1
|
Meng W, Pang R, Zhang D, Yuan J, Lu L, Shang Y, Zhang Y, Cao A. Ruthenium-cobalt alloy nanoparticles uniformly dispersed on carbon nanotube films for high-performance electrocatalytic hydrogen evolution. J Colloid Interface Sci 2025; 690:137309. [PMID: 40088815 DOI: 10.1016/j.jcis.2025.137309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Rational construction of highly active and long-life electrocatalysts for hydrogen evolution reaction (HER) is of great significance for the development of renewable energy-related applications. Metal alloying is an effective method to improve the activity of electrocatalysts. Here, we report an efficient and stable freestanding film electrocatalyst (RuCo/CNT) consisting of uniformly loaded RuCo alloy on carbon nanotubes (CNTs) film. The overpotential of the catalyst at a current density of 10 mA cm-2 is 12.8 mV and 18 mV in 1 M KOH and simulated alkaline seawater, respectively. In addition, the catalyst has excellent stability, with almost no degradation of its performance after 5000 cycles. The uniform loading of RuCo alloy on the CNTs film network helps to accelerate electron transfer. Theoretical studies show that the addition of Ru regulates the electronic environment of Co atoms, thus optimizing the absorption/desorption of intermediates, reducing the hydrolytic ionization barrier, and thus improving the catalyst performance. This work provides feasible guidance for the design and development of high-performance HER electrocatalysts working for both purified water and seawater.
Collapse
Affiliation(s)
- Weixue Meng
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Rui Pang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Ding Zhang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Junge Yuan
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Lu
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyuan Shang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China.
| | - Yingjiu Zhang
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China.
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Xu Y, Du J, Jiang J, Miao Y, Zhuang Z, Liu Z, Yan Y, Pan R, Yang J, Wang M, Gu S, Kang L, Wang D. Co Nanoparticle: An Efficient H-pump for Pt Single Atoms Towards Enhanced Hydrogen Spillover. Angew Chem Int Ed Engl 2025; 64:e202502227. [PMID: 39995276 DOI: 10.1002/anie.202502227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
Introducing OH-interaction sites to accelerate water dissociation can increase hydrogen coverage on active site surfaces and thus accelerate H-spillover, leading to an enhanced hydrogen evolution reaction (HER). Recent studies on single-atom catalysts (SACs) combined with nano-metal-particles (NMPs) have developed various homologous NMP-SACs, however, synthesizing the heterologous NMP-SACs remains a significant challenge. Particularly for HER catalysts under alkaline conditions, the ideal heterologous structure requires a synergy between non-noble NMPs with strong oxophilicity and noble-metal SAs with suitable hydrogen binding energy. Herein, we report a facile pyrolysis-confinement strategy to create the heterologous NMP-SACs, comprising Co NMP (Con) and Pt SACs (Pt1) confined within N-doped hollow polyhedral carbons (Con-Pt1@NPC). This catalyst demonstrates outstanding HER activity and superior stability in alkaline electrolyzer. Calculations reveal that Co nanoparticles serve as an H-pump, dissociating water to supply hydrogen to Pt1 sites, thereby enhancing the HER through a short C site→C-Pt bridge site→Pt site hydrogen spillover pathway.
Collapse
Affiliation(s)
- Yike Xu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Junyi Du
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingyun Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yumin Miao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhenyu Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yuanyuan Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rongrong Pan
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin Yang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meiling Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lixing Kang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Tian F, Geng S, Li M, Qiu L, Wu F, He L, Sheng J, Zhou X, Chen Z, Luo M, Liu H, Yu Y, Yang W, Guo S. Synergetic Oxidized Mg and Mo Sites on Amorphous Ru Metallene Boost Hydrogen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501230. [PMID: 40116552 DOI: 10.1002/adma.202501230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Ruthenium (Ru) is considered as a promising catalyst for the alkaline hydrogen evolution reaction (HER), yet its weak water adsorption ability hinders the water splitting efficiency. Herein, a concept of introducing the oxygenophilic MgOx and MoOy species onto amorphous Ru metallene is demonstrated through a simple one-pot salt-templating method for the synergic promotion of water adsorption and splitting to greatly enhance the alkaline HER electrocatalysis. The atomically thin MgOx and MoOy species on Ru metallene (MgOx/MoOy-Ru) show a 15.3-fold increase in mass activity for HER at the potential of 100 mV than that of Ru metallene and an ultralow overpotential of 8.5 mV at a current density of 10 mA cm-2. It is further demonstrated that the MgOx/MoOy-Ru-based anion exchange membrane water electrolyzer can achieve a high current density of 100 mA cm-2 at a remarkably low cell voltage of 1.55 V, and exhibit excellent durability of over 60 h at a current density of 500 mA cm-2. In situ spectroscopy and theoretical simulations reveal that the co-introduction of MgOx and MoOy enhances interfacial water adsorption and splitting by promoting adsorption on oxidized Mg sites and lowering the dissociation energy barrier on oxidized Mo sites.
Collapse
Affiliation(s)
- Fenyang Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shuo Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Guizhou Provincial Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Menggang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Longyu Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fengyu Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lin He
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jie Sheng
- Laboratory for Space Environment and Physical Science, Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Xin Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Zhaoyu Chen
- Laboratory for Space Environment and Physical Science, Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hu Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Yongsheng Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Weiwei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Yu X, Xia M, Qi R, Wang Y, Gao M, Zhong M, Lu X. Interfacial engineering of a nanofibrous Ru/Cr 2O 3 heterojunction for efficient alkaline/acid-universal hydrogen evolution at the ampere level. Chem Sci 2025:d5sc00248f. [PMID: 40336991 PMCID: PMC12054641 DOI: 10.1039/d5sc00248f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025] Open
Abstract
Interfacial engineering of a heterostructured electrocatalyst is an efficient way to boost hydrogen production, yet it still remains a challenging task to achieve superior performance at ampere-grade current density. Herein, a nanofibrous Ru/Cr2O3 heterojunction is prepared for alkaline/acid-universal hydrogen evolution. Theoretical calculations reveal that the introduction of Cr2O3 modulates the electronic structure of Ru, which is beneficial for *H desorption, resulting in a superior HER performance at ampere-grade current density. Accordingly, the resultant Ru/Cr2O3 catalyst presents an ultra-low overpotential of only 88 mV and a long-term stability of 300 h at 1 A cm-2 in 1 M KOH. Furthermore, it also exhibits a small overpotential of 112 mV and steadily operates for 300 h at 1 A cm-2 in 0.5 M H2SO4. The catalyst outperforms not only the benchmark Pt/C catalyst but also most of the top-performing catalysts reported to date. This study offers a novel conceptual approach for designing highly efficient electrocatalysts that hold significant promise for industrial-scale water splitting applications.
Collapse
Affiliation(s)
- Xianqiang Yu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Mingze Xia
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Ruikai Qi
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yuezhu Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Mingbin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University Changchun 130012 P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
5
|
Lei H, Yang W, Hu S, Yi L, Ma C, Hu C, Qian F, Zhao M, Liu L, Yang G, Chen Q. Synergistic Effect of Boron and Oxygen Coordination on Ruthenium Clusters for Industrial Water Splitting in Alkaline Medium. Angew Chem Int Ed Engl 2025:e202503871. [PMID: 40293057 DOI: 10.1002/anie.202503871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/10/2025] [Accepted: 04/27/2025] [Indexed: 04/30/2025]
Abstract
The alteration in the coordination environment of metal atoms can manipulate their electronic structure and regulate the electrocatalytic hydrogen evolution activity. In this work, synchrotron radiation tests prove that the boron (B) and oxygen (O) elements co-coordinate with ruthenium clusters (RuC) on the surface of B-O modified reduced graphene oxide. The electrochemical tests demonstrate that this unique structure electrocatalyst presents an overpotential of 12 mV in 1 M KOH condition and for over 120 h at the current of -1 A cm-2, indicating potential practical applications. The quasi in-situ X-ray photoelectron spectroscopy and in-situ infrared spectroscopy confirmed that the B-O diatomic coordination can modulate the synergy between the substrate and the RuC catalytic site, enhancing the intrinsic catalytic activity and ion migration efficiency. The first principles calculation further proves that B-O diatomic coordination will reduce the desorption barrier of H* and construct a complete hydrogen migration path. This study discloses the significance of the synergistic effect of two anions to enhance the catalytic activity of the catalyst by altering the coordination environment of ruthenium clusters.
