1
|
Wu Y, Zhang F, Du F, Huang J, Wei S. Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Mol Med Rep 2025; 31:140. [PMID: 40183402 PMCID: PMC11976518 DOI: 10.3892/mmr.2025.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Malignant tumors notably decrease life expectancy. Despite advances in cancer diagnosis and treatment, the mechanisms underlying tumorigenesis, progression and drug resistance have not been fully elucidated. An emerging method to study tumors is tumor organoids, which are a three‑dimensional miniature structure. These retain the patient‑specific tumor heterogeneity while demonstrating the histological, genetic and molecular features of original tumors. Compared with conventional cancer cell lines and animal models, patient‑derived tumor organoids are more advanced at physiological and clinical levels. Their synergistic combination with other technologies, such as organ‑on‑a‑chip, 3D‑bioprinting, tissue‑engineered cell scaffolds and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‑associated protein 9, may overcome limitations of the conventional 3D organoid culture and result in the development of more appropriate model systems that preserve the complex tumor stroma, inter‑organ and intra‑organ communications. The present review summarizes the evolution of tumor organoids and their combination with advanced technologies, as well as the application of tumor organoids in basic and clinical research.
Collapse
Affiliation(s)
- Ying Wu
- Department of Obstetrics and Gynecology, The 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan 650032, P.R. China
| | - Fan Zhang
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Furong Du
- Department of Medicine, Kingbio Medical Co., Ltd., Chongqing 401123, P.R. China
| | - Juan Huang
- Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuqing Wei
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
2
|
Ribezzi D, Zegwaart J, Van Gansbeke T, Tejo‐Otero A, Florczak S, Aerts J, Delrot P, Hierholzer A, Fussenegger M, Malda J, Olijve J, Levato R. Multi-material Volumetric Bioprinting and Plug-and-play Suspension Bath Biofabrication via Bioresin Molecular Weight Tuning and via Multiwavelength Alignment Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409355. [PMID: 40012257 PMCID: PMC11962684 DOI: 10.1002/adma.202409355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Volumetric Bioprinting (VBP), enables to rapidly build complex, cell-laden hydrogel constructs for tissue engineering and regenerative medicine. Light-based tomographic manufacturing enables spatial-selective polymerization of a bioresin, resulting in higher throughput and resolution than what is achieved using traditional techniques. However, methods for multi-material printing are needed for broad VBP adoption and applicability. Although converging VBP with extrusion bioprinting in support baths offers a novel, promising solution, further knowledge on the engineering of hydrogels as light-responsive, volumetrically printable baths is needed. Therefore, this study investigates the tuning of gelatin macromers, in particular leveraging the effect of molecular weight and degree of modification, to overcome these challenges, creating a library of materials for VBP and Embedded extrusion Volumetric Printing (EmVP). Bioresins with tunable printability and mechanical properties are produced, and a novel subset of gelatins and GelMA exhibiting stable shear-yielding behavior offers a new, single-component, ready-to-use suspension medium for in-bath printing, which is stable over multiple hours without needing temperature control. As a proof-of-concept biological application, bioprinted gels are tested with insulin-producing pancreatic cell lines for 21 days of culture. Leveraging a multi-color printer, complex multi-material and multi-cellular geometries are produced, enhancing the accessibility of volumetric printing for advanced tissue models.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Jan‐Philip Zegwaart
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXThe Netherlands
- RousselotPort Arthurlaan 173Gent9000Belgium
| | | | - Aitor Tejo‐Otero
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CTThe Netherlands
- BIOMAT Research GroupUniversity of the Basque Country (UPV/EHU)Escuela de Ingeniería de GipuzkoaPlaza de Europa 1Donostia‐San Sebastián20018Spain
| | - Sammy Florczak
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Joska Aerts
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Paul Delrot
- Readily3D SAEPFL Innovation Park, Building ALausanneCH‐1015Switzerland
| | - Andreas Hierholzer
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
- Faculty of ScienceUniversity of BaselMattenstrasse 26BaselCH‐4058Switzerland
| | - Jos Malda
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXThe Netherlands
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CTThe Netherlands
| | - Jos Olijve
- RousselotPort Arthurlaan 173Gent9000Belgium
| | - Riccardo Levato
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrecht UniversityUtrecht3584 CXThe Netherlands
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CTThe Netherlands
| |
Collapse
|
3
|
Alnasser SM. From gut to liver: organoids as platforms for next-generation toxicology assessment vehicles for xenobiotics. Stem Cell Res Ther 2025; 16:150. [PMID: 40140938 PMCID: PMC11948905 DOI: 10.1186/s13287-025-04264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Traditional toxicological assessment relied heavily on 2D cell cultures and animal models of study, which were inadequate for the precise prediction of human response to chemicals. Researchers have now shifted focus on organoids for toxicological assessment. Organoids are 3D structures produced from stem cells that mimic the shape and functionality of human organs and have a number of advantages compared to traditional models of study. They have the capacity to replicate the intricate cellular microenvironment and in vivo interactions. They offer a physiologically pertinent platform that is useful for the researchers to monitor cellular responses in a more realistic manner and evaluate drug toxicity. Additionally, organoids can be created from cells unique to a patient, allowing for individualized toxicological research and providing understanding of the inter-individual heterogeneity in drug responses. Recent developments in the use of gut and liver organoids for assessment of the xenobiotics (environmental toxins and drugs) is reviewed in this article. Gut organoids can reveal potential damage to the digestive system and how xenobiotics affect nutrient absorption and barrier function. Liver is the primary site of detoxification and metabolism of xenobiotics, usually routed from the gut. Hence, these are linked and crucial for evaluating chemical or pollutant induced organ toxicity, forecasting their metabolism and pharmacokinetics. When incorporated into the drug development process, organoid models have the potential to improve the accuracy and efficiency of drug safety assessments, leading to safer and more effective treatments. We also discuss the limitations of using organoid-based toxicological assays, and future prospects, including the need for standardized protocols for overcoming reproducibility issues.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 51452, Buraydah, Qassim, Saudi Arabia.
| |
Collapse
|
4
|
Ortuño-Costela MC, Pinzani M, Vallier L. Cell therapy for liver disorders: past, present and future. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01050-2. [PMID: 40102584 DOI: 10.1038/s41575-025-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
The liver fulfils a plethora of vital functions and, due to their importance, liver dysfunction has life-threatening consequences. Liver disorders currently account for more than two million deaths annually worldwide and can be classified broadly into three groups, considering their onset and aetiology, as acute liver diseases, inherited metabolic disorders and chronic liver diseases. In the most advanced and severe forms leading to liver failure, liver transplantation is the only treatment available, which has many associated drawbacks, including a shortage of organ donors. Cell therapy via fully mature cell transplantation is an advantageous alternative that may be able to restore a damaged organ's functionality or serve as a bridge until regeneration can occur. Pioneering work has shown that transplanting adult hepatocytes can support liver recovery. However, primary hepatocytes cannot be grown extensively in vitro as they rapidly lose their metabolic activity. Therefore, different cell sources are currently being tested as alternatives to primary cells. Human pluripotent stem cell-derived cells, chemically induced liver progenitors, or 'liver' organoids, hold great promise for developing new cell therapies for acute and chronic liver diseases. This Review focuses on the advantages and drawbacks of distinct cell sources and the relative strategies to address different therapeutic needs in distinct liver diseases.
Collapse
Affiliation(s)
- M Carmen Ortuño-Costela
- Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
- University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies (UPMC-ISMETT), Palermo, Italy
| | - Ludovic Vallier
- Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
5
|
Zhao J, Zhi Y, Ren H, Wang J, Zhao Y. Emerging biotechnologies for engineering liver organoids. Bioact Mater 2025; 45:1-18. [PMID: 39588483 PMCID: PMC11585797 DOI: 10.1016/j.bioactmat.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The engineering construction of the liver has attracted enormous attention. Organoids, as emerging miniature three-dimensional cultivation units, hold significant potential in the biomimetic simulation of liver structure and function. Despite notable successes, organoids still face limitations such as high variability and low maturity. To overcome these challenges, engineering strategies have been established to maintain organoid stability and enhance their efficacy, laying the groundwork for the development of advanced liver organoids. The present review comprehensively summarizes the construction of engineered liver organoids and their prospective applications in biomedicine. Initially, we briefly present the latest research progress on matrix materials that maintain the three-dimensional morphology of organoids. Next, we discuss the manipulative role of engineering technologies in organoid assembly. Additionally, we outline the impact of gene-level regulation on organoid growth and development. Further, we introduce the applications of liver organoids in disease modeling, drug screening and regenerative medicine. Lastly, we overview the current obstacles and forward-looking perspectives on the future of engineered liver organoids. We anticipate that ongoing innovations in engineered liver organoids will lead to significant advancements in medical applications.
