystallographic defects and lower trap density at GBs specifically of heat-treated samples cause insignificant dark current, lower local current hysteresis, and higher photocurrent, than the control samples. It is also shown that the decay rate of surface photovoltage of the heated sample is quicker than the control sample, which implies a considerable impact of ion migration on the relaxation dynamic of photogenerated charge carriers. These findings reveal that the annealing process is an effective strategy to control not only the morphology but also the optoelectrical properties of GB defects, and the dynamic of ion migration. Understanding the origin of photoelectric activity in this material allows for designing and engineering optoelectronic QD devices with enhanced functionality.
Collapse
Affiliation(s)
- Ghaida Alosaimi
- Department of Chemistry, Faculty of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Pankaj Sharma
- School of Materials Science and Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, 2052, Australia
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Tom Wu
- School of Materials Science and Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Jan Seidel
- School of Materials Science and Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, 2052, Australia
| |
Collapse
|
32
|
Azmy A, Li S, Angeli GK, Welton C, Raval P, Li M, Zibouche N, Wojtas L, Reddy GNM, Guo P, Trikalitis PN, Spanopoulos I. Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H 2 O Vapor Sorption. Angew Chem Int Ed Engl 2023; 62:e202218429. [PMID: 36656785 DOI: 10.1002/anie.202218429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
In this work we report a strategy for generating porosity in hybrid metal halide materials using molecular cages that serve as both structure-directing agents and counter-cations. Reaction of the [2.2.2] cryptand (DHS) linker with PbII in acidic media gave rise to the first porous and water-stable 2D metal halide semiconductor (DHS)2 Pb5 Br14 . The corresponding material is stable in water for a year, while gas and vapor-sorption studies revealed that it can selectively and reversibly adsorb H2 O and D2 O at room temperature (RT). Solid-state NMR measurements and DFT calculations verified the incorporation of H2 O and D2 O in the organic linker cavities and shed light on their molecular configuration. In addition to porosity, the material exhibits broad light emission centered at 617 nm with a full width at half-maximum (FWHM) of 284 nm (0.96 eV). The recorded water stability is unparalleled for hybrid metal halide and perovskite materials, while the generation of porosity opens new pathways towards unexplored applications (e.g. solid-state batteries) for this class of hybrid semiconductors.
Collapse
Affiliation(s)
- Ali Azmy
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Giasemi K Angeli
- Department of Chemistry, University of Crete, 71003, Heraklion, Greece
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Min Li
- West Campus Materials Characterization Core, Yale University, New Haven, CT 06520, USA
| | | | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | | | | |
Collapse
|
33
|
Romagnoli L, D’Annibale A, Blundo E, Patra A, Polimeni A, Meggiolaro D, Andrusenko I, Marchetti D, Gemmi M, Latini A. 4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Lead Iodide C 30H 22N 2Pb 2I 6: A Highly Luminescent, Chemically and Thermally Stable One-Dimensional Hybrid Iodoplumbate. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1818-1826. [PMID: 36873626 PMCID: PMC9979375 DOI: 10.1021/acs.chemmater.2c03798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Indexed: 06/17/2023]
Abstract
A new one-dimensional hybrid iodoplumbate, namely, 4,4'-(anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) lead iodide C30H22N2Pb2I6 (AEPyPbI), is reported here for the first time with its complete characterization. The material exhibits remarkable thermal stability (up to 300 °C), and it is unreactive under ambient conditions toward water and atmospheric oxygen, due to the quaternary nature of the nitrogen atoms present in the organic cation. The cation exhibits strong visible fluorescence under ultraviolet (UV) irradiation, and when its iodide is combined with PbI2, it forms AEPyPb2I6, an efficient light-emitting material, with a photoluminescence emission intensity comparable to that of high-quality InP epilayers. The structure determination was obtained using three-dimensional electron diffraction, and the material was extensively studied by using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-visible spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, Raman and infrared spectroscopies, and photoluminescence spectroscopy. The emissive properties of the material were correlated with its electronic structure by using state-of-the-art theoretical calculations. The complex, highly conjugated electronic structure of the cation interacts strongly with that of the Pb-I network, giving rise to the peculiar optoelectronic properties of AEPyPb2I6. The material, considering its relatively easy synthesis and stability, shows promise for light-emitting and photovoltaic devices. The use of highly conjugated quaternary ammonium cations may be useful for the development of new hybrid iodoplumbates and perovskites with optoelectronic properties tailored for specific applications.
