1
|
Zhou B, Cao LH, Huang MF, Yang Y, Qi S, Cao XJ, Chen XY. Temperature and Solvent Dual Switch Photochromic Chiral Ionic Hydrogen-Bonded Organic Framework for Circularly Polarized Luminescence and Advanced Encryption. Angew Chem Int Ed Engl 2025; 64:e202504645. [PMID: 40152082 DOI: 10.1002/anie.202504645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Multi-response encryption materials with temperature control and time resolution have attracted widespread attention due to their unique response characteristics and higher application security. The design and development of photochromic crystalline materials with multiple stimulus responses remain challenging. In this study, we report a pair of responsive photochromic chiral ionic hydrogen-bonded organic framework (iHOF) R/S-iHOF-19, controlled by both temperature and solvent through charge-assisted synthesis. The chromophore tetrakis(4-sulfophenyl)ethylene (H4TPE) acts as an electron donor and (1R/S,2R/S)-1,2-diphenylethylenediamine (R/S-DPEN) as an electron acceptor and chiral source. Water and methanol molecules connect the donor and acceptor and interact to build a 3D supramolecular framework. Notably, water and methanol molecules form independent hydrogen-bonding channels within the iHOF structural framework, providing a transfer path for the photoinduced electrons. Surprisingly, the formation of a continuous chiral supramolecular framework by R/S-DPEN while generating photo-induced radicals under ultraviolet (UV) irradiation at -20 °C imparts excellent circularly polarized luminescence (CPL) properties to R/S-iHOF-19. The glum values reach -1.8 × 10-3 and +3.75 × 10-3, respectively, and show an enhancement of the circular polarization of light with decreasing temperature. This CPL with unique low-temperature stimulus-responsive photochromism provides new guidance and perspectives for the development of information security and multiple encryption materials.
Collapse
Affiliation(s)
- Bin Zhou
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ming-Feng Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yi Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Simeng Qi
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
2
|
Ji H, Luo Z, Yang X, Jin X, Zhao T, Duan P. Chiral dual-annihilator model for controllable photon upconversion and multi-dimensional optical modulation. Nat Commun 2025; 16:4952. [PMID: 40436922 PMCID: PMC12119800 DOI: 10.1038/s41467-025-60290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Triplet-triplet annihilation photon upconversion seeks efficient conversion of low-energy photons to high-energy emission. However, the triplet-triplet annihilation photon upconversion system faces limitations in emission gamut because efficient triplet-triplet energy transfer between sensitizer and annihilator relies on triplet energy matching, making it challenging to realize multi-channel luminescence and multi-dimensional optical control. Here, to overcome this barrier, we propose a chiral dual-annihilator model, which mitigates the restriction of energy matching and achieves facile manipulation of circularly polarized luminescence through a dual-channel triplet-triplet energy transfer process. A theoretical equation for quantifying the overall triplet-triplet energy transfer efficiency and the energy flow between the sensitizer and two kinds of annihilators is proposed. Its accuracy is demonstrated by fine-controlling the emission bandwidth of triplet-triplet annihilation photon upconversion (average error less than 4.5%) in the experimental aspect. In addition, by introducing chiral liquid crystals, the dual-annihilator model achieves data coding and multi-dimensional optical encryption applications. This dual-annihilator model deepens the understanding of energy flow and lays the foundation for accurate, multidimensional modulation of photon upconversion.
Collapse
Affiliation(s)
- Honghan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing, People's Republic of China
| | - Zhiwang Luo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China.
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Liu R, Wei J, Hao J, Yang Z. Controlling Circularly Polarized Luminescence Enabled by Chirality and Energy Transfer from Optimized Chiral Molecules to Quantum Dots. ACS NANO 2025. [PMID: 40399769 DOI: 10.1021/acsnano.5c05946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Chirality transfer/amplification and energy transfer in artificial assembly systems are longstanding challenges inspired by biological systems. In particular, controlling intercomponent interactions to engineer CPL-active materials in multicomponent chiral coassemblies remains difficult. Here, we report the simultaneous realization of chirality and energy transfer in self-assembled hybrid systems comprising quantum dots with high photoluminescence quantum yield and organic molecules featuring aggregation-induced emission (AIE). Three chiral AIE molecules based on the tetraphenylethylene core, differing in the number and/or position of alkyl chains, were designed and synthesized. These structural variations led to distinct self-assembled morphologies, including helical fibrils, fibril bundles, and ribbons. Co-assembly with luminescent CdSe/CdS nanorods yielded organic-inorganic hybrid nanocomposites, where chirality transfer from the organic molecules to the nanorods strongly depended on the molecular structure. In parallel, efficient energy transfer from chiral donors to the nanorod acceptors was observed across all systems. Notably, the synergistic action of both chirality and energy transfer enabled the construction of CPL-active materials with high luminescence asymmetry factors. This work presents a strategy for designing chiroptical systems with enhanced chiroptical performance.
Collapse
Affiliation(s)
- Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
4
|
Zhao P, Guo WC, Lu HY, Chen CF. High-Performance White Circularly Polarized Photoluminescence and Electroluminescence from Multi-Emission Enantiomers. Angew Chem Int Ed Engl 2025; 64:e202424918. [PMID: 39929775 DOI: 10.1002/anie.202424918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
A pair of multi-emission enantiomers, (R)-DO-PSeZ and (S)-DO-PSeZ, was designed and synthesized by integrating Se-induced conformationally isomeric donors with a chiral carbonyl-containing acceptor into a unified molecular framework. The enantiomers showed white emission with blue, yellow and red multi-emission bands in solution and film at CIE coordinates of (0.39, 0.35) and (0.33, 0.34), respectively. Doped film of the enantiomers achieved a high photoluminescence quantum yield of 42 %, accompanied by mirror-image white circularly polarized photoluminescence (WCPPL) signals with a |gPL| value of 2.6×10-3. Moreover, the enantiomers also showed white circularly polarized electroluminescence (WCPEL) in organic light-emitting diodes with CIE coordinates of (0.29, 0.33) and EQEmax of 3.1 %. Notably, this work represents the first single-molecule multi-emission WCPL materials and achieved the highest performance for white OLEDs based on single-molecule organic materials with phosphorescent properties. Furthermore, leveraging Bragg reflection from dual-layer cholesteric liquid crystals, the enantiomers achieved |gPL| and |gEL| values of 1.85 and 1.88, respectively, marking the highest reported values for WCPPL and WCPEL to date.
Collapse
Affiliation(s)
- Pei Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chen Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Yan Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Feng Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Geng S, Li H, Lv Z, Zhai Y, Tian B, Luo Y, Zhou Y, Han ST. Challenges and Opportunities of Upconversion Nanoparticles for Emerging NIR Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419678. [PMID: 40237212 DOI: 10.1002/adma.202419678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/21/2025] [Indexed: 04/18/2025]
Abstract
Upconversion nanoparticles (UCNPs), incorporating lanthanide (Ln) dopants, can convert low-energy near-infrared photons into higher-energy visible or ultraviolet light through nonlinear energy transfer processes. This distinctive feature has attracted considerable attention in both fundamental research and advanced optoelectronics. Challenges such as low energy-conversion efficiency and nonradiative losses limit the performance of UCNP-based optoelectronic devices. Recent advancements including optimized core-shell structures, tailed Ln-doping concentration, and surface modifications show significant promise for improving the efficiency and stability. In addition, combining UCNPs with functional materials can broaden their applications and improve device performance, paving the way for the innovation of next-generation optoelectronics. This paper first categorizes and elaborates on various upconversion mechanisms in UCNPs, focusing on strategies to boost energy transfer efficiency and prolong luminescence. Subsequently, an in-depth discussion of the various materials that can enhance the efficiency of UCNPs and expand their functionality is provided. Furthermore, a wide range of UCNP-based optoelectronic devices is explored, and multiple emerging applications in UCNP-based neuromorphic computing are highlighted. Finally, the existing challenges and potential solutions involved in developing practical UCNPs optoelectronic devices are considered, as well as an outlook on the future of UCNPs in advanced technologies is provided.
