1
|
Zhang J, Chu L, Liu T, Tian B, Chu W, Sun X, Nie R, Zhang W, Zhang Z, Zhao X, Guo W. Engineering Spacer Conjugation for Efficient and Stable 2D/3D Perovskite Solar Cells and Modules. Angew Chem Int Ed Engl 2025; 64:e202413303. [PMID: 39370407 DOI: 10.1002/anie.202413303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Incorporating two-dimensional (2D) perovskite in 3D perovskite absorber holds great potential to improve the stability and efficiency of perovskite solar cells (PSCs). However, the bulky-cation-based 2D structures often exhibit poor charge transport and are prone to formation of charge-extraction barrier that impedes efficient device operation. We address these issues by introducing aromatic spacers with molecular conjugation into 2D perovskites locating between 3D perovskites and electron charge transport layers. Among our tested aromatic spacers, the pyrenylbutanamine (PyBA) spacer was shown to endow 2D perovskites with superior charge transport properties and efficient charge extraction from the bulk perovskite in 2D/3D PSCs, due to the highest degree of conjugation. As a result, we achieved a power conversion efficiency (PCE) of up to 25.3 % in a 0.16-cm2 single cell and 21.0 % in a 24.8-cm2 module. Moreover, the incorporated PyBA substantially raised the resistance of 2D/3D PSCs against moisture and ion migration, resulting in enhanced environmental, thermal, and operational stability. Notably, the PyBA-based devices retained over 90 % of their initial PCE after 2000 hours at 25 °C and 80 % relative humidity, or 1000 hours at 85 °C and 85 % humidity, or 3000 hours of operation under continuous 1-Sun illumination at 40 °C, showcasing their exceptionally high stability compared to previously reported 2D/3D PSCs.
Collapse
Grants
- T2293691, 12204234, 22305119, 22073048, 12261160367, 12225205, 1221101035 National Natural Science Foundation of China
- NC2023001, NJ2023002, NJ2022002, NS2023059 Fundamental Research Funds for the Central Universities
- BK20212008, BK20220878 Natural Science Research of Jiangsu Province
- 2019YFA0705400 National Key R&D Program of China
- MCMS-I-0422K01 Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures
- 2022TQ0157, 2023M741695 China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Jinping Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Liangli Chu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Tianjun Liu
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bingkun Tian
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Weicun Chu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiangnan Sun
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Riming Nie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wei Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiaoming Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
2
|
Qin F, Lu M, Lu P, Sun S, Bai X, Zhang Y. Luminescence and Degeneration Mechanism of Perovskite Light-Emitting Diodes and Strategies for Improving Device Performance. SMALL METHODS 2023; 7:e2300434. [PMID: 37434048 DOI: 10.1002/smtd.202300434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) can be a promising technology for next-generation display and lighting applications due to their excellent optoelectronic properties. However, a systematical overview of luminescence and degradation mechanism of perovskite materials and PeLEDs is lacking. Therefore, it is crucial to fully understand these mechanisms and further improve device performances. In this work, the fundamental photophysical processes of perovskite materials, electroluminescence mechanism of PeLEDs including carrier kinetics and efficiency roll-off as well as device degradation mechanism are discussed in detail. In addition, the strategies to improve device performances are summarized, including optimization of photoluminescence quantum yield, charge injection and recombination, and light outcoupling efficiency. It is hoped that this work can provide guidance for future development of PeLEDs and ultimately realize industrial applications.
Collapse
Affiliation(s)
- Feisong Qin
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
3
|
Maity P, Merdad NA, El-Demellawi JK, Gutiérrez-Arzaluz L, Liu Z, Naphade R, Alshareef HN, Bakr OM, Mohammed OF. Quantum Tunneling Effect in CsPbBr 3 Multiple Quantum Wells. NANO LETTERS 2022; 22:7936-7943. [PMID: 36136410 DOI: 10.1021/acs.nanolett.2c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) lead halide perovskites (LHPs) have garnered incredible attention thanks to their exciting optoelectronic properties and intrinsic strong quantum confinement effect. Herein, we carefully investigate and decipher the charge carrier dynamics at the interface between CsPbBr3 multiple quantum wells (MQWs) as the photoactive layer and TiO2 and Spiro-OMeTAD as electron and hole transporting materials, respectively. The fabricated MQWs comprise three monolayers of CsPbBr3 separated by 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as barriers. By varying the BCP thickness, we show that charge carrier extraction from MQWs to the corresponding extracting layer occurs through a quantum tunneling effect, as elaborated by steady-state and time-resolved photoluminescence measurements and further verified by femtosecond transient absorption experiments. Ultimately, we have investigated the impact of the barrier-thickness-dependent quantum tunneling effect on the photoelectric behavior of the synthesized QW photodetector devices. Our findings shed light on one of the most promising approaches for efficient carrier extraction in quantum-confined systems.