Collapse
Affiliation(s)
- Lorenza Romagnoli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Andrea D’Annibale
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Elena Blundo
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Atanu Patra
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Antonio Polimeni
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Daniele Meggiolaro
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce di Sotto 8, Perugia 06123, Italy
| | - Iryna Andrusenko
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Danilo Marchetti
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma (PR) 43124, Italy
| | - Mauro Gemmi
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Alessandro Latini
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| |
Collapse
|
34
|
Zhang Y, Xing Z, Fan B, Ni Z, Wang F, Hu X, Chen Y. Uncovering Aging Chemistry of Perovskite Precursor Solutions and Anti-aging Mechanism of Additives. Angew Chem Int Ed Engl 2023; 62:e202215799. [PMID: 36575131 DOI: 10.1002/anie.202215799] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The aging of precursor solutions is the major stumbling block for the commercialization of perovskite solar cells (PSCs). Herein, for the first time we used the state-of-the-art in situ liquid time-of-flight secondary ion mass spectrometry to molecularly explore the perovskite precursor solution chemistry. We identified that the methylammonium and formamidinium cations and the I- anion are the motivators of the aging chemistry. Further, we introduced two kinds of Lewis bases, triethyl phosphate (TP) and ethyl ethanesulfonate (EE), as new additives in the solution and unraveled that both of them can protect the reactive cations from aging through weak interactions. Significantly, TP is superior to EE in enhancing long-term solution stability as it can well-maintain the internal interaction structures within the solution phase. The PSC derived from a fresh TP-doped solution delivered a high power conversion efficiency of 23.06 %, 92.23 % of which remained in that from a 21-day-old solution.
Collapse
Affiliation(s)
- Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi Xing
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Baojin Fan
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Zhigang Ni
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China.,National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330032, China
| |
Collapse
|
35
|
Liu Z, Zhou B, Fang S, Nie J, Zhong H, Hu H, Li H, Shi Y. Modulation of the Excitation States in All-Inorganic Halide Perovskites via Sb 3+ and Bi 3+ Codoping. J Phys Chem Lett 2023; 14:1022-1028. [PMID: 36693161 DOI: 10.1021/acs.jpclett.2c03658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sb3+-doped halide perovskites are promising candidates for solid-state lighting due to their diverse fluorescent colors and high efficiency. However, the mismatched high excitation energy with commercial UV chips is one of the critical issues to be addressed. Herein, a Bi3+ codoping strategy was established as a general and efficient approach to modulate the excitation spectrum from the Sb3+-doping center in all-inorganic perovskites of Cs2InCl5·H2O, Cs2NaInCl6, and Rb3InCl6. The incorporated Bi3+ greatly enhanced the splitting of the A band (1S0-3P1 transition) and boosts the enormous redshift of the low-energy branch in all these systems. The interactions persist strongly even at extremely low doping concentrations, suggesting a dipole-based long-range interaction. The results provide an in-depth insight into the contribution mechanism of Bi3+ to Sb3+ in all-inorganic perovskites, which throws light upon tuning the excitation spectrum of broadband emission from the extrinsic self-trapped exciton (STE).
Collapse
Affiliation(s)
- Zexiang Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bo Zhou
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shaofan Fang
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, P. R. China
| | - Jingheng Nie
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, P. R. China
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yumeng Shi
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
36
|
Yu W, Li F, Huang T, Li W, Wu T. Go beyond the limit: Rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications. Innovation (N Y) 2023; 4:100363. [PMID: 36632191 PMCID: PMC9827388 DOI: 10.1016/j.xinn.2022.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Halide perovskite heterojunctions rationally integrate the chemical and physical properties of multi-dimensional perovskites and judiciously chosen semiconductor materials, offering the promise of going beyond the limit of a single component. This emerging platform of materials innovation offers fresh opportunities to tune material properties, discover interesting phenomena, and enable novel applications. In this review, we first discuss the fundamentals of forming heterojunctions with perovskites and a wide range of semiconductors, and then we give an overview of the research progress of halide perovskite heterojunctions in terms of their optical, electrical, and mechanical properties, focusing on how the heterojunction tunes the energy band structure, electrical transport, and charge recombination behaviors. We further outline the progress of perovskite-based heterojunctions in optoelectronics. Finally, the challenges and future research directions for perovskite/semiconductor heterojunctions are discussed.
