1
|
Chen Z, Yang H, Hausmann JN, Mebs S, Hlukhyy V, Dau H, Driess M, Menezes PW. Ba-Ni-Ge Clathrate Transformation Maximizes Active Site Utilization of Nickel for Enhanced Oxygen Evolution Performance. Angew Chem Int Ed Engl 2025; 64:e202424743. [PMID: 40135681 PMCID: PMC12124348 DOI: 10.1002/anie.202424743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Discovering novel oxygen evolution reaction (OER) (pre)catalysts with exceptional catalytic activity and long-term stability is pivotal for advancing decarbonization technologies. In this study, we present the ternary Ba8Ni6Ge40 phase with an open clathrate structure exhibiting remarkable performance in alkaline OER. When integrated into an alkaline water electrolyzer, this clathrate precatalyst achieves high stability under a sustained current density of ∼550 mA cm-2 for 10 days. By combining in situ Raman spectroscopy, quasi in situ X-ray absorption spectroscopy, and (micro)structural characterizations, we elucidate the complete electrochemical transformation of Ba8Ni6Ge40 (~90 weight% leaching) forming ultrathin nanosheets composed of a porous and defective NiOOH nanostructure with maximized accessible active site exposure. Notably, a reversible phase transition mainly between Ni(OH)2 and NiOOH has also been established in the electrochemical redox process. Meanwhile, the successful application of the model Ba8Ni6Ge40 precatalyst represents a promising new class of functional inorganic materials for water electrolysis.
Collapse
Affiliation(s)
- Ziliang Chen
- Department of Materials Chemistry for CatalysisHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐based Functional Materials and DevicesSoochow UniversitySuzhou215123P.R. China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnical University of BerlinStraße des 17 Juni 135. Sekr. C210623BerlinGermany
| | - J. Niklas Hausmann
- Department of Materials Chemistry for CatalysisHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
| | - Stefan Mebs
- Department of PhysicsFree University of BerlinArnimallee 1414195BerlinGermany
| | - Viktor Hlukhyy
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Holger Dau
- Department of PhysicsFree University of BerlinArnimallee 1414195BerlinGermany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnical University of BerlinStraße des 17 Juni 135. Sekr. C210623BerlinGermany
| | - Prashanth W. Menezes
- Department of Materials Chemistry for CatalysisHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnical University of BerlinStraße des 17 Juni 135. Sekr. C210623BerlinGermany
| |
Collapse
|
2
|
Huang Y, Tao Y, Jia Z, Fu C, Hu J, Du J, Lu J, Lv Y, Wang H. Modulated D-Electron Transfer in Hypervalent Cobalt-Based Electrocatalyst for Efficient 5-Hydroxymethylfurfural Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501476. [PMID: 40434243 DOI: 10.1002/smll.202501476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/24/2025] [Indexed: 05/29/2025]
Abstract
5-hydroxymethylfurfural (5-HMF) electrooxidation is important in producing biomass-based valuable chemicals, whereas the preferential adsorption of only hydroxymethyl or formyl on a specific catalyst limits the reaction efficiency. Herein, the electrochemical synthesis of copper incorporated CoOOH electrocatalyst is reported that can execute the synchronized adsorption of both groups. The catalyst works under a low applied potential of 1.36 VRHE, achieving 100% HMF conversion, 100% furan dicarboxylic acid yield and 96.8% Faraday efficiency, with good stability, repeatability and variety in catalyzing furfural electrooxidation to furoic acid. This superior performance is attributed to Cu incorporation that reduces the bandgap of CoOOH by d-orbital electrons contributing more significantly near the Fermi level and adjusts the morphology through constructing smaller and more compact particles over granular or sheet-like motifs. The operando Raman characterization and theoretical calculations verify a strong interaction between 5-HMF and the Cu-integrated CoOOH catalyst, which is ascribed to the altered local charge density regions by Cu species and enables stable adsorption of both hydroxymethyl and formyl functional groups. This work lays foundation for a versatile and energy-efficient strategy for biorefinery, enabling seamless integration with green electricity-driven hydrogen production, while accelerating advancements in renewable energy and green chemistry.
Collapse
Affiliation(s)
- Yuhui Huang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhenghao Jia
- Division of Energy Research Resources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Chenglong Fu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jinwen Hu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
3
|
Gao W, Wang C, Wen W, Wang S, Zhang X, Yan D, Wang S. Electrochemical Hydrogen Production Coupling with the Upgrading of Organic and Inorganic Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503198. [PMID: 40395197 DOI: 10.1002/adma.202503198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/04/2025] [Indexed: 05/22/2025]
Abstract
Electrocatalytic water splitting powered by renewable energy is a green and sustainable method for producing high-purity H2. However, in conventional water electrolysis, the anodic oxygen evolution reaction (OER) involves a four-electron transfer process with inherently sluggish kinetics, which severely limits the overall efficiency of water splitting. Recently, replacing OER with thermodynamically favorable oxidation reactions, coupled with the hydrogen evolution reaction, has garnered significant attention and achieved remarkable progress. This strategy not only offers a promising route for energy-saving H₂ production but also enables the simultaneous synthesis of high-value-added products or the removal of pollutants at the anode. Researchers successfully demonstrate the upgrading of numerous organic and inorganic alternatives through this approach. In this review, the latest advances in the coupling of electrocatalytic H2 production and the upgrading of organic and inorganic alternative chemicals are summarized. What's more, the optimization strategy of catalysts, structure-performance relationship, and catalytic mechanism of various reactions are well discussed in each part. Finally, the current challenges and future prospects in this field are outlined, aiming to inspire further innovative breakthroughs in this exciting area of research.
Collapse
Affiliation(s)
- Wenqi Gao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Chen Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Dafeng Yan
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410081, China
| |
Collapse
|
4
|
Tahir M, Dai J, Nisa FU, Naseem M, Qu L, Ma Z, Wang W, Peng Z, He L, Akbar AR, Wang D, Li L. Modulating Intrinsic Sulfate Ions in FeOOH Nanorods for Enhanced Energy Storage and Catalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412645. [PMID: 40100240 DOI: 10.1002/smll.202412645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/08/2025] [Indexed: 03/20/2025]
Abstract
Designing efficient low-cost earth-abundant metal electrodes for enhanced energy storage and sluggish oxygen evolution reactions (OERs) poses significant challenges in electrochemistry. Herein an innovative approach to boost the activity of FeOOH nanorods for energy storage and catalytic OER by initiating intrinsic sulfate ion (SO4 2-) modulation is proposed. Through a one-step hydrothermal synthesis using a polymeric ferric sulfate precursor, it is successfully cultivated sulfated iron oxyhydroxide (S-FeOOH) nanorods. Remarkably, the presence of sulfate ions effectively prevented the transformation of FeOOH into less active Fe2O3, even under elevated temperature. Annealing induced the leaching of sulfate ions, leading to structural rearrangements with shorter Fe-O bond lengths and the formation of sulfate-textured FeOOH (ST-FeOOH) with additional active sites, consequently increasing the material's surface area. Importantly, compared with reported non-noble metal catalysts, the ST-FeOOH nanorods exhibited significantly enhanced energy storage capabilities (3684 mF cm-2) and catalytic performance in the OER. With a low overpotential of 173 mV to achieve a current density of 10 mA cm-2, fast OER kinetics (39 mV dec-1), and exceptional stability exceeding 80 h, these nanorods demonstrate their potential as efficient OER catalysts. This work demonstrates sulfate ion modulation's role in tailoring FeOOH nanorods for advanced cost-effective electrodes and OER electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Tahir
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Fazal Ul Nisa
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Mizna Naseem
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longbing Qu
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zeyu Ma
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwu Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhen Peng
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Abdul Rehman Akbar
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lihong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
5
|
Ansari T, Bagchi D, Ghosh S, Niklas Hausmann J, Indra A, Menezes PW. Anodic Activation of Prussian Blue Analog Leads to Highly Active Cobalt-Doped Nickel (Oxy)Hydroxide for Organic Oxidation Reactions. Chemistry 2025; 31:e202404174. [PMID: 39740032 PMCID: PMC11886769 DOI: 10.1002/chem.202404174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Water-assisted electrocatalytic oxidation of alcohols into valuable chemicals is a promising strategy to circumvent the sluggish kinetics of water oxidation, while also reducing cell voltage and improving energy efficiency. Recently, transition metal (TM)-based catalysts have been investigated for anodic alcohol oxidation, but success has been limited due to competition from the oxygen evolution reaction (OER) within the working regime. In this study, NiCo-based Prussian blue analog (PBA) was electrochemically activated at the anodic potential to produce a Co-Ni(O)OH active catalyst with a nanosheet-like architecture. This catalyst was further employed for the selective oxidation of benzyl alcohol (PhCH2OH) to benzoic acid (PhCOOH), achieving a 97 % Faradaic efficiency (FE). The electrochemical activity of Co-Ni(O)OH was also compared with hydrothermally prepared CoNi-LDH, demonstrating that the PBA-derived Co-Ni(O)OH was more effective.
