1
|
Jiang Y, Lian M, Ma J, Long Y, Guo X, Sun Y, Lao J, Ye Z. Synchronous Regulation of S-Deficient ZnS-MoS 2 Heterostructure Nanoreactor for Fast and Durable Sodium Storage. NANO LETTERS 2025. [PMID: 40279457 DOI: 10.1021/acs.nanolett.4c05957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The enhancement of charge transfer and the relief of volume stress of anode materials contribute to fully exploiting electrochemical performance for sodium ion storage. Herein, a hollow carbon polyhedra nanoreactor adhered with a ZnS-MoS2 heterostructure with tunable sulfur vacancy content (denoted as hp-ZMS-600/700/800) is prepared by self-assembly and a temperature dependent sulfurization procedure. The intimate heterointerface and moderate sulfur vacancies provide fast ion/electron transfer channels, and the hollow nanoreactors afford large volume variation and maintain structural integrity during the sodiation/desodiation process. Theoretical calculations and in situ/ex situ characterization techniques reveal both excellent electron/ion diffusion dynamics and a sodium storage mechanism. As a result, the optimized hp-ZMS-700 anode in sodium-ion batteries delivers a high initial Coulombic efficiency of 96.3%, a high capacity of 398 mAh g-1 at 0.1 A g-1, good rate capability of 119.8 mAh g-1 at 5 A g-1, and an excellent capacity retention of 84.6% after 1000 cycles at 2 A g-1.
Collapse
Affiliation(s)
- Ying Jiang
- School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Mingyu Lian
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jinlian Ma
- School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yunsong Long
- School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Xuejing Guo
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yitong Sun
- School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Junchao Lao
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhengqing Ye
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, PR China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| |
Collapse
|
2
|
Liu X, Shang J, Li J, Liu H, Zhang F, Pan Q, Tang Y. Insight into Robust Anion Coordination Behavior of Organic Cathode with Dual Elongated π-Conjugated Motifs. Angew Chem Int Ed Engl 2025; 64:e202420160. [PMID: 39719638 DOI: 10.1002/anie.202420160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Organic electrode materials offer multi-electron reactivity, flexible structures, and redox reversibility, but encounter poor conductivity and durability in electrolytes. To overcome above barriers, we propose a dual elongation strategy of π-conjugated motifs with active sites, involving the extended carbazole and electropolymerized polymer, which enhances electronic conductivity by the electronic delocalization of electron-withdrawing conjugated groups, boosts theoretical capacity by increasing redox-active site density, and endows robust electrochemical stability attributed to the nanonetwork feature of polymer structures. As a proof-of-concept, 5,11-dihydridoindolo[3,2-b]carbazole (DHIC) is selected as the model cathode material for a dual-ion battery, with elongated carbazole groups functioning both as redox-active centers and polymerization anchors. Electrochemical comparisons and theoretical simulations validate the excellent specific capacity, accelerated reaction kinetics, and enhanced anion storage stability imparted by the dual elongated π-conjugated system containing both carbazole motif and electropolymerized DHIC (pDHIC). Simultaneously, the coordination interaction between pDHIC and anions is innovatively evidenced through operando electron paramagnetic resonance spectra. As anticipated, pDHIC cathode delivers an unprecedentedly high specific capacity of 197 mAh/g at 50 mA/g, far outperforming graphite cathodes, and maintains excellent cycling stability with a capacity retention of 86.1 % over 500 cycles. This synergetic strategy sheds light on the performance revolution of organic electrode materials.