Collapse
Affiliation(s)
- Weili Yu
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Feng Li
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tao Huang
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
37
|
Organic Memristor Based on High Planar Cyanostilbene/Polymer Composite Films. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Yu Z, Zhao X, Ai C, Fang X, Zhao X, Wang Y, Zhang H. Two-Terminal Nonvolatile Write-Once-Read-Many-Times Memory Based on All-Inorganic Halide Perovskite. MICROMACHINES 2022; 14:93. [PMID: 36677154 PMCID: PMC9863792 DOI: 10.3390/mi14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Write-once-read-many-times (WORM) memory belonging to an important non-volatile memory type achieves the read-only state after the write operation and is used in the fields of data security storage widely. WORM memory has been developed based on a variety of materials. In recent years, halide perovskites have become the research hotspot material for this memory due to its excellent properties. Here, the all-inorganic CsPbBr3 perovskite thin film was prepared on a FTO substrate by using a two-step method. The prepared CsPbBr3 thin films have the characteristics of densely packed crystal grains and smooth surface. The device, having the FTO/CsPbBr3/Al sandwich structure by evaporating the Al electrode onto the CsPbBr3 thin film, represents the typical WORM behavior, with long data retention time (104 s), a low operation voltage (2.1 V) and a low reading voltage (0.1 V). Additionally, the resistance transition mechanism of the resulting WORM devices was analyzed.
Collapse
|
39
|
Huang CY, Li H, Wu Y, Lin CH, Guan X, Hu L, Kim J, Zhu X, Zeng H, Wu T. Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. NANO-MICRO LETTERS 2022; 15:16. [PMID: 36580150 PMCID: PMC9800676 DOI: 10.1007/s40820-022-00983-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 05/19/2023]
Abstract
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance. Among these, inorganic perovskite quantum dots (QDs) stand out for their prominent merits, such as quantum confinement effects, high photoluminescence quantum yield, and defect-tolerant structures. Additionally, ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices. This review presents the state-of-the-art research progress on inorganic perovskite QDs, emphasizing their electronic applications. In detail, the physical properties of inorganic perovskite QDs will be introduced first, followed by a discussion of synthesis methods and growth control. Afterwards, the emerging applications of inorganic perovskite QDs in electronics, including transistors and memories, will be presented. Finally, this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Hanchen Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ye Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xiaoming Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
40
|
Romagnoli L, D’Annibale A, Blundo E, Polimeni A, Cassetta A, Chita G, Panetta R, Ciccioli A, Latini A. Synthesis, Structure, and Characterization of 4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Bismuth Iodide (C 30H 22N 2) 3Bi 4I 18, an Air, Water, and Thermally Stable 0D Hybrid Perovskite with High Photoluminescence Efficiency. CRYSTAL GROWTH & DESIGN 2022; 22:7426-7433. [PMID: 36510624 PMCID: PMC9732820 DOI: 10.1021/acs.cgd.2c01005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) bismuth iodide (C30H22N2)3Bi4I18 (AEPyBiI) was obtained as a black powder by a very simple route by mixing an acetone solution of BiI3 and an aqueous solution of C30H22N2I2. This novel perovskite is air and water stable and displays a remarkable thermal stability up to nearly 300 °C. The highly conjugated cation C30H22N2 2+ is hydrolytically stable, being nitrogen atoms quaternarized, and this accounts for the insensitivity of the perovskite toward water and atmospheric oxygen under ambient conditions. The cation in aqueous solution is highly fluorescent under UV irradiation (emitting yellow-orange light). AEPyBiI as well is intensely luminescent, its photoluminescence emission being more than 1 order of magnitude greater than that of high-quality InP epilayers. The crystal structure of AEPyBiI was determined using synchrotron radiation single-crystal X-ray diffraction. AEPyBiI was extensively characterized using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-vis spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopies, thermogravimetry-differential thermal analysis (TG-DTA), elemental analysis, electrospray ionization mass spectroscopy (ESI-MS), and photoluminescence spectroscopy. AEPyBiI displays a zero-dimensional (0D) perovskite structure in which the inorganic part is constituted by binuclear units consisting of two face-sharing BiI6 octahedra (Bi2I9 3- units). The C30H22N2 2+ cations are stacked along the a-axis direction in a complex motif. Considering its noteworthy light-emitting properties coupled with an easy synthesis and environmental stability, and its composition that does not contain toxic lead or easily oxidable Sn(II), AEPyBiI is a promising candidate for environmentally friendly light-emitting devices.