Collapse
Affiliation(s)
- Junqi Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Zhi
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
6
|
Stoecker L, Cedillo‐Servin G, König NF, de Graaf FV, García‐Jiménez M, Hofmann S, Ito K, Wentzel AS, Castilho M. Xolography for Biomedical Applications: Dual-Color Light-Sheet Printing of Hydrogels With Local Control Over Shape and Stiffness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410292. [PMID: 39871647 PMCID: PMC11899501 DOI: 10.1002/adma.202410292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/04/2024] [Indexed: 01/29/2025]
Abstract
Current challenges in tissue engineering include creation of extracellular environments that support and interact with cells using biochemical, mechanical, and structural cues. Spatial control over these cues is currently limited due to a lack of suitable fabrication techniques. This study introduces Xolography, an emerging dual-color light-sheet volumetric printing technology, to achieve control over structural and mechanical features for hydrogel-based photoresins at micro- to macroscale while printing within minutes. A water-soluble photoswitch photoinitiator system and a library of naturally-derived, synthetic, and thermoresponsive hydrogels for Xolography are proposed. Centimeter-scale, 3D constructs with positive features of 20 µm and negative features of ≈100 µm are fabricated with control over mechanical properties (compressive moduli 0.2 kPa-6.5 MPa). Notably, switching from binary to grayscaled light projection enables spatial control over stiffness (0.2-16 kPa). As a proof of concept, grayscaled Xolography is leveraged with thermoresponsive hydrogels to introduce reversible anisotropic shape changes beyond isometric shrinkage. Xolography of viable cell aggregates is finally demonstrated, laying the foundation for cell-laden printing of dynamic, cell-instructive environments with tunable structural and mechanical cues in a fast one-step process. Overall, these innovations unlock unique possibilities of Xolography across multiple biomedical applications.
Collapse
Affiliation(s)
- Lena Stoecker
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
| | - Gerardo Cedillo‐Servin
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
- Department of OrthopedicsRegenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584 CXthe Netherlands
| | | | - Freek V. de Graaf
- Macromolecular and Organic ChemistryDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
| | - Marcela García‐Jiménez
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
| | - Sandra Hofmann
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
| | - Keita Ito
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
| | - Annelieke S. Wentzel
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
| | - Miguel Castilho
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBthe Netherlands
| |
Collapse
|
7
|
Álvarez-Castaño MI, Madsen AG, Madrid-Wolff J, Sgarminato V, Boniface A, Glückstad J, Moser C. Holographic tomographic volumetric additive manufacturing. Nat Commun 2025; 16:1551. [PMID: 39934122 DOI: 10.1038/s41467-025-56852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Several 3D light-based printing technologies have been developed that rely on the photopolymerization of liquid resins. A recent method, so-called Tomographic Volumetric Additive Manufacturing, allows the fabrication of microscale objects within tens of seconds without the need for support structures. This method works by projecting intensity patterns, computed via a reverse tomography algorithm, into a photocurable resin from different angles to produce a desired 3D shape when the resin reaches the polymerization threshold. Printing using incoherent light patterning has been previously demonstrated. In this work, we show that a light engine with holographic phase modulation unlocks new potential for volumetric printing. The light projection efficiency is improved by at least a factor 20 over amplitude coding with diffraction-limited resolution and its flexibility allows precise light control across the entire printing volume. We show that computer-generated holograms implemented with tiled holograms and point-spread-function shaping mitigates the speckle noise which enables the fabrication of millimetric 3D objects exhibiting negative features of 31 μm in less than a minute with a 40 mW light source in acrylates and scattering materials, such as soft cell-laden hydrogels, with a concentration of 0.5 million cells per mL.
Collapse
Affiliation(s)
- Maria Isabel Álvarez-Castaño
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Andreas Gejl Madsen
- SDU Centre for Photonics Engineering, University of Southern Denmark, Odense M, Denmark
| | - Jorge Madrid-Wolff
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Readily3D, EPFL Innovation Park, Bât. A, Lausanne, Switzerland
| | - Viola Sgarminato
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antoine Boniface
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- AMS Osram, Martigny, Switzerland
| | - Jesper Glückstad
- SDU Centre for Photonics Engineering, University of Southern Denmark, Odense M, Denmark
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
9
|
Janssen R, Benito-Zarza L, Cleijpool P, Valverde MG, Mihăilă SM, Bastiaan-Net S, Garssen J, Willemsen LEM, Masereeuw R. Biofabrication Directions in Recapitulating the Immune System-on-a-Chip. Adv Healthc Mater 2025; 14:e2304569. [PMID: 38625078 DOI: 10.1002/adhm.202304569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.
Collapse
Affiliation(s)
- Robine Janssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Laura Benito-Zarza
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Pim Cleijpool
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Marta G Valverde
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Silvia M Mihăilă
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Danone Global Research & Innovation Center, Danone Nutricia Research B.V., Utrecht, 3584 CT, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
10
|
Duquesne J, Parmentier L, Vermeersch E, Lemaire F, Seo JW, Dmitriev RI, Vlierberghe SV. Volumetric bioprinting of the osteoid niche. Biofabrication 2025; 17:025002. [PMID: 39819878 DOI: 10.1088/1758-5090/adab25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Volumetric bioprinting has revolutionized the field of biofabrication by enabling the creation of cubic centimeter-scale living constructs at faster printing times (in the order of seconds). However, a key challenge remains: developing a wider variety of available osteogenic bioinks that allow osteogenic maturation of the encapsulated cells within the construct. Herein, the bioink exploiting a step-growth mechanism (norbornene-norbornene functionalized gelatin in combination with thiolated gelatin-GelNBNBSH) outperformed the bioink exploiting a chain-growth mechanism (gelatin methacryloyl-GelMA), as the necessary photo-initiator concentration was three times lower combined with a more than 50% reduction in required light exposure dose resulting in an improved positive and negative resolution. To mimic the substrate elasticity of the osteoid, two concentrations of the photo-initiator Li-TPO-L (1 and 10 mg ml-1) were compared for post-curing whereby the lowest concentration was selected since it resulted in attaining the osteogenic substrate elasticity combined with excellent biocompatibility with HT1080 cells (>95%). Further physico-chemical testing revealed that the volumetric printing (VP) process affected the degradation time of the constructs with volumetric constructs degrading slower than the control sheets which could be due to the introduced fibrillar structure inherent to the VP process. Moreover, GelNBNBSH volumetric constructs significantly outperformed the GelMA volumetric constructs in terms of a 2-fold increase in photo-crosslinkable moiety conversion and a 3-fold increase in bulk stiffness of the construct. Finally, a 21-day osteogenic cell study was performed with highly viable dental pulp-derived stem cells (>95%) encapsulated within the volumetric printed constructs. Osteogenesis was greatly favored for the GelNBNBSH constructs through enhanced early (alkaline phosphatase activity) and late maturation (calcium production) osteogenic markers. After 21 d, a secretome analysis revealed a more mature osteogenic phenotype within GelNBNBSH constructs as compared to their chain-growth counterpart in terms of osteogenic, immunological and angiogenic signaling.
Collapse
Affiliation(s)
- Jessie Duquesne
- Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Edward Vermeersch
- Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Flora Lemaire
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, Avenue du Maréchal Juin 1, 51100 Reims, France
| | - Jung Won Seo
- Nano-biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent university, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Moss SP, Bakirci E, Feinberg AW. Engineering the 3D structure of organoids. Stem Cell Reports 2025; 20:102379. [PMID: 39706178 PMCID: PMC11784486 DOI: 10.1016/j.stemcr.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Organoids form through the sel f-organizing capabilities of stem cells to produce a variety of differentiated cell and tissue types. Most organoid models, however, are limited in terms of the structure and function of the tissues that form, in part because it is difficult to regulate the cell type, arrangement, and cell-cell/cell-matrix interactions within these systems. In this article, we will discuss the engineering approaches to generate more complex organoids with improved function and translational relevance, as well as their advantages and disadvantages. Additionally, we will explore how biofabrication strategies can manipulate the cell composition, 3D organization, and scale-up of organoids, thus improving their utility for disease modeling, drug screening, and regenerative medicine applications.