Collapse
Affiliation(s)
- Sunyingyue Geng
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Hangfei Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| | - Ying Luo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
6
|
Zhou W, Qin H, Zhang Q, Cai J, Qi H, Qi H. Single-Site Iridium Catalyst on Metal-Organic Framework as Light-Responsive Oxidase-Like Nanozyme with High Stability for Colorimetric Detection of Antioxidant Capacity. Anal Chem 2025; 97:6555-6562. [PMID: 40101180 DOI: 10.1021/acs.analchem.4c06063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The design and synthesis of advanced artificial enzymes are essential for developing promising surrogates for natural enzymes. Herein, we reported an efficient and facile strategy for the synthesis of a single-site iridium catalyst on a metal-organic framework (UiO-67@Ir) as a light-responsive oxidase-like nanozyme, in which UiO-67 was utilized as a host template and the iridium(III) complex was utilized as a photosensitizer with a light-responsive property. A single-site iridium catalyst on UiO-67@Ir by the coordination of the Ir (III) complex with the nitrogen atom of UiO-67 is confirmed by X-ray photoelectron spectroscopy and aberration-corrected atomic-resolution high-angle annular dark-field scanning transmission electron microscopy. The UiO-67@Ir possesses remarkable light-responsive oxidase-like activity and good cycle and storage stability. Excellent catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) was obtained with 0.204 mM of Michaelis-Menten constant (Km) due to its large surface areas and abundant active sites. TMB was oxidized by UiO-67@Ir in the presence of O2 under light irradiation through the formation of both •OH and O2•- by type I photosensitization processes (electron transfer) and the formation of 1O2 by type II photosensitization processes (energy transfer). Moreover, a sensitive colorimetric method was developed for the detection of antioxidants with a detection limit of 0.6, 0.5, and 0.3 μM for ascorbic acid, glutathione, and cysteine, respectively. The total antioxidant capacity in fruit and drink samples were analyzed with desirable results. This study not only enlightens the novel nanozyme designing strategies but also suggests its good analytical performance in colorimetric sensing.
Collapse
Affiliation(s)
- Wenshuai Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Haoran Qin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Qian Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Jiaqi Cai
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Hetong Qi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| |
Collapse
|
7
|
Jing SM, Gu ZG, Zhang J. Chiral Cross-Linked Covalent Organic Framework Films for Highly Sensitive Circularly Polarized Luminescence Probing. J Am Chem Soc 2025. [PMID: 40026142 DOI: 10.1021/jacs.5c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The development of covalent organic framework (COF) films featuring circular polarization luminescence (CPL) probing remains a formidable challenge. Herein, we developed a chiral cross-linked COF film to obtain uniform and dense chiral COF films (chirCOFilm) possessing highly sensitive CPL probing for enantiomers. The axial chiral cross-linkers (R-/S-BBNA) are initially introduced into the channels of a COF film (COFilm/R-BBNA or COFilm/S-BBNA) by the vapor-assisted epitaxial method. Then, olefin groups in R-/S-BBNA and COF layers undergo a chiral cross-linking reaction under UV irradiation, forming a chirCOFilm. The obtained chirCOFilms have strong chirality with mirror images, fluorescence discoloration, and intense CPL properties. A multitude of rich chiral photopatterns and chirCOFilm/PDMS flexible films are prepared taking advantage of the photochromic properties of the chirCOFilms during UV illumination, showing the potential application of advanced anticounterfeiting. More importantly, the chirCOFilms realize highly sensitive CPL probing of phenethylamine enantiomers at 5% concentration, which can hardly be achieved from their corresponding fluorescence probing. This study not only provides a new strategy for preparing chiral COF films using chiral cross-linking reaction but also opens a new avenue for achieving highly sensitive probing of enantiomers though CPL.
Collapse
Affiliation(s)
- Shui-Ming Jing
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Xu XQ, Li WJ, Zhang DY, Zhu Y, Xu WT, Wang Y, Wang XQ, Wang W, Yang HB. Chiral Rotaxane-Branched Dendrimers as Relays in Artificial Light-Harvesting Systems with Boosted Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202419434. [PMID: 39578231 DOI: 10.1002/anie.202419434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Starting from AIEgen-functionalized chiral [2]rotaxane building block, we have successfully synthesized a new class of chiral rotaxane-branched dendrimers through controllable divergent strategy for the first time, based on which novel chiral artificial light-harvesting systems (LHSs) were successfully constructed in aqueous phase by sequentially introducing achiral donor and acceptor. More importantly, accompanied by the two-step Förster resonance energy transfer (FRET) process in the resultant artificial LHSs, the sequentially amplified circularly polarized luminescence (CPL) performances were achieved, highlighting that the chiral rotaxane-branched dendrimers could serve as excellent relay for both energy transfer and chirality transmission. Impressively, compared with the sole chiral rotaxane-branched dendrimers, the dissymmetry factors (glum) values of the resultant artificial LHSs were amplified by one order of magnitude up to 0.038, enabling their further applications in information storage and encryption. The proof-of concept study provides not only a feasible approach for the efficient amplification of CPL performances but also a novel platform for the construction of novel chiral luminescent materials.
Collapse
Affiliation(s)
- Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
9
|
Geng L, Qiao Y, Sun R, Guo L, Li ZQ, Ma Y, Yu MH, Chang Z, Bu XH. Solution-Processable Metal-Organic Framework Featuring Highly Tunable Dynamic Aggregation States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415511. [PMID: 39623789 DOI: 10.1002/adma.202415511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Indexed: 01/30/2025]
Abstract
The limited processability of metal-organic frameworks (MOFs) is hindered flexibility in the manipulation of their aggregation state and applications. Therefore, achieving highly processable MOFs is of great significance but a challenging goal. Herein, a facile strategy is presented for achieving the construction of solution-processable Mg-based MOF, NKU-Mg-1, allowing for dynamic control of the aggregation state through dynamic self-assembly (DySA) process and reversible circularly polarized luminescence (CPL) switcher modulation. Notably, micron-sized crystals of NKU-Mg-1 can be readily dispersed in water to form nano-sized colloids, triggered by the dynamic COO-Mg coordination bonding interruption by the competitive H2O-Mg bonding. Accordingly, the aggregation state of the colloid MOF can be readily tuned from 50-80 nm up to 1000 nm, in turn enabling control of aggregation-dependent emission. Specially, the solid-phase aggregation can be controlled via structural transitions between 3D NKU-Mg-1-rec-1 and 2D NKU-Mg-1-rec-2 nano-crystals, as confirmed by 3D electron diffraction. Furthermore, benefiting from its highly dynamic tunable aggregation nature, the rational incorporation of the chiral module confers significant CPL activity (glum up to 0.01). Importantly, controllable dynamic aggregation enables reversible switching of the CPL activity by precisely regulating the aggregation states. The solution-processable and dynamic aggregation-tunable features endow it highly promising for applications.