Collapse
Affiliation(s)
- Lorenza Romagnoli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Andrea D’Annibale
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Elena Blundo
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Antonio Polimeni
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Alberto Cassetta
- Consiglio
Nazionale delle Ricerche, Istituto di Cristallografia,
Sede Secondaria di Trieste, Area Science Park − Basovizza, Strada Statale
14, km 163.5, 34149Trieste, Italy
| | - Giuseppe Chita
- Consiglio
Nazionale delle Ricerche, Istituto di Cristallografia,
Sede Secondaria di Trieste, Area Science Park − Basovizza, Strada Statale
14, km 163.5, 34149Trieste, Italy
| | - Riccardo Panetta
- Ispa
- Istituto Sperimentale Problematiche Ambientali, Via San Nicandro snc, 03042Atina, FR, Italy
| | - Andrea Ciccioli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Alessandro Latini
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| |
Collapse
|
41
|
Ryu HJ, Shin M, Park M, Lee JS. In Situ Tetraalkylammonium Ligand Engineering of Organic-Inorganic Hybrid Perovskite Nanoparticles for Enhancing Long-Term Stability and Optical Tunability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13448-13455. [PMID: 36288550 DOI: 10.1021/acs.langmuir.2c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organic-inorganic hybrid perovskite nanoparticles (OIHP NPs) have attracted scientific attention owing to their efficient photoluminescence with optical tunability, which is highly advantageous for optoelectronic applications. However, the limited long-term stability of OIHP NPs has significantly hindered their practical application. Despite several synthetic strategies and encapsulation methods to stabilize OIHP NPs, complicated multi-step procedures are often required. In this study, we introduce an in situ ligand engineering method for stabilizing and controlling the optical properties of OIHP NPs using tetraalkylammonium (TAA) halides with various molecular structures at different concentrations. Our one-pot ligand engineering substantially enhanced the stability of the OIHP NPs without post-synthetic processes. Moreover, in certain cases, approximately 90% of the initial photoluminescence (PL) intensity was preserved even after a month under ambient conditions (room temperature, 20-50% relative humidity). To determine the role of ligand engineering in stabilizing the OIHP NPs, the surface binding properties of the TAA ligands were thoroughly analyzed using Raman spectroscopy. Specifically, the permanent positive charge of the TAA cations and consequent effective electrostatic interactions with the surfaces of the OIHP NPs are pivotal for preserving the initial PL intensity. Our investigation is beneficial for developing OIHP nanomaterials with improved stability and controlled photoluminescence for various optoelectronic applications, such as light-emitting devices, photosensitizers, photodetectors, photocatalysis, and solar cells.
Collapse
Affiliation(s)
- Han-Jung Ryu
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mingyeong Shin
- Department of Chemistry, Dong-A University, 37 Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Republic of Korea
- Department of Chemistry, College of Natural Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Myeongkee Park
- Department of Chemistry, College of Natural Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
42
|
Xu X. Quick and surfactant-free dispersion of various carbon nanoparticles in aqueous solution as casting technique for devices. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Guan X, Lei Z, Yu X, Lin CH, Huang JK, Huang CY, Hu L, Li F, Vinu A, Yi J, Wu T. Low-Dimensional Metal-Halide Perovskites as High-Performance Materials for Memory Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203311. [PMID: 35989093 DOI: 10.1002/smll.202203311] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Metal-halide perovskites have drawn profuse attention during the past decade, owing to their excellent electrical and optical properties, facile synthesis, efficient energy conversion, and so on. Meanwhile, the development of information storage technologies and digital communications has fueled the demand for novel semiconductor materials. Low-dimensional perovskites have offered a new force to propel the developments of the memory field due to the excellent physical and electrical properties associated with the reduced dimensionality. In this review, the mechanisms, properties, as well as stability and performance of low-dimensional perovskite memories, involving both molecular-level perovskites and structure-level nanostructures, are comprehensively reviewed. The property-performance correlation is discussed in-depth, aiming to present effective strategies for designing memory devices based on this new class of high-performance materials. Finally, the existing challenges and future opportunities are presented.