Collapse
Affiliation(s)
- Samuel P Moss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Mathur V, Dsouza V, Srinivasan V, Vasanthan KS. Volumetric Additive Manufacturing for Cell Printing: Bridging Industry Adaptation and Regulatory Frontiers. ACS Biomater Sci Eng 2025; 11:156-181. [PMID: 39746181 PMCID: PMC11733917 DOI: 10.1021/acsbiomaterials.4c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Volumetric additive manufacturing (VAM) is revolutionizing the field of cell printing by enabling the rapid creation of complex three-dimensional cellular structures that mimic natural tissues. This paper explores the advantages and limitations of various VAM techniques, such as holographic lithography, digital light processing, and volumetric projection, while addressing their suitability across diverse industrial applications. Despite the significant potential of VAM, challenges related to regulatory compliance and scalability persist, particularly in the context of bioprinted tissues. In India, the lack of clear regulatory guidelines and intellectual property protections poses additional hurdles for companies seeking to navigate the evolving landscape of bioprinting. This study emphasizes the importance of collaboration among industry stakeholders, regulatory agencies, and academic institutions to establish tailored frameworks that promote innovation while ensuring safety and efficacy. By bridging the gap between technological advancement and regulatory oversight, VAM can unlock new opportunities in regenerative medicine and tissue engineering, transforming patient care and therapeutic outcomes.
Collapse
Affiliation(s)
- Vidhi Mathur
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Vinita Dsouza
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Varadharajan Srinivasan
- Department
of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Kirthanashri S Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| |
Collapse
|
13
|
Puiggalí-Jou A, Hui I, Baldi L, Frischknecht R, Asadikorayem M, Janiak J, Chansoria P, McCabe MC, Stoddart MJ, Hansen KC, Christman KL, Zenobi-Wong M. Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix. Biofabrication 2025; 17:015044. [PMID: 39757574 DOI: 10.1088/1758-5090/ad9cc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability. This study proposes a rapid light-based bioprinting method using a tyrosine-based crosslinking mechanism, which does not require chemical modifications of dECM and thereby preserves its structure and bioactivity. Combining this resin with Filamented Light (FLight) biofabrication enables the creation of cellular, porous, and anisotropic dECM scaffolds composed of aligned microfilaments. Specifically, we focus on the effects of various biopolymer compositions (i.e. hyaluronic acid, collagen I, and dECM) and inner architecture (i.e. bulk light vs FLight) on immune response and cell morphology, and we investigate their influence on nascent ECM production and long-term tissue maturation. Our findings highlight the importance of FLight scaffolds in directing collagen deposition resembling articular cartilage structure and promoting construct maturation, and they emphasize the superiority of biological-rich dECM over single-component materials for engineering articular cartilage, thereby offering new avenues for the development of effective cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Isabel Hui
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Lucrezia Baldi
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Rea Frischknecht
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Jakub Janiak
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
- Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California at San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, United States of America
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Hu Y, Zhu T, Cui H, Cui H. Integrating 3D Bioprinting and Organoids to Better Recapitulate the Complexity of Cellular Microenvironments for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403762. [PMID: 39648636 DOI: 10.1002/adhm.202403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Indexed: 12/10/2024]
Abstract
Organoids, with their capacity to mimic the structures and functions of human organs, have gained significant attention for simulating human pathophysiology and have been extensively investigated in the recent past. Additionally, 3D bioprinting, as an emerging bio-additive manufacturing technology, offers the potential for constructing heterogeneous cellular microenvironments, thereby promoting advancements in organoid research. In this review, the latest developments in 3D bioprinting technologies aimed at enhancing organoid engineering are introduced. The commonly used bioprinting methods and materials for organoids, with a particular emphasis on the potential advantages of combining 3D bioprinting with organoids are summarized. These advantages include achieving high cell concentrations to form large cellular aggregates, precise deposition of building blocks to create organoids with complex structures and functions, and automation and high throughput to ensure reproducibility and standardization in organoid culture. Furthermore, this review provides an overview of relevant studies from recent years and discusses the current limitations and prospects for future development.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
15
|
Jones LS, Filippi M, Michelis MY, Balciunaite A, Yasa O, Aviel G, Narciso M, Freedrich S, Generali M, Tzahor E, Katzschmann RK. Multidirectional Filamented Light Biofabrication Creates Aligned and Contractile Cardiac Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404509. [PMID: 39373330 DOI: 10.1002/advs.202404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/05/2024] [Indexed: 10/08/2024]
Abstract
Biofabricating 3D cardiac tissues that mimic the native myocardial tissue is a pivotal challenge in tissue engineering. In this study, we fabricate 3D cardiac tissues with controlled, multidirectional cellular alignment and directed or twisting contractility. We show that multidirectional filamented light can be used to biofabricate high-density (up to 60 × 106 cells mL-1) tissues, with directed uniaxial contractility (3.8x) and improved cell-to-cell connectivity (1.6x gap junction expression). Furthermore, by using multidirectional light projection, we can partially overcome cell-induced light attenuation, and fabricate larger tissues with multidirectional cellular alignment. For example, we fabricate a tri-layered myocardium-like tissue and a bi-layered tissue with torsional contractility. The approach provides a new strategy to rapidly fabricate aligned cardiac tissues relevant to regenerative medicine and biohybrid robotics.
Collapse
Affiliation(s)
- Lewis S Jones
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Mike Yan Michelis
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Aiste Balciunaite
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Gal Aviel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Maria Narciso
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dubendorf, 8600, Switzerland
- Experimental Continuum Mechanics, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | - Susanne Freedrich
- ETH Phenomics Center, ETH Zurich, Otto-Stern-Weg 7, Zurich, 8093, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, 8952, Switzerland
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
16
|
Huang D, Wu Z, Wang J, Wang J, Zhao Y. Biomimetic Liver Lobules from Multi-Compartmental Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406573. [PMID: 39297364 PMCID: PMC11558095 DOI: 10.1002/advs.202406573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Indexed: 11/14/2024]
Abstract
Engineered liver lobule is highly practical in hepatic disease treatment, while constructing a 3D biomimetic lobule with a heterogeneous architecture on a large scale is challenging. Here, inspired by the natural architectural construction of hepatic lobules, biomimetic hepatic lobules are proposed with coaxially through-pores for nutrient exchange via microfluidic technology. This multi-channel microfluidic chip is made by parallelly installing capillaries. Sodium alginate (Alg) is pumped through its central channel, while Ca2+-loaded gelatin methacrylate (GelMA) solutions encapsulating hepatocytes, mesenchymal stem cells, and endothelia cells are pumped through surrounding channels, respectively. The rapid gelation of Alg and Ca2+ brings about an in situ formation of Alg fiber, with heterogeneous multi-cell-laden GelMA microcarriers forming around it. The peeled-off microcarriers each featured with a coaxially through pore, simulating the cord-like structure of hepatic lobule and facilitating nutrients exchange. Meanwhile, the spatially anisotropic arrangement of cells highly simulates the hepatic architecture. It is demonstrated that by transplanting these biomimetic microparticles into liver in situ, the failed liver in rat shows increased regeneration and decreased necrosis. These results indicated that the microfluidic multi-compartmental microcarriers provide a new strategy to engineer 3D artificial livers for clinical translation.
Collapse
Affiliation(s)
- Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Ji Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Shenzhen Research InstituteSoutheast UniversityShenzhen518071China
- Institute of Organoids on Chips Translational ResearchHenan Academy of SciencesZhengzhou450009China
| |
Collapse
|
17
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
18
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Vidler C, Halwes M, Kolesnik K, Segeritz P, Mail M, Barlow AJ, Koehl EM, Ramakrishnan A, Caballero Aguilar LM, Nisbet DR, Scott DJ, Heath DE, Crozier KB, Collins DJ. Dynamic interface printing. Nature 2024; 634:1096-1102. [PMID: 39478212 PMCID: PMC11525192 DOI: 10.1038/s41586-024-08077-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices1, aerospace components2, microfabrication strategies3,4 and artificial organs5. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization6, projection micro stereolithography7,8 and volumetric printing9-14, have garnered significant attention due to their speed, resolution or potential applications for biofabrication. Here we introduce dynamic interface printing, a new 3D printing approach that leverages an acoustically modulated, constrained air-liquid boundary to rapidly generate centimetre-scale 3D structures within tens of seconds. Unlike volumetric approaches, this process eliminates the need for intricate feedback systems, specialized chemistry or complex optics while maintaining rapid printing speeds. We demonstrate the versatility of this technique across a broad array of materials and intricate geometries, including those that would be impossible to print with conventional layer-by-layer methods. In doing so, we demonstrate the rapid fabrication of complex structures in situ, overprinting, structural parallelization and biofabrication utility. Moreover, we show that the formation of surface waves at the air-liquid boundary enables enhanced mass transport, improves material flexibility and permits 3D particle patterning. We, therefore, anticipate that this approach will be invaluable for applications where high-resolution, scalable throughput and biocompatible printing is required.