Collapse
Affiliation(s)
- Lin Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Qiao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Rui Sun
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Linshuo Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Ze-Qi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
10
|
Ji L, Li J, Meng T, Li Z, Zhu H, Ouyang G, Liu M. Photo-Induced Radical Generation of Supramolecular Gel with Sign-Inverted and White-Light Circularly Polarized Luminescence. SMALL METHODS 2025; 9:e2400824. [PMID: 39491819 DOI: 10.1002/smtd.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/09/2024] [Indexed: 11/05/2024]
Abstract
The realization of persistent luminescence and in particular circularly polarized luminescence (CPL) of organic radicals remains a challenge due to their sensitivity to oxygen at ambient conditions and elusive excited state chirality control. Here, it is reported that UV-irradiation on a supramolecular gel from a chiral triarylamine derivative, TPA-Ala, led to the formation of luminescent radicals with bright CPL. TPA-Ala can form an organogel in chloroform with blue emission and supramolecular chirality as demonstrated by both CD and CPL signals. Upon UV 365 nm irradiation, an emission color change from blue to cyan is observed due to the formation of photo-induced radicals. Interestingly, it is found that the supramolecular gel radicals showed stable luminescence with a lifetime ≈ 10 days in dark environments and inverted CPL, which represents a scarce example with persistent CPL from doublet-state due to oxygen isolation ability of the gel network. Furthermore, doping a guest dye, Rhodamine B (RhB), into the supramolecular gel (RhB/TPA-Ala = 30% in molar ratio) successfully obtained a transient white-light CPL through the superposition of photo-induced radical and guest dye emissions. This work provides a useful methodology for the fabrication of radical-based CPL materials via a supramolecular assembly approach.
Collapse
Affiliation(s)
- Lukang Ji
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Jinqi Li
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050018, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Tianzi Meng
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Zujian Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Huajie Zhu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050018, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
11
|
Yu X, Chen L, Liu Q, Liu X, Qiu Z, Zhang X, Zhu M, Cheng Y. Mechanically Twisting-Induced Top-Down Chirality Transfer for Tunable Full-Color Circularly Polarized Luminescent Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412778. [PMID: 39630003 PMCID: PMC11775519 DOI: 10.1002/advs.202412778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Indexed: 01/30/2025]
Abstract
Circularly polarized luminescence (CPL) materials with rich optical information are highly attractive for optical display, information storage, and encryption. Although previous investigations have shown that external force fields can induce CPL activity in nonchiral systems, the unique role of macroscopic external forces in inducing CPL has not been demonstrated at the level of molecule or molecular aggregate. Here, a canonical example of CPL generation by mechanical twisting in an achiral system consisting of a polymer matrix with embedded fluorescent molecules is presented. By carefully adjusting the twisting parameters in time and space, in conjunction with circular dichroism (CD), CPL, and 2D wide-angle X-ray scattering (2D WAXS) studies, a twisting-induced top-down chiral transfer mechanism derived from the molecular-level asymmetric rearrangement of fluorescent units is elucidated within polymers under external torsional forces. This top-down chiral transfer provides a simple, scalable, and versatile mechanical twisting strategy for the fabrication of CPL materials, allowing for fabricating full-color and handedness-tunable CPL fibers, where the macroscopic twist direction determines the CPL handedness. Moreover, the weavability of CPL fibers greatly extend their applications in anti-counterfeit encryption, as demonstrated by using embroidery techniques to design multilevel encryption patterns.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
12
|
Han X, Li W, Yang B, Jiang C, Qu Z, Xu H, Liu Y, Cui Y. Reticulating Crystalline Porous Materials for Asymmetric Heterogeneous Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2415574. [PMID: 39740186 DOI: 10.1002/adma.202415574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Asymmetric catalysis is essential for addressing the increasing demand for enantiopure compounds. Recent advances in reticular chemistry have demonstrated that metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) possess highly regular porous architectures, exceptional tunability, and the ability to incorporate chiral functionalities through their open channels or cavities. These characteristics make them highly effective and enantioselective catalysts for a wide range of asymmetric transformations. The chiral microenvironments within these frameworks facilitate precise control over reactant orientation and transition states, enhancing both catalytic activity and enantioselectivity, thereby offering significant advantages over traditional systems. This review overviews recent developments in chiral MOFs (CMOFs) and chiral COFs (CCOFs), focusing on their design strategies, and synthetic methods, and highlights the structure-property relationships that connect key structural features to asymmetric catalytic performance. Additionally, the current challenges and future prospects in this field are addressed, highlighting the pivotal role of reticular chemistry in the creation of chiral porous materials. It is anticipated that this review will inspire further research into the application of crystalline porous materials in asymmetric catalysis and promote the rational design of novel chiral heterogeneous catalysts for industrial use.
Collapse
Affiliation(s)
- Xing Han
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwei Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bolinyishi Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Mao H, Yang X, Shi Y, Zhao T, Zhang Y, Jin X, Duan P, Zhou J. Radiative energy transfer enabling upconverted circularly polarized persistent luminescence for multilevel information encryption. NANOSCALE 2024; 17:314-321. [PMID: 39575589 DOI: 10.1039/d4nr03819c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Optically active persistent luminescent materials are highly promising for anticounterfeiting applications due to their distinct luminescent features and the ability to display unique optical polarization properties. Despite significant progress in the development of circularly polarized persistent luminescence (CPPL) materials, the fabrication of upconverted circularly polarized persistent luminescence (UC-CPPL) materials remains a considerable challenge. In this study, we present an efficient strategy to construct UC-CPPL materials by embedding upconversion nanoparticles (UCNPs) and phosphors into chiral nematic liquid crystals (N*LC). The system operates through a radiative energy transfer mechanism between the UCNPs and phosphors. Upon excitation by low-energy near-infrared light (980 nm), the UCNPs emit high-energy ultraviolet light, which is effectively transferred to the phosphors, resulting in the emission of circularly polarized persistent visible light. By precisely tuning the photonic bandgap of the chiral N*LC, the UC-CPPL luminescence dissymmetry factor (gUC-CPPL) can be amplified to approximately 0.6. The concept of UC-CPPL was realized through the integration of three advanced optical properties: circularly polarized luminescence, long persistent luminescence, and upconversion luminescence. This integration enables more sophisticated and secure information encryption. The incorporation of upconversion materials facilitates the controlled concealment and selective release of encrypted information, while the multileveled encoding scheme further enhances the complexity and security of the encryption process, achieving true information hiding and encryption.
Collapse
Affiliation(s)
- Haolai Mao
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Yonghong Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, P. R. China
| | - Jin Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| |
Collapse
|
14
|
Fu K, Qu DH, Liu G. Reversible Circularly Polarized Luminescence Inversion and Emission Color Switching in Photo-Modulated Supramolecular Polymer for Multi-Modal Information Encryption. J Am Chem Soc 2024; 146:33832-33844. [PMID: 39606825 DOI: 10.1021/jacs.4c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Constructing circularly polarized luminescence (CPL) materials that exhibit dynamic handedness inversion and emissive color modulation for multimodal information encryption presents both a significant challenge and a compelling opportunity. Here, we have developed a pyridinethiazole acrylonitrile-cholesterol derivative (Z-PTC) that exhibits wavelength-dependent photoisomerization and photocyclization, enabling dynamic handedness inversion and emissive color modulation in supramolecular assemblies with decent CPL activity. Coordination with Ag+ ions form the Z-PTC Ag supramolecular polymer (SP1), which assembles into nanotubes displaying enhanced positive yellow-green CPL. Irradiation at 454 nm transforms SP1 into nanospheres of a mixture supramolecular polymer (SP2) of Z/E-PTC Ag, displaying inverted supramolecular chirality and emitting negative orange-yellow CPL. Reheating SP2 to 343 K restores the original nanotube structure via excellent reversible photoisomerization. Exposure to 365 nm light also induces CPL inversion from positive to negative and triggers morphological changes from SP1 to SP2. Prolonged irradiation causes further transformation into irregular supramolecular aggregate, shifting the emission color to blue and eliminating CPL. These dynamic properties of the multicolor CPL system, including reversible handedness inversion, can also be realized in the semisolid state, exhibiting promising potential for multimodal information encryption applications with enhanced security and complexity.