Collapse
Affiliation(s)
- Huxu Lei
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P.R. China
- School of Rare Earths, University of Science & Technology of China, Hefei, 230026, P.R. China
| | - Weiwei Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P.R. China
| | - Shengnan Hu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| | - Luocai Yi
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P.R. China
- School of Rare Earths, University of Science & Technology of China, Hefei, 230026, P.R. China
| | - Chuanming Ma
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P.R. China
- School of Rare Earths, University of Science & Technology of China, Hefei, 230026, P.R. China
| | - Chengsi Hu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P.R. China
- School of Rare Earths, University of Science & Technology of China, Hefei, 230026, P.R. China
| | - Fangren Qian
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P.R. China
- School of Rare Earths, University of Science & Technology of China, Hefei, 230026, P.R. China
| | - Ming Zhao
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| | - Lie Liu
- Center for Computational Chemistry, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P.R. China
| | - Guangzhi Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P.R. China
| | - Qingjun Chen
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, P.R. China
- School of Rare Earths, University of Science & Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
6
|
Gu X, Li Z, Jang H, Tang J, Sun C, Kim MG, Liu S, Liu X, Hou L. Promoting Efficient Ruthenium Sites With Lewis Acid Oxide for the Accelerated Hydrogen and Chlor-Alkali Co-Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412123. [PMID: 39981792 DOI: 10.1002/smll.202412123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Ruthenium (Ru) -based catalysts have been considered a promising candidate for efficient sustainable hydrogen and chlor-alkali co-production. Theoretical calculations have disclosed that the hollow sites on the Ru surface have strong adsorption energies of H and Cl species, which inevitably leads to poor activity for cathodic hydrogen evolution reaction (HER) and anodic chlorine evolution reaction (CER), respectively. Furthermore, it have confirmed that anchoring Lewis acid oxide nanoparticles such as MgO on the Ru surface can induce the formation of the onion-like charge distribution of Ru atoms around MgO nanoparticles, thereby exposing the Ru-bridge sites at the interface as excellent H and Cl adsorption sites to accelerate both HER and CER. Under the guidance of theoretical calculations, a novel dispersed MgO nanoparticles on Ru (MgOx-Ru) electrocatalyst is successfully prepared. In strongly alkaline and saline media, MgOx-Ru recorded excellent HER and CER electrocatalytic activity with a very low overpotential of 19 mV and 74 mV at the current density of 10 mA cm-2, respectively. More stirringly, the electrochemical test with MgOx-Ru as both anodic and cathodic electrodes under simulated chlor-alkali electrolysis conditions demonstrated superior electrocatalytic performance to the industrial catalysts of commercial 20 wt% Pt/C and dimensionally stable anode (DSA).
Collapse
Affiliation(s)
- Xiumin Gu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Seoul, 156-756, South Korea
| | - Jiachen Tang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chaoyue Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 790-784, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
7
|
Hossain MN, Zhang L, Neagu R, Sun S. Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions. Chem Soc Rev 2025; 54:3323-3386. [PMID: 39981628 DOI: 10.1039/d4cs00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Atomic site catalysts (ASCs) have recently gained prominence for their potential in the electrochemical hydrogen evolution reaction (HER) due to their exceptional activity, selectivity, and stability. ASCs with individual atoms dispersed on a support material, offer expanded surface areas and increased mass efficiency. This is because each atom in these catalysts serves as an active site, which enhances their catalytic activity. This review is focused on providing a detailed analysis of ASCs in the context of the HER. It will delve into their properties, types, and performance to provide a comprehensive understanding of their role in electrochemical HER processes. The introduction part underscores HER's significance in transitioning to sustainable energy sources and emphasizes the need for innovative catalysts like ASCs. The fundamentals of the HER section emphasizes the importance of understanding the HER and highlights the key role that catalysts play in HER. The review also explores the properties of ASCs with a specific emphasis on their atomic structure and categorizes the types based on their composition and structure. Within each category of ASCs, the review discusses their potential as catalysts for the HER. The performance section focuses on a thorough evaluation of ASCs in terms of their activity, selectivity, and stability in HER. The performance section assesses ASCs in terms of activity, selectivity, and stability, delving into reaction mechanisms via experimental and theoretical approaches, including density functional theory (DFT) studies. The review concludes by addressing ASC-related challenges in HER and proposing future research directions, aiming to inspire further innovation in sustainable catalysts for electrochemical HER.
Collapse
Affiliation(s)
- M Nur Hossain
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Roberto Neagu
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifque (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
8
|
Eskandari P, Zhou S, Yuwono J, Gunawan D, Webster RF, Ma Z, Xu H, Amal R, Lu X. Enhanced Hydrogen Evolution Reaction in Alkaline Media via Ruthenium-Chromium Atomic Pairs Modified Ruthenium Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419360. [PMID: 40109171 DOI: 10.1002/adma.202419360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Precisely optimizing the electronic metal support interaction (EMSI) of the electrocatalysts and tuning the electronic structures of active sites are crucial for accelerating water adsorption and dissociation kinetics in alkaline hydrogen evolution reaction (HER). Herein, an effective strategy is applied to modify the electronic structure of Ru nanoparticles (RuNPs) by incorporating Ru single atoms (RuSAs) and Ru and Cr atomic pairs (RuCrAPs) onto a nitrogen-doped carbon (N-C) support through optimized EMSI. The resulting catalyst, RuNPs-RuCrAPs-N-C, shows exceptional performance for alkaline HER, achieving a six times higher turnover frequency (TOF) of 13.15 s⁻¹ at an overpotential of 100 mV, compared to that of commercial Pt/C (2.07 s⁻¹). Additionally, the catalyst operates at a lower overpotential at a current density of 10 mA·cm⁻2 (η10 = 31 mV), outperforming commercial Pt/C (η10 = 34 mV). Experimental results confirm that the RuCrAPs modified RuNPs are the main active sites for the alkaline HER, facilitating the rate-determining steps of water adsorption and dissociation. Moreover, the Ru-Cr interaction also plays a vital role in modulating hydrogen desorption. This study presents a synergistic approach by rationally combining single atoms, atomic pairs, and nanoparticles with optimized EMSI effects to advance the development of efficient electrocatalysts for alkaline HER.
Collapse
Affiliation(s)
- Parisa Eskandari
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Kensington, NSW, 2052, Australia
| | - Shujie Zhou
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Kensington, NSW, 2052, Australia
| | - Jodie Yuwono
- School of Chemical Engineering, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Denny Gunawan
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Kensington, NSW, 2052, Australia
| | - Richard F Webster
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Zhipeng Ma
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Kensington, NSW, 2052, Australia
| | - Hanyu Xu
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Kensington, NSW, 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Kensington, NSW, 2052, Australia
| | - Xunyu Lu
- School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Kensington, NSW, 2052, Australia
| |
Collapse
|
9
|
Li J, Li Y, Ma Y, Zhao Z, Peng H, Zhou T, Xu M, Fan D, Ma H, Qiu J, Guo Z. Electrochemical N-N Oxidatively Coupled Dehydrogenation of 3,5-Diamino-1 H-1,2,4-triazole for Value-Added Chemicals and Bipolar Hydrogen Production. J Am Chem Soc 2025; 147:9505-9518. [PMID: 40056423 PMCID: PMC11926877 DOI: 10.1021/jacs.4c17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Electrochemical H2 production from water favors low-voltage molecular oxidation to replace the oxygen evolution reaction as an energy-saving and value-added approach. However, there exists a mismatch between the high demand for H2 and slow anodic reactions, restricting practical applications of such hybrid systems. Here, we propose a bipolar H2 production approach, with anodic H2 generation from the N-N oxidatively coupled dehydrogenation (OCD) of 3,5-diamino-1H-1,2,4-triazole (DAT), in addition to the cathodic H2 generation. The system requires relatively low oxidation potentials of 0.872 and 1.108 V vs RHE to reach 10 and 500 mA cm-2, respectively. The bipolar H2 production in an H-type electrolyzer requires only 0.946 and 1.129 V to deliver 10 and 100 mA cm-2, respectively, with the electricity consumption (1.3 kWh per m3 H2) reduced by 68%, compared with conventional water splitting. Moreover, the process is highly appealing due to the absence of traditional hazardous synthetic conditions of azo compounds at the anode and crossover/mixing of H2/O2 in the electrolyzer. A flow-type electrolyzer operates stably at 500 mA cm-2 for 300 h. Mechanistic studies reveal that the Pt single atom and nanoparticle (Pt1,n) optimize the adsorption of the S active sites for H2 production over the Pt1,n@VS2 cathodic catalysts. At the anode, the stepwise dehydrogenation of -NH2 in DAT and then oxidative coupling of -N-N- predominantly form azo compounds while generating H2. The present report paves a new way for atom-economical bipolar H2 production from N-N oxidative coupling of aminotriazole and green electrosynthesis of value-added azo chemicals.
Collapse
Affiliation(s)
- Jiachen Li
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, SAR ,China
| | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Zihang Zhao
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Huarong Peng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, SAR ,China
| | - Tao Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, SAR ,China
| | - Ming Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Zhijian Laboratory, Xi'an 710025, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhengxiao Guo
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, SAR ,China
| |
Collapse
|
10
|
Pan D, Yu B, Tressel J, Yu S, Saravanan P, Sangoram N, Ornelas-Perez A, Bridges F, Chen S. Rapid Synthesis of Carbon-Supported Ru-RuO₂ Heterostructures for Efficient Electrochemical Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414534. [PMID: 39813163 PMCID: PMC11904969 DOI: 10.1002/advs.202414534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO2 interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH. Among the series, the sample prepares at 300 A for 10 s exhibits the best performance, with an overpotential of only -31 mV for HER and +240 mV for OER to reach the current density of 10 mA cm⁻2. Additionally, the catalyst demonstrates excellent durability, with minimal impacts of electrolyte salinity. With the sample as the bifunctional catalysts for overall water splitting, an ultralow cell voltage of 1.43 V is needed to reach 10 mA cm⁻2, 160 mV lower than that with a commercial 20% Pt/C and RuO₂/C mixture. These results highlight the significant potential of MIH in the ultrafast synthesis of high-performance catalysts for electrochemical water splitting and sustainable hydrogen production from seawater.