Collapse
Affiliation(s)
- Toufik Ansari
- Department of ChemistryIIT (BHU)VaranasiUP-221005India
| | - Debabrata Bagchi
- Material Chemistry Group for Thin Film CatalysisCatLabHelmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 1512489BerlinGermany
| | - Suptish Ghosh
- Department of ChemistryMetalorganics and Inorganic MaterialsTechnische Universität Berlin, Straße des 17 Juni 115, Sekr. C210623BerlinGermany
| | - Jan Niklas Hausmann
- Material Chemistry Group for Thin Film CatalysisCatLabHelmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 1512489BerlinGermany
| | - Arindam Indra
- Department of ChemistryIIT (BHU)VaranasiUP-221005India
| | - Prashanth W. Menezes
- Material Chemistry Group for Thin Film CatalysisCatLabHelmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 1512489BerlinGermany
- Department of ChemistryMetalorganics and Inorganic MaterialsTechnische Universität Berlin, Straße des 17 Juni 115, Sekr. C210623BerlinGermany
| |
Collapse
|
6
|
Hua S, Shah SA, Nsang GEO, Sayyar R, Ullah B, Ullah N, Khan N, Yuan A, Bin Mohd Yusoff AR, Ullah H. Unveiling active sites in FeOOH nanorods@NiOOH nanosheets heterojunction for superior OER and HER electrocatalysis in water splitting. J Colloid Interface Sci 2025; 679:487-495. [PMID: 39374558 DOI: 10.1016/j.jcis.2024.09.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
The development of cost-effective, highly active, and stable electrocatalysts for water splitting to produce green hydrogen is crucial for advancing clean and sustainable energy technologies. Herein, we present an innovative in-situ synthesis of FeOOH nanorods@NiOOH nanosheets on nickel foam (FeOOH@NiOOH/NF) at an unprecedentedly low temperature, resulting in a highly efficient electrocatalyst for overall water splitting. The optimized FeOOH@NiOOH/NF sample, evaluated through time-dependent studies, exhibits exceptional oxygen evolution reaction (OER) performance with a low overpotential of 261 mV at a current density of 20 mA cm-2, alongside outstanding hydrogen evolution reaction (HER) activity with an overpotential of 150 mV at a current density of 10 mA cm-2, demonstrating excellent stability in alkaline solution. The water-splitting device featuring FeOOH@NiOOH/NF-2 electrodes achieves a voltage of 1.59 V at a current density of 10 mA cm-2, rivalling the state-of-the-art RuO2/NF||PtC/NF electrode system. Density functional theory (DFT) calculations unveil the efficient functionality of the Fe sites within the FeOOH@NiOOH heterojunction as the active OER catalyst, while the Ni centres are identified as the active HER sites. The enhanced performance of OER and HER is attributed to the tailored electronic structure at the heterojunction, modified magnetic moments of active sites, and increased electron density in the dx2-y2 orbital of Fe. This work provides critical insights into the rational design of advanced electrocatalysts for efficient water splitting.
Collapse
Affiliation(s)
- Sun Hua
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Sayyar Ali Shah
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China; Department of Engineering, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| | - Gabriel Engonga Obiang Nsang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Rani Sayyar
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China; School of Materials Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Badshah Ullah
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Noor Ullah
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Naseem Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Aihua Yuan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | | | - Habib Ullah
- Department of Engineering, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| |
Collapse
|
7
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
8
|
Ji X, Zhang B, Wang H, Cai Y, Liu Q, Wu K, Li D, Tan W, Liu F, Dong L. Striking Improvement of N 2 Selectivity in NH 3 Oxidation Reaction on Fe 2O 3-Based Catalysts via SiO 2 Doping. Inorg Chem 2025; 64:1389-1400. [PMID: 39805230 DOI: 10.1021/acs.inorgchem.4c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The emission of NH3 has been reported to pose a serious threat to both human health and the environment. To efficiently eliminate NH3, catalysts for the selective catalytic oxidation of NH3 (NH3-SCO) have been intensively studied. Fe2O3-based catalysts were found to exhibit superior NH3 oxidation activity; however, the low N2 selectivity made it less attractive in practical applications. In this work, aimed at improving the N2 selectivity on Fe2O3-based catalysts, a simple SiO2 doping strategy was proposed. Although the NH3 oxidation activity showed almost no change on Fe2O3 after SiO2 doping, the N2 selectivity was significantly improved. Systematic characterizations revealed that SiO2 doping could increase the specific surface area of Fe2O3, and a strong interaction of Fe-O-Si was formed in Fe2O3-SiO2 mixed oxide catalysts. Furthermore, abundant Brønsted acid sites were formed on Fe2O3-SiO2 catalysts due to the facile hydrolysis of the Fe-O-Si structure into Si-OH and Fe-OH. Although SiO2 doping was found to weaken the redox ability of Fe2O3, the abundant Brønsted acid sites on Fe2O3-SiO2 catalysts could facilitate NH3 oxidation reaction through an internal SCR (i-SCR) pathway, thus achieving superior N2 selectivity. This work can provide new insights into constructing efficient NH3-SCO catalysts with high N2 selectivity.
Collapse
Affiliation(s)
- Xiaoyu Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qinglong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kaiqiang Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dawei Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Yu K, Yang H, Xu J, Yuan W, Yang R, Hou M, Kang Z, Liu Y, Menezes PW, Chen Z. Synergistic Active Heterostructure Design for Enhanced Two Electron Oxygen Reduction via Chemical and Electrochemical Reconstruction of Heterosulfides. Angew Chem Int Ed Engl 2024; 63:e202408508. [PMID: 39030794 DOI: 10.1002/anie.202408508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Transition metal sulfides, particularly heterostructures, represent a promising class of electrocatalysts for two electron oxygen reduction (2e- ORR), however, understanding the dynamic structural evolution of these catalysts during alkaline ORR remains relatively unexplored. Herein, NiS2/In2.77S4 heterostructure was synthesized as a precatalyst and through a series of comprehensive ex situ and in situ characterizations, including X-ray absorption spectroscopy, Raman spectroscopy, transient photo-induced voltage measurements, electron energy loss spectroscopy, and spherical aberration-corrected electron microscopy, it was revealed that nickel/indium (oxy)hydroxides (NiOOH/In(OH)3) could be evolved from the initial NiS2/In2.77S4 via both electrochemical and chemical-driven methods. The electrochemical-driven phase featured abundant bridging oxygen-deficient [NiO6]-[InO6] units at the interfaces of NiOOH/In(OH)3, facilitating a synergistic effect between active Ni and In sites, thus enabling an enhanced alkaline 2e- ORR capability than that of chemical-driven process. Remarkably, electrochemically induced NiOOH/In(OH)3 exhibited exceptional performance, achieving H2O2 selectivity of >90 % across the wide potential window (up to 0.4 V) with a peak selectivity of >99 %. Notably, within the three-electrode flow cell, a current density of 200 mA cm-2 was sustained over 20 h, together with an impressive Faradaic efficiency of ~90 % during the whole cycle process.
Collapse
Affiliation(s)
- Kai Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Jie Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Weijie Yuan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Ruotao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Meiling Hou
- College of Engineering, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
10
|
Janisch D, Igoa Saldaña F, De Rolland Dalon E, V M Inocêncio C, Song Y, Autran PO, Miche A, Casale S, Portehault D. Covalent Transition Metal Borosilicides: Reaction Pathways in Molten Salts for Water Oxidation Electrocatalysis. J Am Chem Soc 2024; 146:21824-21836. [PMID: 39073899 DOI: 10.1021/jacs.4c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The properties of transition metal borides and silicides are intimately linked to the covalent character of the chemical bonds within their crystal structures. Bringing boron and silicon together within metal borosilicides can then engender different competing covalent networks and complex charge distributions. This situation results in unique structures and atomic environments, which can impact charge transport and catalytic properties. Metal borosilicides, however, hold the status of unusual exotic species, difficult to synthesize and with poor knowledge of their properties. Our strategy consists of developing a redox pathway to synthesize transition metal borosilicides in inorganic molten salts as high-temperature solvents. By studying the formation of Ni6Si2B, Co4.75Si2B, Fe5SiB2, and Mn5SiB2 with in situ X-ray diffraction, we highlight how new reaction routes, maintaining covalent structural building blocks, draw a general scheme of their formation. This pathway is driven by the covalence of the chemical bonds within the boron coordination framework. Next, we demonstrate high efficiency for water oxidation electrocatalysis, especially for Ni6Si2B. We ascribe the strongly increased resistance to corrosion, high stability, and electrocatalytic activity of the Ni6Si2B-derived material to three factors: (1) the two entangled boron and silicon covalent networks; (2) the ability to codope with boron and silicon an in situ generated catalytic layer; and (3) a rare electron enrichment of the transition metal by back-donation from boron atoms, previously unknown within this compound family. With this work, we then unveil a new chemical dimension for Earth-abundant water oxidation electrocatalysts by bringing to light a new family of materials.