Collapse
Affiliation(s)
- Kuo Fu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Guofeng Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
15
|
Fu K, Zhao Y, Liu G. Pathway-directed recyclable chirality inversion of coordinated supramolecular polymers. Nat Commun 2024; 15:9571. [PMID: 39500893 PMCID: PMC11538330 DOI: 10.1038/s41467-024-53928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
It remains challenging to elucidate the fundamental mechanisms behind the dynamic chirality inversion of supramolecular assemblies with pathway complexity. Herein, metal coordination driven assembly systems based on pyridyl-conjugated cholesterol (PVPCC) and metal ions (Ag+ or Al3+) are established to demonstrate pathway-directed, recyclable chirality inversion and assembly polymorphism. In the Ag(I)/PVPCC system, a competitive pathway leads Ag-Complex to form either kinetically controlled supramolecular polymer (Ag-SP I) or thermodynamically favored Ag-SP II, accompanied by reversible chiroptical inversion. Conversely, the Al(III)/PVPCC system displays a solvent-assisted consecutive pathway: the Al-Complex initially forms ethanol-containing Al-SP II, and subsequently converts into ethanol-free Al-SP I with opposite chiroptical performance upon thermal treatment. Moreover, stable chirality inversion in the solid state enables potential dynamic circularly polarized luminescence encryption when Ag(I)/PVPCC is co-assembled with thioflavin T. These findings provide the guidance for the dynamic modulation of chirality functionality in supramolecular materials for applications in information processing, data encryption, and chiral spintronics.
Collapse
Affiliation(s)
- Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
16
|
Yang J, Song Q, Zhang T, Yan Y, Yuan C, Cui Y, Hou X. Chiral Metal-Organic Framework Films with Ordered Macropores for Enantioselective Analysis of Proteins. Anal Chem 2024; 96:17280-17289. [PMID: 39405304 DOI: 10.1021/acs.analchem.4c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Chiral film-based sensors show great promise for discriminating between enantiomers due to their miniaturization and low power consumption. However, their practical use is hindered by the trade-off between enantioselectivity and mass transfer capability, especially concerning biomacromolecules such as proteins. In this work, we present an effective and straightforward method for creating highly organized macropores within crystalline chiral metal-organic framework (CMOF) films. This approach harnesses the shaping influence of a polystyrene nanosphere template and the crystallization induced by the liquid dielectric barrier discharge plasma. The resultant highly ordered macro-microporous structures improve mass diffusion and access to chiral active sites in the hierarchical CMOF films. Coupled with their inherent chirality, strong fluorescence emission, high crystallinity, and exceptional stability, these attributes endow these CMOF films with enhanced sensing capabilities for chiral molecules. Particularly, the macro-microporous structure facilitates efficient protein recognition, overcoming a significant challenge encountered by MOFs due to protein dimensions surpassing MOF pore sizes. These films exhibit increased enantioselectivity, better limits of detection, and wider linear ranges compared with purely microporous CMOF films. This study thus provides a powerful synthetic approach for hierarchical CMOF films, addressing the limitations of traditional thin film sensors and opening an avenue for efficient chiral sensing of large biomacromolecules.
Collapse
Affiliation(s)
- Ji Yang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Qinyi Song
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Tong Zhang
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yilun Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chen Yuan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- College of Chemistry, and Key Lab of Green Chem and Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
17
|
Thaggard GC, Kankanamalage BKPM, Park KC, Lim J, Quetel MA, Naik M, Shustova NB. Switching from Molecules to Functional Materials: Breakthroughs in Photochromism With MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410067. [PMID: 39374006 DOI: 10.1002/adma.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Photochromic materials with properties that can be dynamically tailored as a function of external stimuli are a rapidly expanding field driven by applications in areas ranging from molecular computing, nanotechnology, or photopharmacology to programable heterogeneous catalysis. Challenges arise, however, when translating the rapid, solution-like response of stimuli-responsive moieties to solid-state materials due to the intermolecular interactions imposed through close molecular packing in bulk solids. As a result, the integration of photochromic compounds into synthetically programable porous matrices, such as metal-organic frameworks (MOFs), has come to the forefront as an emerging strategy for photochromic material development. This review highlights how the core principles of reticular chemistry (on the example of MOFs) play a critical role in the photochromic material performance, surpassing the limitations previously observed in solution or solid state. The symbiotic relationship between photoresponsive compounds and porous frameworks with a focus on how reticular synthesis creates avenues toward tailorable photoisomerization kinetics, directional energy and charge transfer, switchable gas sorption, and synergistic chromophore communication is discussed. This review not only focuses on the recent cutting-edge advancements in photochromic material development, but also highlights novel, vital-to-pursue pathways for multifaceted functional materials in the realms of energy, technology, and biomedicine.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Molly A Quetel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Mamata Naik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
18
|
Wang Y, Zhu X, Han J, Liang T, Wu N, Xiang J, Ouyang G, Liu M. Light-Up Fluorescence and Circularly Polarized Luminescence in Achiral Interlocked Framework via Adaptive Lone Pair-π Interaction Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406890. [PMID: 39225582 PMCID: PMC11516062 DOI: 10.1002/advs.202406890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Interactions between lone pairs and aromatic π systems are significant across biology and self-assembled materials. Herein, employing an achiral confinement metal-organic framework (MOF) encapsulates guest molecules, it is successfully realized that lone pair (lp)-π interaction induces fluorescence "turn-on" and circularly polarized luminescence for the first time. The MOFs synthesized based on naphthalenediimide show nearly non-emissive, which can be light-up by introducing acetone or ester guests containing lone pairs-π interaction. Furthermore, the introduction of a series of lp-rich chiral esters induces supramolecular chirality as well as circularly polarized luminescence in achiral MOFs, while also observing chiral adaptability. This work first demonstrates the luminescence and chiral induction via lone pair electrons-π interactions, presenting a fresh paradigm for the advancement of chiroptical materials.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
| | - Xuefeng Zhu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
| | - Jianlei Han
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
| | - Tongling Liang
- Beijing National Laboratory for Molecular Science (BNLMS)Center for Physicochemical Analysis and MeasurementInstitute of ChemistryCASZhongGuanCun North First Street 2Beijing100190China
| | - Ningning Wu
- Beijing National Laboratory for Molecular Science (BNLMS)Center for Physicochemical Analysis and MeasurementInstitute of ChemistryCASZhongGuanCun North First Street 2Beijing100190China
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Science (BNLMS)Center for Physicochemical Analysis and MeasurementInstitute of ChemistryCASZhongGuanCun North First Street 2Beijing100190China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
19
|
Shi A, Wang H, Yang G, Gu C, Xiang C, Qian L, Lam JWY, Zhang T, Tang BZ. Multiple Chirality Switching of a Dye-Grafted Helical Polymer Film Driven by Acid & Base. Angew Chem Int Ed Engl 2024; 63:e202409782. [PMID: 38888844 DOI: 10.1002/anie.202409782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newly-designed acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technology, but also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.