Collapse
Affiliation(s)
- Xianchun Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Nano Science and Technology Institute, University of Science and Technology of China, 215123, Suzhou, China
| | - Jian Shang
- Low-dimensional Energy Materials Research Center Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jia Li
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Southern University of Science and Technology, 518055, Shenzhen, China
| | - Hanlin Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Nano Science and Technology Institute, University of Science and Technology of China, 215123, Suzhou, China
| | - Fan Zhang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qingguang Pan
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- School of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
3
|
Zuo D, Meng W, Fan C, Li T, Deng S, Li D, Jiang L, Wang T. Heterogeneous Interface Design with Oxygen Vacancy-Rich Assistance High-Capacity Titanium-Based Oxide Anode Materials for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52559-52571. [PMID: 39301966 DOI: 10.1021/acsami.4c12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Researchers are paying more attention to sodium-ion batteries (SIBs) because of their abundant supply of sodium resources and affordable price. TiO2 offers excellent safety and a long lifespan as an anode material for SIBs. However, the process kinetics is slow due to its limited Na+ storage efficiency, weak conductivity, and irreversible Na+ capture. In order to address these issues, this review uses a mix of the template approach and the double-hydrolysis method to manage the structure and diffusion of TiO2-based anode materials by synthesizing FeTiO3/TiO2 heterostructured double-shell microspheres (FTO). Through the built-in electric field effect caused by their heterostructures, FTO materials improve reaction kinetics, boost electronic conductivity, and lower the diffusion energy barrier of Na+. Their distinctive double-shell structure can increase electrolyte infiltration, shorten the diffusion distance between ions and electrons, and accommodate volume expansion during cycling. Furthermore, the irreversible capture of Na+ and the unfavorable interactions between the surface active site and electrolyte can be successfully inhibited by FTO heterostructures. FTO has an exceptionally high capacity (reaching 362.7 mA h g-1 after 60 cycles at 20 mA g-1) and excellent cycle stability (with a decay rate of 0.0061% after 1000 cycles at 2 A g-1). The strategy of constructing heterogeneous interfaces assists with high-performance SIB anode design.
Collapse
Affiliation(s)
- Dapeng Zuo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Weijia Meng
- Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an, Shaanxi 710061, China
| | - Changchun Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Tongheng Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Shengxiang Deng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Diansen Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Teng Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Du Y, Wang Z, Tian M, Ma H, Li DS, Zhang W, Yang HY, Chen S. Interfacial Coupling toward Bismuth Sulfide/MXene Heterostructures Empowering Reversible Magnesium Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44636-44644. [PMID: 39146398 DOI: 10.1021/acsami.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bismuth-based compounds based on conversion-alloying reactions of multielectron transfer have attracted extensive attention as alternative anode candidates for rechargeable magnesium batteries (rMBs). However, the inadequate magnesium storage capability induced by the sluggish kinetics, poor reversibility, and terrible structural stability impedes their practical utilization. Herein, monodispersed Bi2S3 anchored on MXene has been prepared via a simple self-assembly strategy to induce the interfacial bonding of Ti-S and Ti-O-Bi. Unique superiority, including good electrical conductivity, high mechanical strength, and rapid charge transfer, is cleverly integrated together in the Bi2S3/MXene heterostructures, which endowed heterostructures with enhanced magnesium storage performance. Density functional theory calculations combined with kinetic behavior analyses confirm the favorable charge transfer and low ion diffusion barrier in hybrids. Furthermore, a stepwise insertion-conversion-alloying reaction mechanism is revealed in depth by ex situ investigations, which may also account for promoting performance. This work provides significant inspirations for constructing ingenious multicompositional hybrids by strong interfacial coupling engineering toward high-performance energy storage devices.
Collapse
Affiliation(s)
- Yibo Du
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Zhitao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Material, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Miao Tian
- Hebei Key Laboratory of Optic-electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Heping Ma
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Centre for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hui Ying Yang
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Centre for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Zhang X, Wu F, Fang D, Chen R, Li L. Fluorinated Surface Engineering Towards High-Rate and Durable Potassium-Ion Battery. Angew Chem Int Ed Engl 2024; 63:e202404332. [PMID: 38700477 DOI: 10.1002/anie.202404332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Solid electrolyte interphase (SEI) crucially affects the rate performance and cycling lifespan, yet to date more extensive research is still needed in potassium-ion batteries. We report an ultra-thin and KF-enriched SEI triggered by tuned fluorinated surface design in electrode. Our results reveal that fluorination engineering alters the interfacial chemical environment to facilitate inherited electronic conductivity, enhance adsorption ability of potassium, induce localized surface polarization to guide electrolyte decomposition behavior for SEI formation, and especially, enrich the KF crystals in SEI by self-sacrifice from C-F bond cleavage. Hence, the regulated fluorinated electrode with generated ultra-thin, uniform, and KF-enriched SEI shows improved capacity of 439.3 mAh g-1 (3.82 mAh cm-2), boosted rate performance (202.3 mAh g-1 at 8.70 mA cm-2) and durable cycling performance (even under high loading of ~8.7 mg cm-2). We expect this practical engineering principle to open up new opportunities for upgrading the development of potassium-ion batteries.