Collapse
Affiliation(s)
- Daniel Janisch
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France
| | - Fernando Igoa Saldaña
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France
| | - Edouard De Rolland Dalon
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France
| | - Carlos V M Inocêncio
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France
| | - Yang Song
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France
| | - Pierre-Olivier Autran
- European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Antoine Miche
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, 4 place Jussieu, F- 75005 Paris, France
| | - Sandra Casale
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, 4 place Jussieu, F- 75005 Paris, France
| | - David Portehault
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
11
|
Wang P, Zheng J, Xu X, Zhang YQ, Shi QF, Wan Y, Ramakrishna S, Zhang J, Zhu L, Yokoshima T, Yamauchi Y, Long YZ. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404806. [PMID: 38857437 DOI: 10.1002/adma.202404806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Electrocatalytic water splitting driven by sustainable energy is a clean and promising water-chemical fuel conversion technology for the production of high-purity green hydrogen. However, the sluggish kinetics of anodic oxygen evolution reaction (OER) pose challenges for large-scale hydrogen production, limiting its efficiency and safety. Recently, the anodic OER has been replaced by a nucleophilic oxidation reaction (NOR) with biomass as the substrate and coupled with a hydrogen evolution reaction (HER), which has attracted great interest. Anode NOR offers faster kinetics, generates high-value products, and reduces energy consumption. By coupling NOR with hydrogen evolution reaction, hydrogen production efficiency can be enhanced while yielding high-value oxidation products or degrading pollutants. Therefore, NOR-coupled HER hydrogen production is another new green electrolytic hydrogen production strategy after electrolytic water hydrogen production, which is of great significance for realizing sustainable energy development and global decarbonization. This review explores the potential of nucleophilic oxidation reactions as an alternative to OER and delves into NOR mechanisms, guiding future research in NOR-coupled hydrogen production. It assesses different NOR-coupled production methods, analyzing reaction pathways and catalyst effects. Furthermore, it evaluates the role of electrolyzers in industrialized NOR-coupled hydrogen production and discusses future prospects and challenges. This comprehensive review aims to advance efficient and economical large-scale hydrogen production.
Collapse
Affiliation(s)
- Peng Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xue Xu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Qing Zhang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiao-Fu Shi
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yong Wan
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
12
|
Hausmann JN, Ashton M, Mebs S, Walter C, Selve S, Haumann M, Sontheimer T, Dau H, Driess M, Menezes PW. Intermetallic Cobalt Indium Nanoparticles as Oxygen Evolution Reaction Precatalyst: A Non-Leaching p-Block Element. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309749. [PMID: 38368266 DOI: 10.1002/smll.202309749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases.
Collapse
Affiliation(s)
- J Niklas Hausmann
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Marten Ashton
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Carsten Walter
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Sören Selve
- Center for Electron Microscopy (ZELMI), Technische Universität Berlin, Straße des 17. Juni 135, Sekr. KWT2, 10623, Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Tobias Sontheimer
- Strategy Department of Energy and Information, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
13
|
Wu H, Liu L, Zhuo Y, Ellam RM, Yan K, Liu J, Tang J. Iron and silicon modified biochar for enhancing cadmium removal from water: Unveiling the crucial role of iron-induced silicon dissolution. BIORESOURCE TECHNOLOGY 2024; 401:130745. [PMID: 38677381 DOI: 10.1016/j.biortech.2024.130745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
The interaction mechanisms of silicon (Si) and active ingredient iron (Fe) on cadmium (Cd) removal are still unknown. Herein, the Fe/Si modified biochar (Fe/Si-BC) was synthesized to enhance Cd removal by pre-immersion of Fe and ball milling loading of Si. Detailed characterizations indicated that Fe and Si were successfully introduced into Fe/Si-BC, resulting in the formation of a new metallic silicate (Ca2.87Fe0.13(SiO3)2). The maximum Cd adsorption capacity of Fe/Si-BC (31.66 mg g-1) was 3.6 times and 2.5 times higher than that of Fe-BC (8.89 mg g-1) and Si-BC (11.03 mg g-1), respectively, deriving from an enhancement of Si dissolution induced by Fe introduction. The dissolved Si could capture and combine Cd to form CdSiO3 precipitation, which was strongly supported by the random forest regression and correlation between dissolved Si content and Cd adsorption capacity. This study advances the mechanistic insights into synergistic functions of Si and Fe in Cd removal.
Collapse
Affiliation(s)
- Han Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Hebei 066102, China.
| | - Yuguo Zhuo
- Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Hebei 066102, China
| | - Robert Mark Ellam
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Keshuo Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Juncheng Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Fan Y, Zhang J, Han J, Zhang M, Bao W, Su H, Wang N, Zhang P, Luo Z. In situ self-reconstructed hierarchical bimetallic oxyhydroxide nanosheets of metallic sulfides for high-efficiency electrochemical water splitting. MATERIALS HORIZONS 2024; 11:1797-1807. [PMID: 38318724 DOI: 10.1039/d3mh02090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The advancement of economically efficient electrocatalysts for alkaline water oxidation based on transition metals is essential for hydrogen production through water electrolysis. In this investigation, a straightforward one-step solvent method was utilized to spontaneously cultivate bimetallic sulfide S-FeCo1 : 1/NIF on the surface of a nickel-iron foam (NIF). Capitalizing on the synergistic impact between the bimetallic constituents and the highly active species formed through electrochemical restructuring, S-FeCo1 : 1/NIF exhibited remarkable oxygen evolution reaction (OER) performance, requiring only a 310 mV overpotential based on 500 mA cm-2 current density. Furthermore, it exhibited stable operation at 200 mA cm-2 for 275 h. Simultaneously, the catalyst demonstrated excellent hydrogen evolution reaction (HER) and overall water-splitting capabilities. It only requires an overpotential of 191 mV and a potential of 1.81 V to drive current densities of 100 and 50 mA cm-2. Density functional theory (DFT) calculations were also employed to validate the impact of the bimetallic synergistic effect on the catalytic activity of sulfides. The results indicate that the coupling between bimetallic components effectively reduces the energy barrier required for the rate-determining step in water oxidation, enhancing the stability and activity of bimetallic sulfides. The exploration of bimetallic coupling to improve the OER performance holds theoretical significance in the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Yaning Fan
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Junjun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Jie Han
- National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Material Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, P. R. China.
| | - Mengyuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Weiwei Bao
- National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Material Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, P. R. China.
| | - Hui Su
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Nailiang Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Zhenghong Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
15
|
Jia Y, Gui Z, Zhang W, Yan T, Tan J, Chen L, Gao Q, Zhang Y, Tang Y. Enhancing Low-Potential Electrosynthesis of 2,5-Furandicarboxylic Acid on Monolithic CuO by Constructing Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8697-8706. [PMID: 38330188 DOI: 10.1021/acsami.3c16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Electrosynthesis of 2,5-furandicarboxylic acid (FDCA) from the biomass-derived 5-hydroxymethylfurfural (HMF) is one of the most potential means to produce a bioplastic monomer. Copper oxide (CuO) catalyst shows promising prospects due to its high surface activity, conductivity, and stability, but relatively poor capability of oxygen evolution; however, the weak adsorption of substrates and the lack of facile synthetic strategies largely restrict its practical application. Here, a novel facile in situ method, alternate cycle voltammetry (denoted as c) and potentiostatic electrolysis (denoted as p), was proposed to prepare a monolithic cpc-CuO/Cu-foam electrocatalyst. Along with the increment of CuO and its surficial oxygen vacancies (OV), the FDCA yield, productivity, and Faradaic efficiency can reach up to ∼98.5%, ∼0.2 mmol/cm2, and ∼94.5% under low potential of 1.404 VRHE. Such an efficient electrosynthesis system can be easily scaled up to afford pure FDCA powders. In a combinatory analysis via electron paramagnetic resonance spectroscopy, H2 temperature-programmed reduction, open circuit potential, infrared spectroscopy, zeta potential, electrochemical measurement, and theoretical calculation, we found that the CuO was the active phase and OV generated on CuO surface can dramatically enhance the adsorption of *HMF and *OH (* denotes an active site), accounting for its superior FDCA production. This work offers an excellent paradigm for enhancing biomass valorization on CuO catalysts by constructing surficial defects.
Collapse
Affiliation(s)
- Yingshuai Jia
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Zhuxin Gui
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Wenbiao Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Tianlan Yan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Jingwen Tan
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Li Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, and School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
16
|
Ye Y, Zhang L, Zhu Q, Du Z, Wågberg T, Hu G. Interface engineering induced charge rearrangement boosting reversible oxygen electrocatalysis activity of heterogeneous FeCo-MnO@N-doped carbon nanobox. J Colloid Interface Sci 2023; 650:1350-1360. [PMID: 37480650 DOI: 10.1016/j.jcis.2023.07.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
The advancement of bifunctional oxygen catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is imperative yet challenging for the optimization of Zn-air batteries. In this study, we reported the successful incorporation of a novel Mott-Schottky catalytic site within a MnO-FeCo heterojunction into an N-doping carbon nanobox, taking into consideration the effects of the intrinsic electric field and hollow/porous support carriers for electrocatalyst design. As expected, the resulting heterogeneous catalyst exhibited an encouraging half-wave potential of 0.88 V and an impressive limiting-current density of 5.62 mA/cm2 for the ORR, as well as a minimal overpotential of 271 mV at 10 mA/cm2 for the OER, both in alkaline conditions. Furthermore, the Zn-air battery constructed with the heterojunction nanobox product displayed a decent potential gap of 0.621 V, an outstanding power density of 253 mW/cm2, a considerable specific capacity of 761 mAh/gZn, and exceptional stability, with up to 336 h of cycling charging and discharging operation. Consequently, this method of modulating the catalyst's surface charge distribution through an internal electric field at the interface and facilitating mass transport offers a novel avenue for the development of robust bifunctional oxygen catalysts.
