1
|
Hwang H, Heo SH, Jang JH, Choi C, Gu GH, Cha C, Shin TJ, Kim HS, Choi MK, Son JS. Multiple Phase Transition Induced Enhancement of Low-Temperature Thermoelectric Power in Ductile AgCuS-Based Thin Films. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24229-24238. [PMID: 40223327 DOI: 10.1021/acsami.5c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The increasing demand for energy autonomy in microscale and wearable electronics has intensified research interest in thermoelectric thin-film-based power generators. However, the development of such devices is challenging due to the intrinsic brittleness of inorganic materials and the poor performance of thin films. Recently, Ag2S-based compounds have emerged as ductile thermoelectric semiconductors. Nonetheless, the thermoelectric performance of their thin films remains constrained, especially at low temperatures. Herein, we present a solution-processed fabrication of a high-performance AgCuS/Cu2S composite thin film operable below 100 °C. These composite thin films underwent multiple phase transitions below 100 °C, notably increasing the thermoelectric power factors. Furthermore, the films exhibited significant intrinsic stretchability up to a strain of 16.1% owing to their intrinsic ductility. Wrinkled thin-film-based devices demonstrated enhanced power generation owing to multiple phase transitions and retained properties under 30% stretching, highlighting the potential of these films as viable energy harvesters for emerging electronic systems.
Collapse
Affiliation(s)
- Hyein Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Seung Hwae Heo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Jae Hong Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Cholong Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gang Hee Gu
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyoung Seop Kim
- Graduate Institute of Ferrous & Eco Materials Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Liu L, Dou Y, Wang J, Zhao Y, Kong W, Ma C, He D, Wang H, Zhang H, Chang A, Zhao P. Recent Advances in Flexible Temperature Sensors: Materials, Mechanism, Fabrication, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405003. [PMID: 39073012 PMCID: PMC11423192 DOI: 10.1002/advs.202405003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Flexible electronics is an emerging and cutting-edge technology which is considered as the building blocks of the next generation micro-nano electronics. Flexible electronics integrate both active and passive functions in devices, driving rapid developments in healthcare, the Internet of Things (IoT), and industrial fields. Among them, flexible temperature sensors, which can be directly attached to human skin or curved surfaces of objects for continuous and stable temperature measurement, have attracted much attention for applications in disease prediction, health monitoring, robotic signal sensing, and curved surface temperature measurement. Preparing flexible temperature sensors with high sensitivity, fast response, wide temperature measurement interval, high flexibility, stretchability, low cost, high reliability, and stability has become a research target. This article reviewed the latest development of flexible temperature sensors and mainly discusses the sensitive materials, working mechanism, preparation process, and the applications of flexible temperature sensors. Finally, conclusions based on the latest developments, and the challenges and prospects for research in this field are presented.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yingying Dou
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Junhua Wang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Yan Zhao
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Wenwen Kong
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Chaoyan Ma
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Donglin He
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Hongguang Wang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Huimin Zhang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Aimin Chang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Pengjun Zhao
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| |
Collapse
|
3
|
Meng Y, Cheng G. Human somatosensory systems based on sensor-memory-integrated technology. NANOSCALE 2024; 16:11928-11958. [PMID: 38847091 DOI: 10.1039/d3nr06521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
As a representative artificial neural network (ANN) for incorporating sensing functions and memory functions into one system to achieve highly miniaturized and highly integrated devices or systems, artificial sensory systems (ASSs) can have a far-reaching influence on precise instrumentation, sensing, and automation engineering. Artificial sensory systems have enjoyed considerable progress in recent years, from low degree integrations to highly advanced sophisticated integrations, from single-modal perceptions to multimode-fused perceptions. However, there are issues around the large hardware area, power consumption, and communication bandwidth needed during the processes where multimodal sensing signals are converted into a digital mode before they can be processed by a digital processor. Therefore, deepening the research into sensory integration is of great importance. In this review, we briefly introduce fundamental knowledge about the memristor mechanism, describe some representative human somatosensory systems, and elucidate the relationship between the properties of memristor devices and the structure. The electronic character of the sensors, future prospects, and key challenges surrounding sensor-memory integrated technologies are also discussed.