Collapse
Affiliation(s)
- Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Chang Gu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 518172, P. R. China
| |
Collapse
|
20
|
Zhao P, Guo WC, Li M, Lu HY, Chen CF. Single-Molecule White Circularly Polarized Photoluminescence and Electroluminescence from Dual-Emission Enantiomers. Angew Chem Int Ed Engl 2024; 63:e202409020. [PMID: 38899789 DOI: 10.1002/anie.202409020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The strategy of integrating conformational isomerization donors and chiral acceptors in a single molecule was proposed to construct white circularly polarized luminescence (WCPL) materials in this work. Consequently, a pair of dual-emission enantiomers, namely (R/S)-DO-PTZ, were designed and synthesized, which displayed white emission with blue and yellow dual-emission bands in solution and solid films with Commission Internationale de l'Eclairage (CIE) coordinates of (0.30, 0.33) and (0.33, 0.35), respectively. Meanwhile, (R/S)-DO-PTZ exhibited a high PLQY of up to 67 % in doped films and clear mirror-image WCPL signals with a |glum| value of 3.0×10-3. Moreover, white circularly polarized electroluminescence (WCPEL) based on organic light-emitting diodes (OLEDs) with (R/S)-DO-PTZ as emitters were also achieved with CIE coordinates of (0.32, 0.37) and EQEmax of 4.7 %, representing the state-of-the-art level of white OLEDs based on single-molecule purely organic emitters. By optimizing the device structure, warm WCPEL devices were further obtained with a |gEL| value of 2.8×10-3, CIE coordinates of (0.37, 0.48) and EQEmax of up to 15.6 %. To our knowledge, this is the first report of CP-WOLEDs based on single-molecule purely organic emitters.
Collapse
Affiliation(s)
- Pei Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chen Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Yan Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Feng Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
21
|
Zhao C, Wang Y, Jiang Y, Wu N, Wang H, Li T, Ouyang G, Liu M. Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403329. [PMID: 38625749 DOI: 10.1002/adma.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/18/2024]
Abstract
The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.
Collapse
Affiliation(s)
- Chenyang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningning Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
22
|
Zhao T, Duan P. Photon Upconversion Cooperates with Downshifting in Chiral Systems: Modulation, Amplification, and Applications of Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202406524. [PMID: 38702292 DOI: 10.1002/anie.202406524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
Circularly polarized luminescence (CPL)-active materials are increasingly recognized for their potential applications such as 3D imaging, data storage, and optoelectronic devices. Typically, CPL materials have required high-energy (HE) photons for excitation to emit low-energy (LE) circularly polarized light, a process known as downshifting CPL (DSCPL). However, the emergence of upconverted CPL (UCCPL), where the absorption of multi LE photons results in the emission of a single HE photon with circular polarization, has recently attracted considerable attention. This minireview highlights the intricate relationship between upconversion and CPL phenomena. During upconversion, the dissymmetry factor (glum) value can be improved in certain systems. Additionally, the integration of both LE and HE photons in upconversion-downshifting-synergistic systems offers avenues for dual-excitation or dual-emission CPL functionalities. More in detail, the emerging UCCPL based on various photon upconversion mechanisms and their synergy with DSCPL are introduced. Additionally, several examples that demonstrate the applications of UCCPL are presented to highlight the future opportunities.
Collapse
Affiliation(s)
- Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P.R. China
- Present address T. Zhao, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P.R. China
- Present address T. Zhao, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
24
|
Zhang H, Cheng Q, Pei H, He S, Guo R, Liu N, Mo Z. Synthesis Strategies, Preparation Methods, and Applications of Chiral Metal-Organic Frameworks. Chemistry 2024; 30:e202401091. [PMID: 38625048 DOI: 10.1002/chem.202401091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Chiral Metal-Organic Frameworks (CMOFs) is a kind of material with great application value in recent years. Formed by the coordination of metal ions or metal clusters with organic ligands. It has ordered and adjustable pores, multi-dimensional network structure, large specific surface area and excellent adsorption properties. This material structure combines the properties of metal-organic frameworks (MOFs) with the chiral properties of chiral molecules. It has great advantages in catalysis, adsorption, separation and other fields. Therefore, it has a wide range of applications in chemistry, biology, medicine and materials science. In this paper, various synthesis strategies and preparation methods of chiral metal-organic frameworks are reviewed from different perspectives, and the advantages of each method are analyzed. In addition, the applications of chiral metal-organic framework materials in enantiomer recognition and separation, circular polarization luminescence and asymmetric catalysis are systematically summarized, and the corresponding mechanisms are discussed. Finally, the challenges and prospects of the development of chiral metal-organic frame materials are analyzed in detail.
Collapse
Affiliation(s)
- Hui Zhang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education,College of Chemistry and Chemical Engineering, Northwest Normal University, 730000, Lanzhou, Gansu, China
| |
Collapse
|
25
|
Liu S, Xu K, Li X, Li Q, Yang J. Obtaining giant Rashba-Dresselhaus spin splitting in two-dimensional chiral metal-organic frameworks. Chem Sci 2024; 15:6916-6923. [PMID: 38725518 PMCID: PMC11077538 DOI: 10.1039/d3sc06636c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Two-dimensional (2D) nonmagnetic semiconductors with large Rashba-Dresselhaus (R-D) spin splitting at valence or conduction bands are attractive for magnetic-field-free spintronic applications. However, so far, the number of 2D R-D inorganic semiconductors has been quite limited, and the factors that determine R-D spin splitting as well as rational design of giant spin splitting, remain unclear. For this purpose, by exploiting 2D chiral metal-organic frameworks (CMOFs) as a platform, we theoretically develop a three-step screening method to obtain a series of candidate 2D R-D semiconductors with valence band spin splitting up to 97.2 meV and corresponding R-D coupling constants up to 1.37 eV Å. Interestingly, the valence band spin texture is reversible by flipping the chirality of CMOFs. Furthermore, five keys for obtaining giant R-D spin splitting in 2D CMOFs are successfully identified: (i) chirality, (ii) large spin-orbit coupling, (iii) narrow band gap, (iv) valence and conduction bands having the same symmetry at the Γ point, and (v) strong ligand field.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ke Xu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, School of Physics and Electronic Engineering, Hubei University of Arts and Science Xiangyang 441053 China
| | - Xingxing Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
| | - Qunxiang Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
26
|
Zhong W, Shang L. Photoswitching the fluorescence of nanoparticles for advanced optical applications. Chem Sci 2024; 15:6218-6228. [PMID: 38699274 PMCID: PMC11062085 DOI: 10.1039/d4sc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
The dynamic optical response properties and the distinct features of nanomaterials make photoswitchable fluorescent nanoparticles (PF NPs) attractive candidates for advanced optical applications. Over the past few decades, the design of PF NPs by coupling photochromic and fluorescent motifs at the nanoscale has been actively pursued, and substantial efforts have been made to exploit their potential applications. In this perspective, we critically summarize various design principles for fabricating these PF NPs. Then, we discuss their distinct optical properties from different aspects by highlighting the capability of NPs in fabricating new, robust photoswitch systems. Afterwards, we introduce the pivotal role of PF NPs in advanced optical applications, including sensing, anti-counterfeiting and imaging. Finally, current challenges and future development of PF NPs are briefly discussed.