Collapse
Affiliation(s)
- Xixue Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Difan Fang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| |
Collapse
|
6
|
Iqbal S, Chishti AN, Ali M, Ali M, Hao Y, Wu X, Huang H, Lu W, Gao P, Yousaf M, Jiang Y. Se-p Orbitals Induced "Strong d-d Orbitals Interaction" Enable High Reversibility of Se-Rich ZnSe/MnSe@C Electrode as Excellent Host for Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308262. [PMID: 38312105 DOI: 10.1002/smll.202308262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/16/2024] [Indexed: 02/06/2024]
Abstract
The heterostructure of transition-metal chalcogenides is a promising approach to boost alkali ion storage due to fast charge kinetics and reduction of activation energy. However, cycling performance is a paramount challenge that is suffering from poor reversibility. Herein, it is reported that Se-rich particles can chemically interact with local hexagonal ZnSe/MnSe@C heterostructure environment, leading to effective ions insertion/extraction, enabling high reversibility. Enlightened by theoretical understanding, Se-rich particles endow high intrinsic conductivities in term of low energy barriers (1.32 eV) compared with those without Se-rich particles (1.50 eV) toward the sodiation process. Moreover, p orbitals of Se-rich particles may actively participate and further increase the electronegativity that pushes the Mn d orbitals (dxy and dx2-y2) and donate their electrons to dxz and dyz orbitals, manifesting strong d-d orbitals interaction between ZnSe and MnSe. Such fundamental interaction will adopt a well-stable conducive electronic bridge, eventually, charges are easily transferred from ZnSe to MnSe in the heterostructure during sodiation/desodiation. Therefore, the optimized Se-rich ZnSe/MnSe@C electrode delivered high capacity of 576 mAh g-1 at 0.1 A g-1 after 100 cycles and 384 mAh g-1 at 1 A g-1 after 2500 cycles, respectively. In situ and ex situ measurements further indicate the integrity and reversibility of the electrode materials upon charging/discharging.
Collapse
Affiliation(s)
- Sikandar Iqbal
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Aadil Nabi Chishti
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Muhammad Ali
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Moazzam Ali
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Youchan Hao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xingxing Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huiqin Huang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wang Lu
- School of Material Science and Engineering, Shandong University, Jinan, 250100, China
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Muhammad Yousaf
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yinzhu Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Liu J, Zhang L, Wang K, Jiang C, Zhang C, Wang N. Island-Like Heterogeneous Interface Generating Tandem Toroidal Built-In Electric Field for Efficient Potassium Ions Diffusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400093. [PMID: 38353062 DOI: 10.1002/smll.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Indexed: 07/19/2024]
Abstract
For large-size potassium accommodation, heterostructure usually suffers severe delamination and exfoliation at the interfaces due to different volume expansion of two-phase during charge/discharge process, resulting in the deconstruction of heterostructures and shortened lifespan of batteries. Here, an innovative strategy is proposed through constructing a microscopic heterostructure system containing copper quantum dots (Cu QDs) highly dispersed in the triphenyl-substituted triazine graphdiyne (TPTG) substrates (TPTG@CuQDs) to solve this problem. The copper quantum dots are uniformly anchored on TPTG substrates, generating a myriad of island-like heterogeneous structures, together with tandem toroidal built-in electric field (BIEF) between every micro heterointerface. The island-like heterostructure endows both benefits of exposed contact interface and robust architecture. Generated tandem toroidal BIEF provides efficient transport pathways with lower energy barriers, reducing the diffusion resistance and facilitating the reaction kinetics of potassium ions. When used as anode, the TPTG@CuQDs exhibit highly reversible capacity and low-capacity degradation (≈0.01% over 5560 cycles at 1 A g-1). Moreover, the TPTG@CuQDs-based full cell delivers an outstanding reversible capacity of ≈110 mAh g-1 over 800 cycles at 1 A g-1. This quantum-scale heterointerface construction strategy offers a new approach toward stable heterostructure design for the application of metal ion batteries.