Collapse
Affiliation(s)
- Yanfang Meng
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, No. 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China.
| | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, No. 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
4
|
Li A, Wang Y, Li Y, Yang X, Nan P, Liu K, Ge B, Fu C, Zhu T. High performance magnesium-based plastic semiconductors for flexible thermoelectrics. Nat Commun 2024; 15:5108. [PMID: 38876994 PMCID: PMC11178910 DOI: 10.1038/s41467-024-49440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Low-cost thermoelectric materials with simultaneous high performance and superior plasticity at room temperature are urgently demanded due to the lack of ever-lasting power supply for flexible electronics. However, the inherent brittleness in conventional thermoelectric semiconductors and the inferior thermoelectric performance in plastic organics/inorganics severely limit such applications. Here, we report low-cost inorganic polycrystalline Mg3Sb0.5Bi1.498Te0.002, which demonstrates a remarkable combination of large strain (~ 43%) and high figure of merit zT (~ 0.72) at room temperature, surpassing both brittle Bi2(Te,Se)3 (strain ≤ 5%) and plastic Ag2(Te,Se,S) and organics (zT ≤ 0.4). By revealing the inherent high plasticity in Mg3Sb2 and Mg3Bi2, capable of sustaining over 30% compressive strain in polycrystalline form, and the remarkable deformability of single-crystalline Mg3Bi2 under bending, cutting, and twisting, we optimize the Bi contents in Mg3Sb2-xBix (x = 0 to 1) to simultaneously boost its room-temperature thermoelectric performance and plasticity. The exceptional plasticity of Mg3Sb2-xBix is further revealed to be brought by the presence of a dense dislocation network and the persistent Mg-Sb/Bi bonds during slipping. Leveraging its high plasticity and strength, polycrystalline Mg3Sb2-xBix can be easily processed into micro-scale dimensions. As a result, we successfully fabricate both in-plane and out-of-plane flexible Mg3Sb2-xBix thermoelectric modules, demonstrating promising power density. The inherent remarkable plasticity and high thermoelectric performance of Mg3Sb2-xBix hold the potential for significant advancements in flexible electronics and also inspire further exploration of plastic inorganic semiconductors.
Collapse
Affiliation(s)
- Airan Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Yuechu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Yuzheng Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Xinlei Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Pengfei Nan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Kai Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Chenguang Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
| | - Tiejun Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058, Hangzhou, China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China.
| |
Collapse
|
5
|
Zhong Z, Ding L, Man Z, Zeng Y, Pan B, Zhu JJ, Zhang M, Cheng F. Versatile Metal-Organic Framework Incorporating Ag 2S for Constructing a Photoelectrochemical Immunosensor for Two Breast Cancer Markers. Anal Chem 2024; 96:8837-8843. [PMID: 38757510 DOI: 10.1021/acs.analchem.4c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Breast cancer poses the significance of early diagnosis and treatment. Here, we developed an innovative photoelectrochemical (PEC) immunosensor characterized by high-level dual photocurrent signals and exceptional sensitivity. The PEC sensor, denoted as MIL&Ag2S, was constructed by incorporating Ag2S into a metal-organic framework of MIL-101(Cr). This composite not only enhanced electron-hole separation and conductivity but also yielded robust and stable dual photocurrent signals. Through the implementation of signal switching, we achieved the combined detection of cancer antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA) with outstanding stability, reproducibility, and specificity. The results revealed a linear range for CEA detection spanning 0.01-32 ng/mL, with a remarkably low detection limit of 0.0023 ng/mL. Similarly, for CA15-3 detection, the linear range extended from 0.1 to 320 U/mL, with a low detection limit of 0.014 U/mL. The proposed strategy introduces new avenues for the development of highly efficient, cost-effective, and user-friendly PEC sensors. Furthermore, it holds promising prospects for early clinical diagnosis, contributing to potential breakthroughs in medical detection and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zhaoxiang Zhong
