1
|
Ruoko TP, Stoeckel MA, Puttreddy R, Yang CY, Zhang S, Wu Z, Candeias NR, Samorì P, Woo HY, Fabiano S, Priimagi A. Halogen Bonding as a Tool to Control Morphology and Charge Transport in Organic Semiconductors. Angew Chem Int Ed Engl 2025; 64:e202424979. [PMID: 40079727 DOI: 10.1002/anie.202424979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/15/2025]
Abstract
The solid-state structure and morphology of organic semiconductors (OSCs) are critical in determining the performance of organic electronic devices, as they directly influence charge carrier mobility. Improved molecular packing and ordering are key to achieving better device performance. While halogen bonding (XB) has been extensively used in supramolecular crystal engineering, its potential for organic electronics remains largely untapped. Here, we show that strong and directional XB can significantly enhance the morphology and optoelectronic properties of a pyridine-substituted naphthalene diimide (NDI) derivative. By employing various XB donors with differing interaction strengths and comparing them to a nonbonding reference compound, we achieve a two-orders-of-magnitude improvement in field-effect mobility and ION-IOFF ratio. Furthermore, the geometric substitution pattern of the XB donors is found to strongly influence molecular packing, crystalline domain formation, and, ultimately, device performance.
Collapse
Affiliation(s)
- Tero-Petri Ruoko
- Chemistry and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| | - Marc-Antoine Stoeckel
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- n-ink AB, Norrköping, SE-60221, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Rakesh Puttreddy
- Chemistry and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| | - Chi-Yuan Yang
- n-ink AB, Norrköping, SE-60221, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Silan Zhang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Nuno R Candeias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, 67000, France
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Simone Fabiano
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- n-ink AB, Norrköping, SE-60221, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Arri Priimagi
- Chemistry and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| |
Collapse
|
2
|
Zhang Y, Zhang W, Chen Z, Wang L, Yu G. Recent developments in polymer semiconductors with excellent electron transport performances. Chem Soc Rev 2025; 54:2483-2519. [PMID: 39906917 DOI: 10.1039/d4cs00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Benefiting from molecular design and device innovation, electronic devices based on polymer semiconductors have achieved significant developments and gradual commercialization over the past few decades. Most of high-performance polymer semiconductors that have been prepared exhibit p-type performances, and records of their carrier mobilities are constantly being broken through. Although ambipolar and n-type polymers are necessary for constructing p-n heterojunctions and logic circuits, only a few materials show outstanding device performances, which leads to their developments lagging far behind that of p-type analogues. As a consequence, it is extremely significant to summarize polymer semiconductors with excellent electron transport performances. This review focuses on the design considerations and bonding modes between monomers of polymer semiconductors with high electron mobilities. To enhance electron transport performances of polymer semiconductors, the structural modification strategies are described in detail. Subsequently, the electron transport, thermoelectric, mixed ionic-electronic conduction, intrinsically stretchable, photodetection, and spin transport performances of high-electron mobility polymers are discussed from the perspective of molecular engineering. In the end, the challenges and prospects in this research field are presented, which provide valuable guidance for the design of polymer semiconductors with excellent electron transport performances and the exploration of more advanced applications in the future.
