1
|
Zhang N, An Y, Yao Q, Zou G, Zhou N, Wu Y, Chen D, Lin FR, Jen AKY, Yip HL. Textured Inorganic Perovskite Interlayer Enhances Carrier Extraction for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26959-26967. [PMID: 40274602 DOI: 10.1021/acsami.5c03878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The PEDOT:PSS has been utilized extensively as a hole transport layer (HTL) in organic solar cells (OSCs) due to its excellent compatibility with various bulk heterojunction (BHJ) active layers. However, its intrinsically low electrical conductivity and suboptimal surface morphology limit hole extraction, ultimately constraining the performance of OSCs. To address this, we constructed an advanced heterojunction interface by introducing a wide-bandgap perovskite (CsPbBr3) interlayer between the PEDOT:PSS and BHJ. The textured CsPbBr3 interlayer serves as an efficient hole transport modifier by enhancing extraction and transport efficiency, while simultaneously functioning as an energy donor via Förster resonance energy transfer (FRET) and as a photosensitizer capable of generating photocarriers independently through its intrinsic optoelectronic properties. This synergetic enhancement of charge generation, extraction, and transport properties resulted in an increase in the power conversion efficiency (PCE) of PM6:Y6-based OSCs from 16.80% to 17.74%, along with improved photocurrent and fill factor (FF). The universality of this approach was further demonstrated in state-of-the-art PM6:BTP-eC9:L8-BO systems, achieving a PCE of 19.02%. Our work elucidates the multifunctional role of CsPbBr3 in managing interfacial properties, presenting a feasible interface engineering strategy to achieve high-performance OSCs.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yidan An
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qin Yao
- School of Additive Manufacturing, Zhejiang Polytechnic University of Mechanical and Electrical Engineering, Hangzhou, Zhejiang 310059, P. R. China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ning Zhou
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ye Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Desui Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
2
|
Yang S, Yu B, Yu H. 2D g-C 3N 5 p-Doping of Donor Material for High-Efficiency Organic Solar Cells. SMALL METHODS 2025; 9:e2401307. [PMID: 39402767 DOI: 10.1002/smtd.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Indexed: 04/25/2025]
Abstract
Molecular doping of organic semiconductor is a great strategy for significantly regulating the electronic band structure of organic semiconductor while increasing charge mobility and carrier concentration. Here, a facile strategy is presented by introducing 2D g-C3N5 as a p-dopant into PM6, improving the charge mobility and hole carrier concentration of PM6. Moreover, the electron transfer between PM6 and g-C3N5 can effectively downshift the Fermi energy level and highest occupied molecular orbital (HOMO) energy level of PM6, which leads to the increase the built-in electric field of organic solar cells (OSCs). The addition of g-C3N5 also effectively enhances the crystallization of active layer, thereby improving the stability of OSCs. As a result, a champion bulk-heterojunction (BHJ) and layer-by-layer (LbL) structure OSCs are successfully achieved featuring a high-power conversion efficiency of 18.10%/18.25%, simultaneously having excellent device stability. This work shows that introducing a low concentration dopant into organic donor is an effective method for improving the electrical performance of organic donor and the efficiency of OSCs.
Collapse
Affiliation(s)
- Song Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Bo Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Luo D, Zhang L, Li L, Dai T, Zhou E, Quan M, Zhang H, Kyaw AKK, Wong W. Small Singlet-Triplet Gap Terpolymer Donor with a Simple Pt Complex Enables Organic Solar Cells with Low Energy Loss and Over 19.2% Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410154. [PMID: 39916341 PMCID: PMC11948028 DOI: 10.1002/advs.202410154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Indexed: 03/28/2025]
Abstract
Suppressing the non-radiative loss in the organic solar cells (OSCs) through molecular design remains a significant challenge. Typically, triplet state of organic semiconductors is lower than the charge transfer (CT) state, contributing to substantial non-radiative loss via the triplet state. Herein, a set of terpolymers is prepared by introducing a simple Pt complex block into the PM6 polymer backbone. These metalated terpolymers exhibit high triplet energy (ET1) and small singlet-triplet energy gap (∆EST), facilitating fast intersystem crossing (ISC) process to generate triplet excitons. Consequently, the metalated terpolymers show enhanced exciton lifetime and diffusion length, and most importantly, effectively suppress the non-radiative recombination via terminal triplet loss channels. Moreover, the Pt complex modifies the molecular aggregation of the polymer, hence optimizing the morphology of the active blends. The PM6-Pt1:L8-BO devices achieve a champion power conversion efficiency (PCE) of 18.54% (certified as 18.32%), the highest reported for metalated terpolymers to date. The PCE is further increased to a record high 19.24% in the PM6-Pt1:PM6:L8-BO (0.8:0.2:1.2, wt/wt/wt) ternary devices. Overall, this work provides a feasible approach to designing terpolymers with high ET1, thereby reducing non-radiative loss in the OSCs.