Collapse
Affiliation(s)
- Ying Ye
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Lei Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, PR China.
| | - Qiliang Zhu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Ziang Du
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå S-901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, PR China.
| |
Collapse
|
17
|
Liu G, Nie T, Song Z, Sun X, Shen T, Bai S, Zheng L, Song YF. Pd Loaded NiCo Hydroxides for Biomass Electrooxidation: Understanding the Synergistic Effect of Proton Deintercalation and Adsorption Kinetics. Angew Chem Int Ed Engl 2023; 62:e202311696. [PMID: 37711060 DOI: 10.1002/anie.202311696] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The key issue in the 5-hydroxymethylfurfural oxidation reaction (HMFOR) is to understand the synergistic mechanism involving the protons deintercalation of catalyst and the adsorption of the substrate. In this study, a Pd/NiCo catalyst was fabricated by modifying Pd clusters onto a Co-doped Ni(OH)2 support, in which the introduction of Co induced lattice distortion and optimized the energy band structure of Ni sites, while the Pd clusters with an average size of 1.96 nm exhibited electronic interactions with NiCo support, resulting in electron transfer from Pd to Ni sites. The resulting Pd/NiCo exhibited low onset potential of 1.32 V and achieved a current density of 50 mA/cm2 at only 1.38 V. Compared to unmodified Ni(OH)2 , the Pd/NiCo achieved an 8.3-fold increase in peak current density. DFT calculations and in situ XAFS revealed that the Co sites affected the conformation and band structure of neighboring Ni sites through CoO6 octahedral distortion, reducing the proton deintercalation potential of Pd/NiCo and promoting the production of Ni3+ -O active species accordingly. The involvement of Pd decreased the electronic transfer impedance, and thereby accelerated Ni3+ -O formation. Moreover, the Pd clusters enhanced the adsorption of HMF through orbital hybridization, kinetically promoting the contact and reaction of HMF with Ni3+ -O.
Collapse
Affiliation(s)
- Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| | - Tianqi Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoliang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| |
Collapse
|
18
|
Zhang K, Xiao C, Li Y, Li C. Boosting nucleophilic attack to realize high current density biomass valorization on a tunable Prussian blue analogue. NANOSCALE 2023; 15:15649-15655. [PMID: 37724004 DOI: 10.1039/d3nr03380e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrochemical biomass valorization provides a promising approach to generating value-added chemicals. Herein, we have creatively utilized a Prussian blue analogue as a structure template of the anodic catalyst and improved its catalyst capacity by adjusting its electronic structure. The nickel-based Prussian blue analogue/Ni foam (NiFe-PBA/NF) exhibits excellent performance for methanol (MeOH) oxidation and achieves almost 94.1% FE of formic acid at a high current density of 500 mA cm-2. Apart from formic acid, NiFe-PBA/NF also has good catalytic ability for ethanol, glycerol, glucose, and 5-hydroxymethylfurfural (HMF). In short, this work has developed a promising class of catalysts for biomass valorization.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science and Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Chuqian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science and Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Yuhang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science and Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science and Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
- School of Chemical Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Feng C, Lv M, Shao J, Wu H, Zhou W, Qi S, Deng C, Chai X, Yang H, Hu Q, He C. Lattice Strain Engineering of Ni 2 P Enables Efficient Catalytic Hydrazine Oxidation-Assisted Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305598. [PMID: 37433070 DOI: 10.1002/adma.202305598] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solving the issue of hydrazine pollution. Here, the synthesis of compressively strained Ni2 P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER) is reported. Different from a multistep synthetic method that induces lattice strain by creating core-shell structures, a facile strategy is developed to tune the strain of Ni2 P via dual-cation co-doping. The obtained Ni2 P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterparts with tensile strain and without strain. Consequently, the optimized Ni2 P delivers current densities of 10 and 100 mA cm-2 at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compressive strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni2 P. As for the HzOR, the compressive strain reduces the energy barrier of the potential-determining step for the dehydrogenation of *N2 H4 to *N2 H3 . Clearly, this work paves a facile pathway to the synthesis of lattice-strained electrocatalysts via the dual-cation co-doping.
Collapse
Affiliation(s)
- Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Miaoyuan Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiaxin Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hanyang Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chen Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
20
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
21
|
Song Y, Gómez-Recio I, Ghoridi A, Igoa Saldaña F, Janisch D, Sassoye C, Dupuis V, Hrabovsky D, Ruiz-González ML, González-Calbet JM, Casale S, Zitolo A, Lassalle-Kaiser B, Laberty-Robert C, Portehault D. Heterostructured Cobalt Silicide Nanocrystals: Synthesis in Molten Salts, Ferromagnetism, and Electrocatalysis. J Am Chem Soc 2023; 145:19207-19217. [PMID: 37615605 DOI: 10.1021/jacs.3c01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nanoscale heterostructures of covalent intermetallics should give birth to a wide range of interface-driven physical and chemical properties. Such a level of design however remains unattainable for most of these compounds, due to the difficulty to reach a crystalline order of covalent bonds at the moderate temperatures required for colloidal chemistry. Herein, we design heterostructured cobalt silicide nanoparticles to trigger magnetic and catalytic properties in silicon-based materials. Our strategy consists in controlling the diffusion of cobalt atoms into silicon nanoparticles, by reacting these particles in molten salts. By adjusting the temperature, we tune the conversion of the initial silicon particles toward homogeneous CoSi nanoparticles and core-shell nanoparticles made of a CoSi shell and a silicon-rich core. The increased interface-to-volume ratio of the CoSi component in the core-shell particles yields distinct properties compared to the bulk and homogeneous nanoparticles. First, the core-shell particles exhibit increased ferromagnetism, despite the bulk diamagnetic properties of cobalt monosilicide. Second, the core-shell nanoparticles act as efficient precatalysts for alkaline water oxidation, where the nanostructure is converted in situ into a layered cobalt silicon oxide/(oxy)hydroxide with high and stable oxygen evolution reaction (OER) electrocatalytic activity. This work demonstrates a route to design heterostructured nanocrystals of covalent intermetallic compounds and shows that these new structures exhibit very rich, yet poorly explored, interface-based physical properties and reactivity.
Collapse
Affiliation(s)
- Yang Song
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Isabel Gómez-Recio
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Anissa Ghoridi
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Fernando Igoa Saldaña
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Daniel Janisch
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Capucine Sassoye
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - Vincent Dupuis
- Sorbonne Université, CNRS, Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 place Jussieu, F-75005 Paris, France
| | - David Hrabovsky
- Sorbonne Université, CNRS, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu, F-75005 Paris, France
| | - M Luisa Ruiz-González
- Dpto. de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - José M González-Calbet
- Dpto. de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Sandra Casale
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005 Paris, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | | | - Christel Laberty-Robert
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
22
|
Dasgupta B, Hausmann JN, Beltrán-Suito R, Kalra S, Laun K, Zebger I, Driess M, Menezes PW. A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium-Intercalated γ-NiOOH x Enabling High-Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5-Hydroxymethylfurfural. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301258. [PMID: 37086146 DOI: 10.1002/smll.202301258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
The low-temperature molecular precursor approach can be beneficial to conventional solid-state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single-step, room-temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2 (thf)1.5 . During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ-NiOOH) comprising edge-sharing (NiO6 ) layers with intercalated potassium ions and a d-spacing of 7.27 Å. Remarkably, the intercalated γ-NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ-NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm-2 ) and achieves outstandingly high current densities (>600 mA cm-2 ) for the selective, value-added oxidation of 5-hydroxymethylfurfural (HMF). The NiP-derived γ-NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room-temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition-metal pnictides.
Collapse
Affiliation(s)
- Basundhara Dasgupta
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Jan Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Rodrigo Beltrán-Suito
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Shweta Kalra
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Konstantin Laun
- Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth Wilfred Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
23
|
Yu K, Yang H, Zhang H, Huang H, Wang Z, Kang Z, Liu Y, Menezes PW, Chen Z. Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:186. [PMID: 37515724 PMCID: PMC10387036 DOI: 10.1007/s40820-023-01164-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Efficient and durable oxygen evolution reaction (OER) requires the electrocatalyst to bear abundant active sites, optimized electronic structure as well as robust component and mechanical stability. Herein, a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La2O2S prototype is fabricated as a binder-free precatalyst for alkaline OER. The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La, Ni, O, and S species during OER, which assures the adsorption and stabilization of the oxyanion [Formula: see text] onto the surface of the deeply reconstructed porous heterostructure composed of confining NiOOH nanodomains by La(OH)3 barrier. Such coupling, confinement, porosity and immobilization enable notable improvement in active site accessibility, phase stability, mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates. The optimized electrocatalyst delivers exceptional alkaline OER activity and durability, outperforming most of the Ni-based benchmark OER electrocatalysts.