Collapse
Affiliation(s)
- Yunchao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Ding C, Zhao Y, Yin W, Kang F, Huang W, Zhang Q. Regulating Intermolecular Hydrogen Bonds in Organic Cathode Materials to Realize Ultra-stable, Flexible and Low-temperature Aqueous Zinc-organic Batteries. Angew Chem Int Ed Engl 2025; 64:e202417988. [PMID: 39382562 DOI: 10.1002/anie.202417988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Rational design of molecular structures is one of the effective strategies to obtain high-performance organic cathode materials. However, besides the optimization of single-molecule structures, the influence of the "weak" interaction forces (e.g. hydrogen bonds) in organic cathode materials on the performance of batteries should be fully considered. Herein, three organic small molecules with different numbers of hydroxyl groups (namely nitrogen heterocyclic tetraketone (DAB), monohydroxyl nitrogen heterocyclic dione (HDA), dihydroxyl nitrogen heterocyclic dione (DHT)) were selected as the cathodes of aqueous zinc ion batteries (AZIBs), and the effect of the intermolecular hydrogen bonds on their electrochemical performance was studied for the first time. Clearly, the stable hydrogen-bond networks built through the hydroxyl groups significantly enhance the cycle stability of organic small-molecule cathodes and facilitate rapid proton conduction between the hydrogen-bond networks through the Grotthuss mechanism, thereby endowing them with excellent rate performance. In addition, a larger and more dense two-dimensional hydrogen-bond network can be constructed through multiple hydroxyl groups, further enhancing the structural stability of organic small-molecule cathodes, giving them better cycle tolerance, excellent rate performance, and extreme environmental tolerance.
Collapse
Affiliation(s)
- Chaojian Ding
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Yuxuan Zhao
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Weifeng Yin
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weiwei Huang
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
He H, Li X, Zhang J, Chen Z, Gong Y, Zhuo H, Wu X, Li Y, Wang S, Bi Z, Song B, Zhou K, Liang T, Ma W, Lu G, Ye L, Meng L, Zhang B, Li Y, Li Y. Dynamic hydrogen-bonding enables high-performance and mechanically robust organic solar cells processed with non-halogenated solvent. Nat Commun 2025; 16:787. [PMID: 39824822 PMCID: PMC11748654 DOI: 10.1038/s41467-024-55375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs.
Collapse
Affiliation(s)
- Haozhe He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jingyuan Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zekun Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yufei Gong
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Zhuo
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuechen Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Bohao Song
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, China
| | - Tongling Liang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, China
| | - Lei Meng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ben Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yongfang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China.
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Nie W, Ruan M, Wang C, Liu Z. Small Molecule π-π Stacking Promotes Efficient Photoelectrocatalytic Splitting of Aqueous Hydrogen Production from Polyaniline. CHEMSUSCHEM 2025; 18:e202401363. [PMID: 39180463 DOI: 10.1002/cssc.202401363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Photoelectrocatalysis efficiency depends on light absorption and the effective use of photogenerated carriers but is often limited by inefficient charge transfer and catalytic surface reactivity. In this study, π-π stacking of polar small molecules on aromatic ring-rich polyaniline (PANI) was carried out to improve its photoelectrocatalytic splitting of water for hydrogen production. Detailed photoelectrochemical experiments and density-functional theory (DFT) calculations show that small molecules of p-aminobenzoic acid (PABA) and PANI have the best π-π stacking (compared to p-toluenesulfonic acid (PTA)), which promotes the separation of carriers on the PANI surface. In addition, the polar effect of the small molecules also improves the reactivity of the PANI surface and also reduces the potential barrier for H2 evolution. The current density of PANI-PABA reached -0.12 mA/cm2 (1.23 V vs. RHE) 2.53 times higher than that of pure PANI in linear voltammetric scanning tests under light. This strategy of introducing polar small molecules into organocatalysts via π-π stacking will provide new ideas for the preparation of efficient organic photoelectrocatalysis.