Collapse
Affiliation(s)
- Dingjie Pan
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Bingzhe Yu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - John Tressel
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Sarah Yu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Pranav Saravanan
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Naya Sangoram
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Andrea Ornelas-Perez
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Frank Bridges
- Department of Physics, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| |
Collapse
|
11
|
Li Y, Guo J, Wang R, Zhao Y, Wang Q, Li J, Ling T. Design of RuO x Electrocatalysts Containing Metallic Ru on the Surface to Accelerate the Alkaline Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7784-7792. [PMID: 39870571 DOI: 10.1021/acsami.4c19204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuOx catalyst with metallic Ru on its surface through a simple cation exchange method. We demonstrated that the formation of metallic Ru on RuOx greatly enhances the interaction between the catalyst and adsorbed hydrogen (*H), resulting in extremely high HER activity in alkaline media. Moreover, we proposed the potential of zero charge (Epzc) as a descriptor of ruthenium-base catalysts for alkaline HER for the first time and revealed that the existence of metallic Ru optimizes the Epzc of RuOx toward the hydrogen region. As a result, the designed RuOx catalyst achieves an overpotential of only 18 mV at the current density of 10 mA cm-2. Furthermore, RuOx requires 1.80 V to reach 800 mA cm-2 in the anion exchange membrane water electrolyzer, outperforming the benchmark Pt/C.
Collapse
Affiliation(s)
- Yakang Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaxin Guo
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ruguang Wang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Zhao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Quanlu Wang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jisi Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Shao H, Zhong L, Wu X, Wang YX, Smith SC, Tan X. Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion. Chem Commun (Camb) 2025; 61:2203-2216. [PMID: 39760522 DOI: 10.1039/d4cc05900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction. Then we summarize the recent progress of density functional theory studies on designing CS-SACs by the above strategies for electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, and electrosynthesis of urea, and electrochemical energy storage systems such as monovalent metal-sulfur batteries (Li-S and Na-S batteries). Finally, the current challenges and future opportunities in this emerging field are highlighted. This review will provide a helpful guideline for the rational design of the structure and functionality of CS-SACs, and contribute to material optimizations in applications of energy storage and conversion.
Collapse
Affiliation(s)
- Hengjia Shao
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Li Zhong
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Xingqiao Wu
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia.
| | - Xin Tan
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
13
|
Melchionna M, Fornasiero P. On the Tracks to "Smart" Single-Atom Catalysts. J Am Chem Soc 2025; 147:2275-2290. [PMID: 39757830 PMCID: PMC11760184 DOI: 10.1021/jacs.4c15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Despite their enormous impact in modern heterogeneous catalysis, single-atom catalysts (SACs) continue to puzzle the catalysis community, which often struggles to draw correct conclusions in SAC-catalyzed experiments. In many cases, the reasons for such an uncertainty originate from the lack of knowledge of the exact single-atom evolution under operative conditions and the fundamental factors controlling the fate of the single atom in relation to the catalytic mechanism. This has led to confusion also about correct definition and terminology, where the coined term single-site catalysts reflects the difficulty in defining the true active species as well as in obtaining long-range ordered homogeneous supports [Chi, S.; et al. J. Catal. 2023, 419, 49-57. DOI: 10.1016/j.jcat.2023.02.003]. Most recent studies have attempted to clarify several of the key aspects that are in play during SAC catalysis. However, one largely overlooked opportunity is to take advantage of all the dynamic phenomena occurring at the single metal site to turn the conventional catalytic sequences into a smart, stimulus-responsive, and controllable evolution of the single atom under operative conditions. Such "smartness" could potentially unleash pathways that mitigate some of the typical drawbacks of SACs, such as selectivity and stability. Here we present our vision on these yet-unexplored opportunities for exploiting the dynamicity of SACs, and we discuss various examples that could be the cornerstones for the advent of a next generation of SACs, that we term here "smart" single-atom catalysts (SSACs). Despite smart-behaving SACs still being far from realization, the clues provided here suggest pathways to achieve this goal.
Collapse
Affiliation(s)
- Michele Melchionna
- Department of Chemical and
Pharmaceutical Sciences, Center for Energy, Environment and Transport
Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste
Research Unit, University of Trieste, Via L. Giorgieri 134127Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and
Pharmaceutical Sciences, Center for Energy, Environment and Transport
Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste
Research Unit, University of Trieste, Via L. Giorgieri 134127Trieste, Italy
| |
Collapse
|
14
|
Jin M, Han X, Chou T, Li S, Pi Y, Chen K, Chen T, Wang S, Yang Y, Wang J, Jin H. Interfacial engineering of ruthenium-nickel for efficient hydrogen electrocatalysis in alkaline medium. J Colloid Interface Sci 2025; 678:272-280. [PMID: 39197370 DOI: 10.1016/j.jcis.2024.08.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Developing highly efficient electrocatalyst with heterostructure for hydrogen evolution and oxidation reactions (HER/HOR) in alkaline media is crucial to the fabrication and conversion of hydrogen energy but also remains a great challenge. Herein, the synthesis of ruthenium-nickel nanoparticles (Ru3-Ni NPs) with heterostructure for hydrogen electrocatalysis is reported, and studies show that their catalytic activity is improved by electron redistribution caused by the distinctly heterogeneous interface. Impressively, Ru3-Ni NPs possess the remarkable exchange current density (2.22 mA cm-2) for HOR. Additionally, an ultra-low overpotential of 28 mV is required to attain a current density of 10 mA cm-2 and superior stability of 200 h for HER. The highly efficient catalytic activity can be attributed to the electron transfer from Ni to Ru and the optimal adsorption of H* on Ru-Ni sites. Our study showcases a reliable heterostructure that boosts the HOR/HER activity of the catalyst in alkaline environments. This work provides a new pathway for designing high-performance electrocatalyst for energy storage and conversion.
Collapse
Affiliation(s)
- Mengyuan Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiang Han
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Ting Chou
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shuangyan Li
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Kai Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Tingting Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yun Yang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Juan Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China; Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
15
|
Hui ZX, Li H, Chen ZW, Wen Z, Wang GY, Singh CV, Yang CC, Jiang Q. The Interfacial Ni/Fe─O─Y Bonds Contribute to High-Efficiency Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407860. [PMID: 39479738 DOI: 10.1002/smll.202407860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Indexed: 01/11/2025]
Abstract
Developing economical and efficient electrocatalysts is critical for hydrogen energy industrialization through water electrolysis. Herein, a novel dual-site synergistic NiFe/Y2O3 hybrid with abundant interfacial Ni/Fe─O─Y bonds is designed by density functional theory (DFT) simulations. In situ Raman spectra combined with DFT calculations reveal that the interfacial Ni/Fe─O─Y units greatly promote H2O dissociation and optimize the adsorption of both H* and oxygen species, achieving excellent activity and durability for hydrogen evolution reaction. As expected, NiFe/Y2O3 exhibits a low overpotential of 27 mV at 10 mA cm-2 and robust stability of over 200 h at 1000 mA cm-2, and also outstanding water splitting performance with a low cell voltage of 1.64 V at 100 mA cm-2, showing significant potential for real-world applications.
Collapse
Affiliation(s)
- Zhen Xin Hui
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hui Li
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zhi Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4, Canada
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Guo Yong Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
16
|
Gan Z, Shu C, Cao J, Chen Z, Qiu P, Chen Z, Wang X, Wu Y, Wang S, Yang X, Tang W. P-Doping Modulated RuIr Nanoparticles Anchored on Co/N/C Catalysts with Improved Alkaline Hydrogen Evolution Activity and Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408887. [PMID: 39632653 DOI: 10.1002/smll.202408887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Achieving efficient and stable hydrogen evolution reactions in alkaline conditions is crucial for hydrogen production. In this study, a RuIr/Co(SA)NC-P catalyst featuring RuIr alloys alongside P-doping and CoNx sites is developed. RuIr alloying optimizes the electronic structure between Ru and Ir, promoting electron transfer from Ru to Ir. P-doping further modulates the electronic properties of RuIr alloys, optimizing hydrogen binding energy and weakening Ru─OH binding energy, facilitating rapid H2 generation and OHad transfer. Meanwhile, CoNx promotes water dissociation, providing a fast proton delivery path for RuIr alloys. The catalyst exhibits enhanced HER activity with a low overpotential of 20 mV at 10 mA cm-2, a Tafel slope of 20.4 mV dec-1, and a turnover frequency of 19.5 H2 s-1 at 150 mV overpotential. Moreover, catalyst stability is improved 8 times by mitigating RuIr alloy dissolution/agglomeration via P-doping. This work introduces a promising approach for developing efficient and stable HER electrocatalysts.
