1
|
Roy R, Hasan AMM, Becerra Z, Treaster KA, Chakraborty A, Baucom G, Kim H, Angerhofer A, Evans AM. Hopping-Type Charge Transport in Controllably p-Doped Polaronic Two-Dimensional Polymers. Angew Chem Int Ed Engl 2025:e202500767. [PMID: 40229931 DOI: 10.1002/anie.202500767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
In this work, we find that controllable p-type doping leads to Holstein-type polarons in four electron-rich two-dimensional polymers (2DPs). Substoichometrically injecting holes into these 2DPs leads to small optical bandgaps (<1.0 eV) and electrical conductivities (17 mS m-1) significantly higher than their undoped analogs. Fourier-transform infrared spectroscopy and continuous-wave electron paramagnetic resonance spectroscopy both reveal that this arises from the formation of paramagnetic polarons. We achieve maximal conductivities when 2DPs comprised of electron-rich nodes and electron-rich linkers are combined, which is a consequence of more delocalized polarons as unveiled by diffuse-reflectance UV-vis-NIR spectroscopy. Variable-temperature electrical conductivity measurements reveal two distinct Arrhenius regimes in all 2DPs investigated, which we attribute to the different thermally activated processes inherent to in-plane and cross-plane electronic transport in stacked 2DP multilayers. This resulted in a maximum electronic conductivity of 326 mS m-1 at an elevated temperature. Collectively, this report provides fundamental insight into polaron-based charge-transport in p-type 2D organic layers, which we expect will form the foundation for the eventual deployment of these materials in electronic devices.
Collapse
Affiliation(s)
- Rupam Roy
- Department of Chemistry, Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - A M Mahmudul Hasan
- Department of Chemistry, Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Zain Becerra
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Kiana A Treaster
- Department of Chemistry, Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Anamitra Chakraborty
- Department of Chemistry, Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Garrett Baucom
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Honggyu Kim
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | - Austin M Evans
- Department of Chemistry, Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Zhao R, Liu G, Koko PL, Wang M, Feng X. Advances in synthetic strategies for two-dimensional conjugated polymers. Org Chem Front 2025; 12:2457-2480. [PMID: 39911838 PMCID: PMC11789000 DOI: 10.1039/d4qo02211d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Two-dimensional conjugated polymers (2D CPs) are typically represented by 2D conjugated covalent organic frameworks (COFs) that consist of covalently cross-linked linear conjugated polymers, which possess extended in-plane π-conjugation and out-of-plane electronic couplings. The precise incorporation of molecular building blocks into ordered polymer frameworks through (semi)reversible 2D polycondensation methodologies enables the synthesis of novel polymer semiconductors with designable and predictable properties for various (opto)electronic, spintronic, photocatalytic, and electrochemical applications. Linkage chemistry lays the foundation for this class of synthetic materials and provides a library for subsequent investigations. In this review, we summarize recent advances in synthetic strategies for 2D CPs. By exploring synthetic approaches and the intricate interplay between chemical structure, the efficiency of 2D conjugation, and related physicochemical properties, we are expected to guide readers with a general background in synthetic chemistry and those actively involved in electronic device research. Furthermore, the discussion will appeal to researchers intrigued by the prospect of uncovering novel physical phenomena or mechanisms inherent in these emerging polymer semiconductors. Finally, future research directions and perspectives of highly crystalline and processable 2D CPs for electronics and other cutting-edge fields are discussed.