Collapse
Affiliation(s)
- Dou Luo
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomHong Kong999077P. R. China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518057P. R. China
| | - Lifu Zhang
- Institute of Advanced Scientific Research (iASR)/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330022P. R. China
| | - Lanqing Li
- School of Pharmacy and Food EngineeringWuyi UniversityJiangmen529020P. R. China
| | - Tingting Dai
- National Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Erjun Zhou
- National Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Mao Quan
- College of Materials Science and EngineeringShenzhen UniversityXueyuan Blvd 1066Shenzhen518055P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomHong Kong999077P. R. China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518057P. R. China
- College of Materials Science and EngineeringShenzhen UniversityXueyuan Blvd 1066Shenzhen518055P. R. China
| | - Aung Ko Ko Kyaw
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting Department of Electronic & Electrical EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomHong Kong999077P. R. China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518057P. R. China
| |
Collapse
|
4
|
Li Z, Vagin S, Zhang J, Guo R, Sun K, Jiang X, Guan T, Schwartzkopf M, Rieger B, Ma CQ, Müller-Buschbaum P. Suppressed Degradation Process of PBDB-TF-T1:BTP-4F-12-Based Organic Solar Cells with Solid Additive Atums Green. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9475-9484. [PMID: 39883833 PMCID: PMC11826503 DOI: 10.1021/acsami.4c21699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance. For the reference solar cell without any additive, we find that device degradation is not caused by chemical redox reactions but by changes in crystallinity and microstructure evolution during aging in air under illumination. Operando GIWAXS and GISAXS are used to investigate the structure evolution. We discover a four-stage degradation process for the reference cell. In general, the lattice spacing and crystallite coherence length decrease, while the domain sizes increase, which causes the loss of shirt-circuit current JSC and fill factor FF. Furthermore, a decomposition component is detected in GIWAXS and GISAXS, corresponding to the loss of the open-circuit voltage VOC. Atums Green doping effectively suppresses the evolution of crystallinity and domain sizes as well as the continuous decomposition, thereby enhancing the device stability under illumination in air. This finding reveals the kinetic degradation process of organic solar cells, establishes a correlation between the morphological properties and device performance, and further demonstrates the promising potential of Atums Green doping in organic solar cells.
Collapse
Affiliation(s)
- Zerui Li
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- i-Lab
& Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences (CAS), Ruoshui Road 398, SEID, SIP, Suzhou 215123, China
| | - Sergei Vagin
- Department
of Chemistry, WACKER Chair of Macromolecular Chemistry, TUM School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Jinsheng Zhang
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Renjun Guo
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
| | - Kun Sun
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiongzhuo Jiang
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Tianfu Guan
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Bernhard Rieger
- Department
of Chemistry, WACKER Chair of Macromolecular Chemistry, TUM School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Chang-Qi Ma
- i-Lab
& Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences (CAS), Ruoshui Road 398, SEID, SIP, Suzhou 215123, China
| | - Peter Müller-Buschbaum
- Department
of Physics, Chair for Functional Materials, TUM School of Natural
Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
5
|
Bai L, Chung S, Zhao Z, Zhao J, Sun Y, Liu Y, Tan L, Zhong J, Lyu S, Ji H, Cho K, Kan Z. Modulating Acceptor Phase Leads to 19.59% Efficiency Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413051. [PMID: 39716945 PMCID: PMC11831495 DOI: 10.1002/advs.202413051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Indexed: 12/25/2024]
Abstract
Nonfullerene acceptors are critical in advancing the performance of organic solar cells. However, unfavorable morphology and low photon-to-electron conversion in the acceptor range continue to limit the photocurrent generation and overall device performance. Herein, benzoic anhydride, a low-cost polar molecule with excellent synergistic properties, is introduced in combination with the traditional additive 1-chloronaphthalene to optimize the aggregation of nonfullerene acceptors. This dual additive approach precisely modulates the morphology of various acceptors, significantly enhancing device performance. Notably, the method induces the formation of fine fibers with dense polymorph structures in BTP-base derivatives, achieving an optimal balance between exciton dissociation and charge collection in the active layers. As a result, the external quantum efficiency of the optimal devices is markedly improved in the wavelength range of 700-850 nm. Ultimately, power conversion efficiencies of 18.27% and 19.59% are achieved for devices comprising PM6:Y6 and PM6:L8-BO, respectively. The results reveal a convenient and effective method to control the morphology of nonfullerene acceptors and improve the photovoltaic performance of organic solar cells, paving the way for more efficient and practical organic photovoltaic technologies.