Collapse
Affiliation(s)
- Zhuofan Gan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chengyong Shu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingwen Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhixu Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Peixi Qiu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongxin Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaowei Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yuping Wu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Shirui Wang
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai, 200245, China
| | - Xiaohua Yang
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, Quebec, J3×1P7, Canada
| | - Wei Tang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Chen L, Li C, Liu M, Dai Z, Wang H, Zhou X, Zhao Q, Cong Y. Confining Flat Ru Islands into TiO 2 Lattice with the Coexisting Ru-O-Ti and Ru-Ti Bonds for Ultra-Stable Hydrogen Evolution at Amperometric Current Density and Hydrogen Oxidation at High Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410881. [PMID: 39454111 DOI: 10.1002/advs.202410881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/12/2024] [Indexed: 10/27/2024]
Abstract
Effective hydrogen evolution reaction (HER) under high current density and enhanced hydrogen oxidation reaction (HOR) over a wide potential range remain challenges for Ru-based electrocatalysts because its strong affinity to the adsorbed hydroxyl (OHad) inhibits the supply of the adsorbed hydrogen (Had). Herein, the coexisting Ru─O─Ti and Ru─Ti bonds are constructed by taking TiO2 crystal confined flat-Ru clusters (F-Ru@TiO2) to cope with above-mentioned obstacles. The different electronegativity (χTi = 1.54 < χRu = 2.20< χO = 3.44) can endow Ti in Ru─O─Ti bonds with more positive charge and stabilize Ru of Ru-Ti bonds with the low-valence. The strength of Ru─OHad is then weakened by the oxophilicity of positively charged Ti in Ru─O─Ti bonds and the stronger Ti─OHad bond could release active Ru, especially for low-valence Ru in Ru─Ti bonds, to serve as exclusive Had sites. As expected, F─TiRu@TiO2 shows a low HER overpotential of 74 mV at 1000 mA cm-2 and an ultrahigh mass activity (j0,m) of 3155 A gRu -1 for HOR. More importantly, F─Ru@TiO2 can tolerate the HER current density of 1000 mA cm-2 for 100 h and the high anodic potential for HOR up to 0.5 V versus RHE.
Collapse
Affiliation(s)
- Luyun Chen
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Chunlei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Mengling Liu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Ziruo Dai
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Haibin Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Xuan Zhou
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Qiuping Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Yuanyuan Cong
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| |
Collapse
|
18
|
Zhang J, Liu G, Li H, Chang R, Jia S, Zhang Y, Huang K, Tang Y, Sun H. Independent Control Over the H/OH Adsorption: Breaking the Trade-Off Between H/OH-Adsorption and H 2O-Dissociation of Platinum-Group Metal Electrocatalyst for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407881. [PMID: 39328094 DOI: 10.1002/smll.202407881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Platinum-group metals catalysts (such as Rh, Pd, Ir, Pt) have been the most efficient hydrogen evolution reaction (HER) electrocatalysts due to their moderate H adsorption strength, while the high H2O-dissociation barrier in alkaline media restrains the catalytic performance of PGM catalysts. However, the optimization of the H2O-dissociation barrier and *H/*OH binding energy toward their individual optima is limited due to the constraints of their scaling relationship on a single active site. Here, a coordinatively unsaturated "M─Ox─W" (M = Rh, Pd, Ir, Pt) active area is constructed, where H and OH species are anchored on Pt-group metal sites and inactive W sites for individual regulation. By combining experiments and density functional theory calculations, the introduction of extra OH-adsorption sites (coordinatively unsaturated WO3-x) avoids the competitive adsorption of H and OH on the single site, while the enhanced OH-adsorption capacity on the coordinatively unsaturated WO3-x effectively facilitates the adsorption/dissociation of interfacial H2O. As a result, the representative Rh-WO3-x catalyst exhibits outstanding catalytic activity and durability for HER. The findings of this work not only provide valuable insights for the design of efficient PGM catalysts for HER but also shed light on the development of electrocatalysts for other catalytic reactions.
Collapse
Affiliation(s)
- Jiachen Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Guocong Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Huiting Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Ruixuan Chang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Shuyu Jia
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Yechuan Zhang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
19
|
Bian J, Zhang W, Ng YH, Hu Z, Wei Z, Liu Y, Deng J, Dai H, Jing L. Transforming Red Phosphorus Photocatalysis: Dual Roles of Pre-Anchored Ru Single Atoms in Defect and Interface Engineering. Angew Chem Int Ed Engl 2024; 63:e202409179. [PMID: 39004946 DOI: 10.1002/anie.202409179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Crystalline red phosphorus (CRP), known for its promising photocatalytic properties, faces challenges in photocatalytic hydrogen evolution (PHE) due to undesired inherent charge deep trapping and recombination effects induced by defects. This study overcomes these limitations through an innovative strategy in integrating ruthenium single atoms (Ru1) within CRP to simultaneously repair the intrinsic undesired vacancy defects and serve as the uniformly distributed anchoring sites for a controllable growth into ruthenium nanoparticles (RuNP). Hence, a highly functionalized CRP with Ru1 and RuNP (Ru1-NP/CRP) with concerted effects in regulating electronic structures and promoting interfacial charge transfer has been achieved. Advanced characterizations unveil the pioneering dual role of pre-anchored Ru1 (analogous to the "Tai Chi" principle) in transforming CRP photocatalysis. The regulations of vacancy defects on the surface of CRP minimize the detrimental deep charge trapping, resulting in the prolonged lifetime of active charges. With the well-distributed in situ growth of RuNP on Ru1 sites, the constructed robust "bridge" that connects CRP and RuNP facilitates constructive interfacial charge transfer. Ultimately, the synergistic effect induced by the pre-anchored Ru1 endows Ru1-NP/CRP with an exceptional PHE rate of 3175 μmol h-1 g-1, positioning it as one of the most efficient elemental-based photocatalysts available. This breakthrough underscores the crucial role of pre-anchoring metal single atoms at defect sites of catalysts in enhancing sustainable hydrogen production.
Collapse
Affiliation(s)
- Junwei Bian
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong S.A.R., China
- Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Wei
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
20
|
Yang K, Huang Y, Wang T, Li Y, Du Y, Ling J, Fan Z, Zhang C, Ma C. In-Situ Anchoring of Co Single-Atom Synergistically with Cd Vacancy of Cadmium Sulfide for Boosting Asymmetric Charge Distribution and Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409832. [PMID: 39388450 DOI: 10.1002/adma.202409832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Indexed: 10/12/2024]
Abstract
In the context of reshaping the energy pattern, designing and synthesizing high-performance noble metal-free photocatalysts with ultra-high atomic utilization for hydrogen evolution reaction (HER) still remains a challenge. In a streamlined synthesis process, in-situ single atom anchoring is performed in parallel with HER by irradiating a precursory defect-state CdS/Co suspension (Co-DCdS-Ss) system under simulated sunlight and the in-situ synthesizing single-atom Co photocatalyst (Co5:DCdS) exhibits further improved catalytic performance (60.10 mmol g-1 h-1) compared with Co-DCdS-Ss (18.09 mmol g-1 h-1), reaching an apparent quantum yield of 57.6% at 500 nm and a solar-chemical energy conversion efficiency (SCC) of 6.26% at AM 1.5G. In-depth characterization tests and density functional theory (DFT) calculations prove that the anchoring of Co single atom deepens the asymmetric charge distribution of the two-coordination S atom adjacent to the cadmium vacancy (VCd). The synergy between electron delocalization VCd and Co single atom on the catalyst surface is constructed, which bifunctional sites responsible for boosting water adsorption-dissociation and hydrogen evolution. This study advances the understanding of the underlying mechanisms of synergy between surface defects and metal single atoms and opens a new horizon for the development of advanced materials in the field of photocatalysis.
Collapse
Affiliation(s)
- Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yating Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Juan Ling
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziyi Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
21
|
Yan ZT, Tao S, Wang J, Lu XL, Lu TB. Unlocking Efficient Alkaline Hydrogen Evolution Through Ru-Sn Dual Metal Sites and a Novel Hydroxyl Spillover Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411942. [PMID: 39340286 DOI: 10.1002/adma.202411942] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru-Sn/SnO2 NS, in which the Ru-Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru-Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru-Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm-2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm-2 with 90 h stability) and Ru-Sn NS (16 mV at 10 mA cm-2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.
Collapse
Affiliation(s)
- Zhen-Tong Yan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shi Tao
- School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, 215500, China
| | - Juan Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiu-Li Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
22
|
Guo J, Ding R, Li Y, Xie J, Fang Q, Yan M, Zhang Y, Yan Z, Chen Z, He Y, Sun X, Liu E. Semi-Ionic F Modified N-Doped Porous Carbon Implanted with Ruthenium Nanoclusters toward Highly Efficient pH-Universal Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403151. [PMID: 38934338 DOI: 10.1002/smll.202403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Developing high electroactivity ruthenium (Ru)-based electrocatalysts for pH-universal hydrogen evolution reaction (HER) is challenging due to the strong bonding strengths of key Ru─H/Ru─OH intermediates and sluggish water dissociation rates on active Ru sites. Herein, a semi-ionic F-modified N-doped porous carbon implanted with ruthenium nanoclusters (Ru/FNPC) is introduced by a hydrogel sealing-pyrolying-etching strategy toward highly efficient pH-universal hydrogen generation. Benefiting from the synergistic effects between Ru nanoclusters (Ru NCs) and hierarchically F, N-codoped porous carbon support, such synthesized catalyst displays exceptional HER reactivity and durability at all pH levels. The optimal 8Ru/FNPC affords ultralow overpotentials of 17.8, 71.2, and 53.8 mV at the current density of 10 mA cm-2 in alkaline, neutral, and acidic media, respectively. Density functional theory (DFT) calculations elucidate that the F-doped substrate to support Ru NCs weakens the adsorption energies of H and OH on Ru sites and reduces the energy barriers of elementary steps for HER, thus enhancing the intrinsic activity of Ru sites and accelerating the HER kinetics. This work provides new perspectives for the design of advanced electrocatalysts by porous carbon substrate implanted with ultrafine metal NCs for energy conversion applications.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jinmei Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Qi Fang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Miao Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuzhen Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Ziyang Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiqiang Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuming He
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
23
|
Feng Y, Xue Y, Shen B, Yang L, He H, Jiang Q, Ying G, Huang H. Building 3D Crosslinked Graphene-MXene Nanoarchitectures Decorated with MoS 2 Quantum Dots Enables Efficient Electrocatalytic Hydrogen Evolution. Chemistry 2024; 30:e202402430. [PMID: 39039628 DOI: 10.1002/chem.202402430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Although MoS2 quantum dots with abundant edge sites have been regarded as promising eletrode materials for the hydrogen evolution reaction (HER), their electrocatalytic capacity still requires improvements in actual applications. Herein. we demonstrate a controllable and robust bottom-up approach to build 3D crosslinked graphene-Ti3C2Tx MXene frameworks decorated with MoS2 quantum dots (MQD/RGO-MX) via a convenient co-assembly process. The novel structural design gives the MQD/RGO-MX nanoarchitectures a series of superior textural attributes, including 3D interconnected networks, continuous meso- and macropores, well-dispersed quantum dots, ameliorative electronic configuration, and excellent electrical conductivity. Accordingly, the resulting hybrid nanoarchitectures express superior electrocatalytic properties in terms of a low onset potential of only 45 mV, a small Tafel slope of 61 mV dec-1 as well as a long service life towards the HER, which make it quite competitive against bare MoS2 quantum dots, MXene as well as binary MQD/RGO and MQD/MXene electrocatalysts.