Collapse
Affiliation(s)
- Ruyan Zhao
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
- Center for Advanced Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstraße 4 01062 Dresden Germany
| | - Guoqin Liu
- Center for Advanced Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstraße 4 01062 Dresden Germany
| | - Philomène Leonore Koko
- Center for Advanced Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstraße 4 01062 Dresden Germany
| | - Mingchao Wang
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
- Center for Advanced Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstraße 4 01062 Dresden Germany
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen 518055 China
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
- Center for Advanced Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstraße 4 01062 Dresden Germany
| |
Collapse
|
3
|
Kim SW, Yoon B, Seo JM, Jeon I, Hwang J, Kang B. Emerging Trends in Conductive Two-Dimensional Covalent Organic Frameworks for Large-Area Electronic Applications. ACS NANO 2025; 19:10738-10754. [PMID: 40083106 DOI: 10.1021/acsnano.4c16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are emerging as promising materials for advanced electronic applications due to their tunable porosity, crystalline order, and π-conjugated structures. These properties enable efficient charge transport and bandgap modulation, making 2D COFs strong candidates for electronic devices such as transistors and memristors. However, the practical application of COFs remains limited by challenges in achieving high-quality thin films with large-area uniformity and improved crystallinity. This review explores recent advancements in the fabrication and application of conductive 2D COFs for electronics. Various synthesis strategies, including direct growth, vapor-assisted conversion, and interfacial methods, are discussed in the context of enhancing film quality and scalability. The integration of COFs into electronic devices is classified based on their operation mechanism─planar and vertical field-effect transistors (FETs), electrochemical transistors (ECTs), and memristors─to highlight their electronic properties and device performance. Looking forward, the challenges of large-scale production, material compatibility, and device integration are outlined, alongside potential solutions through innovative synthesis techniques and collaborative research efforts. By addressing these challenges, 2D COFs are poised to drive breakthroughs in electronic devices by their adoption in next-generation semiconducting technologies.
Collapse
Affiliation(s)
- Seong-Wook Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Byeongsik Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeong-Min Seo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Il Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Global Research Center (SGRC), Sungkyunkwan University, Suwon 16419, Republic of Korea
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8576, Japan
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongkook Hwang
- Department of Chemical Engineering, Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Qiu J, Sheng Q, Qian X, Yao J, Zhao Y, Zhang X, Han C, Wu Z, Ye H, Peng B, Shan G, Zheng Q, Li H, Du M. Vertically Phase-Separated PEDOT:PSS Film via Solid-Liquid Interface Doping for Flexible Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17202-17216. [PMID: 40066734 DOI: 10.1021/acsami.5c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Organic electrochemical transistors (OECTs) are seen as some of the most promising devices in organic bioelectronics. Recent interest in OECTs is sparked by the high performance of an organic semiconductor channel material, i.e., poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The capability of ion penetration and charge transport of the channel determines the performance of the OECTs. However, the uniform structure of the PEDOT:PSS channel always makes it difficult to achieve a well-balanced between the two functions. Here, we report a novel PEDOT:PSS film with a vertical phase separation structure (VPSS-P), where PSS accumulates at the surface, and PEDOT enriches at the bottom of the film. Such a unique structure improves the electrochemical stability and reduces the contact resistance, significantly enhancing OECT performance with high transconductance (70.5 mS), product of mobility (μ) and volumetric capacitance (C*) (μC* ∼ 479 F cm-1 V-1 s-1), and ultralow contact resistance (∼0.79 Ω cm). Flexible OECT devices with VPSS-P show robust performance against deformation. Our findings highlight a new class of high-performance transistors and provide guidelines for designing state-of-the-art channel materials.
Collapse
Affiliation(s)
- Jiahuan Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Qiuyue Sheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University Hangzhou, 310027, P. R. China
| | - Xinyuan Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Junxian Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Yujie Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University Hangzhou, 310027, P. R. China
| | - Xinyue Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Chengcan Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Hui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Boyu Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University Hangzhou, 310027, P. R. China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University Hangzhou, 310027, P. R. China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027 Hangzhou, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| |
Collapse
|
5
|
Granelli R, Kovács-Vajna ZM, Torricelli F. Additive Manufacturing of Organic Electrochemical Transistors: Methods, Device Architectures, and Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410499. [PMID: 39945058 PMCID: PMC11922034 DOI: 10.1002/smll.202410499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Organic electrochemical transistors (OECTs) are key devices in a large set of application fields including bioelectronics, neuromorphics, sensing, and flexible electronics. This review explores the advancements in additive manufacturing techniques accounting for printing technologies, device architectures, and emerging applications. The promising applications of printed OECTs, ranging from biochemical sensors to neuromorphic computing are examined, showcasing their versatility. Despite significant advancements, ongoing challenges persist, such as material-related issues, inconsistencies in film homogeneity, and the scalability of integration processes. This review identifies these critical obstacles and offers targeted solutions and future research directions aimed at enhancing the performance and reliability of fully-printed OECTs. By addressing these challenges, the aim of this study is to facilitate the development of next-generation OECTs that can meet the demands of emerging applications in sustainable and intelligent electronic and bioelectronic systems.