Collapse
Affiliation(s)
- Callum Vidler
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Michael Halwes
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Mail
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Anders J Barlow
- Materials Characterisation and Fabrication Platform (MCFP), The University of Melbourne, Parkville, Victoria, Australia
| | - Emmanuelle M Koehl
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anand Ramakrishnan
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Surgery, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Lilith M Caballero Aguilar
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Science, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel J Scott
- The Florey Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kenneth B Crozier
- School of Physics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
20
|
Liu S, Chen Y, Wang Z, Liu M, Zhao Y, Tan Y, Qu Z, Du L, Wu C. The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives. MedComm (Beijing) 2024; 5:e753. [PMID: 39314888 PMCID: PMC11417428 DOI: 10.1002/mco2.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioprinting is a highly promising application area of additive manufacturing technology that has been widely used in various fields, including tissue engineering, drug screening, organ regeneration, and biosensing. Its primary goal is to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices through software-layered discrete and numerical control molding. Despite its immense potential, bioprinting technology still faces several challenges. It requires concerted efforts from researchers, engineers, regulatory bodies, and industry stakeholders are principal to overcome these challenges and unlock the full potential of bioprinting. This review systematically discusses bioprinting principles, applications, and future perspectives while also providing a topical overview of research progress in bioprinting over the past two decades. The most recent advancements in bioprinting are comprehensively reviewed here. First, printing techniques and methods are summarized along with advancements related to bioinks and supporting structures. Second, interesting and representative cases regarding the applications of bioprinting in tissue engineering, drug screening, organ regeneration, and biosensing are introduced in detail. Finally, the remaining challenges and suggestions for future directions of bioprinting technology are proposed and discussed. Bioprinting is one of the most promising application areas of additive manufacturing technology that has been widely used in various fields. It aims to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices. This review systematically discusses bioprinting principles, applications, and future perspectives, which provides a topical description of the research progress of bioprinting.
Collapse
Affiliation(s)
- Shuge Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yating Chen
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhiyao Wang
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Minggao Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yundi Zhao
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yushuo Tan
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhan Qu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Liping Du
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Chunsheng Wu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| |
Collapse
|
21
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Sgarminato V, Madrid-Wolff J, Boniface A, Ciardelli G, Tonda-Turo C, Moser C. 3D in vitromodeling of the exocrine pancreatic unit using tomographic volumetric bioprinting. Biofabrication 2024; 16:045034. [PMID: 39121863 DOI: 10.1088/1758-5090/ad6d8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, a leading cause of cancer-related deaths globally. Initial lesions of PDAC develop within the exocrine pancreas' functional units, with tumor progression driven by interactions between PDAC and stromal cells. Effective therapies require anatomically and functionally relevantin vitrohuman models of the pancreatic cancer microenvironment. We employed tomographic volumetric bioprinting, a novel biofabrication method, to create human fibroblast-laden constructs mimicking the tubuloacinar structures of the exocrine pancreas. Human pancreatic ductal epithelial (HPDE) cells overexpressing the KRAS oncogene (HPDE-KRAS) were seeded in the multiacinar cavity to replicate pathological tissue. HPDE cell growth and organization within the structure were assessed, demonstrating the formation of a thin epithelium covering the acini inner surfaces. Immunofluorescence assays showed significantly higher alpha smooth muscle actin (α-SMA) vs. F-actin expression in fibroblasts co-cultured with cancerous versus wild-type HPDE cells. Additionally,α-SMA expression increased over time and was higher in fibroblasts closer to HPDE cells. Elevated interleukin (IL)-6 levels were quantified in supernatants from co-cultures of stromal and HPDE-KRAS cells. These findings align with inflamed tumor-associated myofibroblast behavior, serving as relevant biomarkers to monitor early disease progression and target drug efficacy. To our knowledge, this is the first demonstration of a 3D bioprinted model of exocrine pancreas that recapitulates its true 3-dimensional microanatomy and shows tumor triggered inflammation.
Collapse
Affiliation(s)
- Viola Sgarminato
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Jorge Madrid-Wolff
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antoine Boniface
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Soliman BG, Chin IL, Li Y, Ishii M, Ho MH, Doan VK, Cox TR, Wang PY, Lindberg GCJ, Zhang YS, Woodfield TBF, Choi YS, Lim KS. Droplet-based microfluidics for engineering shape-controlled hydrogels with stiffness gradient. Biofabrication 2024; 16:045026. [PMID: 39121873 DOI: 10.1088/1758-5090/ad6d8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Current biofabrication strategies are limited in their ability to replicate native shape-to-function relationships, that are dependent on adequate biomimicry of macroscale shape as well as size and microscale spatial heterogeneity, within cell-laden hydrogels. In this study, a novel diffusion-based microfluidics platform is presented that meets these needs in a two-step process. In the first step, a hydrogel-precursor solution is dispersed into a continuous oil phase within the microfluidics tubing. By adjusting the dispersed and oil phase flow rates, the physical architecture of hydrogel-precursor phases can be adjusted to generate spherical and plug-like structures, as well as continuous meter-long hydrogel-precursor phases (up to 1.75 m). The second step involves the controlled introduction a small molecule-containing aqueous phase through a T-shaped tube connector to enable controlled small molecule diffusion across the interface of the aqueous phase and hydrogel-precursor. Application of this system is demonstrated by diffusing co-initiator sodium persulfate (SPS) into hydrogel-precursor solutions, where the controlled SPS diffusion into the hydrogel-precursor and subsequent photo-polymerization allows for the formation of unique radial stiffness patterns across the shape- and size-controlled hydrogels, as well as allowing the formation of hollow hydrogels with controllable internal architectures. Mesenchymal stromal cells are successfully encapsulated within hollow hydrogels and hydrogels containing radial stiffness gradient and found to respond to the heterogeneity in stiffness through the yes-associated protein mechano-regulator. Finally, breast cancer cells are found to phenotypically switch in response to stiffness gradients, causing a shift in their ability to aggregate, which may have implications for metastasis. The diffusion-based microfluidics thus finds application mimicking native shape-to-function relationship in the context of tissue engineering and provides a platform to further study the roles of micro- and macroscale architectural features that exist within native tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Yiwei Li
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Melissa Ishii
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
| | - Minh Hieu Ho
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Vinh Khanh Doan
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Peng Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 32500, People's Republic of China
| | - Gabriella C J Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, United States of America
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
24
|
Lian L, Xie M, Luo Z, Zhang Z, Maharjan S, Mu X, Garciamendez-Mijares CE, Kuang X, Sahoo JK, Tang G, Li G, Wang D, Guo J, González FZ, Abril Manjarrez Rivera V, Cai L, Mei X, Kaplan DL, Zhang YS. Rapid Volumetric Bioprinting of Decellularized Extracellular Matrix Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304846. [PMID: 38252896 PMCID: PMC11260906 DOI: 10.1002/adma.202304846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Decellularized extracellular matrix (dECM)-based hydrogels are widely applied to additive biomanufacturing strategies for relevant applications. The extracellular matrix components and growth factors of dECM play crucial roles in cell adhesion, growth, and differentiation. However, the generally poor mechanical properties and printability have remained as major limitations for dECM-based materials. In this study, heart-derived dECM (h-dECM) and meniscus-derived dECM (Ms-dECM) bioinks in their pristine, unmodified state supplemented with the photoinitiator system of tris(2,2-bipyridyl) dichlororuthenium(II) hexahydrate and sodium persulfate, demonstrate cytocompatibility with volumetric bioprinting processes. This recently developed bioprinting modality illuminates a dynamically evolving light pattern into a rotating volume of the bioink, and thus decouples the requirement of mechanical strengths of bioprinted hydrogel constructs with printability, allowing for the fabrication of sophisticated shapes and architectures with low-concentration dECM materials that set within tens of seconds. As exemplary applications, cardiac tissues are volumetrically bioprinted using the cardiomyocyte-laden h-dECM bioink showing favorable cell proliferation, expansion, spreading, biomarker expressions, and synchronized contractions; whereas the volumetrically bioprinted Ms-dECM meniscus structures embedded with human mesenchymal stem cells present appropriate chondrogenic differentiation outcomes. This study supplies expanded bioink libraries for volumetric bioprinting and broadens utilities of dECM toward tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Liming Lian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zhenrui Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Gang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Di Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Federico Zertuche González
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
Riffe MB, Davidson MD, Seymour G, Dhand AP, Cooke ME, Zlotnick HM, McLeod RR, Burdick JA. Multi-Material Volumetric Additive Manufacturing of Hydrogels using Gelatin as a Sacrificial Network and 3D Suspension Bath. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309026. [PMID: 38243918 PMCID: PMC11259577 DOI: 10.1002/adma.202309026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/29/2023] [Indexed: 01/22/2024]
Abstract
Volumetric additive manufacturing (VAM) is an emerging layerless method for the rapid processing of reactive resins into 3D structures, where printing is much faster (seconds) than other lithography and direct ink writing methods (minutes to hours). As a vial of resin rotates in the VAM process, patterned light exposure defines a 3D object and then resin that has not undergone gelation can be washed away. Despite the promise of VAM, there are challenges with the printing of soft hydrogel materials from non-viscous precursors, including multi-material constructs. To address this, sacrificial gelatin is used to modulate resin viscosity to support the cytocompatible VAM printing of macromers based on poly(ethylene glycol) (PEG), hyaluronic acid (HA), and polyacrylamide (PA). After printing, gelatin is removed by washing at an elevated temperature. To print multi-material constructs, the gelatin-containing resin is used as a shear-yielding suspension bath (including HA to further modulate bath properties) where ink can be extruded into the bath to define a multi-material resin that can then be processed with VAM into a defined object. Multi-material constructs of methacrylated HA (MeHA) and gelatin methacrylamide (GelMA) are printed (as proof-of-concept) with encapsulated mesenchymal stromal cells (MSCs), where the local hydrogel properties guide cell spreading behavior with culture.