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Lei Ding
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zu Man
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Yinan Zeng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Bochi Pan
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Jun-Jie Zhu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| |
Collapse
|
6
|
Schenk FM, Zellweger T, Kumaar D, Bošković D, Wintersteller S, Solokha P, De Negri S, Emboras A, Wood V, Yarema M. Phase-Change Memory from Molecular Tellurides. ACS NANO 2024; 18:1063-1072. [PMID: 38117038 PMCID: PMC10786157 DOI: 10.1021/acsnano.3c10312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Phase-change memory (PCM) is an emerging memory technology based on the resistance contrast between the crystalline and amorphous states of a material. Further development and realization of PCM as a mainstream memory technology rely on innovative materials and inexpensive fabrication methods. Here, we propose a generalizable and scalable solution-processing approach to synthesize phase-change telluride inks in order to meet demands for high-throughput material screening, increased energy efficiency, and advanced device architectures. Bulk tellurides, such as Sb2Te3, GeTe, Sc2Te3, and TiTe2, are dissolved and purified to obtain inks of molecular metal telluride complexes. This allowed us to unlock a wide range of solution-processed ternary tellurides by the simple mixing of binary inks. We demonstrate accurate and quantitative composition control, including prototype materials (Ge-Sb-Te) and emerging rare-earth-metal telluride-doped materials (Sc-Sb-Te). Spin-coating and annealing convert ink formulations into high-quality, phase-pure telluride films with preferred orientation along the (00l) direction. Deposition engineering of liquid tellurides enables thickness-tunable films, infilling of nanoscale vias, and film preparation on flexible substrates. Finally, we demonstrate cyclable and non-volatile prototype memory devices, achieving performance indicators such as resistance contrast and low reset energy on par with state-of-the-art sputtered PCM layers.
Collapse
Affiliation(s)
- Florian M Schenk
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Till Zellweger
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Dhananjeya Kumaar
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Darijan Bošković
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Simon Wintersteller
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Pavlo Solokha
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, I-16146 Genova, Italy
| | - Serena De Negri
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, I-16146 Genova, Italy
| | - Alexandros Emboras
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Vanessa Wood
- Materials and Device Engineering Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Maksym Yarema
- Chemistry and Materials Design Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| |
Collapse
|
7
|
Cha JH, Kim JY, Yu YJ, Jung DY. Enhanced resistive switching of silver copper iodide thin films prepared by interfacial phase formation. APPLIED SURFACE SCIENCE 2023; 637:157785. [DOI: 10.1016/j.apsusc.2023.157785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
8
|
Wang Y, Li W, Xu Y, Han C, Meng P, Yan C, Qi DC, Xu J. Large-Scale Silver Sulfide Nanomesh Membranes with Ultrahigh Flexibility. NANO LETTERS 2022; 22:9883-9890. [PMID: 36472408 DOI: 10.1021/acs.nanolett.2c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The growth of flexible semiconductor thin films and membranes is highly desirable for the fabrication of next-generation wearable devices. In this work, we have developed a one-step, surface tension-driven method for facile and scalable growth of silver sulfide (Ag2S) membranes with a nanomesh structure. The nanomesh membrane can in principle reach infinite size but only limited by the reactor size, while the thickness is self-limited to ca. 50 nm. In particular, the membrane can be continuously regenerated at the water surface after being transferred for mechanical and electronic tests. The free-standing membrane demonstrates exceptional flexibility and strength, resulting from the nanomesh structure and the intrinsic plasticity of the Ag2S ligaments, as revealed by robust manipulation, nanoindentation tests and a pseudo-in situ tensile test under scanning electron microscope. Bendable electronic resistance-switching devices are fabricated based on the nanomesh membrane.