Collapse
Affiliation(s)
- Jingyi Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Kaihang Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chao Jiang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
8
|
Su Y, Shang J, Liu X, Li J, Pan Q, Tang Y. Constructing π-π Superposition Effect of Tetralithium Naphthalenetetracarboxylate with Electron Delocalization for Robust Dual-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202403775. [PMID: 38523068 DOI: 10.1002/anie.202403775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Organics are gaining significance as electrode materials due to their merits of multi-electron reaction sites, flexible rearrangeable structures and redox reversibility. However, organics encounter finite electronic conductivity and inferior durability especially in organic electrolytes. To circumvent above barriers, we propose a novel design strategy, constructing conductive network structures with extended π-π superposition effect by manipulating intermolecular interaction. Tetralithium 1,4,5,8-naphthalenetetracarboxylate (LNTC) interwoven by carbon nanotubes (CNTs) forms LNTC@CNTs composite firstly for Li-ion storage, where multiple conjugated carboxyls contribute sufficient Li-ion storage sites, the unique network feature enables electrolyte and charge mobility conveniently combining electron delocalization in π-conjugated system, and the enhanced π-π superposition effect between LNTC and CNTs endows laudable structural robustness. Accordingly, LNTC@CNTs maintain an excellent Li-ion storage capacity retention of 96.4 % after 400 cycles. Electrochemical experiments and theoretical simulations elucidate the fast reaction kinetics and reversible Li-ion storage stability owing to the electron delocalization and π-π superposition effect, while conjugated carboxyls are reversibly rearranged into enolates during charging/discharging. Consequently, a dual-ion battery combining this composite anode and expanded graphite cathode exhibits a peak specific capacity of 122 mAh g-1 and long cycling life with a capacity retention of 84.2 % after 900 cycles.
Collapse
Affiliation(s)
- Yuanqiang Su
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jian Shang
- Low-dimensional Energy Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xianchun Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jia Li
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingguang Pan
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Guo L, Jiang Z, Deng B, Wang Y, Jiang ZJ. Sb Doping and Amorphization Co-Induced High Capacity and Excellent Durability of Tin Sulfide-Based Anode for K-Ion Batteries. SMALL METHODS 2024; 8:e2301342. [PMID: 37997209 DOI: 10.1002/smtd.202301342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 11/25/2023]
Abstract
The carbon nanotubes (CNTs) supported amorphous Sb doped substoichiometric tin dulfide (Sb─SnSx ) with a carbon coating (the C/Sb─SnSx @CNTs-500) is reported to be an efficient anode material for K+ storage. The formation of the C/Sb─SnSx @CNTs-500 is simply achieved through the thermally induced desulfurization of tin sulfide via a controlled annealing of the C/Sb─SnS2 @CNTs at 500 °C. When used for the K+ storage, it can deliver stable reversible capacities of 406.5, 305.7, and 238.4 mAh g-1 at 0.1, 1.0, and 2.0 A g-1 , respectively, and shows no capacity drops when potassiated/depotassiated at 1.0 and 2.0 A g-1 for >3000 and 2400 cycles, respectively. Even at 10, 20, and 30 A g-1 , it can still deliver stable reversible capacities of 138.5, 85.1, and 73.8 mAh g-1 , respectively. The unique structure, which combines the advantageous features of carbon integration/coating, metal doping, and desulfurization-induced amorphous structure, is the main origin of the high performance of the C/Sb─SnSx @CNTs-500. Specifically, the carbon integration/coating can increase the electric conductivity and stability of the C/Sb─SnSx @CNTs-500. The density function theory calculation indicates that the Sb doping and the desulfurization can facilitate the potassiation and increase the electric conductivity of Sb─SnSx . Additionally, the desulfurization can increase the K+ diffusivity in Sb─SnSx .