Collapse
Affiliation(s)
- Morgan B Riffe
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Matthew D Davidson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Gabriel Seymour
- Department of Electrical, Computer, and Energy Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Abhishek P Dhand
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Megan E Cooke
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Hannah M Zlotnick
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Robert R McLeod
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Electrical, Computer, and Energy Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jason A Burdick
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
26
|
Chansoria P, Rizzo R, Rütsche D, Liu H, Delrot P, Zenobi-Wong M. Light from Afield: Fast, High-Resolution, and Layer-Free Deep Vat 3D Printing. Chem Rev 2024; 124:8787-8822. [PMID: 38967405 PMCID: PMC11273351 DOI: 10.1021/acs.chemrev.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
Harnessing light for cross-linking of photoresponsive materials has revolutionized the field of 3D printing. A wide variety of techniques leveraging broad-spectrum light shaping have been introduced as a way to achieve fast and high-resolution printing, with applications ranging from simple prototypes to biomimetic engineered tissues for regenerative medicine. Conventional light-based printing techniques use cross-linking of material in a layer-by-layer fashion to produce complex parts. Only recently, new techniques have emerged which deploy multidirection, tomographic, light-sheet or filamented light-based image projections deep into the volume of resin-filled vat for photoinitiation and cross-linking. These Deep Vat printing (DVP) approaches alleviate the need for layer-wise printing and enable unprecedented fabrication speeds (within a few seconds) with high resolution (>10 μm). Here, we elucidate the physics and chemistry of these processes, their commonalities and differences, as well as their emerging applications in biomedical and non-biomedical fields. Importantly, we highlight their limitations, and future scope of research that will improve the scalability and applicability of these DVP techniques in a wide variety of engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Parth Chansoria
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8093, Switzerland
| | - Riccardo Rizzo
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Dominic Rütsche
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Basic
Science & Engineering (BASE) Initiative, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Hao Liu
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8093, Switzerland
| | - Paul Delrot
- Readily3D
SA, EPFL Innovation Park, Lausanne 1015, Switzerland
| | - Marcy Zenobi-Wong
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
27
|
Almeida-Pinto J, Moura BS, Gaspar VM, Mano JF. Advances in Cell-Rich Inks for Biofabricating Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313776. [PMID: 38639337 DOI: 10.1002/adma.202313776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.
Collapse
Affiliation(s)
- José Almeida-Pinto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Beatriz S Moura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
28
|
Silva B, Marques EF, Gomes AC. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. Expert Opin Drug Deliv 2024; 21:1007-1027. [PMID: 39001669 DOI: 10.1080/17425247.2024.2380338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.
Collapse
Affiliation(s)
- Bruna Silva
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
29
|
Ali AS, Wu D, Bannach-Brown A, Dhamrait D, Berg J, Tolksdorf B, Lichtenstein D, Dressler C, Braeuning A, Kurreck J, Hülsemann M. 3D bioprinting of liver models: A systematic scoping review of methods, bioinks, and reporting quality. Mater Today Bio 2024; 26:100991. [PMID: 38558773 PMCID: PMC10978534 DOI: 10.1016/j.mtbio.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
Background Effective communication is crucial for broad acceptance and applicability of alternative methods in 3R biomedical research and preclinical testing. 3D bioprinting is used to construct intricate biological structures towards functional liver models, specifically engineered for deployment as alternative models in drug screening, toxicological investigations, and tissue engineering. Despite a growing number of reviews in this emerging field, a comprehensive study, systematically assessing practices and reporting quality for bioprinted liver models is missing. Methods In this systematic scoping review we systematically searched MEDLINE (Ovid), EMBASE (Ovid) and BioRxiv for studies published prior to June 2nd, 2022. We extracted data on methodological conduct, applied bioinks, the composition of the printed model, performed experiments and model applications. Records were screened for eligibility and data were extracted from included articles by two independent reviewers from a panel of seven domain experts specializing in bioprinting and liver biology. We used RAYYAN for the screening process and SyRF for data extraction. We used R for data analysis, and R and Graphpad PRISM for visualization. Results Through our systematic database search we identified 1042 records, from which 63 met the eligibility criteria for inclusion in this systematic scoping review. Our findings revealed that extrusion-based printing, in conjunction with bioinks composed of natural components, emerged as the predominant printing technique in the bioprinting of liver models. Notably, the HepG2 hepatoma cell line was the most frequently employed liver cell type, despite acknowledged limitations. Furthermore, 51% of the printed models featured co-cultures with non-parenchymal cells to enhance their complexity. The included studies offered a variety of techniques for characterizing these liver models, with their primary application predominantly focused on toxicity testing. Among the frequently analyzed liver markers, albumin and urea stood out. Additionally, Cytochrome P450 (CYP) isoforms, primarily CYP3A and CYP1A, were assessed, and select studies employed nuclear receptor agonists to induce CYP activity. Conclusion Our systematic scoping review offers an evidence-based overview and evaluation of the current state of research on bioprinted liver models, representing a promising and innovative technology for creating alternative organ models. We conducted a thorough examination of both the methodological and technical facets of model development and scrutinized the reporting quality within the realm of bioprinted liver models. This systematic scoping review can serve as a valuable template for systematically evaluating the progress of organ model development in various other domains. The transparently derived evidence presented here can provide essential support to the research community, facilitating the adaptation of technological advancements, the establishment of standards, and the enhancement of model robustness. This is particularly crucial as we work toward the long-term objective of establishing new approach methods as reliable alternatives to animal testing, with extensive and versatile applications.