Collapse
Affiliation(s)
- Yuting Wang
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Wei Li
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Chenhui Han
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Peng Meng
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Cheng Yan
- School of Mechanical, Medical and Process Engineering and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Dong-Chen Qi
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jingsan Xu
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
9
|
Tee SY, Ponsford D, Lay CL, Wang X, Wang X, Neo DCJ, Wu T, Thitsartarn W, Yeo JCC, Guan G, Lee T, Han M. Thermoelectric Silver-Based Chalcogenides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204624. [PMID: 36285805 PMCID: PMC9799025 DOI: 10.1002/advs.202204624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Indexed: 05/27/2023]
Abstract
Heat is abundantly available from various sources including solar irradiation, geothermal energy, industrial processes, automobile exhausts, and from the human body and other living beings. However, these heat sources are often overlooked despite their abundance, and their potential applications remain underdeveloped. In recent years, important progress has been made in the development of high-performance thermoelectric materials, which have been extensively studied at medium and high temperatures, but less so at near room temperature. Silver-based chalcogenides have gained much attention as near room temperature thermoelectric materials, and they are anticipated to catalyze tremendous growth in energy harvesting for advancing internet of things appliances, self-powered wearable medical systems, and self-powered wearable intelligent devices. This review encompasses the recent advancements of thermoelectric silver-based chalcogenides including binary and multinary compounds, as well as their hybrids and composites. Emphasis is placed on strategic approaches which improve the value of the figure of merit for better thermoelectric performance at near room temperature via engineering material size, shape, composition, bandgap, etc. This review also describes the potential of thermoelectric materials for applications including self-powering wearable devices created by different approaches. Lastly, the underlying challenges and perspectives on the future development of thermoelectric materials are discussed.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and EngineeringSingapore138634Singapore
| | - Daniel Ponsford
- Institute of Materials Research and EngineeringSingapore138634Singapore
- Department of ChemistryUniversity College LondonLondonWC1H 0AJUK
- Institute for Materials DiscoveryUniversity College LondonLondonWC1E 7JEUK
| | - Chee Leng Lay
- Institute of Materials Research and EngineeringSingapore138634Singapore
| | - Xiaobai Wang
- Institute of Materials Research and EngineeringSingapore138634Singapore
| | - Xizu Wang
- Institute of Materials Research and EngineeringSingapore138634Singapore
| | | | - Tianze Wu
- Institute of Sustainability for ChemicalsEnergy and EnvironmentSingapore627833Singapore
| | | | | | - Guijian Guan
- Institute of Molecular PlusTianjin UniversityTianjin300072China
| | - Tung‐Chun Lee
- Institute of Materials Research and EngineeringSingapore138634Singapore
- Department of ChemistryUniversity College LondonLondonWC1H 0AJUK
- Institute for Materials DiscoveryUniversity College LondonLondonWC1E 7JEUK
| | - Ming‐Yong Han
- Institute of Materials Research and EngineeringSingapore138634Singapore
- Institute of Molecular PlusTianjin UniversityTianjin300072China
| |
Collapse
|
10
|
Wang X, Tan J, Ouyang J, Zhang H, Wang J, Wang Y, Deringer VL, Zhou J, Zhang W, Ma E. Designing Inorganic Semiconductors with Cold-Rolling Processability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203776. [PMID: 35981888 PMCID: PMC9596854 DOI: 10.1002/advs.202203776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
While metals can be readily processed and reshaped by cold rolling, most bulk inorganic semiconductors are brittle materials that tend to fracture when plastically deformed. Manufacturing thin sheets and foils of inorganic semiconductors is therefore a bottleneck problem, severely restricting their use in flexible electronic applications. It is recently reported that a few single-crystalline 2D van der Waals (vdW) semiconductors, such as InSe, are deformable under compressive stress. Here it is demonstrated that intralayer fracture toughness can be tailored via compositional design to make inorganic semiconductors processable by cold rolling. Systematic ab initio calculations covering a range of van der Waals semiconductors homologous to InSe are reported, leading to material-property maps that forecast trends in both the susceptibility to interlayer slip and the intralayer fracture toughness against cracking. GaSe is predicted, and experimentally confirmed, to be practically amenable to being rolled to large (three quarters) thickness reduction and length extension by a factor of three. The fracture toughness and cleavage energy are predicted to be 0.25 MPa m0.5 and 15 meV Å-2 , respectively. The findings open a new realm of possibility for alloy selection and design toward processing-friendly group-III chalcogenides for practical applications.