Collapse
Affiliation(s)
- Ying Feng
- College of Materials Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Ya Xue
- College of Materials Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Binfeng Shen
- College of Materials Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Lu Yang
- College of Materials Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Haiyan He
- College of Materials Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Quanguo Jiang
- College of Materials Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Guobing Ying
- School of Materials Science and Engineering, Southeast University, Nanjing, 211100, China
| | - Huajie Huang
- College of Materials Science and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
24
|
Gong L, Xia F, Zhu J, Mu X, Chen D, Zhao H, Chen L, Mu S. Hydrogen Evolution Reactivity of Pentagonal Carbon Rings and p-d Orbital Hybridization Effect with Ru. Angew Chem Int Ed Engl 2024:e202411125. [PMID: 39276024 DOI: 10.1002/anie.202411125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Topological defects are inevitable existence in carbon-based frameworks, but their intrinsic electrocatalytic activity and mechanism remain under-explored. Herein, the hydrogen evolution reaction (HER) of pentagonal carbon-rings is probed by constructing pentagonal ring-rich carbon (PRC), with optimized electronic structures and higher HER activity relative to common hexagonal carbon (HC). Furthermore, to improve the reactivity, we couple Ru clusters with PRC (Ru@PRC) through p-d orbital hybridization between C and Ru atoms, which drives a shortcut transfer of electrons from Ru clusters to pentagonal rings. The electron-deficient Ru species leads to a notable negative shift in d-band centers of Ru and weakens their binding strength with hydrogen intermediates, thus enhancing the HER activity in different pH media. Especially, at a current density of 10 mA cm-2, PRC greatly reduces alkaline HER overpotentials from 540 to 380 mV. And Ru@PRC even exhibits low overpotentials of 28 and 275 mV to reach current densities of 10 and 1000 mA cm-2, respectively. Impressively, the mass activity and price activity of Ru@PRC are 7.83 and 15.7 times higher than that of Pt/C at the overpotential of 50 mV. Our data unveil the positive HER reactivity of pentagonal defects and good application prospects.
Collapse
Affiliation(s)
- Lei Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Fanjie Xia
- NRC, Nanostructure Research Centre), Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| |
Collapse
|
25
|
Wang Y, Chen Z, Zhang C, Yang L, Jiang Q, Zhang J, He H, Huang H. Mesoporous Hollow Carbon Sphere-Embedded MXene Architectures Decorated with Ultrafine Rh Nanocrystals toward Methanol Electrooxidation. Inorg Chem 2024; 63:16888-16896. [PMID: 39196849 DOI: 10.1021/acs.inorgchem.4c02740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The development of advanced Pt-alternative anode electrocatalysts with high activity and reliable stability is critical to overcoming the technical challenges of direct methanol fuel cells. Here, we propose a robust bottom-up strategy for the spatial construction of mesoporous hollow carbon sphere (HCS)-embedded MXene architectures decorated with ultrafine Rh nanocrystals (Rh/HCS-MX) via stereoscopic coassembly reactions. The rational intercalation of HCS effectively separates the MXene nanowalls to achieve a rapid mass-transfer efficiency, while the intimate coupling of the hybrid carrier with Rh nanocrystals enables their electronic structure optimization, thus contributing to strong synergistic catalytic effects. Accordingly, the resulting Rh/HCS-MX architectures exhibit outstanding methanol electrooxidation properties in terms of large electrochemical active surface areas, high mass/specific activities, and good long-term stability, all of which are significantly superior to the traditional Rh/carbon black, Rh/HCS, and Rh/MXene as well as commercial Pt/carbon balck and Pd/carbon balck electrocatalysts.
Collapse
Affiliation(s)
- Yan Wang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Ziyue Chen
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Haiyan He
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Huajie Huang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
26
|
Liu D, Xu L, Li S, Xu A, Sun Y, Liu T, Liu M, Wang H, Liu X, Yao T, Ding T. Atomically precise Ru-O-Ru clusters for enhanced water dissociation in alkaline hydrogen evolution. NANO RESEARCH 2024; 17:6993-7000. [DOI: 10.1007/s12274-024-6726-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 01/16/2025]
|
27
|
Liu X, Wei S, Cao S, Zhang Y, Xue W, Wang Y, Liu G, Li J. Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405970. [PMID: 38866382 DOI: 10.1002/adma.202405970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Earth-abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual-doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO2 toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (Ov) concentration in CeO2 synergistically improve the water dissociation on Ov sites and sequential hydrogen adsorption at activated Ov-neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on Ov by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co-CeO2 electrocatalyst exhibits an ultra-low HER overpotential (27 mV at 10 mA cm-2) and Tafel slope (48 mV dec-1), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co-CeO2 achieves excellent stability of 500 h under 600 mA cm-2. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide-based HER electrocatalysts.
Collapse
Affiliation(s)
- Xiaojing Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Shuaichong Wei
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Shuyi Cao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yongguang Zhang
- Power Battery & System Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Xue
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guihua Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
28
|
Li Y, Niu S, Liu P, Pan R, Zhang H, Ahmad N, Shi Y, Liang X, Cheng M, Chen S, Du J, Hu M, Wang D, Chen W, Li Y. Ruthenium Nanoclusters and Single Atoms on α-MoC/N-Doped Carbon Achieves Low-Input/Input-Free Hydrogen Evolution via Decoupled/Coupled Hydrazine Oxidation. Angew Chem Int Ed Engl 2024; 63:e202316755. [PMID: 38739420 DOI: 10.1002/anie.202316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
The hydrazine oxidation-assisted H2 evolution method promises low-input and input-free hydrogen production. However, developing high-performance catalysts for hydrazine oxidation (HzOR) and hydrogen evolution (HER) is challenging. Here, we introduce a bifunctional electrocatalyst α-MoC/N-C/RuNSA, merging ruthenium (Ru) nanoclusters (NCs) and single atoms (SA) into cubic α-MoC nanoparticles-decorated N-doped carbon (α-MoC/N-C) nanowires, through electrodeposition. The composite showcases exceptional activity for both HzOR and HER, requiring -80 mV and -9 mV respectively to reach 10 mA cm-2. Theoretical and experimental insights confirm the importance of two Ru species for bifunctionality: NCs enhance the conductivity, and its coexistence with SA balances the H ad/desorption for HER and facilitates the initial dehydrogenation during the HzOR. In the overall hydrazine splitting (OHzS) system, α-MoC/N-C/RuNSA excels as both anode and cathode materials, achieving 10 mA cm-2 at just 64 mV. The zinc hydrazine (Zn-Hz) battery assembled with α-MoC/N-C/RuNSA cathode and Zn foil anode can exhibit 97.3 % energy efficiency, as well as temporary separation of hydrogen gas during the discharge process. Therefore, integrating Zn-Hz with OHzS system enables self-powered H2 evolution, even in hydrazine sewage. Overall, the amalgamation of NCs with SA achieves diverse catalytic activities for yielding multifold hydrogen gas through advanced cell-integrated-electrolyzer system.
Collapse
Affiliation(s)
- Yapeng Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuwen Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shangdong, 266071, P. R. China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rongrong Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Shi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Cheng
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junyi Du
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
| | - Maolin Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
29
|
Li RQ, Guo S, Wang X, Wan X, Xie S, Liu Y, Wang C, Zhang G, Cao J, Dai J, Ge M, Zhang W. Dual-strategy engineered nickel phosphide for achieving efficient hydrazine-assisted hydrogen production in seawater. Chem Sci 2024; 15:10084-10091. [PMID: 38966356 PMCID: PMC11220599 DOI: 10.1039/d4sc01160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 07/06/2024] Open
Abstract
Electrocatalytic hydrogen production in seawater to alleviate freshwater shortage pressures is promising, but is hindered by the sluggish oxygen evolution reaction and detrimental chloride electrochemistry. Herein, a dual strategy approach of Fe-doping and CeO2-decoration in nickel phosphide (Fe-Ni2P/CeO2) is rationally designed to achieve superior bifunctional catalytic performance for the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) in seawater. Notably, the two-electrode Fe-Ni2P/CeO2-based hybrid seawater electrolyzer realizes energy-efficient and chlorine-free hydrogen production with ultralow cell voltages of 0.051 and 0.597 V at 10 and 400 mA cm-2, which are significantly lower than those needed in the hydrazine-free seawater electrolyzer. Density functional theory calculations manifest that the combination of Fe doping and heterointerface construction between Fe-Ni2P and CeO2 can adjust the electronic structure of the Ni2P and optimize the water dissociation barrier and hydrogen adsorption free energy, leading to improvement of the intrinsic catalytic performance. This route affords a feasible solution for future large-scale hydrogen generation using abundant ocean water.