Collapse
Affiliation(s)
- Ahmed S.M. Ali
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Alexandra Bannach-Brown
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| | - Diyal Dhamrait
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment (BfR), Department Food Safety, Berlin, Germany
| | - Corinna Dressler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Medical Library, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Department Food Safety, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Maren Hülsemann
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| |
Collapse
|
30
|
Wang F, Song P, Wang J, Wang S, Liu Y, Bai L, Su J. Organoid bioinks: construction and application. Biofabrication 2024; 16:032006. [PMID: 38697093 DOI: 10.1088/1758-5090/ad467c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Organoids have emerged as crucial platforms in tissue engineering and regenerative medicine but confront challenges in faithfully mimicking native tissue structures and functions. Bioprinting technologies offer a significant advancement, especially when combined with organoid bioinks-engineered formulations designed to encapsulate both the architectural and functional elements of specific tissues. This review provides a rigorous, focused examination of the evolution and impact of organoid bioprinting. It emphasizes the role of organoid bioinks that integrate key cellular components and microenvironmental cues to more accurately replicate native tissue complexity. Furthermore, this review anticipates a transformative landscape invigorated by the integration of artificial intelligence with bioprinting techniques. Such fusion promises to refine organoid bioink formulations and optimize bioprinting parameters, thus catalyzing unprecedented advancements in regenerative medicine. In summary, this review accentuates the pivotal role and transformative potential of organoid bioinks and bioprinting in advancing regenerative therapies, deepening our understanding of organ development, and clarifying disease mechanisms.
Collapse
Affiliation(s)
- Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Jian Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Sicheng Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200444, People's Republic of China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, People's Republic of China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
31
|
Puiggalí-Jou A, Rizzo R, Bonato A, Fisch P, Ponta S, Weber DM, Zenobi-Wong M. FLight Biofabrication Supports Maturation of Articular Cartilage with Anisotropic Properties. Adv Healthc Mater 2024; 13:e2302179. [PMID: 37867457 DOI: 10.1002/adhm.202302179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Tissue engineering approaches that recapitulate cartilage biomechanical properties are emerging as promising methods to restore the function of injured or degenerated tissue. However, despite significant progress in this research area, the generation of engineered cartilage constructs akin to native counterparts still represents an unmet challenge. In particular, the inability to accurately reproduce cartilage zonal architecture with different collagen fibril orientations is a significant limitation. The arrangement of the extracellular matrix (ECM) plays a fundamental role in determining the mechanical and biological functions of the tissue. In this study, it is shown that a novel light-based approach, Filamented Light (FLight) biofabrication, can be used to generate highly porous, 3D cell-instructive anisotropic constructs that lead to directional collagen deposition. Using a photoclick-based photoresin optimized for cartilage tissue engineering, a significantly improved maturation of the cartilaginous tissues with zonal architecture and remarkable native-like mechanical properties is demonstrated.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Angela Bonato
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Philipp Fisch
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Simone Ponta
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Daniel M Weber
- Division of Hand Surgery, University Children's Hospital Zürich, University of Zürich, Zürich, 8032, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
32
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
33
|
Soliman BG, Longoni A, Major GS, Lindberg GCJ, Choi YS, Zhang YS, Woodfield TBF, Lim KS. Harnessing Macromolecular Chemistry to Design Hydrogel Micro- and Macro-Environments. Macromol Biosci 2024; 24:e2300457. [PMID: 38035637 DOI: 10.1002/mabi.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Gretel S Major
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02115, USA
| | - Tim B F Woodfield
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
34
|
Puertas-Bartolomé M, Venegas-Bustos D, Acosta S, Rodríguez-Cabello JC. Contribution of the ELRs to the development of advanced in vitro models. Front Bioeng Biotechnol 2024; 12:1363865. [PMID: 38650751 PMCID: PMC11033926 DOI: 10.3389/fbioe.2024.1363865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Developing in vitro models that accurately mimic the microenvironment of biological structures or processes holds substantial promise for gaining insights into specific biological functions. In the field of tissue engineering and regenerative medicine, in vitro models able to capture the precise structural, topographical, and functional complexity of living tissues, prove to be valuable tools for comprehending disease mechanisms, assessing drug responses, and serving as alternatives or complements to animal testing. The choice of the right biomaterial and fabrication technique for the development of these in vitro models plays an important role in their functionality. In this sense, elastin-like recombinamers (ELRs) have emerged as an important tool for the fabrication of in vitro models overcoming the challenges encountered in natural and synthetic materials due to their intrinsic properties, such as phase transition behavior, tunable biological properties, viscoelasticity, and easy processability. In this review article, we will delve into the use of ELRs for molecular models of intrinsically disordered proteins (IDPs), as well as for the development of in vitro 3D models for regenerative medicine. The easy processability of the ELRs and their rational design has allowed their use for the development of spheroids and organoids, or bioinks for 3D bioprinting. Thus, incorporating ELRs into the toolkit of biomaterials used for the fabrication of in vitro models, represents a transformative step forward in improving the accuracy, efficiency, and functionality of these models, and opening up a wide range of possibilities in combination with advanced biofabrication techniques that remains to be explored.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Technical Proteins Nanobiotechnology, S.L. (TPNBT), Valladolid, Spain
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Desiré Venegas-Bustos
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
35
|
Carpentier N, Ye S, Delemarre MD, Van der Meeren L, Skirtach AG, van der Laan LJW, Schneeberger K, Spee B, Dubruel P, Van Vlierberghe S. Gelatin-Based Hybrid Hydrogels as Matrices for Organoid Culture. Biomacromolecules 2024; 25:590-604. [PMID: 38174962 DOI: 10.1021/acs.biomac.2c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The application of liver organoids is very promising in the field of liver tissue engineering; however, it is still facing some limitations. One of the current major limitations is the matrix in which they are cultured. The mainly undefined and murine-originated tumor matrices derived from Engelbreth-Holm-Swarm (EHS) sarcoma, such as Matrigel, are still the standard culturing matrices for expansion and differentiation of organoids toward hepatocyte-like cells, which will obstruct its future clinical application potential. In this study, we exploited the use of newly developed highly defined hydrogels as potential matrices for the culture of liver organoids and compared them to Matrigel and two hydrogels that were already researched in the field of organoid research [i.e., polyisocyanopeptides, enriched with laminin-entactin complex (PIC-LEC) and gelatin methacryloyl (GelMA)]. The newly developed hydrogels are materials that have a physicochemical resemblance with native liver tissue. Norbornene-modified dextran cross-linked with thiolated gelatin (DexNB-GelSH) has a swelling ratio and macro- and microscale properties that highly mimic liver tissue. Norbornene-modified chondroitin sulfate cross-linked with thiolated gelatin (CSNB-GelSH) contains chondroitin sulfate, which is a glycosaminoglycan (GAG) that is present in the liver ECM. Furthermore, CSNB-GelSH hydrogels with different mechanical properties were evaluated. Bipotent intrahepatic cholangiocyte organoids (ICOs) were applied in this work and encapsulated in these materials. This research revealed that the newly developed materials outperformed Matrigel, PIC-LEC, and GelMA in the differentiation of ICOs toward hepatocyte-like cells. Furthermore, some trends indicate that an interplay of both the chemical composition and the mechanical properties has an influence on the relative expression of certain hepatocyte markers. Both DexNB-GelSH and CSNB-GelSH showed promising results for the expansion and differentiation of intrahepatic cholangiocyte organoids. The stiffest CSNB-GelSH hydrogel even significantly outperformed Matrigel based on ALB, BSEP, and CYP3A4 gene expression, being three important hepatocyte markers.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Shicheng Ye
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Maarten D Delemarre
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Louis Van der Meeren
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - André G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Kerstin Schneeberger
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Bart Spee
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
36
|
Hafa L, Breideband L, Ramirez Posada L, Torras N, Martinez E, Stelzer EHK, Pampaloni F. Light Sheet-Based Laser Patterning Bioprinting Produces Long-Term Viable Full-Thickness Skin Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306258. [PMID: 37822216 DOI: 10.1002/adma.202306258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. 3D bioprinting stands out for its design flexibility and reproducibility. Here, an integrated fluorescent light sheet bioprinting and imaging system is presented that combines high printing speed (0.66 mm3 /s) and resolution (9 µm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering.
Collapse
Affiliation(s)
- Levin Hafa
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Louise Breideband
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Lucas Ramirez Posada
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Núria Torras
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Elena Martinez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Ernst H K Stelzer
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Mulaudzi PE, Abrahamse H, Crous A. Insights on Three Dimensional Organoid Studies for Stem Cell Therapy in Regenerative Medicine. Stem Cell Rev Rep 2024; 20:509-523. [PMID: 38095787 PMCID: PMC10837234 DOI: 10.1007/s12015-023-10655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Regenerative medicine has developed as a promising discipline that utilizes stem cells to address limitations in traditional therapies, using innovative techniques to restore and repair damaged organs and tissues. One such technique is the generation of three-dimensional (3D) organoids in stem cell therapy. Organoids are 3D constructs that resemble specific organs' structural and functional characteristics and are generated from stem cells or tissue-specific progenitor cells. The use of 3D organoids is advantageous in comparison to traditional two-dimensional (2D) cell culture by bridging the gap between in vivo and in vitro research. This review aims to provide an overview of the advancements made towards regenerative medicine using stem cells to generate organoids, explore the techniques used in generating 3D organoids and their applications and finally elucidate the challenges and future directions in regenerative medicine using 3D organoids.