Collapse
Affiliation(s)
- Xu‐Dong Wang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jieling Tan
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jian Ouyang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Hang‐Ming Zhang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jiang‐Jing Wang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Yuecun Wang
- Center for Advancing Materials Performance from the Nanoscale (CAMP‐Nano) and Hysitron Applied Research Center in China (HARCC)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Volker L. Deringer
- Department of ChemistryInorganic Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QRUK
| | - Jian Zhou
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Wei Zhang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - En Ma
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
11
|
Zhu Y, Liang JS, Shi X, Zhang Z. Full-Inorganic Flexible Ag 2S Memristor with Interface Resistance-Switching for Energy-Efficient Computing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43482-43489. [PMID: 36102604 PMCID: PMC9523614 DOI: 10.1021/acsami.2c11183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/03/2022] [Indexed: 06/01/2023]
Abstract
Flexible memristor-based neural network hardware is capable of implementing parallel computation within the memory units, thus holding great promise for fast and energy-efficient neuromorphic computing in flexible electronics. However, the current flexible memristor (FM) is mostly operated with a filamentary mechanism, which demands large energy consumption in both setting and computing. Herein, we report an Ag2S-based FM working with distinct interface resistance-switching (RS) mechanism. In direct contrast to conventional filamentary memristors, RS in this Ag2S device is facilitated by the space charge-induced Schottky barrier modification at the Ag/Ag2S interface, which can be achieved with the setting voltage below the threshold voltage required for filament formation. The memristor based on interface RS exhibits 105 endurance cycles and 104 s retention under bending condition, and multiple level conductive states with exceptional tunability and stability. Since interface RS does not require the formation of a continuous Ag filament via Ag+ ion reduction, it can achieve an ultralow switching energy of ∼0.2 fJ. Furthermore, a hardware-based image processing with a software-comparable computing accuracy is demonstrated using the flexible Ag2S memristor array. And the image processing with interface RS indeed consumes 2 orders of magnitude lower power than that with filamentary RS on the same hardware. This study demonstrates a new resistance-switching mechanism for energy-efficient flexible neural network hardware.
Collapse
Affiliation(s)
- Yuan Zhu
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Jia-sheng Liang
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
| | - Xun Shi
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
| | - Zhen Zhang
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| |
Collapse
|
12
|
Yoo J, Li S, Kim DH, Yang J, Choi MK. Materials and design strategies for stretchable electroluminescent devices. NANOSCALE HORIZONS 2022; 7:801-821. [PMID: 35686540 DOI: 10.1039/d2nh00158f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable displays have recently received increasing attention as input and/or output interfaces for next-generation human-friendly electronic systems. Stretchable electroluminescent (EL) devices are a core component of stretchable displays, and they can be classified into two types, structurally stretchable EL devices and intrinsically stretchable EL devices, according to the mechanism for achieving their stretchability. We herein present recent advances in materials and design strategies for stretchable EL devices. First, stretchable devices based on ultrathin EL devices are introduced. Ultrathin EL devices are mechanically flexible like thin paper, and they can become stretchable through various structural engineering methods, such as inducing a buckled structure, employing interconnects with stretchable geometries, and applying origami/kirigami techniques. Secondly, intrinsically stretchable EL devices can be fabricated by using inherently stretchable electronic materials. For example, light-emitting electrochemical cells and EL devices with a simpler structure using alternating current have been developed. Furthermore, novel stretchable semiconductor materials have been presented for the development of intrinsically stretchable light-emitting diodes. After discussing these two types of stretchable EL devices, we briefly discuss applications of deformable EL devices and conclude the review.
Collapse
Affiliation(s)
- Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Shi Li
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
13
|
Zhu Y, Liang JS, Mathayan V, Nyberg T, Primetzhofer D, Shi X, Zhang Z. High Performance Full-Inorganic Flexible Memristor with Combined Resistance-Switching. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21173-21180. [PMID: 35477302 PMCID: PMC9100493 DOI: 10.1021/acsami.2c02264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/15/2022] [Indexed: 06/02/2023]
Abstract
Flexible memristors hold great promise for flexible electronics applications but are still lacking of good electrical performance together with mechanical flexibility. Herein, we demonstrate a full-inorganic nanoscale flexible memristor by using free-standing ductile α-Ag2S films as both a flexible substrate and a functional electrolyte. The device accesses dense multiple-level nonvolatile states with a record high 106 ON/OFF ratio. This exceptional memristor performance is induced by sequential processes of Schottky barrier modification at the contact interface and filament formation inside the electrolyte. In addition, it is crucial to ensure that the cathode junction, where Ag+ is reduced to Ag, dominates the total resistance and takes the most of setting bias before the filament formation. Our study provides a comprehensive insight into the resistance-switching mechanism in conductive-bridging memristors and offers a new strategy toward high performance flexible memristors.