Collapse
Affiliation(s)
- Rui-Qing Li
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Songyun Guo
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Xiaojun Wang
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Xiaoyu Wan
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Shuixiang Xie
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Yu Liu
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Changming Wang
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Guangyu Zhang
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Jun Cao
- Department of Physics, Zhejiang Sci-Tech University Hangzhou 310018 PR China
| | - Jiamu Dai
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University Nantong 226019 PR China
| |
Collapse
|
30
|
Xiong Y, Wang Y, Tsang CC, Zhou J, Hao F, Liu F, Wang J, Xi S, Zhao J, Fan Z. Metal Doped Unconventional Phase IrNi Nanobranches: Tunable Electrochemical Nitrate Reduction Performance and Pollutants Upcycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10863-10873. [PMID: 38842426 DOI: 10.1021/acs.est.4c04014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 μg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Chi Ching Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
31
|
Wang Q, Zhao J, Yang X, Li J, Wu C, Shen D, Cheng C, Xu LH. Tuning the electronic metal-carbon interactions in Lignin-based carbon-supported ruthenium-based electrocatalysts for enhanced hydrogen evolution reactions. J Colloid Interface Sci 2024; 664:251-262. [PMID: 38467090 DOI: 10.1016/j.jcis.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm-2. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.
Collapse
Affiliation(s)
- Qichang Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jing Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xiaoxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jianfei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Chongbo Cheng
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing 210046, PR China.
| | - Lian-Hua Xu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
32
|
Zhou Q, Shou H, Qiao S, Cao Y, Zhang P, Wei S, Chen S, Wu X, Song L. Analyzing the Active Site and Predicting the Overall Activity of Alloy Catalysts. J Am Chem Soc 2024; 146:15167-15175. [PMID: 38717376 DOI: 10.1021/jacs.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
As one of the potential catalysts, disordered solid solution alloys can offer a wealth of catalytic sites. However, accurately evaluating their activity localization structure and overall activity from each individual site remains a formidable challenge. Herein, an approach based on density functional theory and machine learning was used to obtain a large number of sites of the Pt-Ru alloy as the model multisite catalyst for the hydrogen evolution reaction. Subsequently, a series of statistical approaches were employed to unveil the relationship between the geometric structure and overall activity. Based on the radial frequency distribution of metal elements and the distribution of ΔGH, we have identified the surface and subsurface sites occupied by Pt and Ru, respectively, as the most active sites. Particularly, the concept of equivalent site ratio predicts that the overall activity is highest when the Ru content is 20-30%. Furthermore, a series of Pt-Ru alloys were synthesized to validate the proposed theory. This provides crucial insights into understanding the origin of catalytic activity in alloys and thus will better guide the rational development of targeted multisite catalysts.
Collapse
Affiliation(s)
- Quan Zhou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
- School of Chemistry and Materials Sciences, Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yuyang Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Pengjun Zhang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
33
|
Meng X, Zhao X, Min Y, Li Q, Xu Q. Oxygen Vacancy-Enhanced Ni 3N-CeO 2/NF Nanoparticle Catalysts for Efficient and Stable Electrolytic Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:935. [PMID: 38869560 PMCID: PMC11173528 DOI: 10.3390/nano14110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Highly efficient and cost-effective electrocatalysts are of critical significance in the domain of water electrolysis. In this study, a Ni3N-CeO2/NF heterostructure is synthesized through a facile hydrothermal technique followed by a subsequent nitridation process. This catalyst is endowed with an abundance of oxygen vacancies, thereby conferring a richer array of active sites. Therefore, the catalyst demonstrates a markedly low overpotential of 350 mV for the Oxygen Evolution Reaction (OER) at 50 mA cm-2 and a low overpotential of 42 mV for the Hydrogen Evolution Reaction (HER) at 10 mA cm-2. Serving as a dual-function electrode, this electrocatalyst is employed in overall water splitting in alkaline environments, demonstrating impressive efficiency at a cell voltage of 1.52 V of 10 mA cm-2. The in situ Raman spectroscopic analysis demonstrates that cerium dioxide (CeO2) facilitates the rapid reconfiguration of oxygen vacancy-enriched nickel oxyhydroxide (NiOOH), thereby enhancing the OER performance. This investigation elucidates the catalytic role of CeO2 in augmenting the OER efficiency of nickel nitride (Ni3N) for water electrolysis, offering valuable insights for the design of high-performance bifunctional catalysts tailored for water splitting applications.
Collapse
Affiliation(s)
- Xianghao Meng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
| | - Xin Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; (X.M.); (X.Z.); (Y.M.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
34
|
Zheng N, Hu X, Yan L, Ding LY, Feng J, Li D, Ji T, Ai F, Yu K, Hu J. Bimetallic Cu@Ru Core-Shell Structures with Ligand Effects for Endo-Exogenous Stimulation-Mediated Dynamic Oncotherapy. NANO LETTERS 2024; 24:6165-6173. [PMID: 38717317 DOI: 10.1021/acs.nanolett.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.
Collapse
Affiliation(s)
- Nannan Zheng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Xin Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Ling-Yun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Dan Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| |
Collapse
|
35
|
Yu X, Ding X, Yao Y, Gao W, Wang C, Wu C, Wu C, Wang B, Wang L, Zou Z. Layered High-Entropy Metallic Glasses for Photothermal CO 2 Methanation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312942. [PMID: 38354694 DOI: 10.1002/adma.202312942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Indexed: 02/16/2024]
Abstract
High entropy alloys and metallic glasses, as two typical metastable nanomaterials, have attracted tremendous interest in energy conversion catalysis due to their high reactivity in nonequilibrium states. Herein, a novel nanomaterial, layered high entropy metallic glass (HEMG), in a higher energy state than low-entropy alloys and its crystalline counterpart due to both the disordered elemental and structural arrangements, is synthesized. Specifically, the MnNiZrRuCe HEMG exhibits highly enhanced photothermal catalytic activity and long-term stability. An unprecedented CO2 methanation rate of 489 mmol g-1 h-1 at 330 °C is achieved, which is, to the authors' knowledge, the highest photothermal CO2 methanation rate in flow reactors. The remarkable activity originates from the abundant free volume and high internal energy state of HEMG, which lead to the extraordinary heterolytic H2 dissociation capacity. The high-entropy effect also ensures the excellent stability of HEMG for up to 450 h. This work not only provides a new perspective on the catalytic mechanism of HEMG, but also sheds light on the great catalytic potential in future carbon-negative industry.
Collapse
Affiliation(s)
- Xiwen Yu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Xue Ding
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
| | - Yingfang Yao
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Wanguo Gao
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Cheng Wang
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Chengyang Wu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Congping Wu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Bing Wang
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Macau Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| |
Collapse
|
36
|
Wang X, Li D, Dai J, Xue Q, Yang C, Xia L, Qi X, Bao B, Yang S, Xu Y, Yuan C, Luo W, Cabot A, Dai L. Blocking Metal Nanocluster Growth through Ligand Coordination and Subsequent Polymerization: The Case of Ruthenium Nanoclusters as Robust Hydrogen Evolution Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309176. [PMID: 38150625 DOI: 10.1002/smll.202309176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.
Collapse
Affiliation(s)
- Xiaohong Wang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - DongXu Li
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Juguo Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
| | - Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunying Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Long Xia
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Xueqiang Qi
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Bingtao Bao
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Siyu Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Yiting Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Conghui Yuan
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Weiang Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Catalonia, 08010, Spain
| | - Lizong Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
37
|
Tang Y, Wang H, Guo C, Yang Z, Zhao T, Liu J, Jiang Y, Wang W, Zhang Q, Wu D, Zhao Y, Wen XD, Wang F. Ruthenium-Cobalt Solid-Solution Alloy Nanoparticles for Enhanced Photopromoted Thermocatalytic CO 2 Hydrogenation to Methane. ACS NANO 2024; 18:11449-11461. [PMID: 38644575 DOI: 10.1021/acsnano.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Bimetallic alloy nanoparticles have garnered substantial attention for diverse catalytic applications owing to their abundant active sites and tunable electronic structures, whereas the synthesis of ultrafine alloy nanoparticles with atomic-level homogeneity for bulk-state immiscible couples remains a formidable challenge. Herein, we present the synthesis of RuxCo1-x solid-solution alloy nanoparticles (ca. 2 nm) across the entire composition range, for highly efficient, durable, and selective CO2 hydrogenation to CH4 under mild conditions. Notably, Ru0.88Co0.12/TiO2 and Ru0.74Co0.26/TiO2 catalysts, with 12 and 26 atom % of Ru being substituted by Co, exhibit enhanced catalytic activity compared with the monometallic Ru/TiO2 counterparts both in dark and under light irradiation. The comprehensive experimental investigations and density functional theory calculations unveil that the electronic state of Ru is subtly modulated owing to the intimate interaction between Ru and Co in the alloy nanoparticles, and this effect results in the decline in the CO2 conversion energy barrier, thus ultimately culminating in an elevated catalytic performance relative to monometallic Ru and Co catalysts. In the photopromoted thermocatalytic process, the photoinduced charge carriers and localized photothermal effect play a pivotal role in facilitating the chemical reaction process, which accounts for the further boosted CO2 methanation performance.