Collapse
Affiliation(s)
- Liang Bai
- Center on Nanoenergy ResearchCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Sein Chung
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673South Korea
| | - Zhenmin Zhao
- Center on Nanoenergy ResearchCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Jingjing Zhao
- Center on Nanoenergy ResearchCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuqing Sun
- Center on Nanoenergy ResearchCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuan Liu
- Center on Nanoenergy ResearchCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Lixing Tan
- Center on Nanoenergy ResearchCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Jiancheng Zhong
- Center on Nanoenergy ResearchCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Sooji Lyu
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673South Korea
| | - Hojun Ji
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673South Korea
| | - Kilwon Cho
- Department of Chemical EngineeringPohang University of Science and TechnologyPohang37673South Korea
| | - Zhipeng Kan
- Center on Nanoenergy ResearchCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresNanning530004China
| |
Collapse
|
6
|
Zou W, Sun Y, Sun L, Wang X, Gao C, Jiang D, Yu J, Zhang G, Yin H, Yang R, Zhu H, Chen H, Gao K. Extending Exciton Diffusion Length via an Organic-Metal Platinum Complex Additive for High-Performance Thick-Film Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413125. [PMID: 39763128 DOI: 10.1002/adma.202413125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/04/2024] [Indexed: 02/26/2025]
Abstract
The long exciton diffusion length (LD) plays an important role in promoting exciton dissociation, suppressing charge recombination, and improving the charge transport process, thereby improving the performance of organic solar cells (OSCs), especially in thick-film OSCs. However, the limited LD hinders further improvement in device performance as the film thickness increases. Here, an organic-metal platinum complex, namely TTz-Pt, is synthesized and served as a solid additive into the D18-Cl:L8-BO system. The addition of TTz-Pt enhanced the crystallinity of blends, reduced energy disorder, and trap density, and decreased non-radiative recombination and exciton binding energy, which is conducive to prolonging the LD in the TTz-Pt-treated film, thereby facilitating the exciton dissociation and charge transport process along with inhibiting the charge recombination. Consequently, the TTz-Pt-treated D18:L8-BO:IDIC device (100 nm) exhibits a champion power conversion efficiency (PCE) of 20.12% (certified as 19.54%), one of the highest PCEs reported for OSCs to date. Remarkably, a record-breaking PCE of 18.84% is yielded for the active layer thickness of 300 nm. Furthermore, the TTz-Pt exhibits superior universality in improving the performance of OSCs. This work provides a simple and universal approach to extending LD by introducing an organic-metal platinum complex as a solid additive to achieve highly efficient thick-film OSCs.
Collapse
Affiliation(s)
- Wentao Zou
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yanna Sun
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Lingya Sun
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Chuanlin Gao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Dongcheng Jiang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jinyang Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
7
|
Li S, Chen W, Shi C, Gong Y, Yang K, Jiang L, Lu X, Xie H, Yuan J, Zou Y. Designed Polar Cosolvent-Prepared Zinc Oxide Film for Efficient and Stable Inverted Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405743. [PMID: 39344217 DOI: 10.1002/smll.202405743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Indexed: 10/01/2024]
Abstract
Here, a simple method of applying dimethylformamide (DMF) as cosolvent in the sol-gel technology is used to improve the quality of ZnO bulk films. First-principles calculations show that with the addition of polar solvent DMF, the adsorption energy (Eads) between the solvent and Zn(OH)₂ increases from -1.42 to -1.74 eV, which can stabilize the existence of Zn(OH)₂, thereby promoting the ZnO synthesis. Besides, the elimination of amine residues in the DMF-ZnO film significantly suppress the photocatalytic activity induced by amine-induced coordination or redox reactions. Inverted organic solar cells (OSCs) based on PM6:Y6 and PM6:BTP-eC9 achieves impressive power conversion efficiencies (PCE) of 17.58 and 18.14%, respectively. Furthermore, benefiting from the reduced defects of bulk ZnO, pseudo-bilayer bulk heterojunction (PBHJ) devices based on the optimized ZnO film exhibited superior stability, the PM6:Y6 devices based on DMF-ZnO ETLs can maintain 90.28% of their initial PCE after 1000 h of thermal aging at 85 °C, and 80.98% of their initial PCE after 168 h of UV aging. This simple solvent optimization strategy can significantly improve the charge transport of ZnO bulk films, making it a reliable strategy for the preparation of electron transport layers in OSCs.
Collapse
Affiliation(s)
- Shufang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weikun Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Changzhou Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yuxia Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ke Yang
- Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Lihui Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Haipeng Xie
- Institute of Super-Microstructure and Ultrafast Process in Advance Materials, School of Physics and Electronics, Central South University, Changsha, 410012, China
| | - Jun Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
8
|
Kim YG, Han SG, Shao G, Ha T, Sung Y, Jeong M, Yun HG, Ryu JY, Kim DH, Kim B, Jeong MS, Kim S, Choi YJ, Hong YJ, Cho K, Lee D. Polaron Pair-Mediated Radiative Recombination of Singlet Excitons in a Conjugated Polymer Aggregate by Plasmonic and Semiconductor Nanocrystals. J Phys Chem Lett 2024; 15:11806-11814. [PMID: 39557158 DOI: 10.1021/acs.jpclett.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
We investigated the excited-state dynamics of a conjugated polymer (CP:P3HT)-based ternary hybrid system containing P3HT-coated gold nanoparticles and quantum dots. Transient absorption spectroscopy results revealed that polaron pairs (PPs) originating from nonrelaxed singlet (S1) excitons of the CP aggregate in the ternary system have shorter electron-hole separation distances than those of PPs in the neat CP aggregate because of the photophysical effects of plasmonic and semiconductor nanocrystals. In particular, the shorter electron-hole distances of PPs led to more back-recombination to S1 excitons than dissociation into positive polarons in the ternary system, resulting in increased S1 radiative recombination compared with that in the neat CP system. Thus, the photoluminescence intensity of the CP aggregate in the ternary system increased. Our findings provide new insights into the excited-state dynamics of CPs and pave the way for the development of next-generation high-efficiency optoelectronic devices.