Collapse
Affiliation(s)
- Yuan Zhu
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Jia-sheng Liang
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
| | - Vairavel Mathayan
- Department
of Physics and Astronomy, Uppsala University, Uppsala 75121, Sweden
| | - Tomas Nyberg
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| | - Daniel Primetzhofer
- Department
of Physics and Astronomy, Uppsala University, Uppsala 75121, Sweden
| | - Xun Shi
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
| | - Zhen Zhang
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala 75121, Sweden
| |
Collapse
|
14
|
Zhao XF, Yang SQ, Wen XH, Huang QW, Qiu PF, Wei TR, Zhang H, Wang JC, Zhang DW, Shi X, Lu HL. A Fully Flexible Intelligent Thermal Touch Panel Based on Intrinsically Plastic Ag 2 S Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107479. [PMID: 35040221 DOI: 10.1002/adma.202107479] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Wearable touch panels, a typical flexible electronic device, can recognize and feed back the information of finger touch and movement. Excellent wearable touch panels are required to accurately and quickly monitor the signals of finger movement as well as the capacity of bearing various types of deformation. High-performance thermistor materials are one of the key functional components, but to date, a long-standing bottleneck is that inorganic semiconductors are typically brittle while the electrical properties of organic semiconductors are quite low. Herein, a high-performance flexible temperature sensor is reported by using plastic Ag2 S with ultrahigh temperature coefficient of resistance of -4.7% K-1 and resolution of 0.05 K, and rapid response/recovery time of 0.11/0.11 s. Moreover, the temperature sensor shows excellent durability without performance damage or loss during force stimuli tests. In addition, a fully flexible intelligent touch panel composed of a 16 × 10 Ag2 S-film-based temperature sensor array, as well as a flexible printed circuit board and a deep-learning algorithm is designed for perceiving finger touch signals in real-time, and intelligent feedback of Chinese characters and letters on an app. These results strongly show that high-performance flexible inorganic semiconductors can be widely used in flexible electronics.
Collapse
Affiliation(s)
- Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Shi-Qi Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Qi-Wei Huang
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Peng-Fei Qiu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tian-Ran Wei
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Zhang
- Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jia-Cheng Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xun Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai, 200433, China
| |
Collapse
|
15
|
Liu X, Cao J, Qiu J, Zhang X, Wang M, Liu Q. Flexible and Stretchable Memristive Arrays for in-Memory Computing. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.821687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the tremendous progress of Internet of Things (IoT) and artificial intelligence (AI) technologies, the demand for flexible and stretchable electronic systems is rapidly increasing. As the vital component of a system, existing computing units are usually rigid and brittle, which are incompatible with flexible and stretchable electronics. Emerging memristive devices with flexibility and stretchability as well as direct processing-in-memory ability are promising candidates to perform data computing in flexible and stretchable electronics. To execute the in-memory computing paradigm including digital and analogue computing, the array configuration of memristive devices is usually required. Herein, the recent progress on flexible and stretchable memristive arrays for in-memory computing is reviewed. The common materials used for flexible memristive arrays, including inorganic, organic and two-dimensional (2D) materials, will be highlighted, and effective strategies used for stretchable memristive arrays, including material innovation and structural design, will be discussed in detail. The current challenges and future perspectives of the in-memory computing utilizing flexible and stretchable memristive arrays are presented. These efforts aim to accelerate the development of flexible and stretchable memristive arrays for data computing in advanced intelligent systems, such as electronic skin, soft robotics, and wearable devices.
Collapse
|