Collapse
Affiliation(s)
- Roberto Granelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Zsolt M Kovács-Vajna
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| |
Collapse
|
6
|
Kim T, Oh J, Kim SC, Ahn J, Kim S, Kim YY, Lim H. Photochemical and Patternable Synthesis of 2D Covalent Organic Framework Thin Film Using Dynamic Liquid/Solid Interface. SMALL METHODS 2024; 8:e2400063. [PMID: 38721963 PMCID: PMC11672181 DOI: 10.1002/smtd.202400063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/08/2024] [Indexed: 12/28/2024]
Abstract
2D covalent organic frameworks (COFs) are highly porous crystalline materials with promising applications in organic electronics. Current methods involve either on-surface synthesis (solid surface) or interfacial synthesis (liquid/liquid, liquid/gas interface) to create thin films for these applications, each with its drawbacks. On-surface synthesis can lead to contamination from COF powder or unreacted chemicals, while interfacial synthesis risks damaging the film during post-transfer processes. These challenges necessitate the development of alternative synthesis methods for high-quality 2D COF films. This study presents a novel approach for synthesizing homogeneous 2D COF thin films by combining photochemistry and a liquid-flowing system. Leveraging previous work on liquid flow systems to prevent contamination during solvothermal synthesis, this approach to the photochemical method, resulting in the synthesis of high-crystalline 2D COF films with tunable thickness is adopted. The photochemical approach offers spatially controllable energy sources, enabling patternable COF synthesis. Notably, it is successfully fabricated ultrasmooth patterned 2D COF films on hexagonal boron nitride, offering a streamlined process for optoelectronic device fabrication without additional pre, post-processing steps.
Collapse
Affiliation(s)
- Taewoong Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Joohee Oh
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Seung Cheol Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Jong‐Guk Ahn
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Soyoung Kim
- Analysis and Assessment GroupResearch Institute of Industrial Science and TechnologyPohang37673Republic of Korea
| | - Young Yong Kim
- Beamline Division, Pohang Accelerator LaboratoryPohang University of Science & TechnologyPohang37673Republic of Korea
| | - Hyunseob Lim
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| |
Collapse
|
7
|
Zhang Q, Che Q, Wu D, Zhao Y, Chen Y, Xuan F, Zhang B. Dual Redox-active Covalent Organic Framework-based Memristors for Highly-efficient Neuromorphic Computing. Angew Chem Int Ed Engl 2024; 63:e202413311. [PMID: 39104289 DOI: 10.1002/anie.202413311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Organic memristors based on covalent organic frameworks (COFs) exhibit significant potential for future neuromorphic computing applications. The preparation of high-quality COF nanosheets through appropriate structural design and building block selection is critical for the enhancement of memristor performance. In this study, a novel room-temperature single-phase method was used to synthesize Ta-Cu3 COF, which contains two redox-active units: trinuclear copper and triphenylamine. The resultant COF nanosheets were dispersed through acid-assisted exfoliation and subsequently spin-coated to fabricate a high-quality COF film on an indium tin oxide (ITO) substrate. The synergistic effect of the dual redox-active centers in the COF film, combined with its distinct crystallinity, significantly reduces the redox energy barrier, enabling the efficient modulation of 128 non-volatile conductive states in the Al/Ta-Cu3 COF/ITO memristor. Utilizing a convolutional neural network (CNN) based on these 128 conductance states, image recognition for ten representative campus landmarks was successfully executed, achieving a high recognition accuracy of 95.13 % after 25 training epochs. Compared to devices based on binary conductance states, the memristor with 128 conductance states exhibits a 45.56 % improvement in recognition accuracy and significantly enhances the efficiency of neuromorphic computing.
Collapse
Affiliation(s)
- Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiang Che
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongchuang Wu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunjia Zhao
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
9
|
Terenzi L, Gao Z, Ravandeh M, Fedele C, Klausen LH, Bovio CL, Priimagi A, Santoro F. Engineering Lipid-Based Pop-up Conductive Interfaces with PEDOT:PSS and Light-Responsive Azopolymer Films. Adv Healthc Mater 2024; 13:e2303812. [PMID: 39126173 DOI: 10.1002/adhm.202303812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/31/2024] [Indexed: 08/12/2024]
Abstract
Significant challenges have emerged in the development of biomimetic electronic interfaces capable of dynamic interaction with living organisms and biological systems, including neurons, muscles, and sensory organs. Yet, there remains a need for interfaces that can function on demand, facilitating communication and biorecognition with living cells in bioelectronic systems. In this study, the design and engineering of a responsive and conductive material with cell-instructive properties, allowing for the modification of its topography through light irradiation, resulting in the formation of "pop-up structures", is presented. A deformable substrate, composed of a bilayer comprising a light-responsive, azobenzene-containing polymer, pDR1m, and a conductive polymer, PEDOT:PSS, is fabricated and characterized. Moreover, the successful formation of supported lipid bilayers (SLBs) and the maintenance of integrity while deforming the pDR1m/PEDOT:PSS films represent promising advancements for future applications in responsive bioelectronics and neuroelectronic interfaces.