Collapse
Affiliation(s)
- Yeon Gyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Se Gyo Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Guanning Shao
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Taeyong Ha
- Department of Chemistry and Department of School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Yunmo Sung
- Department of Chemistry and Department of School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Minyoung Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Hyuk Gu Yun
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jeong Yeon Ryu
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Dong Hyeon Kim
- Department of Physics, Hanyang University (HYU), Seoul 04763, Korea
| | - Bora Kim
- Department of Physics, Hanyang University (HYU), Seoul 04763, Korea
| | - Mun Seok Jeong
- Department of Physics, Hanyang University (HYU), Seoul 04763, Korea
| | - Sungjee Kim
- Department of Chemistry and Department of School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Young Jin Choi
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
- Hybrid Materials Research Center (HMC), Sejong University, Seoul 05006, Korea
| | | | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Dongki Lee
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
9
|
Wei N, Chen J, Cheng Y, Bian Z, Liu W, Song H, Guo Y, Zhang W, Liu Y, Lu H, Zhou J, Bo Z. Constructing Multiscale Fibrous Morphology to Achieve 20% Efficiency Organic Solar Cells by Mixing High and Low Molecular Weight D18. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408934. [PMID: 39219211 DOI: 10.1002/adma.202408934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This study underscores the significance of precisely manipulating the morphology of the active layer in organic solar cells (OSCs). By blending polymer donors of D18 with varying molecular weights, a multiscale interpenetrating fiber network structure within the active layer is successfully created. The introduction of 10% low molecular weight D18 (LW-D18) into high molecular weight D18 (HW-D18) produces MIX-D18, which exhibits an extended exciton diffusion distance and orderly molecular stacking. Devices utilizing MIX-D18 demonstrate superior electron and hole transport, improves exciton dissociation, enhances charge collection efficiency, and reduces trap-assisted recombination compared to the other two materials. Through the use of the nonfullerene acceptor L8-BO, a remarkable power conversion efficiency (PCE) of 20.0% is achieved. This methodology, which integrates the favorable attributes of high and low molecular weight polymers, opens a new avenue for enhancing the performance of OSCs.
Collapse
Affiliation(s)
- Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jieni Chen
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yetai Cheng
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Ziqing Bian
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haoming Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yawen Guo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hao Lu
- College of Textiles & Clothing, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Zhang B, Jiang M, Mao P, Wang S, Gui R, Wang Y, Woo HY, Yin H, Wang JL, An Q. Manipulating Alkyl Inner Side Chain of Acceptor for Efficient As-Cast Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405718. [PMID: 39014920 DOI: 10.1002/adma.202405718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Indexed: 07/18/2024]
Abstract
As-cast organic solar cells (OSCs) possess tremendous potential for low-cost commercial applications. Herein, five small-molecule acceptors (A1-A5) are designed and synthesized by selectively and elaborately extending the alkyl inner side chain flanking on the pyrrole motif to prepare efficient as-cast devices. As the extension of the alkyl chain, the absorption spectra of the films are gradually blue-shifted from A1 to A5 along with slightly uplifted lowest unoccupied molecular orbital energy levels, which is conducive for optimizing the trade-off between short-circuit current density and open-circuit voltage of the devices. Moreover, a longer alkyl chain improves compatibility between the acceptor and donor. The in situ technique clarifies that good compatibility will prolong molecular assembly time and assist in the preferential formation of the donor phase, where the acceptor precipitates in the framework formed by the donor. The corresponding film-formation dynamics facilitate the realization of favorable film morphology with a suitable fibrillar structure, molecular stacking, and vertical phase separation, resulting in an incremental fill factor from A1 to A5-based devices. Consequently, the A3-based as-cast OSCs achieve a top-ranked efficiency of 18.29%. This work proposes an ingenious strategy to manipulate intermolecular interactions and control the film-formation process for constructing high-performance as-cast devices.