Collapse
Affiliation(s)
- Precious Earldom Mulaudzi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
38
|
Cross-Najafi AA, Farag K, Chen AM, Smith LJ, Zhang W, Li P, Ekser B. The Long Road to Develop Custom-built Livers: Current Status of 3D Liver Bioprinting. Transplantation 2024; 108:357-368. [PMID: 37322580 PMCID: PMC10724374 DOI: 10.1097/tp.0000000000004668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although liver transplantation is the gold-standard therapy for end-stage liver disease, the shortage of suitable organs results in only 25% of waitlisted patients undergoing transplants. Three-dimensional (3D) bioprinting is an emerging technology and a potential solution for personalized medicine applications. This review highlights existing 3D bioprinting technologies of liver tissues, current anatomical and physiological limitations to 3D bioprinting of a whole liver, and recent progress bringing this innovation closer to clinical use. We reviewed updated literature across multiple facets in 3D bioprinting, comparing laser, inkjet, and extrusion-based printing modalities, scaffolded versus scaffold-free systems, development of an oxygenated bioreactor, and challenges in establishing long-term viability of hepatic parenchyma and incorporating structurally and functionally robust vasculature and biliary systems. Advancements in liver organoid models have also increased their complexity and utility for liver disease modeling, pharmacologic testing, and regenerative medicine. Recent developments in 3D bioprinting techniques have improved the speed, anatomical, and physiological accuracy, and viability of 3D-bioprinted liver tissues. Optimization focusing on 3D bioprinting of the vascular system and bile duct has improved both the structural and functional accuracy of these models, which will be critical in the successful expansion of 3D-bioprinted liver tissues toward transplantable organs. With further dedicated research, patients with end-stage liver disease may soon be recipients of customized 3D-bioprinted livers, reducing or eliminating the need for immunosuppressive regimens.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristine Farag
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela M. Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University of School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
39
|
Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater 2024; 32:356-384. [PMID: 37920828 PMCID: PMC10618244 DOI: 10.1016/j.bioactmat.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Three-dimensional bioprinting is an advanced tissue fabrication technique that allows printing complex structures with precise positioning of multiple cell types layer-by-layer. Compared to other bioprinting methods, extrusion bioprinting has several advantages to print large-sized tissue constructs and complex organ models due to large build volume. Extrusion bioprinting using sacrificial, support and embedded strategies have been successfully employed to facilitate printing of complex and hollow structures. Embedded bioprinting is a gel-in-gel approach developed to overcome the gravitational and overhanging limits of bioprinting to print large-sized constructs with a micron-scale resolution. In embedded bioprinting, deposition of bioinks into the microgel or granular support bath will be facilitated by the sol-gel transition of the support bath through needle movement inside the granular medium. This review outlines various embedded bioprinting strategies and the polymers used in the embedded systems with advantages, limitations, and efficacy in the fabrication of complex vascularized tissues or organ models with micron-scale resolution. Further, the essential requirements of support bath systems like viscoelasticity, stability, transparency and easy extraction to print human scale organs are discussed. Additionally, the organs or complex geometries like vascular constructs, heart, bone, octopus and jellyfish models printed using support bath assisted printing methods with their anatomical features are elaborated. Finally, the challenges in clinical translation and the future scope of these embedded bioprinting models to replace the native organs are envisaged.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
40
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
41
|
Lewns FK, Tsigkou O, Cox LR, Wildman RD, Grover LM, Poologasundarampillai G. Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301670. [PMID: 37087739 PMCID: PMC11478930 DOI: 10.1002/adma.202301670] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization ranging from the molecular to whole organ level. Current bioprinting techniques and the materials employed have imposed limits on the scale, speed, and resolution that can be achieved, rendering the technique unable to reproduce the structural hierarchies and cell-matrix interactions that are observed in bone. The shift toward biomimetic approaches in bone tissue engineering, where hydrogels provide biophysical and biochemical cues to encapsulated cells, is a promising approach to enhancing the biological function and development of tissues for in vitro modeling. A major focus in bioprinting of bone tissue for in vitro modeling is creating dynamic microenvironmental niches to support, stimulate, and direct the cellular processes for bone formation and remodeling. Hydrogels are ideal materials for imitating the extracellular matrix since they can be engineered to present various cues whilst allowing bioprinting. Here, recent advances in hydrogels and 3D bioprinting toward creating a microenvironmental niche that is conducive to tissue engineering of in vitro models of bone are reviewed.
Collapse
Affiliation(s)
| | - Olga Tsigkou
- Department of MaterialsUniversity of ManchesterManchesterM1 5GFUK
| | - Liam R. Cox
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Ricky D. Wildman
- Faculty of EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | - Liam M. Grover
- Healthcare Technologies InstituteSchool of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | | |
Collapse
|
42
|
Cianciosi A, Stecher S, Löffler M, Bauer‐Kreisel P, Lim KS, Woodfield TBF, Groll J, Blunk T, Jungst T. Flexible Allyl-Modified Gelatin Photoclick Resin Tailored for Volumetric Bioprinting of Matrices for Soft Tissue Engineering. Adv Healthc Mater 2023; 12:e2300977. [PMID: 37699146 PMCID: PMC11468070 DOI: 10.1002/adhm.202300977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Indexed: 09/14/2023]
Abstract
Volumetric bioprinting (VBP) is a light-based 3D printing platform, which recently prompted a paradigm shift for additive manufacturing (AM) techniques considering its capability to enable the fabrication of complex cell-laden geometries in tens of seconds with high spatiotemporal control and pattern accuracy. A flexible allyl-modified gelatin (gelAGE)-based photoclick resin is developed in this study to fabricate matrices with exceptionally soft polymer networks (0.2-1.0 kPa). The gelAGE-based resin formulations are designed to exploit the fast thiol-ene crosslinking in combination with a four-arm thiolated polyethylene glycol (PEG4SH) in the presence of a photoinitiator. The flexibility of the gelAGE biomaterial platform allows one to tailor its concentration spanning from 2.75% to 6% and to vary the allyl to thiol ratio without hampering the photocrosslinking efficiency. The thiol-ene crosslinking enables the production of viable cell-material constructs with a high throughput in tens of seconds. The suitability of the gelAGE-based resins is demonstrated by adipogenic differentiation of adipose-derived stromal cells (ASC) after VBP and by the printing of more fragile adipocytes as a proof-of-concept. Taken together, this study introduces a soft photoclick resin which paves the way for volumetric printing applications toward soft tissue engineering.
Collapse
Affiliation(s)
- Alessandro Cianciosi
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Sabrina Stecher
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Maxi Löffler
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Petra Bauer‐Kreisel
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Khoon S. Lim
- School of Medical SciencesUniversity of SydneySydney2006Australia
| | - Tim B. F. Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering and NanomedicineUniversity of OtagoChristchurch8011New Zealand
| | - Jürgen Groll
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Torsten Blunk
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| |
Collapse
|
43
|
Jing S, Lian L, Hou Y, Li Z, Zheng Z, Li G, Tang G, Xie G, Xie M. Advances in volumetric bioprinting. Biofabrication 2023; 16:012004. [PMID: 37922535 DOI: 10.1088/1758-5090/ad0978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The three-dimensional (3D) bioprinting technologies are suitable for biomedical applications owing to their ability to manufacture complex and high-precision tissue constructs. However, the slow printing speed of current layer-by-layer (bio)printing modality is the major limitation in biofabrication field. To overcome this issue, volumetric bioprinting (VBP) is developed. VBP changes the layer-wise operation of conventional devices, permitting the creation of geometrically complex, centimeter-scale constructs in tens of seconds. VBP is the next step onward from sequential biofabrication methods, opening new avenues for fast additive manufacturing in the fields of tissue engineering, regenerative medicine, personalized drug testing, and soft robotics, etc. Therefore, this review introduces the printing principles and hardware designs of VBP-based techniques; then focuses on the recent advances in VBP-based (bio)inks and their biomedical applications. Lastly, the current limitations of VBP are discussed together with future direction of research.