Collapse
Affiliation(s)
- Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science, 398 Ruoshui Road, Suzhou, 215123, China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jing-Kai Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Feng Li
- School of Physics, Nano Institute, ACMM, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
44
|
Alotaibi NH, Mustafa GM, Kattan NA, Mahmood Q, Albalawi H, Morsi M, Somaily H, Hafez MA, Mahmoud HI, Amin MA. DFT study of double perovskites Cs2AgBiX6 (X = Cl, Br): An alternative of hybrid perovskites. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Fu Z, Liu W, Huang C, Mei T. A Review of Performance Prediction Based on Machine Learning in Materials Science. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172957. [PMID: 36079994 PMCID: PMC9457802 DOI: 10.3390/nano12172957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 05/11/2023]
Abstract
With increasing demand in many areas, materials are constantly evolving. However, they still have numerous practical constraints. The rational design and discovery of new materials can create a huge technological and social impact. However, such rational design and discovery require a holistic, multi-stage design process, including the design of the material composition, material structure, material properties as well as process design and engineering. Such a complex exploration using traditional scientific methods is not only blind but also a huge waste of time and resources. Machine learning (ML), which is used across data to find correlations in material properties and understand the chemical properties of materials, is being considered a new way to explore the materials field. This paper reviews some of the major recent advances and applications of ML in the field of properties prediction of materials and discusses the key challenges and opportunities in this cross-cutting area.
Collapse
Affiliation(s)
- Ziyang Fu
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chen Huang
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| | - Tao Mei
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062, China
- Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| |
Collapse
|
46
|
Zheng R, Ueda J, Shinozaki K, Tanabe S. Reversible Phase Segregation and Amorphization of Mixed-Halide Perovskite Nanocrystals in Glass Matrices. J Phys Chem Lett 2022; 13:7809-7815. [PMID: 35975956 DOI: 10.1021/acs.jpclett.2c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mixed-halide perovskites have attracted great attention in applications of lighting and photovoltaic devices due to their excellent properties. Understanding the phase segregation mechanism of mixed-halide perovskite has significance for suppressing the performance degradation of optoelectronic devices. Herein, we investigate the mixed-halide perovskite nanocrystals (NCs) in isolation from the external factors (oxygen, moisture, and pressure) using glass encapsulation, which shows excellent photostability against phase segregation. By monitoring the structural evolution of the NCs in glass matrices, the coexisting phase segregation and amorphization of mixed-halide perovskites are observed in real-time. The results show that thermal-induced local temperature increase plays a dominant role in the phase segregation of mixed-halide perovskite NCs. The recovery process is driven by the spontaneous crystallization of the amorphous mixed-halide phase. The clarified dynamic equilibrium process between the compositional segregation (mixing) and structural disorder (order) gives us a better insight into the reversible phase segregation mechanism of mixed-halide perovskite.
Collapse
Affiliation(s)
- Ruilin Zheng
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Jumpei Ueda
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- School of Material Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Kenji Shinozaki
- National Institute of Advanced Industrial Science and Technology, Osaka 563-8577, Japan
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Setsuhisa Tanabe
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
47
|
Ding J, Gao W, Gao L, Lu K, Liu Y, Sun JL, Yan Q. Unraveling the Effect of Halogen Ion Substitution on the Noise of Perovskite Single-Crystal Photodetectors. J Phys Chem Lett 2022; 13:7831-7837. [PMID: 35976231 DOI: 10.1021/acs.jpclett.2c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halide mixing in perovskites has been an efficient way to engineer the bandgap, stability, and charge carrier mobility of lead halide perovskites, while its effect on the noise of lead halide perovskite photodetectors is still unknown. We present the preparation of mixed halide methylammonium lead perovskite single crystals by the solution temperature-decreasing method. Planar-structured photodetectors were constructed on the basis of these mixed halide perovskite single crystals. The effect of halogen ion substitution on the noise of devices was investigated by analyzing their dark current spectra. It is shown that the single-crystal photodetectors with higher levels of chloride suffer from larger noise thus have lower detectivity. Density functional theory calculations have also been proposed to reveal the effect of halogens on band structure. These results provide a comprehensive understanding of mixed halide perovskites and may help in the design and preparation of higher-performance devices.