Collapse
Affiliation(s)
- Bao Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Peng Mao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shanshan Wang
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 10081, China
| | - Ruohua Gui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yingqi Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
11
|
Li G, Meng J, Yu S, Bai X, Dai J, Song Y, Peng X, Zhao Q. Excited-State Dynamics of a CRABPII-Based Microbial Rhodopsin Mimic. J Phys Chem B 2024; 128:7712-7721. [PMID: 38940335 DOI: 10.1021/acs.jpcb.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Microbial rhodopsin, a pivotal photoreceptor protein, has garnered widespread application in diverse fields such as optogenetics, biotechnology, biodevices, etc. However, current microbial rhodopsins are all transmembrane proteins, which both complicates the investigation on the photoreaction mechanism and limits their further applications. Therefore, a specific mimic for microbial rhodopsin can not only provide a better model for understanding the mechanism but also can extend the applications. The human protein CRABPII turns out to be a good template for design mimics on rhodopsin due to the convenience in synthesis and the stability after mutations. Recently, Geiger et al. designed a new CRABPII-based mimic M1-L121E on microbial rhodopsin with the 13-cis, syn (13C) isomerization after irradiation. However, it still remains a question as to how similar it is compared with the natural microbial rhodopsin, in particular, in the aspect of the photoreaction dynamics. In this article, we investigate the excited-state dynamics of this mimic by measuring its transient absorption spectra. Our results reveal that there are two components in the solution of mimic M1-L121E at pH 8, known as protonated Schiff base (PSB) and unprotonated Schiff base (USB) states. In both states, the photoreaction process from 13-cis, syn(13C) to all-trans,anti (AT) is faster than that from the inverse direction. In addition, the photoreaction process in the PSB state is faster than that in the USB state. We compared the isomerization time of the PSB state to that of microbial rhodopsin. Our findings indicate that M1-L121E exhibits behaviors similar to those of microbial rhodopsins in the general pattern of PSB isomerization, where the isomerization from 13C to AT is much faster than its inverse direction. However, our results also reveal significant differences in the excited-state dynamics of the mimic relative to the native microbial rhodopsin, including the slower PSB isomerization rates as well as the unusual USB photoreaction dynamics at pH = 8. By elucidating the distinctive characteristics of mimics M1-L121E, this study enhances our understanding of microbial rhodopsin mimics and their potential applications.
Collapse
Affiliation(s)
- Gaoshang Li
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiajia Meng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuang Yu
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolu Bai
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Jin Dai
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yin Song
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xubiao Peng
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Academy of Quantum Information Sciences, Beijing 100081, China
| | - Qing Zhao
- Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Academy of Quantum Information Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Chang B, Jiang BH, Chen CP, Chen K, Chen BH, Tan S, Lu TC, Tsao CS, Su YW, Yang SD, Chen CS, Wei KH. Achieving High Efficiency and Stability in Organic Photovoltaics with a Nanometer-Scale Twin p-i-n Structured Active Layer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41244-41256. [PMID: 39041930 PMCID: PMC11311131 DOI: 10.1021/acsami.4c08868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
In pursuing high stability and power conversion efficiency for organic photovoltaics (OPVs), a sequential deposition (SD) approach to fabricate active layers with p-i-n structures (where p, i, and n represent the electron donor, mixed donor:acceptor, and electron acceptor regions, respectively, distinctively different from the bulk heterojunction (BHJ) structure) has emerged. Here, we present a novel approach that by incorporating two polymer donors, PBDBT-DTBT and PTQ-2F, and one small-molecule acceptor, BTP-3-EH-4Cl, into the active layer with sequential deposition, we formed a device with nanometer-scale twin p-i-n structured active layer. The twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device involved first depositing a PBDBT-DTBT:PTQ-2F blend under layer and then a BTP-3-EH-4Cl top layer and exhibited an improved power conversion efficiency (PCE) value of 18.6%, as compared to the 16.4% for the control BHJ PBDBT-DTBT:PTQ-2F:BTP-3-EH-4Cl device or 16.6% for the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl device. The PCE enhancement resulted mainly from the twin p-i-n active layer's multiple nanoscale charge carrier pathways that contributed to an improved fill factor and faster photocurrent generation based on transient absorption studies. The PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl film possessed a vertical twin p-i-n morphology that was revealed through secondary ion mass spectrometry and synchrotron grazing-incidence small-angle X-ray scattering analyses. The thermal stability (T80) at 85 °C of the twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device surpassed that of the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl devices (906 vs 196 h). This approach of providing a twin p-i-n structure in the active layer can lead to substantial enhancements in both the PCE and stability of organic photovoltaics, laying a solid foundation for future commercialization of the organic photovoltaics technology.