Collapse
Affiliation(s)
- Weixing Nie
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Mengnan Ruan
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| | - Chengyi Wang
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| | - Zhifeng Liu
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
6
|
Zhu M, Shao Z, Li Y, Xiong Z, Yang Z, Chen J, Shi W, Wang C, Bian Y, Zhao Z, Guo Y, Liu Y. Molecular-Scale Geometric Design: Zigzag-Structured Intrinsically Stretchable Polymer Semiconductors. J Am Chem Soc 2024; 146:27429-27442. [PMID: 39345027 DOI: 10.1021/jacs.4c07174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Orienting intelligence and multifunction, stretchable semiconductors are of great significance in constructing next-generation human-friendly wearable electronic devices. Nevertheless, rendering semiconducting polymers mechanical stretchability without compromising intrinsic electrical performance remains a major challenge. Combining geometry-innovated inorganic systems and structure-tailored organic semiconductors, a molecular-scale geometric design strategy is proposed to obtain high-performance intrinsically stretchable polymer semiconductors. Originating from the linear regioregular conjugated polymer and corresponding para-modified near-linear counterpart, a series of zigzag-structured semiconducting polymers are developed with diverse ortho-type and meta-type kinking units quantitatively incorporated. They showcase huge edges in realizing stretchability enhancement for conformational transition, likewise with long-range π-aggregation and short-range torsion disorder taking effect. Assisted by additional heteroatom embedment and flexible alkyl-chain attachment, mechanical stretchability and carrier mobility could afford a two-way promotion. Among zigzag-structured species, o-OC8-5% with the initial field-effect mobility up to 1.92 cm2 V-1 s-1 still delivers 1.43 and 1.37 cm2 V-1 s-1 under 100% strain with charge transport parallel and perpendicular to the stretching direction, respectively, accompanied by outstanding performance retention and cyclic stability. This molecular design strategy contributes to an in-depth exploration of prospective intrinsically stretchable semiconductors for cutting-edge electronic devices.
Collapse
Affiliation(s)
- Mingliang Zhu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihao Shao
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yifan Li
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zihan Xiong
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhao Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengyu Wang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Tu Z, Ou H, Ran Y, Xue H, Zhu F. Chitosan-based biopolyelectrolyte complexes intercalated montmorillonite: A strategy for green flame retardant and mechanical reinforcement of polypropylene composites. Int J Biol Macromol 2024; 277:134316. [PMID: 39094859 DOI: 10.1016/j.ijbiomac.2024.134316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Due to dwindling petroleum resources and the need for environmental protection, the development of bio-based flame retardants has received much attention. In order to explore the feasibility of fully biomass polyelectrolyte complexes (PEC) for polyolefin flame retardant applications, chitosan (CS), sodium alginate (SA), and sodium phytate (SP) were used to prepare CS-based fully biomass PEC intercalated montmorillonite (MMT) hybrid biomaterials (SA-CS@MMT and SP-CS@MMT). The effects of two hybrid biomaterials on the fire safety and mechanical properties of intumescent flame-retardant polypropylene (PP) composites were compared. The SP-CS@MMT showed the best flame retardancy and toughening effect at the same addition amount. After adding 5 wt% SP-CS@MMT, the limiting oxygen index (LOI) value of PP5 reached 30.9 %, and the peak heat release rate (pHRR) decreased from 1348 kW/m2 to 163 kW/m2. In addition, the hydrogen bonding between polyelectrolyte complexes significantly improved the mechanical properties of PP composites. Compared with PP2, the tensile strength of PP5 increased by 59 %. This study provided an efficient and eco-friendly strategy for the large-scale production of renewable biomaterials with good thermal stability and expanded the application of macromolecular biomaterials in the field of fire safety.
Collapse
Affiliation(s)
- Zhe Tu
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Hongxiang Ou
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China.