Collapse
Affiliation(s)
- Kai Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen Laboratory, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| |
Collapse
|
24
|
Kahlstorf T, Hausmann JN, Sontheimer T, Menezes PW. Challenges for Hybrid Water Electrolysis to Replace the Oxygen Evolution Reaction on an Industrial Scale. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200242. [PMID: 37483419 PMCID: PMC10362115 DOI: 10.1002/gch2.202200242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Indexed: 07/25/2023]
Abstract
To enable a future society based on sun and wind energy, transforming electricity into chemical energy in the form of fuels is crucial. This transformation can be achieved in an electrolyzer performing water splitting, where at the anode, water is oxidized to oxygen-oxygen evolution reaction (OER)-to produce protons and electrons that can be combined at the cathode to form hydrogen-hydrogen evolution reaction (HER). While hydrogen is a desired fuel, the obtained oxygen has no economic value. A techno-economically more suitable alternative is hybrid water electrolysis, where value-added oxidation reactions of abundant organic feedstocks replace the OER. However, tremendous challenges remain for the industrial-scale application of hybrid water electrolysis. Herein, these challenges, including the higher kinetic overpotentials of organic oxidation reactions compared to the OER, the small feedstock availably and product demand of these processes compared to the HER (and carbon dioxide reduction), additional purifications costs, and electrocatalytic challenges to meet the industrially required activities, selectivities, and especially long-term stabilities are critically discussed. It is anticipated that this perspective helps the academic research community to identify industrially relevant research questions concerning hybrid water electrolysis.
Collapse
Affiliation(s)
- Till Kahlstorf
- Material Chemistry Group for Thin Film Catalysis–CatLabHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
| | - J. Niklas Hausmann
- Material Chemistry Group for Thin Film Catalysis–CatLabHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
| | - Tobias Sontheimer
- Strategy Department of Energy and InformationHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner‐Platz 114109BerlinGermany
| | - Prashanth W. Menezes
- Material Chemistry Group for Thin Film Catalysis–CatLabHelmholtz‐Zentrum Berlin für Materialien und EnergieAlbert‐Einstein‐Str. 1512489BerlinGermany
- Department of ChemistryTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| |
Collapse
|
25
|
Xin Y, Shen K, Guo T, Chen L, Li Y. Coupling Hydrazine Oxidation with Seawater Electrolysis for Energy-Saving Hydrogen Production over Bifunctional CoNC Nanoarray Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300019. [PMID: 36840653 DOI: 10.1002/smll.202300019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/04/2023] [Indexed: 05/25/2023]
Abstract
Seawater electrolysis is a promising method to produce H2 without relying on scarce freshwater resource, but its high energy consumption and inevitable accompany of competitive chlorine oxidation reaction (ClOR) are still great technological challenges. Herein, a metal-organic framework (MOF)-templated pyrolysis strategy to prepare uniform cobalt/nitrogen-codoped carbon nanosheet arrays on carbon cloth (CC@CoNC) as highly-efficient but low-cost bifunctional electrocatalysts for hydrazine-assisted seawater electrolysis is explored. The optimized CoNC nanosheet arrays can be used as an efficient bifunctional electrocatalyst to catalyze hydrazine oxidation reaction and hydrogen evolution reaction, remarkably reducing the energy consumption and nicely overcome the undesired anodic corrosion problems caused by ClOR. Impressively, a hydrazine-assisted water electrolysis system is successfully assembled by using the optimized CC@CoNC as both cathode and anode, which only needs an ultra-low cell voltage of 0.557 V and an electricity consumption of 1.22 kW h per cubic meter of H2 to achieve 200 mA cm-2 . Furthermore, the optimized CC@CoNC can also show greatly improved stability in the hydrazine-assisted seawater electrolysis system for H2 production, which can work steadily for above 40 h at ≈10 mA cm-2 . This study may offer great opportunities for obtaining hydrogen energy from infinite ocean resource by an eco-friendly method.
Collapse
Affiliation(s)
- Yu Xin
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui Shen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tongtian Guo
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liyu Chen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
26
|
Ghosh S, Dasgupta B, Kalra S, Ashton MLP, Yang R, Kueppers CJ, Gok S, Alonso EG, Schmidt J, Laun K, Zebger I, Walter C, Driess M, Menezes PW. Evolution of Carbonate-Intercalated γ-NiOOH from a Molecularly Derived Nickel Sulfide (Pre)Catalyst for Efficient Water and Selective Organic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206679. [PMID: 36651137 DOI: 10.1002/smll.202206679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The development of a competent (pre)catalyst for the oxygen evolution reaction (OER) to produce green hydrogen is critical for a carbon-neutral economy. In this aspect, the low-temperature, single-source precursor (SSP) method allows the formation of highly efficient OER electrocatalysts, with better control over their structural and electronic properties. Herein, a transition metal (TM) based chalcogenide material, nickel sulfide (NiS), is prepared from a novel molecular complex [NiII (PyHS)4 ][OTf]2 (1) and utilized as a (pre)catalyst for OER. The NiS (pre)catalyst requires an overpotential of only 255 mV to reach the benchmark current density of 10 mA cm-2 and shows 63 h of chronopotentiometry (CP) stability along with over 95% Faradaic efficiency in 1 m KOH. Several ex situ measurements and quasi in situ Raman spectroscopy uncover that NiS irreversibly transformed to a carbonate-intercalated γ-NiOOH phase under the alkaline OER conditions, which serves as the actual active structure for the OER. Additionally, this in situ formed active phase successfully catalyzes the selective oxidation of alcohol, aldehyde, and amine-based organic substrates to value-added chemicals, with high efficiencies.
Collapse
Affiliation(s)
- Suptish Ghosh
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Basundhara Dasgupta
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Shweta Kalra
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Marten L P Ashton
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Ruotao Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Christopher J Kueppers
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Sena Gok
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Eduardo Garcia Alonso
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Johannes Schmidt
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Konstantin Laun
- Department of Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. PC14, 10623, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. PC14, 10623, Berlin, Germany
| | - Carsten Walter
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
27
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
28
|
Chen Z, Yang H, Mebs S, Dau H, Driess M, Wang Z, Kang Z, Menezes PW. Reviving Oxygen Evolution Electrocatalysis of Bulk La-Ni Intermetallics via Gaseous Hydrogen Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208337. [PMID: 36528302 DOI: 10.1002/adma.202208337] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A hydrogen processing strategy is developed to enable bulk LaNi5 to attain high activity and long-term stability toward the electrocatalytic oxygen evolution reaction (OER). By a combination of in situ Raman and quasi in situ X-ray absorption (XAS) spectra, secondary-electron-excited scanning transmission electron microscopy (STEM) patterns as well as the Rietveld method and density functional theory (DFT) calculations, it is discovered that hydrogen-induced lattice distortion, grain refinement, and particle cracks dictate the effective reconstruction of the LaNi5 surface into a porous hetero-nanoarchitecture composed of uniformly confined active γ-NiOOH nanocrystals by La(OH)3 layer in the alkaline OER process. This significantly optimizes the charge transfer, structural integrity, active-site exposure, and adsorption energy toward the reaction intermediates. Benefiting from these merits, the overpotential (322 mV) at 100 mA cm-2 for the hydrogen-processed OER catalyst deposited on nickel foam is reduced by 104 mV as compared to the original phase. Notably, it exhibits remarkable stability for 10 days at an industrial-grade current density of more than 560 mA cm-2 in alkaline media.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- S Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- S Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen laboratory, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
29
|
Wang C, Wu Y, Bodach A, Krebs ML, Schuhmann W, Schüth F. A Novel Electrode for Value-Generating Anode Reactions in Water Electrolyzers at Industrial Current Densities. Angew Chem Int Ed Engl 2023; 62:e202215804. [PMID: 36440966 PMCID: PMC10107951 DOI: 10.1002/anie.202215804] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Hydrogen generated in electrolyzers is discussed as a key element in future energy scenarios, but oxygen evolution as the standard anode reaction is a complex multi-step reaction requiring a high overpotential. At the same time,it does not add value-the oxygen is typically released into the atmosphere. Alternative anode reactions which can proceed at similar current densities as the hydrogen evolution are, therefore, of highest interest. We have discovered a high-performance electrode based on earth-abundant elements synthesized in the presence of H2 O2 , which is able to sustain current densities of close to 1 A cm-2 for the oxidation of many organic molecules, which are partly needed at high production volumes. Such anode reactions could generate additional revenue streams, which help to solve one of the most important problems in the transition to renewable energy systems, i.e. the cost of hydrogen electrolysis.