Collapse
Affiliation(s)
- Bin Chang
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bing-Huang Jiang
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei City 243303, Taiwan
| | - Chih-Ping Chen
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei City 243303, Taiwan
- College
of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai Chen
- Robinson
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- The Dodd-Walls
Centre for Photonic and Quantum TechnologiesUniversity of Otago, Denedin 9016, New Zealand
| | - Bo-Han Chen
- Institute
of Photonics Technologies, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Shaun Tan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Tzu-Ching Lu
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Cheng-Si Tsao
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 106319, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Yu-Wei Su
- Department of Molecular Science and Engineering,
Institute of Organic
and Polymeric Materials, National Taipei
University of Technology, Taipei 10608, Taiwan
| | - Shang-Da Yang
- Institute
of Photonics Technologies, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Cheng-Sheng Chen
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kung-Hwa Wei
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
13
|
Miao Y, Sun Y, Zou W, Zhang X, Kan Y, Zhang W, Jiang X, Wang X, Yang R, Hao X, Geng L, Xu H, Gao K. Isomerization Engineering of Solid Additives Enables Highly Efficient Organic Solar Cells via Manipulating Molecular Stacking and Aggregation of Active Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406623. [PMID: 38899799 DOI: 10.1002/adma.202406623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Morphology control is crucial in achieving high-performance organic solar cells (OSCs) and remains a major challenge in the field of OSC. Solid additive is an effective strategy to fine-tune morphology, however, the mechanism underlying isomeric solid additives on blend morphology and OSC performance is still vague and urgently requires further investigation. Herein, two solid additives based on pyridazine or pyrimidine as core units, M1 and M2, are designed and synthesized to explore working mechanism of the isomeric solid additives in OSCs. The smaller steric hindrance and larger dipole moment facilitate better π-π stacking and aggregation in M1-based active layer. The M1-treated all-small-molecule OSCs (ASM OSCs) obtain an impressive efficiency of 17.57%, ranking among the highest values for binary ASM OSCs, with 16.70% for M2-treated counterparts. Moreover, it is imperative to investigate whether the isomerization engineering of solid additives works in state-of-the-art polymer OSCs. M1-treated D18-Cl:PM6:L8-BO-based devices achieve an exceptional efficiency of 19.70% (certified as 19.34%), among the highest values for OSCs. The work provides deep insights into the design of solid additives and clarifies the potential working mechanism for optimizing the morphology and device performance through isomerization engineering of solid additives.
Collapse
Affiliation(s)
- Yawei Miao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yanna Sun
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wentao Zou
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xu Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yuanyuan Kan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Wenqing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xinyue Jiang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Huajun Xu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Ke Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
14
|
Wang T, Zhang J, Shen Y, Zhang H, Tian C, Xie M, Zhang W, Hao X, Lu K, Wei Z. Morphological Homogeneity and Interface Modification as Determinant Factors of the Efficiency and Stability for Upscaling Organic Solar Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311596. [PMID: 38381025 DOI: 10.1002/smll.202311596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Morphological homogeneity and interfacial traps are essential issues to achieve high-efficiency and stable large-area organic solar cells (OSCs). Herein, by the investigation of three quinoxaline-based acceptors, i.e., PM6:Qx-1, PM6:Qx-2, and PM6:Qx-p-4Cl, the performance degradation in up-scaling OSCs is explored. The inhomogeneous morphology in PM6:Qx-2 induces a nonuniform spatial distribution of charge generation, showing a rapid decline in efficiency and stability in large-area OSCs. In comparison, the homogeneous morphology in PM6:Qx-1 and PM6:Qx-p-4Cl alleviates the stability drop. When utilizing 2-phenylethylmercaptan to fill the interfacial traps, the stability drop disappears for PM6:Qx-1 and PM6:Qx-p-4Cl, while it persists for PM6:Qx-2. The PM6:Qx-1 large-are device yields a high efficiency of 13.47% and superior thermal stability (T80 = 2888 h). Consequently, the interface modification dominates the performance degradation of large-area devices with homogeneous morphology, while it cannot eliminate the traps in inhomogeneous film. These results provide a clear understanding of degradation mechanisms in upscaling devices.
Collapse
Affiliation(s)
- Tong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yifan Shen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Hao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiling Xie
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Zhang L, Deng D, Lu K, Wei Z. Optimization of Charge Management and Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302915. [PMID: 37399575 DOI: 10.1002/adma.202302915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
All-small-molecule organic solar cells (ASM-OSCs) have received tremendous attention in recent decades because of their advantages over their polymer counterparts. These advantages include well-defined chemical structures, easy purification, and negligible batch-to-batch variation. Remarkable progress with a power conversion efficiency (PCE) of over 17% has recently been achieved with improved charge management (FF × JSC) and reduced energy loss (Eloss). Morphology control is the key factor in the progress of ASM-OSCs, which remains a significant challenge because of the similarities in the molecular structures of the donors and acceptors. In this review, the effective strategies for charge management and/or Eloss reduction from the perspective of effective morphology control are summarized. The aim is to provide practical insights and guidance for material design and device optimization to promote further development of ASM-OSCs to a level where they can compete with or even surpass the efficiency of polymer solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
16
|
He D, Li Y, Zhao F, Lin Y. Trap suppression in ordered organic photovoltaic heterojunctions. Chem Commun (Camb) 2024; 60:364-373. [PMID: 38099599 DOI: 10.1039/d3cc05559k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The high trap density (generally 1016-1018 cm-3) in organic solar cells (OSCs) brings about the localization of charge carriers and reduced charge carrier lifetime, mainly due to the weak intermolecular interactions of organic semiconductors resulting in their relatively poor crystallinity, which leads to low charge carrier mobilities and intense non-radiative recombination, thus impeding the further improvement of power conversion efficiencies (PCEs). Therefore, trap suppression is crucial to boost the performance of OSCs, and improving the crystallinity of donor/acceptor materials and enhancing the molecular order in devices can contribute to the trap suppression in OSCs. In this feature article, we summarize the recent advances of trap suppression in OSCs by material design and device engineering, and further outline possible development directions for trap suppression to enhance PCEs of OSCs.