Collapse
Affiliation(s)
- Liping Guo
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhongqing Jiang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Hu R, Tong Y, Yin J, Wu J, Zhao J, Cao D, Wang G, Zhu K. Dual carbon engineering enabling 1T/2H MoS 2 with ultrastable potassium ion storage performance. NANOSCALE HORIZONS 2024; 9:305-316. [PMID: 38115741 DOI: 10.1039/d3nh00404j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Potassium-ion batteries (PIBs) as a promising and low-cost battery technology offer the advantage of utilizing abundant and cost-effective K-salt sources. However, the effective adoption of PIBs necessitates the identification of suitable electrode materials. The 1T phase of MoS2 exhibits enhanced electronic conductivity and greater interlayer spacing compared to the 2H phase, leading to a capable potassium ion storage ability. Herein, we fabricated dual carbon engineered 1T/2H MoS2via a secure and straightforward ammonia-assisted hydrothermal method. The 1T/2H MoS2@rGO@C structure demonstrated an expanded interlayer spacing (9.3 Å). Additionally, the sandwich-like structural design not only enhanced material conductivity but also effectively curbed the agglomeration of nanosheets. Remarkably, 1T/2H MoS2@rGO@C exhibited impressive potassium storage ability, delivering capacities of 351.0 mA h g-1 at 100 mA g-1 and 233.8 mA h g-1 at 1000 mA g-1 following 100 and 1000 cycles, respectively. Moreover, the construction of a K-ion full cell was successfully achieved, utilizing perylene tetracarboxylic dianhydride (PTCDA) as the cathode, and manifesting a capacity of 294.3 mA h g-1 at 100 mA g-1 after 160 cycles. This underscores the substantial potential of employing the 1T/2H MoS2@rGO@C electrode material for PIBs.
Collapse
Affiliation(s)
- Rong Hu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Yanqi Tong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jinling Yin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Junxiong Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
11
|
Quan Z, Wang F, Wang Y, Liu Z, Zhang C, Qi F, Zhang M, Ye C, Tan J, Liu J. Robust Micro-Sized and Defect-Rich Carbon-Carbon Composites as Advanced Anodes for Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305841. [PMID: 37712105 DOI: 10.1002/smll.202305841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Pitch-derived carbon (PC) anode features the merits of low-cost, rich edge-defect sites, and tunable crystallization degree for potassium ion batteries (PIBs). However, gaining the PC anode with both rich edge-defect sites and robust structure remains challenging. Herein, micro-sized and robust PC/expanded-graphite (EG) composites (EGC) with rich edge-defect sites are massively synthesized via melting impregnation and confined pyrolysis. The PC is in situ encapsulated in micro-sized EG skeleton with robust chemical bonds between PC and EG after thermal treatment, endowing the structural stability as micro-sized carbon-carbon composites. The confinement effect originating from EG skeleton could suppress the crystallization degree of the PC and contribute rich edge-defect sites in EGC composites. Additionally, the EG skeleton inside EGC could form continuous electronic conduction nets and establish low-tortuosity carbonaceous electrodes, facilitating rapid electron/ion migration. While applied in PIBs, the EGC anode delivers a reversible capacity that up to 338.5 mAh g-1 at 0.1 A g-1 , superior rate performance of 127.5 mAh g-1 at 5.0 A g-1 , and long-term stability with 204.8 mAh g-1 retain after 700 cycles at 1.0 A g-1 . This novel strategy highlights an interesting category of heterogeneous carbon-carbon composite materials to keep pace with the demand for the future PIBs industry.