| | - Yining Ran
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Honglai Xue
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| | - Fang Zhu
- School of Safety Science and Engineering, Changzhou University, No. 21, Gehu Mid-Rd., Wujin dist., Changzhou 213164, Jiangsu, China
| |
Collapse
|
8
|
An NT, Vu Thi N, Trung NT. Profound importance of the conventional O-H⋯O hydrogen bond versus a considerable blue shift of the C sp2-H bond in complexes of substituted carbonyls and carboxyls. Phys Chem Chem Phys 2024; 26:22775-22789. [PMID: 39162235 DOI: 10.1039/d4cp00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Using quantum chemical approaches, we investigated the conventional O-H⋯O and nonconventional Csp2-H⋯O hydrogen bonds between carboxylic acids and aldehydes in 21 stable complexes. The strength of complexes is determined by the conventional O-H⋯O bond together with the nonconventional Csp2-H⋯O hydrogen bond, in which the former one is 4-5 times as strong as the latter one. Proportional linear correlations of the interaction energy with both individual energies of the O-H⋯O and Csp2-H⋯O hydrogen bonds are proposed. Different impacts of electron-donating and electron-withdrawing groups in substituted formaldehyde and formic acid on characteristics of conventional and nonconventional hydrogen bonds, as well as the strength of both hydrogen bond types and complexes, are also evaluated. Following complexation, it is noteworthy that the largest blue shift of the Csp2-H stretching frequency in the Csp2-H⋯O bond up to 105.3 cm-1 in CH3CHO⋯FCOOH is due to a decisive role of the O-H⋯O hydrogen bond, which has been rarely reported in the literature. The obtained results show that the conventional O-H⋯O hydrogen bond plays a pivotal role in the significant blue shift of the Csp2-H stretching frequency in the nonconventional Csp2-H⋯O hydrogen bond. Remarkably, the considerable blue shift of the Csp2-H stretching frequency is found to be one H of C-H in formic acid substituted by the electron-withdrawing group and one H in formaldehyde substituted by the electron-donating group. In addition, the change in the Csp2-H stretching frequency following complexation is proportional to both changes of electron density in σ*(Csp2-H) and σ*(O-H) orbitals, in which a dominant role of σ*(O-H) versus σ*(Csp2-H) is observed.
Collapse
Affiliation(s)
- Nguyen Truong An
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 18223 Prague 8, Czech Republic
| | - Ngan Vu Thi
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.
| |
Collapse
|
9
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Zhou H, Li T, Xie M, Zhou Y, Sun Q, Zhang ST, Zhang Y, Yang W, Xue S. Improving electron transportation and operational lifetime of full color organic light emitting diodes through a "weak hydrogen bonding cage" structure. Chem Sci 2024; 15:8106-8111. [PMID: 38817588 PMCID: PMC11134344 DOI: 10.1039/d4sc00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Efficient electron-transporting materials (ETMs) are critical to achieving excellent performance of organic light-emitting diodes (OLEDs), yet developing such materials remains a major long-term challenge, particularly ETMs with high electron mobilities (μeles). Herein, we report a short conjugated ETM molecule (PICN) with a dipolar phenanthroimidazole group, which exhibits an electron mobility of up to 1.52 × 10-4 cm2 (V-1 s-1). The origin of this high μele is long-ranged, regulated special cage-like interactions with C-H⋯N radii, which are also favorable for the excellent efficiency stability and operational stability in OLEDs. It is worth noting that the green phosphorescent OLED operation half-lifetimes can reach up to 630 h under unencapsulation, which is 20 times longer than that based on the commonly used commercial ETM TPBi.
Collapse
Affiliation(s)
- Huayi Zhou
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Tengyue Li
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Mingliang Xie
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yannan Zhou
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Qikun Sun
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yujian Zhang
- Department of Chemistry Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Yingbin Road No. 688 Jinhua 321004 P. R. China
| | - Wenjun Yang
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shanfeng Xue
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
11
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
12
|
Nakano K, Leong IW, Hashizume D, Bulgarevich K, Takimiya K, Nishiyama Y, Yamazaki T, Tajima K. Synthesis of 3,3'-dihydroxy-2,2'-diindan-1,1'-dione derivatives for tautomeric organic semiconductors exhibiting intramolecular double proton transfer. Chem Sci 2023; 14:12205-12218. [PMID: 37969578 PMCID: PMC10631252 DOI: 10.1039/d3sc04125e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023] Open
Abstract
To investigate potential applications of the 3,3'-dihydroxy-2,2'-biindan-1,1'-dione (BIT) structure as an organic semiconductor with intramolecular hydrogen bonds, a new synthetic route under mild conditions is developed based on the addition reaction of 1,3-dione to ninhydrin and the subsequent hydrogenation of the hydroxyl group. This route affords several new BIT derivatives, including asymmetrically substituted structures that are difficult to access by conventional high-temperature synthesis. The BIT derivatives exhibit rapid tautomerization by intramolecular double proton transfer in solution. The tautomerizations are also observed in the solid state by variable temperature measurements of X-ray diffractometry and magic angle spinning 13C solid-state NMR. Possible interplay between the double proton transfer and the charge transport is suggested by quantum chemical calculations. The monoalkylated BIT derivative with a lamellar packing structure suitable for lateral charge transport in films shows a hole mobility of up to 0.012 cm2 V-1 s-1 with a weak temperature dependence in an organic field effect transistor.