Collapse
Affiliation(s)
- Sibo Jing
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Yingying Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zeqing Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zihao Zheng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Guoxi Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
44
|
Cao W, Lin Z, Zheng D, Zhang J, Heng W, Wei Y, Gao Y, Qian S. Metal-organic gels: recent advances in their classification, characterization, and application in the pharmaceutical field. J Mater Chem B 2023; 11:10566-10594. [PMID: 37916468 DOI: 10.1039/d3tb01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic gels (MOGs) are a type of functional soft substance with a three-dimensional (3D) network structure and solid-like rheological behavior, which are constructed by metal ions and bridging ligands formed under the driving force of coordination interactions or other non-covalent interactions. As the homologous substances of metal-organic frameworks (MOFs) and gels, they exhibit the potential advantages of high porosity, flexible structure, and adjustable mechanical properties, causing them to attract extensive research interest in the pharmaceutical field. For instance, MOGs are often used as excellent vehicles for intelligent drug delivery and programmable drug release to improve the clinical curative effect with reduced side effects. Also, MOGs are often applied as advanced biomedical materials for the repair and treatment of pathological tissue and sensitive detection of drugs or other molecules. However, despite the vigorous research on MOGs in recent years, there is no systematic summary of their applications in the pharmaceutical field to date. The present review systematically summarize the recent research progress on MOGs in the pharmaceutical field, including drug delivery systems, drug detection, pharmaceutical materials, and disease therapies. In addition, the formation principles and classification of MOGs are complemented and refined, and the techniques for the characterization of the structures/properties of MOGs are overviewed in this review.
Collapse
Affiliation(s)
- Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
45
|
Macedo MH, Dias Neto M, Pastrana L, Gonçalves C, Xavier M. Recent Advances in Cell-Based In Vitro Models to Recreate Human Intestinal Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301391. [PMID: 37736674 PMCID: PMC10625086 DOI: 10.1002/advs.202301391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease causes a major burden to patients and healthcare systems, raising the need to develop effective therapies. Technological advances in cell culture, allied with ethical issues, have propelled in vitro models as essential tools to study disease aetiology, its progression, and possible therapies. Several cell-based in vitro models of intestinal inflammation have been used, varying in their complexity and methodology to induce inflammation. Immortalized cell lines are extensively used due to their long-term survival, in contrast to primary cultures that are short-lived but patient-specific. Recently, organoids and organ-chips have demonstrated great potential by being physiologically more relevant. This review aims to shed light on the intricate nature of intestinal inflammation and cover recent works that report cell-based in vitro models of human intestinal inflammation, encompassing diverse approaches and outcomes.
Collapse
Affiliation(s)
- Maria Helena Macedo
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Mafalda Dias Neto
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Lorenzo Pastrana
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Catarina Gonçalves
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Miguel Xavier
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| |
Collapse
|
46
|
Qiu C, Sun Y, Li J, Zhou J, Xu Y, Qiu C, Yu K, Liu J, Jiang Y, Cui W, Wang G, Liu H, Yuan W, Jiang T, Kou Y, Ge Z, He Z, Zhang S, He Y, Yu L. A 3D-Printed Dual Driving Forces Scaffold with Self-Promoted Cell Absorption for Spinal Cord Injury Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301639. [PMID: 37870182 PMCID: PMC10667844 DOI: 10.1002/advs.202301639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/23/2023] [Indexed: 10/24/2023]
Abstract
Stem cells play critical roles in cell therapies and tissue engineering for nerve repair. However, achieving effective delivery of high cell density remains a challenge. Here, a novel cell delivery platform termed the hyper expansion scaffold (HES) is developed to enable high cell loading. HES facilitated self-promoted and efficient cell absorption via a dual driving force model. In vitro tests revealed that the HES rapidly expanded 80-fold in size upon absorbing 2.6 million human amniotic epithelial stem cells (hAESCs) within 2 min, representing over a 400% increase in loading capacity versus controls. This enhanced uptake benefited from macroscopic swelling forces as well as microscale capillary action. In spinal cord injury (SCI) rats, HES-hAESCs promoted functional recovery and axonal projection by reducing neuroinflammation and improving the neurotrophic microenvironment surrounding the lesions. In summary, the dual driving forces model provides a new rationale for engineering hydrogel scaffolds to facilitate self-promoted cell absorption. The HES platform demonstrates great potential as a powerful and efficient vehicle for delivering high densities of hAESCs to promote clinical treatment and repair of SCI.
Collapse
Affiliation(s)
- Chen Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Jinying Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Jiayi Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuchen Xu
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310027China
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Jia Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wenyu Cui
- Eye Centerthe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| | | | - He Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Weixin Yuan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Tuoying Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Zhen Ge
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhou310013China
| | - Zhiying He
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335China
| | - Shaomin Zhang
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310027China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
47
|
Luo Q, Shang K, Zhu J, Wu Z, Cao T, Ahmed AAQ, Huang C, Xiao L. Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. MATERIALS HORIZONS 2023; 10:4662-4685. [PMID: 37705440 DOI: 10.1039/d3mh00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Biomimetic cell culture, which involves creating a biomimetic microenvironment for cells in vitro by engineering approaches, has aroused increasing interest given that it maintains the normal cellular phenotype, genotype and functions displayed in vivo. Therefore, it can provide a more precise platform for disease modelling, drug development and regenerative medicine than the conventional plate cell culture. In this review, initially, we discuss the principle of biomimetic cell culture in terms of the spatial microenvironment, chemical microenvironment, and physical microenvironment. Then, the main strategies of biomimetic cell culture and their state-of-the-art progress are summarized. To create a biomimetic microenvironment for cells, a variety of strategies has been developed, ranging from conventional scaffold strategies, such as macroscopic scaffolds, microcarriers, and microgels, to emerging scaffold-free strategies, such as spheroids, organoids, and assembloids, to simulate the native cellular microenvironment. Recently, 3D bioprinting and microfluidic chip technology have been applied as integrative platforms to obtain more complex biomimetic structures. Finally, the challenges in this area are discussed and future directions are discussed to shed some light on the community.
Collapse
Affiliation(s)
- Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Keyuan Shang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510070, China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
48
|
Gong X, Wen Z, Liang Z, Xiao H, Lee S, Wright T, Nguyen RY, Rossello A, Mak M. Instant Assembly of Collagen for Scaffolding, Tissue Engineering, and Bioprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561456. [PMID: 37873099 PMCID: PMC10592672 DOI: 10.1101/2023.10.08.561456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Controllable assembly of cells and tissues offers potential for advancing disease and development modeling and regenerative medicine. The body's natural scaffolding material is the extracellular matrix, composed largely of collagen I. However, challenges in precisely controlling collagen assembly limit collagen's applicability as a primary bioink or glue for biofabrication. Here, we introduce a set of biopatterning methods, termed Tunable Rapid Assembly of Collagenous Elements (TRACE), that enables instant gelation and rapid patterning of collagen I solutions with wide range of concentrations. Our methods are based on accelerating the gelation of collagen solutions to instantaneous speeds via macromolecular crowding, allowing versatile patterning of both cell-free and cell-laden collagen-based bioinks. We demonstrate notable applications, including macroscopic organoid engineering, rapid free-form 3D bioprinting, contractile cardiac ventricle model, and patterning of high-resolution (below 5 (m) collagen filament. Our findings enable more controllable and versatile applications for multi-scale collagen-based biofabrication.
Collapse
|
49
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
50
|
Huang K, Li Q, Xue Y, Wang Q, Chen Z, Gu Z. Application of colloidal photonic crystals in study of organoids. Adv Drug Deliv Rev 2023; 201:115075. [PMID: 37625595 DOI: 10.1016/j.addr.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
As alternative disease models, other than 2D cell lines and patient-derived xenografts, organoids have preferable in vivo physiological relevance. However, both endogenous and exogenous limitations impede the development and clinical translation of these organoids. Fortunately, colloidal photonic crystals (PCs), which benefit from favorable biocompatibility, brilliant optical manipulation, and facile chemical decoration, have been applied to the engineering of organoids and have achieved the desirable recapitulation of the ECM niche, well-defined geometrical onsets for initial culture, in situ multiphysiological parameter monitoring, single-cell biomechanical sensing, and high-throughput drug screening with versatile functional readouts. Herein, we review the latest progress in engineering organoids fabricated from colloidal PCs and provide inputs for future research.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yufei Xue
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|