Collapse
Affiliation(s)
- Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518057 China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University Chongqing 401135 China
| |
Collapse
|
27
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Wang K. Enhancing Electrochemical Signal for Efficient Chiral Recognition by Encapsulating C 60 Fullerene into Chiral Lanthanum-Based MOFs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17361-17370. [PMID: 38556802 DOI: 10.1021/acsami.4c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Chiral metal-organic frameworks (MOFs) have attracted much attention due to their highly tunable regular microporous structures. However, chiral electrochemical recognition based on chiral MOFs is often limited by poor charge separation and slow charge transfer kinetics. In this case, C60 can be encapsulated into the cavity of [La(BTB)]n by virtue of host-guest interactions through π-π stacking to synthesize the chiral composite C60@[La(BTB)]n and amplify electrochemically controlled enantioselective interactions with the target enantiomers. A large electrostatic potential difference is generated in chiral C60@[La(BTB)]n due to the host-guest interaction and the inhomogeneity of the charge distribution, leading to the generation of a strong built-in electric field and thus an overall enhancement of the conductivity of the chiral material. Their enantioselective detection of tryptophan enantiomers was demonstrated by electrochemical measurement. The results showed that chiral MOF materials can be used for enantiomeric recognition. It is worth noting that this new material derived from the concept of host-guest interaction to enhance charge separation opens up unprecedented possibilities for future enantioselective recognition and separation.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
28
|
Su X, Li B, Chen S, Wang X, Song H, Shen B, Zheng Q, Yang M, Yue P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J Control Release 2024; 367:107-134. [PMID: 38199524 DOI: 10.1016/j.jconrel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
29
|
Zhang C, Guan S, Li HY, Dong XY, Zang SQ. Metal Clusters Confined in Chiral Zeolitic Imidazolate Framework for Circularly Polarized-Luminescence Inks. NANO LETTERS 2024; 24:2048-2056. [PMID: 38166154 DOI: 10.1021/acs.nanolett.3c04698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approach─centered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.
Collapse
Affiliation(s)
- Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Guan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Yang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
30
|
Fu K, Liu G. Full-Color Circularly Polarized Luminescence of Supramolecular Polymers with Handedness Inversion Regulated by Anion and Temperature. ACS NANO 2024; 18:2279-2289. [PMID: 38206175 DOI: 10.1021/acsnano.3c10151] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Constructing full-color circularly polarized luminescence (CPL) materials with switchable handedness in the solid state is an appealing yet considerably challenging task, especially for supramolecular polymer films assembled from homochiral monomers. Herein, supramolecular polymers with full-color CPL and inverted handedness are realized through the coassembly of a homochiral cholesterol derivative (PVPCC), metal ions (Zn2+), and achiral fluorescent dyes. The obtained coassembled systems show anion-directed supramolecular chirality inversion by exchanging the anions of NO3-, ClO4-, BF4-, and Cl-. For instance, the negative CD and right-handed CPL are detected in the PVPCC/Zn(NO3)2 aggregates, which convert into positive CD and left-handed CPL after introducing Cl-, corresponding to the transformation from nanorods to nanofibers. Furthermore, the tunable CPL color and handedness inversion of the coassembly system of PVPCC/Zn(NO3)2 and achiral fluorescent dyes can be established by alternately changing the assembling temperature of 298 and 273 K. Importantly, the full-color CPL polymeric materials are then constructed by doping the PVPCC/Zn(NO3)2/dyes complexes into poly(methyl methacrylate) (PMMA) film, which maintains the handedness inversion and shows the enhanced CPL performance. The work not only deepens the understanding of chirality inversion in supramolecular chemistry but also helps to construct full-color CPL materials with switchable handedness from homochiral building blocks in materials science.
Collapse
Affiliation(s)
- Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
31
|
Ren C, Sun W, Zhao T, Li C, Jiang C, Duan P. A Single-Enantiomer Emitter Enabled Superstructural Helix Inversion for Upconverting and Downshifting Luminescence with Bidirectional Circular Polarization. Angew Chem Int Ed Engl 2023; 62:e202315136. [PMID: 37902429 DOI: 10.1002/anie.202315136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
The helical twisting tendency of liquid crystals (LCs) is generally governed by the inherent configuration of the chiral emitter. Here, we introduce the multistage inversion of supramolecular chirality as well as circularly polarized luminescence (CPL) by manipulating the ratio of single enantiomeric emitters (R-PCP) to LC monomers (5CB). Increasing the content of R-PCP from 1 wt % to 3 wt % inverted the helix of LCs from left-handed to right-handed, accompanying a CPL sign changed from positive to negative. The biaxiality of chiral emitters, as well as the steric effect of chiral-chiral and chiral-achiral interaction, were identified as the reasons for helical sense inversion. Due to the strong helical twisting power, 4 wt % R-PCP drove the photonic band gap (PBG) of chiral LCs to match up with their emission range, leading to an inversion of the CPL again with a high dissymmetry factor (≈1.2). Directly adjusting the PBG using chiral emitters is seldom achieved in cholesteric LCs. On this basis, an achiral sensitizer PtTPBP was assembled into the helical superstructure. The generation of triplet-triplet annihilation-induced upconverted CPL from R-PCP and the downshifting CPL from PtTPBP with opposite rotation was achieved in a single chiral LC system by tuning the position of the PBG.
Collapse
Affiliation(s)
- Chao Ren
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Wenjing Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Chengxi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Chengyu Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| |
Collapse
|
32
|
Xiao YH, Ma ZZ, Yang XX, Li DS, Gu ZG, Zhang J. Inducing Circularly Polarized Luminescence by Confined Synthesis of Ultrasmall Chiral Carbon Nanodot Arrays in Pyrene-Based MOF Thin Film. ACS NANO 2023; 17:19136-19143. [PMID: 37740252 DOI: 10.1021/acsnano.3c05265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Combining the features of the host-guest system and chirality is an efficient strategy to achieve circularly polarized luminescence (CPL). Herein, well-defined chiral carbon nanodot (chirCND) arrays were confined-synthesized by low-temperature calcination of a chiral amino acid loaded metal-organic framework (MOF) to induce high CPL. An achiral porous pyrene-based MOF NU-1000 thin film as the host template was prepared by a liquid-phase epitaxial layer-by-layer fashion, and chiral amino acids as the carbon sources could be confined in the porous MOF and carbonized to homogeneous and ultrasmall chirCND arrays, resulting in a chirCNDs@NU-1000 thin film (l-CNDsx@NU-1000; x = l-cysteine (cys), l-serine, l-histidine, l-glutamic acid, and l-pyroglutamic acid). The results show the pristine chirCNDs by directly carbonizing chiral amino acids hardly endow them with a CPL property. By contrast, benefiting from the arrayed confinement and coordination interaction between chirCNDs and NU-1000, the chirality transfer on the excited state of chirCNDs@NU-1000 is enabled, leading to strong CPL performance (a high luminescence dissymmetry factor glum of l-CNDscys@NU-1000 thin film reached 1.74 × 10-2). This study of chirCNDs encapsulated in fluorescent MOF thin films provides a strategy for developing uniform chiral carbon nanoarrays and offers chiral host-guest thin-film materials for optical applications.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, Putian University, Putian 351100, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhi-Zhou Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
| | - Xue-Xian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
33
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
34
|
Wu Y, Li M, Zheng ZG, Yu ZQ, Zhu WH. Liquid Crystal Assembly for Ultra-dissymmetric Circularly Polarized Luminescence and Beyond. J Am Chem Soc 2023. [PMID: 37276078 DOI: 10.1021/jacs.3c01122] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Circularly polarized luminescence (CPL) is attracting much interest because it can carry extensive optical information. CPL shows left- or right-handedness and can be regarded as part of high-level visual perception to supply an extra dimension of information with regard to regular light. A key to meeting the needs for practical applications is to develop the emerging field of ultra-dissymmetric CPL. Chiral liquid crystal (LC) assemblies─otherwise referred to as cholesteric liquid crystals (CLCs)─are essentially organized helical superstructures with a highly ordered one-dimensional orientation, and distinctly superior to regular helical supramolecules. CLCs can achieve a perfect equilibrium of molecular short-range interaction and long-range orientational order, enabling molecule-scale chirality on a helical pitch and observable scale. LC assembly could be an ideal strategy for amplifying chirality, making it accessible to ultra-dissymmetric CPL. Herein, we focused on some basic but important issues regarding CPL: (i) How can CPL be created from chiral dyes? (ii) Is the chirality of luminescent dyes an essential factor for the generation of CPL? That is, can all chiral dyes emit CPL and vice versa? (iii) How can CPL be transferred within intermolecular systems, and what principles of CPL transmission should be followed? Given these queries and our work, in this Perspective we discuss the generation, transmission, and modulation of CPL with chiral LC assembly, aiming to design and build up novel chiroptical materials. Recent applications of CPL-active LC microstructures in three-dimensional displays, circularly polarized lasers, and asymmetric catalysis are also discussed.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China
| | - Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Gang Zheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
35
|
Hall LA, D'Alessandro DM, Lakhwani G. Chiral metal-organic frameworks for photonics. Chem Soc Rev 2023; 52:3567-3590. [PMID: 37161868 DOI: 10.1039/d2cs00129b] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recently, there has been significant interest in the use of chiral metal-organic frameworks (MOFs) and coordination polymers (CPs) for photonics applications. The promise of these materials lies in the ability to tune their properties through judicious selection of the metal and ligand components. Additionally, the interaction of guest species with the host framework can be exploited to realise new functionalities. In this review, we outline the methods for synthesising chiral MOFs and CPs, then analyse the recent innovations in their use for various optical and photonics applications. We focus on two emerging directions in the field of MOF chemistry - circularly polarised luminescence (CPL) and chiroptical switching - as well as the latest developments in the use of these materials for second-order nonlinear optics (NLO), particularly second-harmonic generation (SHG). The current challenges encountered so far, their possible solutions, and key directions for further research are also outlined. Overall, given the results demonstrated to date, chiral MOFs and CPs show great promise for use in future technologies such as optical communication and computing, optical displays, and all-optical devices.