Collapse
Affiliation(s)
- Kyohei Nakano
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
| | - Iat Wai Leong
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
- SANKEN, Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
| | - Kirill Bulgarevich
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
| | - Kazuo Takimiya
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai Miyagi 980-8578 Japan
- Tohoku University Advanced Institute for Materials Research (AIMR) 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | | | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama Kanagawa 230-0045 Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
| |
Collapse
|
13
|
Xu X, Zhao Y, Liu Y. Wearable Electronics Based on Stretchable Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206309. [PMID: 36794301 DOI: 10.1002/smll.202206309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/25/2022] [Indexed: 05/18/2023]
Abstract
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.
Collapse
Affiliation(s)
- Xinzhao Xu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
Zhang X, Wei G, Sheng Y, Bai W, Yang J, Zhang W, Ye C. Polymer-Unit Fingerprint (PUFp): An Accessible Expression of Polymer Organic Semiconductors for Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21537-21548. [PMID: 37084318 DOI: 10.1021/acsami.3c03298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-performance organic semiconductors (OSCs) can be designed based on the identification of functional units and their role in the material properties. Herein, we present a polymer-unit fingerprint (PUFp) generation framework, "Python-based polymer-unit-recognition script" (PURS), to identify the subunits "polymer unit" in the polymer and generate polymer-unit fingerprint (PUFp). Using 678 collected OSC data, machine learning (ML) models can be used to determine structure-mobility relationships by using PUFp as a structural input, and the classification accuracy reaches 85.2%. A polymer-unit library consisting of 445 units is constructed, and the key polymer units affecting the mobility of OSCs are identified. By investigating the combinations of polymer units with mobility performance, a scheme for designing OSCs by combining ML approaches and PUFp information is proposed. This scheme not only passively predicts OSC mobility but also actively provides structural guidance for high-mobility OSC material design. The proposed scheme demonstrates the ability to screen materials through pre-evaluation and classification ML steps and is an alternative methodology for applying ML in high-mobility OSC discovery.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Genwang Wei
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Ye Sheng
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Wenjun Bai
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jiong Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
- Zhejiang Laboratory, Hangzhou 311100, P. R. China
| | - Wenqing Zhang
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Caichao Ye
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Academy for Advanced Interdisciplinary Studies & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
15
|
Yan Z, Liu X, Ding B, Yu J, Si Y. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat Commun 2023; 14:2116. [PMID: 37055384 PMCID: PMC10101950 DOI: 10.1038/s41467-023-37693-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chemical warfare agents (CWAs) significantly threaten human peace and global security. Most personal protective equipment (PPE) deployed to prevent exposure to CWAs is generally devoid of self-detoxifying activity. Here we report the spatial rearrangement of metal-organic frameworks (MOFs) into superelastic lamellar-structured aerogels based on a ceramic network-assisted interfacial engineering protocol. The optimized aerogels exhibit efficient adsorption and decomposition performance against CWAs either in liquid or aerosol forms (half-life of 5.29 min, dynamic breakthrough extent of 400 L g-1) due to the preserved MOF structure, van-der-Waals barrier channels, minimized diffusion resistance (~41% reduction), and stability over a thousand compressions. The successful construction of the attractive materials offers fascinating perspectives on the development of field-deployable, real-time detoxifying, and structurally adaptable PPE that could be served as outdoor emergency life-saving devices against CWAs threats. This work also provides a guiding toolbox for incorporating other critical adsorbents into the accessible 3D matrix with enhanced gas transport properties.