Collapse
Affiliation(s)
- Partha Maity
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Noor A Merdad
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Physics, University of Jeddah, Jeddah 23218, Kingdom of Saudi Arabia
| | - Jehad K El-Demellawi
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhixiong Liu
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rounak Naphade
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Gong J, Zhong H, Gao C, Peng J, Liu X, Lin Q, Fang G, Yuan S, Zhang Z, Xiao X. Pressure-Induced Indirect-Direct Bandgap Transition of CsPbBr 3 Single Crystal and Its Effect on Photoluminescence Quantum Yield. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201554. [PMID: 35948500 PMCID: PMC9561783 DOI: 10.1002/advs.202201554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Despite extensive study, the bandgap characteristics of lead halide perovskites are not well understood. Usually, these materials are considered as direct bandgap semiconductors, while their photoluminescence quantum yield (PLQY) is very low in the solid state or single crystal (SC) state. Some researchers have noted a weak indirect bandgap below the direct bandgap transition in these perovskites. Herein, application of pressure to a CsPbBr3 SC and first-principles calculations reveal that the nature of the bandgap becomes more direct at a relatively low pressure due to decreased dynamic Rashba splitting. This effect results in a dramatic PLQY improvement, improved more than 90 times, which overturns the traditional concept that the PLQY of lead halide perovskite SC cannot exceed 10%. Application of higher pressure transformed the CsPbBr3 SC into a pure indirect bandgap phase, which can be maintained at near-ambient pressure. It is thus proved that lead halide perovskites can induce a phase transition between direct and indirect bandgaps. In addition, distinct piezochromism is observed for a perovskite SC for the first time. This work provides a novel framework to understand the optoelectronic properties of these important materials.
Collapse
Affiliation(s)
- Junbo Gong
- School of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Hongxia Zhong
- School of Mathematics and PhysicsChina University of Geosciences (Wuhan)Wuhan430074P. R. China
| | - Chan Gao
- School of Physical SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- College of Mathematics and PhysicsChengdu University of TechnologyChengduSichuan610059P. R. China
| | - Jiali Peng
- School of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Xinxing Liu
- School of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Qianqian Lin
- School of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Guojia Fang
- School of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Shengjun Yuan
- School of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Zengming Zhang
- School of Physical SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Xudong Xiao
- School of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
5
|
Antrack T, Kroll M, Sudzius M, Cho C, Imbrasas P, Albaladejo‐Siguan M, Benduhn J, Merten L, Hinderhofer A, Schreiber F, Reineke S, Vaynzof Y, Leo K. Optical Properties of Perovskite-Organic Multiple Quantum Wells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200379. [PMID: 35780500 PMCID: PMC9403629 DOI: 10.1002/advs.202200379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.
Collapse
Affiliation(s)
- Tobias Antrack
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Martin Kroll
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Markas Sudzius
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Changsoon Cho
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Paulius Imbrasas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Miguel Albaladejo‐Siguan
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Lena Merten
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Alexander Hinderhofer
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Frank Schreiber
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Yana Vaynzof
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| |
Collapse
|
6
|
Liu Z, El-Demellawi JK, Bakr OM, Ooi BS, Alshareef HN. Plasmonic Nb 2C Tx MXene-MAPbI 3 Heterostructure for Self-Powered Visible-NIR Photodiodes. ACS NANO 2022; 16:7904-7914. [PMID: 35491863 DOI: 10.1021/acsnano.2c00558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability of MXenes to efficiently absorb light is greatly enriched by the surface plasmons oscillating at their two-dimensional (2D) surfaces. Thus far, MXenes have shown impressive plasmonic absorptions spanning the visible and infrared (IR) regimes. However, their potential use in IR optoelectronic applications, including photodiodes, has been marginally investigated. Besides, their relatively low resistivity has limited their use as photosensing materials due to their intrinsic high dark current. Herein, heterostructures made of methylammonium lead triiodide (MAPbI3) perovskite and niobium carbide (Nb2CTx) MXene are prepared with a matching band structure and exploited for self-powered visible-near IR (NIR) photodiodes. Using MAPbI3 has expanded the operation range of the MAPbI3/Nb2CTx photodiode to the visible regime while suppressing the relatively large dark current of the NIR-absorbing Nb2CTx. In consequence, the fabricated MAPbI3/Nb2CTx photodiode has responded linearly to white light illumination with a responsivity of 0.25 A/W and a temporal photoresponse of <4.5 μs. Furthermore, when illuminated by NIR laser (1064 nm), our photodiode demonstrates a higher on/off ratio (∼103) and faster response times (<30 ms) compared to that of planar Nb2CTx-only detectors (<2 and 20 s, respectively). The performed space-charge-limited current (SCLC) and capacitance measurements reveal that such an efficient and enhanced charge transfer depends on the coordinate bonding between the surface groups of the MXene and the undercoordinated Pb2+ ions of the MAPbI3 at the passivated MAPbI3/Nb2CTx interface.
Collapse
Affiliation(s)
- Zhixiong Liu
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jehad K El-Demellawi
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 21534, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Liu C, Wang Y, Wang A, Su F, Wang H. Structures, spectral and photodynamic properties of two nitrosylruthenium (II) isomer complexes containing 8-quinolinolate and L-proline ligands. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|