Collapse
Affiliation(s)
- Zhuohua Quan
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Fei Wang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Yuchen Wang
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Zhendong Liu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | | | - Fulai Qi
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Mingchang Zhang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Chong Ye
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jun Tan
- Ji Hua Laboratory, Foshan, Guangdong, 528000, China
| | - Jinshui Liu
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
12
|
Zhang W, Sun Y, Ren Z, Zhao Y, Yao Z, Lei Q, Si J, Li Z, Ren X, Li X, Li A, Wen W, Zhu D. In Situ Formed Amorphous Bismuth Sulfide Cathodes with a Self-Controlled Conversion Storage Mechanism for High Performance Hybrid Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304146. [PMID: 38010981 PMCID: PMC10787086 DOI: 10.1002/advs.202304146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
Conversion-type electrodes offer a promising multielectron transfer alternative to intercalation hosts with potentially high-capacity release in batteries. However, the poor cycle stability severely hinders their application, especially in aqueous multivalence-ion systems, which can fundamentally impute to anisotropic ion diffusion channel collapse in pristine crystals and irreversible bond fracture during repeated conversion. Here, an amorphous bismuth sulfide (a-BS) formed in situ with unprecedentedly self-controlled moderate conversion Cu2+ storage is proposed to comprehensively regulate the isotropic ion diffusion channels and highly reversible bond evolution. Operando synchrotron X-ray diffraction and substantive verification tests reveal that the total destruction of the Bi─S bond and unsustainable deep alloying are fully restrained. The amorphous structure with robust ion diffusion channels, unique self-controlled moderate conversion, and high electrical conductivity discharge products synergistically boosts the capacity (326.7 mAh g-1 at 1 A g-1 ), rate performance (194.5 mAh g-1 at 10 A g-1 ), and long-lifespan stability (over 8000 cycles with a decay rate of only 0.02 ‰ per cycle). Moreover, the a-BS Cu2+ ‖Zn2+ hybrid ion battery can well supply a stable energy density of 238.6 Wh kg-1 at 9760 W kg-1 . The intrinsically high-stability conversion mechanism explored on amorphous electrodes provides a new opportunity for advanced aqueous storage.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanhe Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhiguo Ren
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yuanxin Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zeying Yao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qi Lei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jingying Si
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaochuan Ren
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Shandong, 266071, China
| | - Xiaolong Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Aiguo Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wen Wen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Daming Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
13
|
Wang M, Qin B, Xu F, Yang W, Liu Z, Zhang Y, Fan H. Hetero-structural and hetero-interfacial engineering of MXene@Bi 2S 3/Mo 7S 8 hybrid for advanced sodium/potassium-ion batteries. J Colloid Interface Sci 2023; 650:446-455. [PMID: 37418895 DOI: 10.1016/j.jcis.2023.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Herein, heterogeneous bimetallic sulfides Bi2S3/Mo7S8 nanoparticles anchored on MXene (Ti3C2Tx) nanosheets (MXene@Bi2S3/Mo7S8) were prepared through a solvothermal process and subsequent chemical vapor deposition process. Benefiting from the heterogeneous structure between Bi2S3 and Mo7S8 and the high conductivity of the Ti3C2Tx nanosheets, the Na+ diffusion barrier and charge transfer resistance of this electrode are effectively decreased. Simultaneously, the hierarchical architectures of Bi2S3/Mo7S8 and Ti3C2Tx not only effectively inhibit the re-stacking of MXene and the agglomeration of bimetallic sulfides nanoparticles, but also dramatically relieve the volume expansion during the periodic charge/discharge processes. As a result, the MXene@Bi2S3/Mo7S8 heterostructure demonstrated remarkable rate capability (474.9 mAh/g at 5.0 A/g) and outstanding cycling stability (427.3 mAh/g after 1400 cycles at 1.0 A/g) for sodium ion battery. The Na+ storage mechanism and the multiple-step phase transition in the heterostructures are further clarified by the ex-situ XRD and XPS characterizations. This study paves a new way to design and exploit conversion/alloying type anodes of sodium ion batteries with hierarchical heterogeneous architecture and high-performance electrochemical properties.