Collapse
Affiliation(s)
- Zishuo Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaoyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| |
Collapse
|
16
|
Wang Z, Lin H, Zhang M, Yu W, Zhu C, Wang P, Huang Y, Lv F, Bai H, Wang S. Water-soluble conjugated polymers for bioelectronic systems. MATERIALS HORIZONS 2023; 10:1210-1233. [PMID: 36752220 DOI: 10.1039/d2mh01520j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioelectronics is an interdisciplinary field of research that aims to establish a synergy between electronics and biology. Contributing to a deeper understanding of bioelectronic processes and the built bioelectronic systems, a variety of new phenomena, mechanisms and concepts have been derived in the field of biology, medicine, energy, artificial intelligence science, etc. Organic semiconductors can promote the applications of bioelectronics in improving original performance and creating new features for organisms due to their excellent photoelectric and electrical properties. Recently, water-soluble conjugated polymers (WSCPs) have been employed as a class of ideal interface materials to regulate bioelectronic processes between biological systems and electronic systems, relying on their satisfying ionic conductivity, water-solubility, good biocompatibility and the additional mechanical and electrical properties. In this review, we summarize the prominent contributions of WSCPs in the aspect of the regulation of bioelectronic processes and highlight the latest advances in WSCPs for bioelectronic applications, involving biosynthetic systems, photosynthetic systems, biophotovoltaic systems, and bioelectronic devices. The challenges and outlooks of WSCPs in designing high-performance bioelectronic systems are also discussed.
Collapse
Affiliation(s)
- Zenghao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanwei Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengcheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Chang Y, Wu YS, Tung SH, Chen WC, Chueh CC, Liu CL. N-Type Doping of Naphthalenediimide-Based Random Donor-Acceptor Copolymers to Enhance Transistor Performance and Structural Crystallinity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15745-15757. [PMID: 36920493 DOI: 10.1021/acsami.2c23067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An integrated strategy of molecular design and conjugated polymer doping is proposed to improve the electronic characteristics for organic field effect transistor (OFET) applications. Here, a series of soluble naphthalene diimide (NDI)-based random donor-acceptor copolymers with selenophene π-conjugated linkers and four acceptors with different electron-withdrawing strengths (named as rNDI-N/S/NN/SS) are synthesized, characterized, and used for OFETs. N-type doping of NDI-based random copolymers using (12a,18a)-5,6,12,12a,13,18,18a,19-octahydro-5,6-dimethyl-13,18[1',2']-benzenobisbenzimidazo[1,2-b:2',1'-d]benzo[i][2.5]benzodiazocine potassium triflate adduct (DMBI-BDZC) is successfully demonstrated. The undoped rNDI-N, rNDI-NN, and rNDI-SS samples exhibit ambipolar charge transport, while rNDI-S presents only a unipolar n-type characteristic. Doping with DMBI-BDZC significantly modulates the performance of rNDI-N/S OFETs, with a 3- to 6-fold increase in electron mobility (μe) for 1 wt % doped device due to simultaneous trap mitigation, lower contact resistance (RC), and activation energy (EA), and enhanced crystallinity and edge-on orientation for charge transport. However, the doping of intrinsic pro-quinoidal rNDI-NN/SS films exhibits unchanged or even reduced device performance. These findings allow us to manipulate the energy levels by developing conjugated copolymers based on various acceptors and quinoids and to optimize the dopant-polymer semiconductor interactions and their impacts on the film morphology and molecular orientation for enhanced charge transport.
Collapse
Affiliation(s)
- Yun Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Sheng Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Abstract
With the advent of a new era of smart-technology, the demand for more economic optoelectronic materials that do not compromise with efficiency is gradually on the rise. Organic semiconductors provide greener alternatives to the conventional inorganic ones, but encounter the challenge of balancing charge carrier mobility with processability in devices. Discotic liquid crystals (DLCs), a class of self-assembling soft organic materials, possess the perfect degree of order and dynamics to address this challenge. Providing unidimensional charge carrier pathways through their nanoscale columnar architecture, DLCs can behave as efficient charge transport systems across a wide range of optoelectronic devices. Moreover, DLCs are solution-processable, thus reducing the fabrication cost. In this article, we have discussed the approaches towards developing DLCs as semiconductors, focusing on their molecular design concepts, supramolecular structures and electronic properties in the context of their charge carrier mobilities.