Collapse
Affiliation(s)
- Changlong Wang
- MPI für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany.,Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yufeng Wu
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Alexander Bodach
- MPI für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | - Moritz Lukas Krebs
- MPI für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ferdi Schüth
- MPI für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| |
Collapse
|
30
|
Guo L, Zhang X, Gan L, Pan L, Shi C, Huang Z, Zhang X, Zou J. Advances in Selective Electrochemical Oxidation of 5-Hydroxymethylfurfural to Produce High-Value Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205540. [PMID: 36480314 PMCID: PMC9896064 DOI: 10.1002/advs.202205540] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The conversion of biomass is a favorable alternative to the fossil energy route to solve the energy crisis and environmental pollution. As one of the most versatile platform compounds, 5-hydroxymethylfural (HMF) can be transformed to various value-added chemicals via electrolysis combining with renewable energy. Here, the recent advances in electrochemical oxidation of HMF, from reaction mechanism to reactor design are reviewed. First, the reaction mechanism and pathway are summarized systematically. Second, the parameters easy to be ignored are emphasized and discussed. Then, the electrocatalysts are reviewed comprehensively for different products and the reactors are introduced. Finally, future efforts on exploring reaction mechanism, electrocatalysts, and reactor are prospected. This review provides a deeper understanding of mechanism for electrochemical oxidation of HMF, the design of electrocatalyst and reactor, which is expected to promote the economical and efficient electrochemical conversion of biomass for industrial applications.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiaoxue Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Li Gan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
31
|
Morais Ferreira RK, Ben Miled M, Nishihora RK, Christophe N, Carles P, Motz G, Bouzid A, Machado R, Masson O, Iwamoto Y, Célérier S, Habrioux A, Bernard S. Low temperature in situ immobilization of nanoscale fcc and hcp polymorphic nickel particles in polymer-derived Si-C-O-N(H) to promote electrocatalytic water oxidation in alkaline media. NANOSCALE ADVANCES 2023; 5:701-710. [PMID: 36756503 PMCID: PMC9890898 DOI: 10.1039/d2na00821a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
We synthesized nickel (Ni) nanoparticles (NPs) in a high specific surface area (SSA) p-block element-containing inorganic compound prepared via the polymer-derived ceramics (PDC) route to dispatch the obtained nanocomposite towards oxygen evolution reaction (OER). The in situ formation of Ni NPs in an amorphous silicon carboxynitride (Si-C-O-N(H)) matrix is allowed by the reactive blending of a polysilazane, NiCl2 and DMF followed by the subsequent thermolysis of the Ni : organosilicon polymer coordination complex at a temperature as low as 500 °C in flowing argon. The final nanocomposite displays a BET SSA as high as 311 m2 g-1 while the structure of the NPs corresponds to face-centred cubic (fcc) Ni along with interstitial-atom free (IAF) hexagonal close-packed (hcp) Ni as revealed by XRD. A closer look into the compound through FEG-SEM microscopy confirms the formation of pure metallic Ni, while HR-TEM imaging reveals the occurrence of Ni particles featuring a fcc phase and surrounded by carbon layers; thus, forming core-shell structures, along with Ni NPs in an IAF hcp phase. By considering that this newly synthesized material contains only Ni without doping (e.g., Fe) with a low mass loading (0.15 mg cm-2), it shows promising OER performances with an overpotential as low as 360 mV at 10 mA cm-2 according to the high SSA matrix, the presence of the IAF hcp Ni NPs and the development of core-shell structures. Given the simplicity, the flexibility, and the low cost of the proposed synthesis approach, this work opens the doors towards a new family of very active and stable high SSA nanocomposites made by the PDC route containing well dispersed and accessible non-noble transition metals for electrocatalysis applications.
Collapse
Affiliation(s)
- Roberta Karoline Morais Ferreira
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
- Chemical Engineering, Federal University of Santa Catarina 88010-970 Florianópolis Brazil
| | | | - Rafael Kenji Nishihora
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
- Chemical Engineering, Federal University of Santa Catarina 88010-970 Florianópolis Brazil
| | - Nicolas Christophe
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS F-86073 Poitiers France
| | - Pierre Carles
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
| | - Günter Motz
- University of Bayreuth, Ceramic Materials Engineering (CME) Bayreuth Germany
| | - Assil Bouzid
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
| | - Ricardo Machado
- Chemical Engineering, Federal University of Santa Catarina 88010-970 Florianópolis Brazil
| | - Olivier Masson
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
| | - Yuji Iwamoto
- Graduated School of Engineering, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Stéphane Célérier
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS F-86073 Poitiers France
| | - Aurélien Habrioux
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS F-86073 Poitiers France
| | - Samuel Bernard
- Univ. Limoges, CNRS, IRCER UMR 7315 F-87000 Limoges France
| |
Collapse
|
32
|
Mallick L, Chakraborty B. Ionic γ-FeO(OH) Nanocrystal Stabilized by Small Isopolymolybdate Clusters as Reactive Core for Water Oxidation. Chemistry 2023; 29:e202203033. [PMID: 36310518 DOI: 10.1002/chem.202203033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
At near neutral to basic pH, hydrolysis-induced aggregation to insoluble bulk iron-oxide is often regarded as the pitfalls of molecular iron clusters. Iron-oxide nanocrystals are encouragingly active over the molecular clusters and/or bulk oxides albeit, stabilizing such nanostructures in aqueous pH and under turnover condition remain a perdurable challenge. Herein, an Anderson-type [Mo7 O24 ]6- isopolyanion, a small (dimension ca. 0.85 nm) isolable polyoxometalate (POM) possessing only {31} atoms, has been introduced for the first time as a covalent linker to stabilize an infinitely stable and aqueous-soluble γ-FeO(OH) nanocore. During the hydrothermal isolation of the material, a partial dissociation of the parent [Mo7 O24 ]6- may lead to the in situ generation of few analogous [Mox Oy ]n- clusters, proved by Raman study, which can also participate in stabilizing the γ-FeO(OH) nanocore, Mox Oy @FeO(OH). However, due to high ionic charge on {Mo=O} terminals of the [Mox Oy ]n- , they are covalently linked via MoVI -μ2 O-FeIII bridging to γ-FeO(OH) core in Mox Oy @FeO(OH), established by numerous spectroscopic and microscopic evidence. Such bonding mode is more likely as precedent from the coordination motif documented in the transition metal clusters stabilized by this POM. The γ-FeO(OH) nanocore of Mox Oy @FeO(OH) behaves as potent active center for electrochemical water oxidation with a overpotential, 263 mV @ 10 mA cm-2 , lower than that observed for bare γ-FeO(OH). Despite of some molybdenum dissolution from the POM ligands to the electrolyte, residual anionic POM fragments covalently bound to the OER active γ-FeO(OH) core of the Mox Oy @FeO(OH) makes the surface predominantly ionic that results in an ordered electrical double layer to promote a better charge transport across the electrode-electrolyte junction, less likely in bulk γ-FeO(OH).
Collapse
Affiliation(s)
- Laxmikanta Mallick
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| |
Collapse
|
33
|
Huang H, Song X, Yu C, Wei Q, Ni L, Han X, Huang H, Han Y, Qiu J. A Liquid-Liquid-Solid System to Manipulate the Cascade Reaction for Highly Selective Electrosynthesis of Aldehyde. Angew Chem Int Ed Engl 2023; 62:e202216321. [PMID: 36414544 DOI: 10.1002/anie.202216321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Electrocatalytic synthesis of aldehydes from alcohols exhibits unique superiorities as a promising technology, in which cascade reactions are involved. However, the cascade reactions are severely limited by the low selectivity resulting from the peroxidation of aldehydes in a traditional liquid-solid system. Herein, we report a novel liquid-liquid-solid system to regulate the selectivity of benzyl alcohol electrooxidation. The selectivity of benzaldehyde increases 200-fold from 0.4 % to 80.4 % compared with the liquid-solid system at a high current density of 136 mA cm-2 , which is the highest one up to date. In the tri-phase system, the benzaldehyde peroxidation is suppressed efficiently, with the conversion of benzaldehyde being decreased from 87.6 % to 3.8 %. The as-produced benzaldehyde can be in situ extracted to toluene phase and separated from the electrolyte to get purified benzaldehyde. This strategy provides an efficient way to efficiently enhance the selectivity of electrocatalytic cascade reactions.
Collapse
Affiliation(s)
- Hongling Huang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuedan Song
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaotong Han
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Huawei Huang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yingnan Han
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
34
|
Hausmann JN, Mebs S, Dau H, Driess M, Menezes PW. Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long-Range Order, Buffer-Binding, Morphology, Mass Transport, and Operation Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207494. [PMID: 36189873 DOI: 10.1002/adma.202207494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short-range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2 O)2 [B2 P2 O8 (OH)2 ]·H2 O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long-range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass-transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near-neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm-2 at 65 °C for 1 month without degrading performance.