Collapse
Affiliation(s)
- Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Hao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Chan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Tingting Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| | - Wenlong Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, P. R. China
| | - Quan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Dongshuang Wu
- School of Materials Science & Engineering, Natural Sciences and Science Education in National Institute of Education, Nanyang Technological University, Singapore 639798, Singapore
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
38
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
39
|
Zou X, Xie J, Mei Z, Jing Q, Sheng X, Zhang C, Yang Y, Sun M, Ren F, Wang L, He T, Kong Y, Guo H. High-entropy engineering with regulated defect structure and electron interaction tuning active sites for trifunctional electrocatalysis. Proc Natl Acad Sci U S A 2024; 121:e2313239121. [PMID: 38498710 PMCID: PMC10990096 DOI: 10.1073/pnas.2313239121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024] Open
Abstract
High-entropy alloy nanoparticles (HEANs) possessing regulated defect structure and electron interaction exhibit a guideline for constructing multifunctional catalysts. However, the microstructure-activity relationship between active sites of HEANs for multifunctional electrocatalysts is rarely reported. In this work, HEANs distributed on multi-walled carbon nanotubes (HEAN/CNT) are prepared by Joule heating as an example to explain the mechanism of trifunctional electrocatalysis for oxygen reduction, oxygen evolution, and hydrogen evolution reaction. HEAN/CNT excels with unmatched stability, maintaining a 0.8V voltage window for 220 h in zinc-air batteries. Even after 20 h of water electrolysis, its performance remains undiminished, highlighting exceptional endurance and reliability. Moreover, the intrinsic characteristics of the defect structure and electron interaction for HEAN/CNT are investigated in detail. The electrocatalytic mechanism of trifunctional electrocatalysis of HEAN/CNT under different conditions is identified by in situ monitoring and theoretical calculation. Meanwhile, the electron interaction and adaptive regulation of active sites in the trifunctional electrocatalysis of HEANs were further verified by density functional theory. These findings could provide unique ideas for designing inexpensive multifunctional high-entropy electrocatalysts.
Collapse
Affiliation(s)
- Xiaoxiao Zou
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Jiyang Xie
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Zhiyuan Mei
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Qi Jing
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Xuelin Sheng
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Conghui Zhang
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Yongxin Yang
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Mengjiao Sun
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Futong Ren
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Lilian Wang
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Tianwei He
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
| | - Youchao Kong
- Department of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng224002, China
| | - Hong Guo
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming650091, China
- Southwest United Graduate School, Kunming650091, China
| |
Collapse
|
40
|
Sukhbaatar B, Qing W, Seo J, Yoon S, Yoo B. Uniformly dispersed ruthenium nanoparticles on porous carbon from coffee waste outperform platinum for hydrogen evolution reaction in alkaline media. Sci Rep 2024; 14:5850. [PMID: 38462651 PMCID: PMC10925596 DOI: 10.1038/s41598-024-56510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Biowaste-derived carbon materials are a sustainable, environmentally friendly, and cost-effective way to create valuable materials. Activated carbon can be a supporting material for electrocatalysts because of its large specific surface area and porosity. However, activated carbon has low catalytic activity and needs to be functionalized with heteroatoms, metals, and combinations to improve conductivity and catalytic activity. Ruthenium (Ru) catalysts have great potential to replace bench market catalysts in hydrogen evolution reaction (HER) applications due to their similar hydrogen bond strength and relatively lower price. This study reports on the synthesis and characterizations of carbon-supported Ru catalysts with large surface areas (~ 1171 m2 g-1) derived from coffee waste. The uniformly dispersed Ru nanoparticles on the porous carbon has excellent electrocatalytic activity and outperformed the commercial catalyst platinum on carbon (Pt/C) toward the HER. As-synthesized catalyst needed only 27 mV to reach a current density of 10 mA cm-2, 58.4 mV dec-1 Tafel slope, and excellent long-term stability. Considering these results, the Ru nanoparticles on coffee waste-derived porous carbon can be utilized as excellent material that can replace platinum-based catalysts for the HER and contribute to the development of eco-friendly and low-cost electrocatalyst materials.
Collapse
Affiliation(s)
- Bayaraa Sukhbaatar
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea
| | - Wang Qing
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea
| | - Jinmyeong Seo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea
| | - Sanghwa Yoon
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea.
| | - Bongyoung Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
41
|
Hou L, Li Z, Jang H, Kim MG, Cho J, Liu S, Liu X. Grain Boundary Tailors the Local Chemical Environment on Iridium Surface for Alkaline Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202315633. [PMID: 38151468 DOI: 10.1002/anie.202315633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Even though grain boundaries (GBs) have been previously employed to increase the number of active catalytic sites or tune the binding energies of reaction intermediates for promoting electrocatalytic reactions, the effect of GBs on the tailoring of the local chemical environment on the catalyst surface has not been clarified thus far. In this study, a GBs-enriched iridium (GB-Ir) was synthesized and examined for the alkaline hydrogen evolution reaction (HER). Operando Raman spectroscopy and density functional theory (DFT) calculations revealed that a local acid-like environment with H3 O+ intermediates was created in the GBs region owing to the electron-enriched surface Ir atoms at the GBs. The H3 O+ intermediates lowered the energy barrier for water dissociation and provided enough hydrogen proton to promote the generation of hydrogen spillover from the sites at the GBs to the sites away from the GBs, thus synergistically enhancing the hydrogen evolution activity. Notably, the GB-Ir catalyst exhibited a high alkaline HER activity (10 mV @ 10 mA cm-2 , 20 mV dec-1 ). We believe that our findings will promote further research on GBs and the surface science of electrochemical reactions.
Collapse
Affiliation(s)
- Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Seoul, 156-756, South Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 790-784, Korea
| | - Jaephil Cho
- Department of Energy Engineering, Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
42
|
Wang L, Ma M, Zhang C, Chang HH, Zhang Y, Li L, Chen HY, Peng S. Manipulating the Microenvironment of Single Atoms by Switching Support Crystallinity for Industrial Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202317220. [PMID: 38153674 DOI: 10.1002/anie.202317220] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Modulating the microenvironment of single-atom catalysts (SACs) is critical to optimizing catalytic activity. Herein, we innovatively propose a strategy to improve the local reaction environment of Ru single atoms by precisely switching the crystallinity of the support from high crystalline and low crystalline, which significantly improves the hydrogen evolution reaction (HER) activity. The Ru single-atom catalyst anchored on low-crystalline nickel hydroxide (Ru-LC-Ni(OH)2 ) reconstructs the distribution balance of the interfacial ions due to the activation effect of metal dangling bonds on the support. Single-site Ru with a low oxidation state induces the aggregation of hydronium ions (H3 O+ ), leading to the formation of a local acidic microenvironment in alkaline media, breaking the pH-dependent HER activity. As a comparison, the Ru single-atom catalyst anchored on high-crystalline nickel hydroxide (Ru-HC-Ni(OH)2 ) exhibits a sluggish Volmer step and a conventional local reaction environment. As expected, Ru-LC-Ni(OH)2 requires low overpotentials of 9 and 136 mV at 10 and 1000 mA cm-2 in alkaline conditions and operates stably at 500 mA cm-2 for 500 h in an alkaline seawater anion exchange membrane (AEM) electrolyzer. This study provides a new perspective for constructing highly active single-atom electrocatalysts.
Collapse
Affiliation(s)
- Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Mingyue Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Hao-Hsiang Chang
- Department of Materials Science and Engineering, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| |
Collapse
|
43
|
Huang Z, Hu S, Sun M, Xu Y, Liu S, Ren R, Zhuang L, Chan TS, Hu Z, Ding T, Zhou J, Liu L, Wang M, Huang YC, Tian N, Bu L, Huang B, Huang X. Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis. Nat Commun 2024; 15:1097. [PMID: 38321034 PMCID: PMC10847104 DOI: 10.1038/s41467-024-45369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.2 A mgPt+Ru-1 at 50 mV, largely surpassing that of commercial Pt/C (0.27 A mgPt-1) and PtRu/C (1.24 A mgPt+Ru-1). More importantly, the peak power density and specific power density are as high as 1.84 W cm-2 and 18.4 W mgPt+Ru-1 with a low loading (0.1 mg cm-2) anion exchange membrane fuel cell. Advanced experimental characterizations and theoretical calculations collectively suggest that dual doping with In and Zn atoms optimizes the binding strengths of intermediates and promotes CO oxidation, enhancing the HOR performances. This work deepens the understanding of developing novel alloy catalysts, which will attract immediate interest in materials, chemistry, energy and beyond.