Collapse
Affiliation(s)
- Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| |
Collapse
|
19
|
Chen J, Wang Z, Deng Z, Chen L, Wu X, Gao Y, Hu Y, Li M, Wang H. Hydrogen bonding-induced high-performance stretchable organic semiconductors: a Review. Front Chem 2023; 11:1200644. [PMID: 37153530 PMCID: PMC10160365 DOI: 10.3389/fchem.2023.1200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Semiconductors are widely used in electron devices. With the development of wearable soft-electron devices, conventional inorganic semiconductors are unable to meet the demand because of their high rigidity and high cost. Thus, scientists construct organic semiconductors with high charge mobility, low cost, eco-friendly, stretchable, etc. Due to the excellent performance of stretchable organic semiconductors, they can be widely used as wearable soft-electron devices, such as stretchable organic field-effect transistors (OFETs), organic solar cells (OSCs), etc. Contains flexible display devices and flexible power sources, which are of great interest for applications of future electron devices. However, there are still some challenges that need to be solved. Commonly, enhancing the stretchability may cause the degradation of charge mobility, because of the destruction of the conjugated system. Currently, scientists find that hydrogen bonding can enhance the stretchability of organic semiconductors with high charge mobility. Thus in this review, based on the structure and design strategies of hydrogen bonding, various hydrogen bonding induced stretchable organic semiconductors are introduced. In addition, the applications of the hydrogen bonding induced stretchable organic semiconductors are reviewed. Finally, the stretchable organic semiconductors design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance wearable soft-electron devices, which can also further advance the development of stretchable organic semiconductors for applications.
Collapse
Affiliation(s)
- Jinhan Chen
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Zheng Wang
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhifeng Deng
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
- *Correspondence: Zhifeng Deng, ; Hongzhen Wang,
| | - Ligui Chen
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Xuhui Wu
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yihan Gao
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Yumeng Hu
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Mei Li
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Hongzhen Wang
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Zhifeng Deng, ; Hongzhen Wang,
| |
Collapse
|
20
|
Lee JW, Seo S, Lee SW, Kim GU, Han S, Phan TNL, Lee S, Li S, Kim TS, Lee JY, Kim BJ. Intrinsically Stretchable, Highly Efficient Organic Solar Cells Enabled by Polymer Donors Featuring Hydrogen-Bonding Spacers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207544. [PMID: 36153847 DOI: 10.1002/adma.202207544] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Intrinsically stretchable organic solar cells (IS-OSCs), consisting of all stretchable layers, are attracting significant attention as a future power source for wearable electronics. However, most of the efficient active layers for OSCs are mechanically brittle due to their rigid molecular structures designed for high electrical and optical properties. Here, a series of new polymer donors (PD s, PhAmX) featuring phenyl amide (N1 ,N3 -bis((5-bromothiophen-2-yl)methyl)isophthalamide, PhAm)-based flexible spacer (FS) inducing hydrogen-bonding (H-bonding) interactions is developed. These PD s enable IS-OSCs with a high power conversion efficiency (PCE) of 12.73% and excellent stretchability (PCE retention of >80% of the initial value at 32% strain), representing the best performances among the reported IS-OSCs to date. The incorporation of PhAm-based FS enhances the molecular ordering of PD s as well as their interactions with a Y7 acceptor, enhancing the mechanical stretchability and electrical properties simultaneously. It is also found that in rigid OSCs, the PhAm5:Y7 blend achieves a much higher PCE of 17.5% compared to that of the reference PM6:Y7 blend. The impact of the PhAm-FS linker on the mechanical and photovoltaic properties of OSCs is thoroughly investigated.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Soodeok Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sun-Woo Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geon-U Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungseok Han
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jung-Yong Lee
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|