Collapse
Affiliation(s)
- Mengqi Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Binyang Qin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Feng Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Wei Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiting Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yufei Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
14
|
Pan L, Hu R, Zhang Y, Sha D, Cao X, Li Z, Zhao Y, Ding J, Wang Y, Sun Z. Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti 3C 2T x MXene. NANO-MICRO LETTERS 2023; 15:225. [PMID: 37831299 PMCID: PMC10575839 DOI: 10.1007/s40820-023-01202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/26/2023] [Indexed: 10/14/2023]
Abstract
Exploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti3C2Tx MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe2/ZnTe interfaces, improving K+ diffusion and adsorption. In addition, the different work functions between CoTe2/ZnTe induce a robust built-in electric field at the CoTe2/ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti3C2Tx can effectively promote electrode conductivity and alleviate the volume change of CoTe2/ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe2/ZnTe/Ti3C2Tx (CZT) exhibit excellent rate capability (137.0 mAh g-1 at 10 A g-1) and cycling stability (175.3 mAh g-1 after 4000 cycles at 3.0 A g-1, with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg-1) and power density (837.2 W kg-1). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.
Collapse
Affiliation(s)
- Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Rongxiang Hu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yuan Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhuoran Li
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jiangxiang Ding
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Yaping Wang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
15
|
Cao L, Len Z, Xu X, Chen Z, Zhou L, Geng H, Lu X. Manipulating Molecular Structure to Trigger Ultrafast and Long-Life Potassium Storage of Fe 0.4 Ni 0.6 S Solid Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302435. [PMID: 37118854 DOI: 10.1002/smll.202302435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Currently, the main obstacle to the widespread utilization of metal chalcogenides (MSx ) as anode for potassium-ion batteries (PIBs) is their poor rate capability and inferior cycling stability as a result of the undesirable electrical conductivity and severe pulverization of the nanostructure during large K-ions intercalation-extraction processes. Herein, an ultrafast and long-life potassium storage of metal chalcogenide is rationally demonstrated by employing Fe0.4 Ni0.6 S solid-solution (FNS/C) through molecular structure engineering. Benefiting from improved electroactivity and intense interactions within the unique solid solution phase, the electrical conductivity and structure durability of Fe0.4 Ni0.6 S are vastly improved. As anticipated, the FNS/C electrode delivers superior rate properties (538.7 and 210.5 mAh g-1 at 0.1 and 10 A g-1 , respectively) and long-term cycle stability (180.8 mAh g-1 at 5 A g-1 after 2000 cycles with a capacity decay of 0.011% per cycle). Moreover, the potassium storage mechanisms of Fe0.4 Ni0.6 S solid solution are comprehensively revealed by several in situ characterizations and theoretical calculations. This innovative molecular structure engineering strategy opens avenues to achieve high-quality metal chalcogenides for future advanced PIBs.
Collapse
Affiliation(s)
- Liang Cao
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Zichen Len
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
| | - Xin Xu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
| | - Zongquan Chen
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
| | - Lijun Zhou
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
16
|
Yi X, Rao AM, Zhou J, Lu B. Trimming the Degrees of Freedom via a K + Flux Rectifier for Safe and Long-Life Potassium-Ion Batteries. NANO-MICRO LETTERS 2023; 15:200. [PMID: 37596502 PMCID: PMC10439096 DOI: 10.1007/s40820-023-01178-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023]
Abstract
High degrees of freedom (DOF) for K+ movement in the electrolytes is desirable, because the resulting high ionic conductivity helps improve potassium-ion batteries, yet requiring support from highly free and flammable organic solvent molecules, seriously affecting battery safety. Here, we develop a K+ flux rectifier to trim K ion's DOF to 1 and improve electrochemical properties. Although the ionic conductivity is compromised in the K+ flux rectifier, the overall electrochemical performance of PIBs was improved. An oxidation stability improvement from 4.0 to 5.9 V was realized, and the formation of dendrites and the dissolution of organic cathodes were inhibited. Consequently, the K||K cells continuously cycled over 3,700 h; K||Cu cells operated stably over 800 cycles with the Coulombic efficiency exceeding 99%; and K||graphite cells exhibited high-capacity retention over 74.7% after 1,500 cycles. Moreover, the 3,4,9,10-perylenetetracarboxylic diimide organic cathodes operated for more than 2,100 cycles and reached year-scale-cycling time. We fabricated a 2.18 Ah pouch cell with no significant capacity fading observed after 100 cycles.