Collapse
Affiliation(s)
- Lyndon A Hall
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Deanna M D'Alessandro
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, NSW, 2006, Australia
| | - Girish Lakhwani
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, NSW, 2006, Australia
- ARC Centre of Excellence in Exciton Science, The University of Sydney, NSW, 2006, Australia
- Institute of Photonics and Optical Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Wang JY, Si Y, Luo XM, Wang ZY, Dong XY, Luo P, Zhang C, Duan C, Zang SQ. Stepwise Amplification of Circularly Polarized Luminescence in Chiral Metal Cluster Ensembles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207660. [PMID: 36840632 PMCID: PMC10161016 DOI: 10.1002/advs.202207660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Chiral metal-organic frameworks (MOFs) are usually endowed by chiral linkers and/or guests. The strategy using chiral secondary building units in MOFs for solving the trade-off of circularly polarized luminescence (CPL)-active materials, high photoluminescence quantum yields (PLQYs) and high dissymmetry factors (|glum |) has not been demonstrated. This work directionally assembles predesigned chiral silver clusters with ACQ linkers through reticular chemistry. The nanoscale chirality of the cluster transmits through MOF's framework, where the linkers are arranged in a quasi-parallel manner and are efficiently isolated and rigidified. Consequently, this backbone of chiral cluster-based MOFs demonstrates superb CPL, high PLQYs of 50.3%, and |glum | of 1.2 × 10-2 . Crystallographic analyses and DFT calculations show the quasi-parallel arrangement manners of emitting linkers leading to a large angle between the electric and magnetic transition dipole moments, boosting CPL response. As compared, an ion-pair-direct assembly without interactions between linkers induces one-ninth |glum | and one-sixth PLQY values, further highlighting the merits of directional arrangement in reticular nets. In addition, a prototype CPL switching fabricated by a chiral framework is controlled through alternating ultraviolet and visible light. This work is expected to inspire the development of reticular chemistry for high-performance chiroptical materials.
Collapse
Affiliation(s)
- Jia-Yin Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Peng Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
37
|
Wang XZ, Zhou CW, Zheng J, Lian ZX, Sun MY, Huang YL, Luo D, Li YY, Zhou XP. Highly Boosting Circularly Polarized Luminescence of Chiral Metal-Imidazolate Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207333. [PMID: 37072611 DOI: 10.1002/advs.202207333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/11/2023] [Indexed: 05/03/2023]
Abstract
To develop a simple and general method for improving the circularly polarized luminescence (CPL) performances of materials is of great significance. In this work, two pairs of CPL-active homochiral metal-organic frameworks (MOFs) P/M-Et and P/M-Et(Cd) with eta topology are reported. In comparison to the reported isomorphic Zn-imidazolate MOFs P-Me and M-Me, both luminescence dissymmetry factor (glum ) and photoluminescence quantum yields (ΦPL ) of P-Et and M-Et are largely improved by simply changing the methyl group to an ethyl group of ligands in P-Et and M-Et. Furthermore, the |glum | values are significantly amplified up to 0.015 from 0.0057 by introducing the non-luminescent halogenated aromatics, while an enhanced fluorescence efficiency is observed simultaneously (from 27.2% to 47.3%). The figure of merit value is about 40 times larger than that of P-Me and M-Me. Similarly, the CPL performances of P/M-Et(Cd) are improved by about five times after encapsulating fluorobenzene molecules. This work represents a new and simple method for developing CPL-active MOF materials.
Collapse
Affiliation(s)
- Xue-Zhi Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, P. R. China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhao-Xia Lian
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Meng-Ying Sun
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Yong-Liang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, 515041, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
38
|
Xu L, Liu H, Peng X, Shen P, Zhong Tang B, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials**. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
39
|
Xu L, Liu H, Peng X, Shen P, Tang BZ, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials. Angew Chem Int Ed Engl 2023; 62:e202300492. [PMID: 36825493 DOI: 10.1002/anie.202300492] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
Circularly polarized electroluminescence (CP-EL) is generally produced in organic light-emitting diodes (OLEDs) based on special CP luminescent (CPL) materials, while common achiral luminescent materials are rarely considered to be capable of direct producing CP-EL. Herein, near ultraviolet CPL materials with high photoluminescence quantum yields and good CPL dissymmetry factors are developed, which can induce blue to red CPL for various achiral luminescent materials. Strong near ultraviolet CP-EL with the best external quantum efficiencies (ηext s) of 9.0 % and small efficiency roll-offs are achieved by using them as emitters for CP-OLEDs. By adopting them as hosts or sensitizers, commercially available yellow-orange achiral phosphorescence, thermally activated delayed fluorescence (TADF) and multi-resonance (MR) TADF materials can generate intense CP-EL, with high dissymmetry factors and outstanding ηext s (30.8 %), demonstrating a simple and universal avenue towards efficient CP-EL.
Collapse
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
40
|
Zhang Y, Yu W, Li H, Zheng W, Cheng Y. Induced CPL-Active Materials Based on Chiral Supramolecular Co-Assemblies. Chemistry 2023; 29:e202204039. [PMID: 36691189 DOI: 10.1002/chem.202204039] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Circularly polarized luminescence (CPL) has attracted much interest due to its potential applications on chiral photonic techniques and optoelectronic materials science. As known, dissymmetry factor (gem ) of CPL is one essential factor for evaluating the features of CPL-active materials. Much attention has focused on how to increase the gem value, which is one of the most important issues for CPL practical applications. Recently, more and more works have demonstrated that chiral supramolecular could provide the significant strategy to improve the gem value through the orderly helical superstructure of chiral building blocks. Normally, this kind of chiral supramolecular assembly process can be accompanied by chirality transfer and induction mechanism, which can promote the amplification effect on the induced CPL of achiral dyes. In this review, we fully summarized recent advances on the induced CPL-active materials of chiral supramolecular co-assemblies, their applications in circularly polarized organic light-emitting diodes (CP-OLEDs) and current challenges.