Collapse
Affiliation(s)
- Luca Terenzi
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Jülich, 52428, Jülich, Germany
- Neuroelectronic Interfaces, RWTH Aachen, 52074, Aachen, Germany
| | - Ziyu Gao
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Jülich, 52428, Jülich, Germany
- Neuroelectronic Interfaces, RWTH Aachen, 52074, Aachen, Germany
| | - Mehdi Ravandeh
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Jülich, 52428, Jülich, Germany
- Neuroelectronic Interfaces, RWTH Aachen, 52074, Aachen, Germany
| | - Chiara Fedele
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| | - Lasse Hyldgaard Klausen
- Interdisciplinary Nanoscience Center - INANO-Fysik, Aarhus University, Aarhus, 8000, Denmark
| | - Claudia Latte Bovio
- Center for Advanced Biomaterials for Healthcare, Italian Institute of Technology, Naples, 80125, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, University Federico II of Naples, Naples, 80125, Italy
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, FI-33720, Finland
| | - Francesca Santoro
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Jülich, 52428, Jülich, Germany
- Neuroelectronic Interfaces, RWTH Aachen, 52074, Aachen, Germany
- Center for Advanced Biomaterials for Healthcare, Italian Institute of Technology, Naples, 80125, Italy
| |
Collapse
|
10
|
Kousseff CJ, Wustoni S, Silva RKS, Lifer A, Savva A, Frey GL, Inal S, Nielsen CB. Single-Component Electroactive Polymer Architectures for Non-Enzymatic Glucose Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308281. [PMID: 38520718 PMCID: PMC11251565 DOI: 10.1002/advs.202308281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have emerged as promising materials for biological sensing, owing to their electrochemical activity, stability in an aqueous environment, and biocompatibility. Yet, OMIEC-based sensors rely predominantly on the use of composite matrices to enable stimuli-responsive functionality, which can exhibit issues with intercomponent interfacing. In this study, an approach is presented for non-enzymatic glucose detection by harnessing a newly synthesized functionalized monomer, EDOT-PBA. This monomer integrates electrically conducting and receptor moieties within a single organic component, obviating the need for complex composite preparation. By engineering the conditions for electrodeposition, two distinct polymer film architectures are developed: pristine PEDOT-PBA and molecularly imprinted PEDOT-PBA. Both architectures demonstrated proficient glucose binding and signal transduction capabilities. Notably, the molecularly imprinted polymer (MIP) architecture demonstrated faster stabilization upon glucose uptake while it also enabled a lower limit of detection, lower standard deviation, and a broader linear range in the sensor output signal compared to its non-imprinted counterpart. This material design not only provides a robust and efficient platform for glucose detection but also offers a blueprint for developing selective sensors for a diverse array of target molecules, by tuning the receptor units correspondingly.
Collapse
Affiliation(s)
| | - Shofarul Wustoni
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Raphaela K. S. Silva
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ariel Lifer
- Department of Materials Science and EngineeringTechnion–Israel Institute of TechnologyHaifa32000Israel
| | - Achilleas Savva
- Bioelectronics SectionDepartment of MicroelectronicsFaculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)Delft University of TechnologyDelft2628 CDThe Netherlands
| | - Gitti L. Frey
- Department of Materials Science and EngineeringTechnion–Israel Institute of TechnologyHaifa32000Israel
| | - Sahika Inal
- Organic Bioelectronics LaboratoryBiological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
11
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
12
|
Zhao W, Fu GE, Yang H, Zhang T. Two-Dimensional Conjugated Polymers: a New Choice For Organic Thin-Film Transistors. Chem Asian J 2023:e202301076. [PMID: 38151907 DOI: 10.1002/asia.202301076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/29/2023]
Abstract
Organic thin-film transistors (OTFTs) as a vital component among transistors have shown great potential in smart sensing, flexible displays, and bionics due to their flexibility, biocompatibility and customizable chemical structures. Even though linear conjugated polymer semiconductors are common for constructing channel materials of OTFTs, advanced materials with high charge carrier mobility, tunable band structure, robust stability, and clear structure-property relationship are indispensable for propelling the evolution of OTFTs. Two-dimensional conjugated polymers (2DCPs), featured with conjugated lattice, tailorable skeletons, and functional porous structures, match aforementioned criteria closely. In this review, we firstly introduce the synthesis of 2DCP thin films, focusing on their characteristics compatible with the channels of OTFTs. Subsequently, the physics and operating mechanisms of OTFTs and the applications of 2DCPs in OTFTs are summarized in detail. Finally, the outlook and perspective in the field of OTFTs using 2DCPs are provided as well.