Collapse
Affiliation(s)
- J Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Center Berlin for Materials and Energy, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
35
|
Al‐Naji M, Brandi F, Drieß M, Rosowski F. From Lignin to Chemicals: An Expedition from Classical to Modern Catalytic Valorization Technologies. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Majd Al‐Naji
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
| | - Francesco Brandi
- KU Leuven Center for Sustainable Catalysis and Engineering Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Matthias Drieß
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- Technische Universität Berlin Department of Chemistry, Metalorganics and Inorganic Materials Straße des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Frank Rosowski
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- BASF SE Process Research and Chemical Engineering 67056 Ludwigshafen Germany
| |
Collapse
|
36
|
Zhou P, Lv X, Tao S, Wu J, Wang H, Wei X, Wang T, Zhou B, Lu Y, Frauenheim T, Fu X, Wang S, Zou Y. Heterogeneous-Interface-Enhanced Adsorption of Organic and Hydroxyl for Biomass Electrooxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204089. [PMID: 36036562 DOI: 10.1002/adma.202204089] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) provides an efficient way to obtain high-value-added biomass-derived chemicals. Compared with other transition metal oxides, CuO exhibits poor oxygen evolution reaction performance, leading to high Faraday efficiency for HMF oxidation. However, the weak adsorption and activation ability of CuO to OH- species restricts its further development. Herein, the CuO-PdO heterogeneous interface is successfully constructed, resulting in an advanced onset-potential of the HMF oxidation reaction (HMFOR), a higher current density than CuO. The results of open-circuit potential, in situ infrared spectroscopy, and theoretical calculations indicate that the introduction of PdO enhances the adsorption capacity of the organic molecule. Meanwhile, the CuO-PdO heterogeneous interface promotes the adsorption and activation of OH- species, as demonstrated by zeta potential and electrochemical measurements. This work elucidates the adsorption enhancement mechanism of heterogeneous interfaces and provides constructive guidance for designing efficient multicomponent electrocatalysts in organic electrocatalytic reactions.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
- College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xingshuai Lv
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, 518110, China
- Beijing Computational Science Research Center (CSRC), Beijing, 100193, China
| | - Shasha Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Jingcheng Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Hongfang Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
- College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tehua Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
- College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Yuxuan Lu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Thomas Frauenheim
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, 518110, China
- Beijing Computational Science Research Center (CSRC), Beijing, 100193, China
- Bremen Center for Computational Materials Science, University of Bremen, 2835, Bremen, Germany
| | - Xianzhu Fu
- College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
37
|
Sun C, Zhang D, Zhao Y, Song C, Wang D. In-suit growth of NiS quantum dots embedded in ultra-thin N,O,S-tri-doped carbon porous nanosheets on carbon cloth for high-efficient HMF oxidation coupling hydrogen evolution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Hausmann JN, Menezes PW. Effect of Surface-Adsorbed and Intercalated (Oxy)anions on the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202207279. [PMID: 35762646 PMCID: PMC9546270 DOI: 10.1002/anie.202207279] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/17/2022]
Abstract
As the kinetically demanding oxygen evolution reaction (OER) is crucial for the decarbonization of our society, a wide range of (pre)catalysts with various non-active-site elements (e.g., Mo, S, Se, N, P, C, Si…) have been investigated. Thermodynamics dictate that these elements oxidize during industrial operation. The formed oxyanions are water soluble and thus predominantly leach in a reconstruction process. Nevertheless, recently, it was unveiled that these thermodynamically stable (oxy)anions can adsorb on the surface or intercalate in the interlayer space of the active catalyst. There, they tune the electronic properties of the active sites and can interact with the reaction intermediates, changing the OER kinetics and potentially breaking the persisting OER *OH/*OOH scaling relations. Thus, the addition of (oxy)anions to the electrolyte opens a new design dimension for OER catalysis and the herein discussed observations deepen the understanding of the role of anions in the OER.
Collapse
Affiliation(s)
- J. Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
- Material Chemistry Group for Thin Film Catalysis—CatLabHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Str. 1512489BerlinGermany
| |
Collapse
|
39
|
Guo M, Lu X, Xiong J, Zhang R, Li X, Qiao Y, Ji N, Yu Z. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review. CHEMSUSCHEM 2022; 15:e202201074. [PMID: 35790081 DOI: 10.1002/cssc.202201074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.
Collapse
Affiliation(s)
- Mengyan Guo
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University Guangzhou, Guangdong, 510275, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
40
|
Li J, Zhang C, Zhang C, Ma H, Guo Z, Zhong C, Xu M, Wang X, Wang Y, Ma H, Qiu J. Green Electrosynthesis of 5,5'-Azotetrazolate Energetic Materials Plus Energy-Efficient Hydrogen Production Using Ruthenium Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203900. [PMID: 35724969 DOI: 10.1002/adma.202203900] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Water electrolysis involves two parallel reactions, that is, oxygen evolution (OER) and hydrogen evolution (HER), in which sluggish OER is a significant limiting step that results in high energy consumption. Coupling the thermodynamically favorable electrooxidation of organic alternatives to value-added fine chemicals HER is a promising approach for the simultaneous cost-effective production of value-added chemicals and hydrogen. Here, a new coupling system for the green electrochemical synthesis of organic energetic materials (EMs) plus hydrogen production using single-atom catalysts is introduced. The catalysts are prepared by the facile galvanostatic deposition of ruthenium single atoms on the molybdenum selenide and reveal a low HER overpotential of 38.9 mV at -10 mA cm-2 in an alkaline medium. Importantly, the cell voltage of water electrolysis can be significantly reduced to only 1.35 V at a current of 10 mA cm-2 by coupling water splitting with the electrooxidation of 5-amino-1H-tetrazole to synthesize 5,5'-azotetrazolate energetic material. These materials are traditionally synthesized under harsh conditions involving a strong oxidizing agent, high-temperature conditions, and difficult separation of by-products. This study provides a green and efficient method of synthesizing organic EMs while simultaneously producing hydrogen.
Collapse
Affiliation(s)
- Jiachen Li
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Cong Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chi Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Huijun Ma
- National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, 710127, China
| | - Zhaoqi Guo
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chenglin Zhong
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuanjun Wang
- High-Tech Institute of Xi'an, Xi'an, 710025, China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
41
|
Rajput A, Adak MK, Chakraborty B. Intrinsic Lability of NiMoO 4 to Excel the Oxygen Evolution Reaction. Inorg Chem 2022; 61:11189-11206. [PMID: 35830301 DOI: 10.1021/acs.inorgchem.2c01167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nickel-based bimetallic oxides such as NiMoO4 and NiWO4, when deposited on the electrode substrate, show remarkable activity toward the electrocatalytic oxygen evolution reaction (OER). The stability of such nanostructures is nevertheless speculative, and catalytically active species have been less explored. Herein, NiMoO4 nanorods and NiWO4 nanoparticles are prepared via a solvothermal route and deposited on nickel foam (NF) (NiMoO4/NF and NiWO4/NF). After ensuring the chemical and structural integrity of the catalysts on electrodes, an OER study has been performed in the alkaline medium. After a few cyclic voltammetry (CV) cycles within the potential window of 1.0-1.9 V (vs reversible hydrogen electrode (RHE)), ex situ Raman analysis of the electrodes infers the formation of NiO(OH)ED (ED: electrochemically derived) from NiMoO4 precatalyst, while NiWO4 remains stable. A controlled study, stirring of NiMoO4/NF in 1 M KOH without applied potential, confirms that NiMoO4 hydrolyzes to the isolable NiO, which under a potential bias converts into NiO(OH)ED. Perhaps the more ionic character of the Ni-O-Mo bond in the NiMoO4 compared to the Ni-O-W bond in NiWO4 causes the transformation of NiMoO4 into NiO(OH)ED. A comparison of the OER performance of electrochemically derived NiO(OH)ED, NiWO4, ex-situ-prepared Ni(OH)2, and NiO(OH) confirmed that in-situ-prepared NiO(OH)ED remained superior with a substantial potential of 238 (±6) mV at 20 mA cm-2. The notable electrochemical performance of NiO(OH)ED can be attributed to its low Tafel slope value (26 mV dec-1), high double-layer capacitance (Cdl, 1.21 mF cm-2), and a low charge-transfer resistance (Rct, 1.76 Ω). The NiO(OH)ED/NF can further be fabricated as a durable OER anode to deliver a high current density of 25-100 mA cm-2. Post-characterization of the anode proves the structural integrity of NiO(OH)ED even after 12 h of chronoamperometry at 1.595 V (vs reversible hydrogen electrode (RHE)). The NiO(OH)ED/NF can be a compatible anode to construct an overall water splitting (OWS) electrolyzer that can operate at a cell potential of 1.64 V to reach a current density of 10 mA cm-2. Similar to that on NF, NiMoO4 deposited on iron foam (IF) and carbon cloth (CC) also electrochemically converts into NiO(OH) to perform a similar OER activity. This work understandably demonstrates monoclinic NiMoO4 to be an inherently unstable electro(pre)catalyst, and its structural evolution to polycrystalline NiO(OH)ED succeeding the NiO phase is intrinsic to its superior activity.
Collapse
Affiliation(s)
- Anubha Rajput
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Mrinal Kanti Adak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| |
Collapse
|
42
|
Hausmann JNW, Menezes PW. Effect of Surface‐Adsorbed and Intercalated (Oxy)anions on the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- J. Niklas W. Hausmann
- TU Berlin: Technische Universitat Berlin Chemistry Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| | - Prashanth W. Menezes
- Technische Universitat Berlin Chemistry Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| |
Collapse
|
43
|
Gou W, Chen Y, Zhong Y, Xue Q, Li J, Ma Y. Phytate-coordinated nickel foam with enriched NiOOH intermediates for 5-hydroxymethylfurfural electrooxidation. Chem Commun (Camb) 2022; 58:7626-7629. [PMID: 35712852 DOI: 10.1039/d2cc02182j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manipulating the surface reconstruction of Ni-based catalysts to form NiOOH intermediates is crucial for electrooxidation. Herein, we report a phytate coordination-induced enrichment of NiOOH on phytate-coordinated Ni foam, which exhibited high catalytic performance for 5-hydroxymethylfurfural electro-oxidation. The HMF oxidation rate of 0.76 mmol h-1 outperformed the majority of Ni-based catalysts.