Collapse
Affiliation(s)
- Zhongliang Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shengnan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Yong Xu
- Nano-X Vacuum Interconnected Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
| | - Shangheng Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Renjie Ren
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Tianyi Ding
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jing Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Liangbin Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingmin Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Na Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen, 361102, China.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China.
| | - Xiaoqing Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
44
|
Qin Q, Jang H, Jiang X, Wang L, Wang X, Kim MG, Liu S, Liu X, Cho J. Constructing Interfacial Oxygen Vacancy and Ruthenium Lewis Acid-Base Pairs to Boost the Alkaline Hydrogen Evolution Reaction Kinetics. Angew Chem Int Ed Engl 2024; 63:e202317622. [PMID: 38061991 DOI: 10.1002/anie.202317622] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 01/10/2024]
Abstract
Simultaneous optimization of the energy level of water dissociation, hydrogen and hydroxide desorption is the key to achieving fast kinetics for the alkaline hydrogen evolution reaction (HER). Herein, the well-dispersed Ru clusters on the surface of amorphous/crystalline CeO2-δ (Ru/ac-CeO2-δ ) is demonstrated to be an excellent electrocatalyst for significantly boosting the alkaline HER kinetics owing to the presence of unique oxygen vacancy (VO ) and Ru Lewis acid-base pairs (LABPs). The representative Ru/ac-CeO2-δ exhibits an outstanding mass activity of 7180 mA mgRu -1 that is approximately 9 times higher than that of commercial Pt/C at the potential of -0.1 V (V vs RHE) and an extremely low overpotential of 21.2 mV at a geometric current density of 10 mA cm-2 . Experimental and theoretical studies reveal that the VO as Lewis acid sites facilitate the adsorption of H2 O and cleavage of H-OH bonds, meanwhile, the weak Lewis basic Ru clusters favor for the hydrogen desorption. Importantly, the desorption of OH from VO sites is accelerated via a water-assisted proton exchange pathway, and thus boost the kinetics of alkaline HER. This study sheds new light on the design of high-efficiency electrocatalysts with LABPs for the enhanced alkaline HER.
Collapse
Affiliation(s)
- Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Korea
| | - Xiaoli Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xuefeng Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| |
Collapse
|
45
|
Shen F, Zhang Z, Wang Z, Ren H, Liang X, Cai Z, Yang S, Sun G, Cao Y, Yang X, Hu M, Hao Z, Zhou K. Oxophilic Ce single atoms-triggered active sites reverse for superior alkaline hydrogen evolution. Nat Commun 2024; 15:448. [PMID: 38200045 PMCID: PMC10782026 DOI: 10.1038/s41467-024-44721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The state-of-the-art alkaline hydrogen evolution catalyst of united ruthenium single atoms and small ruthenium nanoparticles has sparked considerable research interest. However, it remains a serious problem that hydrogen evolution primarily proceeds on the less active ruthenium single atoms instead of the more efficient small ruthenium nanoparticles in the catalyst, hence largely falling short of its full activity potential. Here, we report that by combining highly oxophilic cerium single atoms and fully-exposed ruthenium nanoclusters on a nitrogen functionalized carbon support, the alkaline hydrogen evolution centers are facilely reversed to the more active ruthenium nanoclusters driven by the strong oxophilicity of cerium, which significantly improves the hydrogen evolution activity of the catalyst with its mass activity up to -10.1 A mg-1 at -0.05 V. This finding is expected to shed new light on developing more efficient alkaline hydrogen evolution catalyst by rational regulation of the active centers for hydrogen evolution.
Collapse
Affiliation(s)
- Fengyi Shen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhihao Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhe Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xinhu Liang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zengjian Cai
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shitu Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guodong Sun
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanan Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoxin Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Mingzhen Hu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Kebin Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
46
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
47
|
Wan Y, Chen W, Wu S, Gao S, Xiong F, Guo W, Feng L, Cai K, Zheng L, Wang Y, Zhong R, Zou R. Confinement Engineering of Zinc Single-Atom Triggered Charge Redistribution on Ruthenium Site for Alkaline Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308798. [PMID: 38085468 DOI: 10.1002/adma.202308798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Optimizing the interaction between metal and support in the supported metal catalysts effectively refines the electronic structure and boosts the catalytic properties of loaded active components. Herein a method is introduced to confine ultrafine ruthenium (Ru) nanoparticles within atomically dispersed Zn-N4 sites on a N-doped carbon network (Ru/Zn-N-C) through the strong electronic metal-support interaction, achieving superior catalytic activity and stability for alkaline hydrogen evolution. Spectroscopic data and theoretical modeling elucidate that the remarkable catalytic performance of Ru sites stems from their strong electronic coupling with neighboring Zn-N4 moiety and pyridinic N/pyrrolic N. This interaction induces an electron-deficient state of Ru, thereby accelerating the dissociation of H2 O and lowering the energy barriers for the desorption of OH* and H*. This insight provides a deeper understanding of the catalytic mechanisms at play. Furthermore, alkaline water electrolyzer using this catalyst as cathode delivers a mass activity of 3 A mgcat -1 at 2.0 V, much surpassing Ru-C. This research opens a novel pathway for the development of advanced materials , tailored for energy storage and conversion applications.
Collapse
Affiliation(s)
- Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Weibin Chen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Shengqiang Wu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Wenhan Guo
- School of Physical Sciences, Great Bay University, Dongguan, Guangdong Province, 523000, China
| | - Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Kunting Cai
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Yonggang Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| |
Collapse
|
48
|
Li J, Ma Y, Zhang C, Zhang C, Ma H, Guo Z, Liu N, Xu M, Ma H, Qiu J. Green electrosynthesis of 3,3'-diamino-4,4'-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts. Nat Commun 2023; 14:8146. [PMID: 38065975 PMCID: PMC10709341 DOI: 10.1038/s41467-023-43698-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/16/2023] [Indexed: 03/23/2025] Open
Abstract
The broad employment of clean hydrogen through water electrolysis is restricted by large voltage requirement and energy consumption because of the sluggish anodic oxygen evolution reaction. Here we demonstrate a novel alternative oxidation reaction of green electrosynthesis of valuable 3,3'-diamino-4,4'-azofurazan energetic materials and coupled with hydrogen production. Such a strategy could greatly decrease the hazard from the traditional synthetic condition of 3,3'-diamino-4,4'-azofurazan and achieve low-cell-voltage hydrogen production on WS2/Pt single-atom/nanoparticle catalyst. The assembled two-electrode electrolyzer could reach 10 and 100 mA cm-2 with ultralow cell voltages of 1.26 and 1.55 V and electricity consumption of only 3.01 and 3.70 kWh per m3 of H2 in contrast of the conventional water electrolysis (~5 kWh per m3). Density functional theory calculations combine with experimental design decipher the synergistic effect in WS2/Pt for promoting Volmer-Tafel kinetic rate during alkaline hydrogen evolution reaction, while the oxidative-coupling of starting materials driven by free radical could be the underlying mechanism during the synthesis of 3,3'-diamino-4,4'-azofurazan. This work provides a promising avenue for the concurrent electrosynthesis of energetic materials and low-energy-consumption hydrogen production.
Collapse
Affiliation(s)
- Jiachen Li
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Cong Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chi Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Huijun Ma
- National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, 710127, China
| | - Zhaoqi Guo
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Ning Liu
- Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
49
|
Hu H, Zheng Y, Zhu Y, Qian L, Yuan Z, Dai Y, Zhang T, Yang D, Qiu F. Constructing a Functionalized Electrocatalyst of a Transition Metal Chalcogenide on Accordion-Like MXene to Boost the Hydrogen Evolution Reaction. Inorg Chem 2023. [PMID: 38019575 DOI: 10.1021/acs.inorgchem.3c03206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
MXenes exhibit unique layered structures and excellent electrical conductivity, and their multiple surface termination groups are favorable for hosting impressive performance for electrochemical reactions. Therefore, a two-dimensional (2D) layered MXene-based catalyst may become a novel high-efficiency electrocatalyst to replace traditional noble metal electrocatalysts. In this work, a transition metal chalcogenide (MoS2/CuS) and MXene are combined to prepare a 2D electrocatalyst (MoS2/CuS/MXene) for the hydrogen evolution reaction (HER). MXene exhibited a large specific surface area in the shape of an accordion, which was very beneficial for the growth of nanomaterials. CuS/MXene promoted electron transfer and improved the exposed active site for HER. The exposed MoS2 edges exhibited a high chemical adsorption capacity, which is conducive to HER. Electrochemical tests reveal that the MoS2/CuS/MXene electrocatalyst can reduce the charge transfer resistance toward the HER and increase active sites for HER, leading to enhancing the catalytic performance. The MoS2/CuS/MXene electrocatalyst affords an efficient HER with a low overpotential (115 mV@10 mA cm-2). This work offers a new idea to create layered transition metal chalcogenide- and MXene-based electrocatalysts for HER.
Collapse
Affiliation(s)
- Huiting Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yunhua Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Long Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ziyu Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yuting Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
50
|
Liu Z, Lan J, Xia X, Ren T, Wang X, Guo R, Xu W, Pan S. Low-cost flexible textile electrocatalyst for overall water splitting. Chem Commun (Camb) 2023; 59:13883-13886. [PMID: 37933571 DOI: 10.1039/d3cc04506d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Through the braidability of cotton fiber and the richness of surface functional groups, cotton fiber can be woven into any shape, and catalytically active centers can be stably anchored on the fibers. During the electrocatalytic overall water splitting (OWS) process, catalyst shedding and activity reduction can be effectively avoided.
Collapse
Affiliation(s)
- Zhen Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jiamin Lan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tong Ren
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xuxu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| | - Weijian Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|