Collapse
Affiliation(s)
- Xianhui Yi
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, 29634, USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China.
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
17
|
Zou Z, Yu Z, Chen C, Wang Q, Zhu K, Ye K, Wang G, Cao D, Yan J. High-Performance Alkali Metal Ion Storage in Bi 2Se 3 Enabled by Suppression of Polyselenide Shuttling Through Intrinsic Sb-Substitution Engineering. ACS NANO 2023. [PMID: 37428997 DOI: 10.1021/acsnano.3c03381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Bismuth selenide holds great promise as a kind of conversion-alloying-type anode material for alkali metal ion storage because of its layered structure with large interlayer spacing and high theoretical specific capacity. Nonetheless, its commercial development has been significantly hammered by the poor kinetics, severe pulverization, and polyselenide shuttle during the charge/discharge process. Herein, Sb-substitution and carbon encapsulation strategies are simultaneously employed to synthesize SbxBi2-xSe3 nanoparticles decorated on Ti3C2Tx MXene with encapsulation of N-doped carbon (SbxBi2-xSe3/MX⊂NC) as anodes for alkali metal ion storage. The superb electrochemical performances could be assigned to the cationic displacement of Sb3+ that effectively inhibits the shuttling effect of soluble polyselenides and the confinement engineering that alleviates the volume change during the sodiation/desodiation process. When used as anodes for sodium- and lithium-ion batteries, the Sb0.4Bi1.6Se3/MX⊂NC composite exhibits superior electrochemical performances. This work offers valuable guidance to suppress the shuttling of polyselenides/polysulfides in high-performance alkali metal ion batteries with conversion/alloying-type transition metal sulfide/selenide anode materials.
Collapse
Affiliation(s)
- Zhengguang Zou
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zhiqi Yu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chi Chen
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, and Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Kai Zhu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ke Ye
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Guiling Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Dianxue Cao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Yan
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
18
|
Han C, Wang H, Wang Z, Ou X, Tang Y. Solvation Structure Modulation of High-Voltage Electrolyte for High-Performance K-Based Dual-Graphite Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300917. [PMID: 37015009 DOI: 10.1002/adma.202300917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Indexed: 06/16/2023]
Abstract
Due to the advantages of dual-ion batteries (DIBs) and abundant resources, potassium-based dual-carbon batteries (K-DCBs) have wide application prospects. However, conventional carbonate ester-based electrolyte systems have obvious drawbacks such as poor oxidation resistance and difficulty in sustaining the anion intercalation process at high voltages, which seriously affect the capacity and cycle performance of K-DCBs. Therefore, a rational design of more efficient novel electrolyte systems is urgently required to realize high-performance K-DCBs. Herein, a solvation structure modulation strategy for the K-DCB electrolyte systems is reported. Consequently, substantial K+ ion storage improvement at the graphite anode and enhanced bis(fluorosulfonyl)imide anion (FSI- ) intercalation capacity at the graphite cathode are successfully realized simultaneously. As a proof-of-concept, the assembled K-DCB exhibited a discharge capacity of 103.4 mAh g-1 , and after 400 cycles, ≈90% capacity retention is observed. Moreover, the energy density of the K-DCB full cell reached 157.6 Wh kg-1 , which is the best performance in reported K-DCBs till date. This study demonstrates the effectiveness of solvation modulation in improving the performance of K-DCBs.
Collapse
Affiliation(s)
- Chengjun Han
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haiyan Wang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zelin Wang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuewu Ou
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|