Collapse
Affiliation(s)
- Yuxia Zhang
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China.,Nanjing University of Posts and Telecommunications, Key Laboratory for Organic Electronics &, Information Displays (KLOEID) and, Institute of Advanced Materials, National Synergistic Innovation Center for, Advanced Materials (SICAM), Nanjing, 210023, P. R. China
| | - Wenting Yu
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Hang Li
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Wenhua Zheng
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Yixiang Cheng
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| |
Collapse
|
41
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
42
|
Zhao T, Busko D, Richards BS, Howard IA. Limitation of room temperature phosphorescence efficiency in metal organic frameworks due to triplet-triplet annihilation. Front Chem 2022; 10:1010857. [PMID: 36386002 PMCID: PMC9659923 DOI: 10.3389/fchem.2022.1010857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
The effect of triplet-triplet annihilation (TTA) on the room-temperature phosphorescence (RTP) in metal-organic frameworks (MOFs) is studied in benchmark RTP MOFs based on Zn metal centers and isophthalic or terephthalic acid linkers (ZnIPA and ZnTPA). The ratio of RTP to singlet fluorescence is observed to decrease with increasing excitation power density. Explicitly, in ZnIPA the ratio of the RTP to fluorescence is 0.58 at 1.04 mW cm-2, but only 0.42 at (the still modest) 52.6 mW cm-2. The decrease in ratio is due to the reduction of RTP efficiency at higher excitation due to TTA. The density of triplet states increases at higher excitation power densities, allowing triplets to diffuse far enough during their long lifetime to meet another triplet and annihilate. On the other hand, the shorter-lived singlet species can never meet an annihilate. Therefore, the singlet fluorescence scales linearly with excitation power density whereas the RTP scales sub-linearly. Equivalently, the efficiency of fluorescence is unaffected by excitation power density but the efficiency of RTP is significantly reduced at higher excitation power density due to TTA. Interestingly, in time-resolved measurements, the fraction of fast decay increases but the lifetime of long tail of the RTP remains unaffected by excitation power density. This may be due to the confinement of triplets to individual grains, leading decay to be faster until there is only one triplet per grain left. Subsequently, the remaining "lone triplets" decay with the unchanging rate expressed by the long tail. These results increase the understanding of RTP in MOFs by explicitly showing the importance of TTA in determining the (excitation power density dependent) efficiency of RTP. Also, for applications in optical sensing, these results suggest that a method based on long tail lifetime of the RTP is preferable to a ratiometric approach as the former will not be affected by variation in excitation power density whereas the latter will be.
Collapse
Affiliation(s)
- Tonghan Zhao
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bryce S. Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ian A. Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
43
|
Zhang L, Liu M, Fang Z, Ju Q. Synthesis and biomedical application of nanocomposites integrating metal-organic frameworks with upconversion nanoparticles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
|
45
|
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Krasilin AA, Bachinin S, Shipilovskikh S, Poturaev P, Medvedeva N, Denislamova E, Zelenovskiy PS, Shilovskikh VV, Kenzhebayeva Y, Efimova A, Novikov AS, Lunev A, Fedin VP, Milichko VA. Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. NANO LETTERS 2022; 22:6972-6981. [PMID: 36018814 DOI: 10.1021/acs.nanolett.2c01770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.
Collapse
Affiliation(s)
- Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Marina Barsukova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pavel Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maxim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei Yankin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei A Krasilin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Petr Poturaev
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Natalia Medvedeva
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | | | - Pavel S Zelenovskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | | | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anastasiia Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg 198504, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, France
| |
Collapse
|
46
|
Yang G, Yao Z, Yang X, Xie Y, Duan P, Zhang Y, Zhang SX. A Flexible Circularly Polarized Luminescence Switching Device Based on Proton-Coupled Electron Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202636. [PMID: 35861377 PMCID: PMC9475559 DOI: 10.1002/advs.202202636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Flexible circularly polarized luminescence (CPL) switching devices have been long-awaited due to their promising potential application in wearable optoelectronic devices. However, on account of the few materials and complicated design of manufacturing systems, how to fabricate a flexible electric-field-driven CPL-switching device is still a serious challenge. Herein, a flexible device with multiple optical switching properties (CPL, circular dichroism (CD), fluorescence, color) is designed and prepared efficiently based on proton-coupled electron transfer (PCET) mechanism by optimizing the chiral structure of switching molecule. More importantly, this device can maintain the switching performance even after 300 bending-unbending cycles. It has a remarkable comprehensive performance containing bistable property, low open voltage, and good cycling stability. Then, prototype devices with designed patterns have been fabricated, which opens a new application pattern of CPL-switching materials.
Collapse
Affiliation(s)
- Guojian Yang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhiqiang Yao
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Xuefeng Yang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and Technology (NCNST)Beijing100190P. R. China
| | - Yigui Xie
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in NanoscienceCAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and Technology (NCNST)Beijing100190P. R. China
| | - Yu‐Mo Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Sean Xiao‐An Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
47
|
Yu M, Chen Y, Luo Y, Gong G, Zhang Y, Tan H, Xu L, Xu J. Photoswitchable lanthanide-doped core-multishell nanoparticles for tunable triple-mode information encryption and dynamic anti-counterfeiting patterns. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Li D, Song J, Cheng Y, Wu X, Wang Y, Sun C, Yue C, Lei X. Ultra‐Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive 0D Hybrid Lead‐Free Perovskite. Angew Chem Int Ed Engl 2022; 61:e202206437. [DOI: 10.1002/anie.202206437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dong‐Yang Li
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Jun‐Hua Song
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yu Cheng
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Min Wu
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yu‐Yin Wang
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Chuan‐Ju Sun
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Cheng‐Yang Yue
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Wu Lei
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
49
|
Wang H, Chen Z, Yuan Y, Zhang H. The preparation and properties of circularly polarized luminescent liquid crystal physical gels with self-supporting performance. SOFT MATTER 2022; 18:5483-5491. [PMID: 35838375 DOI: 10.1039/d2sm00705c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, great progress has been made in the preparation methods and performance regulation of host-guest doped CPL liquid crystal materials. However, there still exist some basic problems to be solved, such as complex packaging and unstable CPL properties. With the consideration of the above problems, in this study, we introduced gelators into the host-guest doped CPL liquid crystal materials to prepare CPL liquid crystal physical gels. The gelators can be assembled to form a nanofiber physical gel network, which limits the movement of the liquid crystals and enhances the stability of the CPL properties. Meanwhile, liquid crystal physical gels show self-supporting ability and the gel-sol phase transition temperature can reach 136 °C. The amplification of the glum value is achieved by self-assembly of chiral liquid crystals, and the glum value can reach -0.31. The phase structure changes with electric field and temperature, and the CPL properties can be regulated by changing the temperature and electric field. With the increasing applied voltage or the temperature, the glum value decreases. Therefore, we have successfully prepared a new type of CPL liquid crystal physical gels with self-supporting performance, stimulus response performance and large glum values.
Collapse
Affiliation(s)
- Hanrong Wang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| |
Collapse
|
50
|
Zhang X, Xu Y, Valenzuela C, Zhang X, Wang L, Feng W, Li Q. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2022; 11:223. [PMID: 35835737 PMCID: PMC9283403 DOI: 10.1038/s41377-022-00913-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/15/2023]
Abstract
Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Xinfang Zhang
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|