Collapse
Affiliation(s)
- Wenkai Zhao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haoyong Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
13
|
Wang C, Lyu P, Chen Z, Xu Y. Green and Scalable Synthesis of Atomic-Thin Crystalline Two-Dimensional Triazine Polymers with Ultrahigh Photocatalytic Properties. J Am Chem Soc 2023. [PMID: 37171112 DOI: 10.1021/jacs.3c02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Scalable and eco-friendly synthesis of crystalline two-dimensional (2D) polymers with proper band gap and single-layer thickness is highly desired for the fundamental research and practical applications of 2D polymers; however, it remains a considerable and unresolved challenge. Herein, we report a convenient and robust method to synthesize a series of crystalline covalent triazine framework nanosheets (CTF NSs) with a thickness of ∼80 nm via a new solvent-free salt-catalyzed nitrile cyclotrimerization process, which enables the cost-effective large-scale preparation of crystalline CTF NSs at the hundred-gram level. Theoretical calculations and detailed experiments revealed for the first time that the conventional salts such as KCl can not only act as physical templates as traditionally believed but also more importantly can efficiently catalyze the cyclotrimerization reaction of carbonitrile monomers as a new kind of green solid catalysts to achieve crystalline CTF NSs. Upon simple liquid-phase sonication, these CTF NSs can be easily further exfoliated into abundant single-layer crystalline 2D triazine polymers (2D-TPs) in high yields. The obtained atomically thin crystalline 2D-TPs with a band gap of 2.36 eV and rich triazine active groups exhibited a remarkable photocatalytic hydrogen evolution rate of 1321 μmol h-1 under visible light irradiation with an apparent quantum yield up to 29.5% at 420 nm and excellent photocatalytic overall water splitting activity with a solar-to-hydrogen efficiency up to 0.35%, which exceed all molecular framework materials and are among the best metal-free photocatalysts ever reported. Moreover, the processable 2D-TPs could be readily assembled on a support as a photocatalytic film device, which demonstrated superior photocatalytic performance (135.2 mmol h-1 m-2 for hydrogen evolution).
Collapse
Affiliation(s)
- Congxu Wang
- Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
14
|
Song J, Liu H, Zhao Z, Guo X, Liu CK, Griggs S, Marks A, Zhu Y, Law HKW, McCulloch I, Yan F. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. SCIENCE ADVANCES 2023; 9:eadd9627. [PMID: 36630506 PMCID: PMC9833676 DOI: 10.1126/sciadv.add9627] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical transistors (ECTs) have shown broad applications in bioelectronics and neuromorphic devices due to their high transconductance, low working voltage, and versatile device design. To further improve the device performance, semiconductor materials with both high carrier mobilities and large capacitances in electrolytes are needed. Here, we demonstrate ECTs based on highly oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs). The ion-conductive vertical nanopores formed within the 2D c-MOFs films lead to the most convenient ion transfer in the bulk and high volumetric capacitance, endowing the devices with fast speeds and ultrahigh transconductance. Ultraflexible device arrays are successfully used for wearable on-skin recording of electrocardiogram (ECG) signals along different directions, which can provide various waveforms comparable with those of multilead ECG measurement systems for monitoring heart conditions. These results indicate that 2D c-MOFs are excellent semiconductor materials for high-performance ECTs with promising applications in flexible and wearable electronics.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Chun-ki Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Helen Ka-wai Law
- Department of Health Technology and Informatics Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| |
Collapse
|
15
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|