Collapse
Affiliation(s)
- Wangyan Gou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Yimin Chen
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Yifei Zhong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qingyu Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
44
|
Chen Z, Yang H, Kang Z, Driess M, Menezes PW. The Pivotal Role of s-, p-, and f-Block Metals in Water Electrolysis: Status Quo and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108432. [PMID: 35104388 DOI: 10.1002/adma.202108432] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Indexed: 05/27/2023]
Abstract
Transition metals, in particular noble metals, are the most common species in metal-mediated water electrolysis because they serve as highly active catalytic sites. In many cases, the presence of nontransition metals, that is, s-, p-, and f-block metals with high natural abundance in the earth-crust in the catalytic material is indispensable to boost efficiency and durability in water electrolysis. This is why alkali metals, alkaline-earth metals, rare-earth metals, lean metals, and metalloids receive growing interest in this research area. In spite of the pivotal role of these nontransition metals in tuning efficiency of water electrolysis, there is far more room for developments toward a knowledge-based catalyst design. In this review, five classes of nontransition metals species which are successfully utilized in water electrolysis, with special emphasis on electronic structure-catalytic activity relationships and phase stability, are discussed. Moreover, specific fundamental aspects on electrocatalysts for water electrolysis as well as a perspective on this research field are also addressed in this account. It is anticipated that this review can trigger a broader interest in using s-, p-, and f-block metals species toward the discovery of advanced polymetal-containing electrocatalysts for practical water splitting.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Hongyuan Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
45
|
Chen J, Wang Y, Zhou M, Li Y. Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co-CoS x heterojunction by intensified spin polarization. Chem Sci 2022; 13:4647-4653. [PMID: 35656131 PMCID: PMC9020186 DOI: 10.1039/d2sc00038e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022] Open
Abstract
The conversion of biomass-derived platform molecules (e.g., 5-hydroxymethyl furfural (HMF)) represents a sustainable route to produce value-added chemicals. Here we report the fabrication of an N-doped carbon nanotube assembled yolk-shell polyhedron with embedded Co-CoS x nanoparticles (NPs) (Y-Co-CoS x @CN) for efficient HMF electrooxidation. DFT calculations demonstrate that the formation of the heterojunction could intensify spin polarization in Co-CoS2, thus achieving effective d-p coupling between the catalyst and reactant/intermediate. As expected, Y-Co-CoS x @CN exhibits excellent HMF electro-oxidation activity at a low applied potential of 1.29 V vs. RHE at 10 mA cm-2 in 0.1 M KOH with 5 mM HMF, affording an FDCA yield of 96% and FE of 93.5%. This work not only sheds light on the catalytic nature of the heterojunction and the underlying mechanisms for the enhancement of HMF electro-oxidation activity, but would also provide a descriptor for the rational design of advanced electro-catalysts.
Collapse
Affiliation(s)
- Jianmin Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Yajing Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Mingjun Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
46
|
Kundu A, Adak MK, Kumar Y, Chakraborty B. Electrochemically Derived Crystalline CuO from Covellite CuS Nanoplates: A Multifunctional Anode Material. Inorg Chem 2022; 61:4995-5009. [PMID: 35293211 DOI: 10.1021/acs.inorgchem.1c03830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present era, electrochemical water splitting has been showcased as a reliable solution for alternative and sustainable energy development. The development of a cheap, albeit active, catalyst to split water at a substantial overpotential with long durability is a perdurable challenge. Moreover, understanding the nature of surface-active species under electrochemical conditions remains fundamentally important. A facile hydrothermal approach is herein adapted to prepare covellite (hexagonal) phase CuS nanoplates. In the covellite CuS lattice, copper is present in a mixed-valent state, supported by two different binding energy values (932.10 eV for CuI and 933.65 eV for CuII) found in X-ray photoelectron spectroscopy analysis, and adopted two different geometries, that is, trigonal planar preferably for CuI and tetrahedral preferably for CuII. The as-synthesized covellite CuS behaves as an efficient electro(pre)catalyst for alkaline water oxidation while deposited on a glassy carbon and nickel foam (NF) electrodes. Under cyclic voltammetry cycles, covellite CuS electrochemically and irreversibly oxidized to CuO, indicated by a redox feature at 1.2 V (vs the reversible hydrogen electrode) and an ex situ Raman study. Electrochemically activated covellite CuS to the CuO phase (termed as CuSEA) behaves as a pure copper-based catalyst showing an overpotential (η) of only 349 (±5) mV at a current density of 20 mA cm-2, and the TOF value obtained at η349 (at 349 mV) is 1.1 × 10-3 s-1. A low Rct of 5.90 Ω and a moderate Tafel slope of 82 mV dec-1 confirm the fair activity of the CuSEA catalyst compared to the CuS precatalyst, reference CuO, and other reported copper catalysts. Notably, the CuSEA/NF anode can deliver a constant current of ca. 15 mA cm-2 over a period of 10 h and even a high current density of 100 mA cm-2 for 1 h. Post-oxygen evolution reaction (OER)-chronoamperometric characterization of the anode via several spectroscopic and microscopic tools firmly establishes the formation of crystalline CuO as the active material along with some amorphous Cu(OH)2 via bulk reconstruction of the covellite CuS under electrochemical conditions. Given the promising OER activity, the CuSEA/NF anode can be fabricated as a water electrolyzer, Pt(-)//(+)CuSEA/NF, that delivers a j of 10 mA cm-2 at a cell potential of 1.58 V. The same electrolyzer can further be used for electrochemical transformation of organic feedstocks like ethanol, furfural, and 5-hydroxymethylfurfural to their respective acids. The present study showcases that a highly active CuO/Cu(OH)2 heterostructure can be constructed in situ on NF from the covellite CuS nanoplate, which is not only a superior pure copper-based electrocatalyst active for OER and overall water splitting but also for the electro-oxidation of industrial feedstocks.
Collapse
Affiliation(s)
- Avinava Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mrinal Kanti Adak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
47
|
Yang H, Hausmann JN, Hlukhyy V, Braun T, Laun K, Zebger I, Driess M, Menezes PW. An Intermetallic CaFe6Ge6 Approach to Unprecedented Ca‐Fe‐O Electrocatalyst for Efficient Alkaline Oxygen Evolution Reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Viktor Hlukhyy
- Technical University of Munich: Technische Universitat Munchen Chemistry Lichtenbergstraße 4Garching 85747 Garching GERMANY
| | - Thomas Braun
- Technical University of Munich: Technische Universitat Munchen Chemistry GERMANY
| | | | - Ingo Zebger
- Technical University of Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Matthias Driess
- Technische Universitat Graz Chemistry Strasse des 17. Juni 135, Sekr. C2Technische Universität BerlinBerlin D-10623 Berlin GERMANY
| | - Prashanth W. Menezes
- Technische Universitat Berlin Chemistry Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| |
Collapse
|
48
|
Chen H, Zhang M, Zhang K, Li Z, Liang X, Ai X, Zou X. Screening and Understanding Lattice Silicon-Controlled Catalytically Active Site Motifs from a Library of Transition Metal-Silicon Intermetallics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107371. [PMID: 35018710 DOI: 10.1002/smll.202107371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Indexed: 06/14/2023]
Abstract
A joint theoretical and experimental study is reported to systematically explore over a library of transition metal-silicon intermetallics for understanding silicon-controlled active site motifs and discovering hydrogen-evolving electrocatalysts. On the one hand, every low-index surface termination of 115 transition metal (M)-silicon (Si) intermetallics is enumerated, followed by cataloging of stable adsorption sites and prediction of catalytic activities on the main exposed facets. It is theoretically found that silicon atoms in silicon-rich structures (especially MSi2 and MSi) show a strong site-isolating effect, which can eliminate M-M-M hollow and M-M bridge sites with too strong hydrogen-binding ability and thereby provide great opportunities for the exposure of novel highly active sites (e.g., M-top and Si-related sites). On the other hand, solid-state redox reactions are developed to synthesize a set of 24 silicides containing 5 MSi, 13 MSi2 , and 6 others, most of which are phase-pure samples. The experimental studies demonstrate that too rich silicon content in silicides (e.g., MSi2 ) leads to adverse effects, such as the formation of amorphous SiOx layers on the silicide surface, masking the presence of active sites during electrocatalysis. Finally, 5 MSi (M = Rh, Pd, Pt, Ru, Ir) as highly active hydrogen-evolving electrocatalysts are identified.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mingcheng Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Kexin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhenyu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuan Ai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
49
|
Chen D, Pu Z, Wang P, Lu R, Zeng W, Wu D, Yao Y, Zhu J, Yu J, Ji P, Mu S. Mapping Hydrogen Evolution Activity Trends of Intermetallic Pt-Group Silicides. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory, Foshan 528200, China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ruihu Lu
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Dulan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Youtao Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory, Foshan 528200, China
| |
Collapse
|
50
|
Aggarwal P, Sarkar D, Awasthi K, Menezes PW. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|