Collapse
Affiliation(s)
- Jie Ding
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Wanxiao Gao
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Lei Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ke Lu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Liu
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jia-Lin Sun
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qingfeng Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Li YT, Li JZ, Ren L, Xu K, Chen S, Han L, Liu H, Guo XL, Yu DL, Li DH, Ding L, Peng LM, Ren TL. Light-Controlled Reconfigurable Optical Synapse Based on Carbon Nanotubes/2D Perovskite Heterostructure for Image Recognition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28221-28229. [PMID: 35679528 DOI: 10.1021/acsami.2c05818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) halide perovskite material is characterized by a mixed conducting behavior that possesses both electronic and ionic conductivity. The study on the influence of the light on ion migration in the 2D perovskite is helpful to improve the performance of perovskite-based optoelectronic devices. Here, we constructed an exfoliated 2D perovskite/carbon nanotubes (CNTs) heterostructure optical synapse, in which CNTs can be used as nanoprobes to qualitatively observe the ion aggregation or dissipation process in 2D perovskite, and found that light significantly changes the memory curve of the reconfigurable optical synapses. Through the molecular dynamic simulation, the dynamic process of ion migration in the heterostructure was simulated and the electrostatic interaction effect of nonequilibrium charge distribution of CNTs on iodide ion was demonstrated. Finally, an effective light-controlled process was realized through the synapses, which in situ regulated the performance of the weight-value discretized BP (WD-BP) neural network. This work lays a foundation for the future development of intelligent nano-optoelectronic devices.
Collapse
Affiliation(s)
- Yu-Tao Li
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- School of Integrated Circuits, The Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jun-Ze Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Ren
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Kui Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Sheng Chen
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lei Han
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hang Liu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiao-Liang Guo
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Du-Li Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - De-Hui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Ding
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Lian-Mao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Tian-Ling Ren
- School of Integrated Circuits, The Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Ge S, Huang LB, Pan C. Halide perovskite single crystals for resistive switching. Sci Bull (Beijing) 2022; 67:1018-1021. [PMID: 36546244 DOI: 10.1016/j.scib.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shuaipeng Ge
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Long-Biao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Caofeng Pan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
Mishra L, Behera RK, Panigrahi A, Sarangi MK. Förster Resonance Energy Transfer Assisted Enhancement in Optoelectronic Properties of Metal Halide Perovskite Nanocrystals. J Phys Chem Lett 2022; 13:4357-4364. [PMID: 35543548 DOI: 10.1021/acs.jpclett.2c00764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Regulated excited state energy and charge transfer play a pivotal role in nanoscale semiconductor device performance for efficient energy harvesting and optoelectronic applications. Herein, we report the influence of Förster resonance energy transfer (FRET) on the excited-state dynamics and charge transport properties of metal halide perovskite nanocrystals (PNCs), CsPbBr3, and its anion-exchanged counterpart CsPbCl3 with CdSe/ZnS quantum dots (QDs). We report a drop in the FRET efficiency from ∼85% (CsPbBr3) to ∼5% (CsPbCl3) with QDs, inviting significant alteration in their charge transport properties. Using two-probe measurements we report substantial enhancement in the current for the blend structure of PNCs with QDs, originating from the reduced trap sites, compared to that of the pristine PNCs. The FRET-based upshot in the conduction mechanism with features of negative differential resistance and negligible hysteresis for CsPbBr3 PNCs can add new directions to high performance-based photovoltaics and optoelectronics.
Collapse
Affiliation(s)
- Leepsa Mishra
- Department of Physics, Indian Institute of Technology Patna, Bihar, India, 801106
| | - Ranjan Kumar Behera
- Department of Physics, Indian Institute of Technology Patna, Bihar, India, 801106
| | - Aradhana Panigrahi
- Department of Physics, Indian Institute of Technology Patna, Bihar, India, 801106
| | - Manas Kumar Sarangi
- Department of Physics, Indian Institute of Technology Patna, Bihar, India, 801106
| |
Collapse
|