Collapse
Affiliation(s)
- Dan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fuwen Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
17
|
Yang C, An Q, Jiang M, Ma X, Mahmood A, Zhang H, Zhao X, Zhi HF, Jee MH, Woo HY, Liao X, Deng D, Wei Z, Wang JL. Optimized Crystal Framework by Asymmetric Core Isomerization in Selenium-Substituted Acceptor for Efficient Binary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202313016. [PMID: 37823882 DOI: 10.1002/anie.202313016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Both the regional isomerization and selenium-substitution of the small molecular acceptors (SMAs) play significant roles in developing efficient organic solar cells (OSCs), while their synergistic effects remain elusive. Herein, we developed three isomeric SMAs (S-CSeF, A-ISeF, and A-OSeF) via subtly manipulating the mono-selenium substituted position (central, inner, or outer) and type of heteroaromatic ring on the central core by synergistic strategies for efficient OSCs, respectively. Crystallography of asymmetric A-OSeF presents a closer intermolecular π-π stacking and more ordered 3-dimensional network packing and efficient charge-hopping pathways. With the successive out-shift of the mono-selenium substituted position, the neat films give a slightly wider band gap and gradually higher crystallinity and electron mobility. The PM1 : A-OSeF afford favourable fibrous phase separation morphology with more ordered molecular packing and efficient charge transportation compared to the other two counterparts. Consequently, the A-OSeF-based devices achieve a champion efficiency of 18.5 %, which represents the record value for the reported selenium-containing SMAs in binary OSCs. Our developed precise molecular engineering of the position and type of selenium-based heteroaromatic ring of SMAs provides a promising synergistic approach to optimizing crystal stacking and boosting top-ranked selenium-containing SMAs-based OSCs.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoming Ma
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Xilin Liao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dan Deng
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
18
|
Wu X, Jiang X, Li X, Zhang J, Ding K, Zhuo H, Guo J, Li J, Meng L, Ade H, Li Y. Introducing a Phenyl End Group in the Inner Side Chains of A-DA'D-A Acceptors Enables High-Efficiency Organic Solar Cells Processed with Nonhalogenated Solvent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302946. [PMID: 37515820 DOI: 10.1002/adma.202302946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Indexed: 07/31/2023]
Abstract
Power conversion efficiency (PCE) of organic solar cells (OSCs) processed by nonhalogenated solvents is unsatisfactory due to the unfavorable morphology. Herein, two new small molecule acceptors (SMAs) Y6-Ph and L8-Ph are synthesized by introducing a phenyl end group in the inner side chains of the SMAs of Y6 and L8-BO, respectively, for overcoming the excessive aggregation of SMAs in the long-time film forming processed by nonhalogenated solvents. First, the effect of the film forming time on the aggregation property and photovoltaic performance of Y6, L8-BO, Y6-Ph, and L8-Ph is studied by using the commonly used solvents: chloroform (CF) (rapid film forming process) and chlorobenzene (CB) (slow film forming process). It is found that Y6- and L8-BO-based OSCs exhibit a dramatic drop in PCE from CF- to CB-processed devices owing to the large phase separation, while the Y6-Ph and L8-Ph based OSCs show obviously increased PCEs Furthermore, L8-Ph-based OSCs processed by nonhalogenated solvent o-xylene (o-XY) achieved a high PCE of 18.40% with an FF of 80.11%. The results indicate that introducing a phenyl end group in the inner side chains is an effective strategy to modulate the morphology and improve the photovoltaic performance of the OSCs processed by nonhalogenated solvents.
Collapse
Affiliation(s)
- Xiangxi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Hongmei Zhuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guo
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
19
|
Gan Z, Wang L, Cai J, Guo C, Chen C, Li D, Fu Y, Zhou B, Sun Y, Liu C, Zhou J, Liu D, Li W, Wang T. Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells. Nat Commun 2023; 14:6297. [PMID: 37813902 PMCID: PMC10562425 DOI: 10.1038/s41467-023-42071-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Conjugated polymers are generally featured with low structural order due to their aromatic and irregular structural units, which limits their light absorption and charge mobility in organic solar cells. In this work, we report a conjugated molecule INMB-F that can act as a molecular bridge via electrostatic force to enhance the intermolecular stacking of BDT-based polymer donors toward efficient and stable organic solar cells. Molecular dynamics simulations and synchrotron X-ray measurements reveal that the electronegative INMB-F adsorb on the electropositive main chain of polymer donors to increase the donor-donor interactions, leading to enhanced structural order with shortened π-π stacking distance and consequently enhanced charge transport ability. Casting the non-fullerene acceptor layer on top of the INMB-F modified donor layer to fabricate solar cells via layer-by-layer deposition evidences significant power conversion efficiency boosts in a range of photovoltaic systems. A power conversion efficiency of 19.4% (certified 18.96%) is realized in PM6/L8-BO binary devices, which is one of the highest reported efficiencies of this material system. The enhanced structural order of polymer donors by INMB-F also leads to a six-fold enhancement of the operational stability of PM6/L8-BO organic solar cells.
Collapse
Affiliation(s)
- Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jinlong Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Donghui Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yiwei Fu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Bojun Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China.
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
20
|
Fan B, Zhong W, Gao W, Fu H, Lin FR, Wong RWY, Liu M, Zhu C, Wang C, Yip HL, Liu F, Jen AKY. Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302861. [PMID: 37164341 DOI: 10.1002/adma.202302861] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Sequentially deposited organic solar cells (SD-OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase-separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD-OSCs is still quite challenging in preventing the penetration of small-molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD-OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π-π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p-dibromobenzene shows a stronger interaction with the donor while 2-chloronaphthalene (2-CN) interacts more preferably with acceptor. Combining the depth-dependent morphological study aided by multiple X-ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger-interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2-CN-treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, In-Situ Center for Physical Science and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wei Gao
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Huiting Fu
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Reese W-Y Wong
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Ming Liu
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hin-Lap Yip
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-Situ Center for Physical Science and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
21
|
Zhao X, An Q, Zhang H, Yang C, Mahmood A, Jiang M, Jee MH, Fu B, Tian S, Woo HY, Wang Y, Wang JL. Double Asymmetric Core Optimizes Crystal Packing to Enable Selenophene-based Acceptor with Over 18 % Efficiency in Binary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202216340. [PMID: 36591914 DOI: 10.1002/anie.202216340] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Side-chain tailoring is a promising method to optimize the performance of organic solar cells (OSCs). However, asymmetric alkyl chain-based small molecular acceptors (SMAs) are still difficult to afford. Herein, we adopted a novel asymmetric n-nonyl/undecyl substitution strategy and synthesized two A-D1 A'D2 -A double asymmetric isomeric SMAs with asymmetric selenophene-based central core for OSCs. Crystallographic analysis indicates that AYT9Se11-Cl forms a more compact and order intermolecular packing compared to AYT11Se9-Cl, which contributed to higher electron mobility in neat AYT9Se11-Cl film. Moreover, the PM6 : AYT9Se11-Cl blend film shows a better morphology with appropriate phase separation and distinct face-on orientation than PM6 : AYT11Se9-Cl. The OSCs with PM6 : AYT9Se11-Cl obtain a superior PCE of 18.12 % compared to PM6 : AYT11Se9-Cl (17.52 %), which is the best efficiency for the selenium-incorporated SMAs in binary BHJ OSCs. Our findings elucidate that the promising double asymmetric strategy with isomeric alkyl chains precisely modulates the crystal packing and enhances the photovoltaic efficiency of selenophene-incorporated SMAs.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Bin Fu
- Department of Chemistry, Renmin University of China, 100872, Beijing, China
| | - Shiyu Tian
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, 100872, Beijing, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
22
|
Incorporation of a Boron-Nitrogen Covalent Bond Improves the Charge-Transport and Charge-Transfer Characteristics of Organoboron Small-Molecule Acceptors for Organic Solar Cells. Molecules 2023; 28:molecules28020811. [PMID: 36677871 PMCID: PMC9861936 DOI: 10.3390/molecules28020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
An organoboron small-molecular acceptor (OSMA) MB←N containing a boron-nitrogen coordination bond (B←N) exhibits good light absorption in organic solar cells (OSCs). In this work, based on MB←N, OSMA MB-N, with the incorporation of a boron-nitrogen covalent bond (B-N), was designed. We have systematically investigated the charge-transport properties and interfacial charge-transfer characteristics of MB-N, along with MB←N, using the density functional theory (DFT) and the time-dependent density functional theory (TD-DFT). Theoretical calculations show that MB-N can simultaneously boost the open-circuit voltage (from 0.78 V to 0.85 V) and the short-circuit current due to its high-lying lowest unoccupied molecular orbital and the reduced energy gap. Moreover, its large dipole shortens stacking and greatly enhances electron mobility by up to 5.91 × 10-3 cm2·V-1·s-1. Notably, the excellent interfacial properties of PTB7-Th/MB-N, owing to more charge transfer states generated through the direct excitation process and the intermolecular electric field mechanism, are expected to improve OSCs performance. Together with the excellent properties of MB-N, we demonstrate a new OSMA and develop a new organoboron building block with B-N units. The computations also shed light on the structure-property relationships and provide in-depth theoretical guidance for the application of organoboron photovoltaic materials.
Collapse
|
23
|
Li Q, Zhang C, Li S, Yao J, Zhang M, Wang Q, Chen Q, Xue L, Zhang ZG, Yan Q. Asymmetric non-fullerene acceptors enable high photovoltaic performance via the synergistic effect of carbazole-terminated alkyl spacer and halogen substitution. NEW J CHEM 2023. [DOI: 10.1039/d2nj05457d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel design approach of asymmetric NFA via synergetic alkyl spacer length and halogen substitution enables high photovoltaic performance.
Collapse
Affiliation(s)
- Qingbin Li
- Institute of Nuclear Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cen Zhang
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangyu Li
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Yao
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingyuan Wang
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qi Chen
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingwei Xue
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Zhi-Guo Zhang
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingzhi Yan
- Institute of Nuclear Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|